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Abstract

Theory of Mind enables us to attribute mental states to oth-
ers. But we not only make inferences about mental states
(like what someone believes or wants), but about mental pro-
cesses (like if someone is distracted or whether they remember
something). Here, we present a computational formalization
of these kinds of inferences. We propose that inferences about
mental processes are structured around a principle of rational
mental effort: the expectation that other people allocate men-
tal resources rationally so as to minimize thinking costs in-
curred while pursuing their goals. We develop this theory into
a computational model in the context of the Rush Hour puzzle
game. In two behavioral experiments testing different infer-
ences about mental processing, we find that our model predicts
participant judgments. This work advances our understanding
of the richness of the human mind’s ability to think about other
minds, and even about thinking itself.
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Introduction

Imagine running into an old friend on the street and, when
making small talk, you ask her what she’s doing downtown.
Intuitively, this is an easy question that she should be able to
answer immediately. If instead, your friend pauses with no
answer, you might start to wonder if she’s hesitant to tell you,
or if she’s trying to figure out why you want to know. If your
friend was rushing down the street when you spotted her, you
might infer that she’s having a hectic day and is collecting
her thoughts. And if the pause gets too long, you might infer
that she’s lost in thought and might not have even heard your
question.

This ability to reason about other people’s minds, known as
Theory of Mind (ToM; |Gopnik et al. [1997; |Wellman|2014),
is a hallmark of human cognition, emerging early in infancy
(Onishi & Baillargeon, |2005)), and supporting a wide range
of human activities, from social learning to moral reasoning
(Gweon, 2021} |[Kiley Hamlin et al., 2013). Research over
the past decade has found that inferences about other peo-
ple’s mental states like their beliefs and desires are structured
around a principle of rational action—the expectation that
agents act so as to maximize the rewards that they obtain
while minimizing the costs that they incur (Baker et al.,|2017;
Gergely & Csibra, 2003} Jara-Ettinger et al.,|2016; Jern et al.,
2017; |Lucas et al.,[2014).

But as the opening example shows, people routinely go
beyond inferring mental states (like what someone wants or
knows) by also inferring other people’s dynamic mental pro-
cesses, like when we infer that someone is trying to recall
something that happened, or when we determine that some-
one got lost in thought. Representations about mental pro-
cesses are different from standard mental state attribution in
two key ways. First, others’ mental states are typically repre-
sentations about the world (i.e., beliefs and desires represent
what an agent thinks the world is currently like, and what
they want it to be like, respectively). By contrast, mental pro-
cesses do not represent world states; they reflect internal com-
putations happening in other people’s minds. Second, men-
tal states are usually (but not always, e.g., |Gates et al.|2021}
Zhang et al.[2023) inferred based on the observable behav-
ior that they produce (e.g., wanting a coffee is evidenced by
an agent walking towards a coffee shop). By contrast, men-
tal processes are not directly tied to observable behavior and
often leave no traces beyond pauses in behavior.

In this paper, we present a computational model of infer-
ences about mental processes, structured around a principle of
rational mental effort—the idea that, analogous to the princi-
ple of rational action, people expect agents to allocate mental
resources rationally, so as to minimize mental computational
costs incurred while pursuing goals. In other words, we ex-
pect other people to flexibly decide what to think about based
on what looks most promising for achieving their goals. This
idea is inspired by research showing that, in first-person be-
havior, mental effort is costly and allocated rationally (Shen-
hav et al.| 2017} Ongchoco et al.,|[2022)), and that third-person
observers are sensitive to the costs (Liu et al.| 2019) and lim-
itations (Alanqary et al., 2021)) of mental effort, and to the
amount of time thinking takes (Richardson & Keill 2020,
2022).

Our model is centered around a posited capacity to estimate
how much computation a rational agent would have to engage
in to pursue their goals, and uses this representation to infer
people’s mental processes. We implement and test our model
in the context of the Rush Hour puzzle game, and we test
it in two behavioral experiments. In Experiment 1 we focus
on inferences about when someone might be daydreaming,
and in Experiment 2 we focus on inferences about whether
someone is solving a problem from scratch or remembering
the solution.
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Figure 1: Conceptual Figure. A) Depicts a causal diagram,
where solid arrows show causal relationships. The dotted ar-
row illustrates inference. The bubbles shaded in gray repre-
sent observable variables, while the white bubbles represent
unobservable variables (i.e. mental states and mental pro-
cesses). The principle of rational mental effort structures how
an agent’s beliefs (e.g., what the puzzle looks like) and de-
sires (e.g., to solve the puzzle) relate to the mental processes
the agent will engage in. Mental processes like thinking, day-
dreaming, and remembering influence observable actions or
pauses in action. B) Depicts a Rush Hour puzzle and its solu-
tion move-by-move.

For simplicity, we present our model in the context of the
Rush Hour puzzle game on which we test it. A Rush Hour
puzzle (see Fig. for an example) consists of a 6-by-6
grid with non-overlapping “cars” (visualized as rectangles)
of different colors and lengths, each positioned horizontally
or vertically on the grid. Cars can only slide along their row
or column, such that vertically-oriented cars can slide up and
down, and horizontally-oriented cars can slide left and right.
However, cars cannot move through other cars. The goal of
the game is to move the red car to the exit on the right side of
the board (indicated by a red triangle). Then, the solution to
the puzzle is a sequence of moves that clears out of the way
the cars blocking the red car’s path to the exit. For work on
first-person thinking in Rush Hour, see [Bennati et al.|2014;
Bockholt & Zweig|2015}; | Bockholt et al. [2018}; | Bursley|2020;
Jarusek|2013!

Our computational model aims to capture inferences that
humans make simply by watching how long an agent takes to
solve a puzzle, with a focus on whether the agent daydreamed
(Experiment 1) or remembered the solution (Experiment 2).
To achieve this, we estimate computation through a rational
probabilistic solver that seeks to minimize computation. By
combining this generative model of thinking in Rush Hour
(i.e. the solver) with other cognitive processes (such as day-
dreaming or remembering), we further generate a probability
distribution over expected pause lengths. This results in a full

generative process of timing, which we invert using Bayesian
inference. We implemented the model in Gen (Cusumano-
Towner et al.| [2019).

Estimating Computation

At the heart of our model is a solver that aims to find a se-
quence of moves that solves the puzzle. The planner begins
with the target goal of moving the red car to the exit. If this
move can be executed (i.e., there are no cars blocking the
path), then the planner terminates successfully. If the move
cannot be executed because other cars are blocking the move,
the planner creates sub-goals to move each blocking car out
of the way. These sub-goals, in turn, can then trigger fur-
ther sub-goals. For example, in the board in Fig. [IB, the red
car cannot be moved to the exit because the green, light blue,
and pink cars are in the way. This leads the planner to create
sub-goals to clear each of those three blockages. Clearing the
light blue car’s blockage in turn creates another sub-goal to
move the dark blue car out of the way.

Note that it is not possible to solve sub-goals in parallel,
because the moves needed to clear one blockage might af-
fect the relevant cars for another blockage. To generate these
sub-plans, the planner must therefore decide (1) which block-
age to clear out first (when there are multiple blockages), and
(2) where to move the blocking car (when there are multiple
places where it could go). Our principle of rational mental ef-
fort is instatiated in these decisions, as follows. Our planner
estimates how difficult it would be to clear each blockage, and
probabilistically selects one via a softmax decision rule, such
that p(b) o< exp(Cp/t) where b is a blockage, Cj, is the cost
of clearing the blockage (see next section for details), and T
is the softmax temperature parameter. Similarly, when deter-
mining how to clear a selected blockage, the planner identi-
fies all valid moves that would successfully move the car out
of the way, and selects one based on the expected cost of the
move, via p(m) o< exp(Cy,/T), Where m is the target move, C,,
is the expected cost of executing the move (see next section),
and 7 is the softmax temperature parameter.

This recursive process continues until the planner reaches
a move that is immediately executable (i.e., not blocked by
anything else)—which allows the planner to complete the
move and return to the higher-level goal—or until it reaches
a blockage that is physically impossible to unblock (e.g., a
square that will always be blocked because its covered by a
car so long that no matter where its moved, it will always
cover the square), in which case the planner restarts.

The sequential nature of these plans can sometimes cre-
ate infinite cycles, wherein unblocking one car creates a new
blockage, and clearing the new blockage returns the board to
its original state. Therefore, our solver also tracks state histo-
ries and restarts the planner when it identifies that it has been
caught in a loop. Finally, longer plans impose higher working
memory demands and increase the possibility a person might
get lost and need to restart the plan. To account for this, we
include a probablistic depth limit d which, when hit, restarts
the planner (see Solver Parameters).



Estimating Costs The solver described so far requires esti-
mating the approximate cost of clearing out a blockage (Cp),
and the approximate cost of executing a move (C,,). These
two costs are inter-connected: the cost of clearing a block-
age depends on the cost of moving the blocking car out of the
way (i.e. clearing a blockage becomes more costly when the
move to clear it is also blocked). Likewise, the cost of moving
a car is related to the cost of clearing any blockages prevent-
ing that move (i.e. a move becomes more costly as a function
of how many blockages are in the way, and how hard they
are to clear). We formalize this relationship through a pair of
equations, where the expected cost of clearing a blockage b
is given by:

E[C(b)) = min E[C(m)] (1)
meM

where M is the set of possible moves that would clear block-

age b. Thus, the expected cost of clearing a blockage is the

expected cost of the easiest move that clears the blocking car

out of the way. Conversely, the expected cost of executing a

move is given by:

E[C(m)] =1+ ( Y E[C(b)]) + 1(blocks(m, plan)) ~ (2)
beB

The constant 1 captures the cost of executing the move
once its unblocked. The second term adds the expected
cost of clearing all blockages b € B that must be cleared
out for the move to be executable. Finally, the third term
1(blocks(m, plan)) is an indicator for whether the destina-
tion of the car in move m blocks a future move in the current
plan, penalizing the creation of a new blockage (to account
for the fact that the car will need to be moved at least once
more to clear this new blockage).

Note that Eq. [T]and Eq. 2] together form a recursive rela-
tion, such that E[C(m)] is expressed in terms of the expected
cost of clearing blockages, and E[C(b)] is expressed in terms
of the expected cost of future moves. The depth of recursion
that the solver uses in estimating costs is regulated via a prob-
abilistic lookahead.

Solver Parameters Rather than fixing parameters to spe-
cific choices, we instead represent each parameter through
probability distributions that express uncertainty over their
values. The rationality parameter T is modeled with an expo-
nential distribution with mean of 0.02 (A = 50), representing
a strong prior that the solver makes rational choices. A plan’s
depth limit d is sampled from a Binomial distribution with
p =0.7 and n = 10. This prevents unreasonably long plans
but, in practice, minimally impacts the solver since the puz-
zles do not usually require seven layers of sub-goals to make
a move executable. Finally, the lookahead use to estimate
costs is controlled by a random variable drawn from a Ge-
ometric distribution on [1,/nf) with parameter pgeom = 0.9,
placing most of the weight on short lookaheads (for an aver-
age lookahead of 1.11 moves).

Relating Computation to Timing

The solver builds a probability distribution over the amount
of computation a mind would need to solve a given puzzle,
estimated in terms of the number of moves executed. We
then map these computations into time durations by assum-
ing that thinking about each move takes an amount of time ¢
sampled from a Normal distribution with mean ¢ = 1.8 and
standard deviation ¢ = 0.65, obtained through an informal
experiment in which five people each solved four Rush Hour
Puzzles in their head. Their pause times were mapped to our
model’s estimate of computation (via maximum likelihood
estimation). Finally, to account for the fact that people’s per-
ception of time is noisy and follows Weber’s law (Halberda
& Odic, 20155 |Halberda, 2016), we add perceptual noise to
the observed pause, using the Weber fraction w = % (based
on Haigh et al. [2021).

Alternative Models

To better test our theory of rational mental effort, we compare
our model to two alternative models. The first alternate, the
Uniform Computation Model, captures the possibility that,
while people represent computation, they do not assume ra-
tional mental effort in others. We implement this model by re-
placing our solver with a breadth-first-search (BFS) strategy,
which sequentially expands its search to neighboring board
states and, unlike our solver, does not select moves so as to
minimize expected computation. We set the thinking time
parameters to 4 = 0.13 and 6 = 0.10 seconds using the same
procedure as above.

Our second alternate model, the Action-Based Model, cap-
tures the idea that people’s inferences do not depend on any
representation of computation, but merely on observable ac-
tions (like typical models of Theory of Mind). This action-
based model makes inferences solely based on the number of
moves in the observed solution. We tested this theory using a
simple linear regression with the number of moves as the pre-
dictor. This regression was fit separately for each experiment.

Behavioral Experiments

To test our model, we conducted two experiments where par-
ticipants watched an agent pause to solve a Rush Hour puzzle
in their mind, and had to infer the agent’s underlying mental
processes. In Experiment 1, we tested people’s ability to infer
how long the agent spent daydreaming as opposed to think-
ing about solving the puzzle. In Experiment 2, we tested peo-
ple’s ability to infer how much the agent recalled about the
puzzle as opposed to solved from scratch. These two infer-
ences are complementary to each other: daydreaming usually
extends the pause compared to focused thinking, and remem-
bering the solution shortens the pause compared to thinking
it through from scratch. All model parameters, predictions,
stimuli, and analyses were pre-registered. Repositories con-
taining the pre-registrations and data and available here: Expl
and Exp2.


https://osf.io/6qey9/?view_only=8d5468bb00814de39735e70c99a23cd2
https://osf.io/tmpev/?view_only=1d852040a9914c20957c6f5f66f556f4

Experiment 1: Thinking vs. Daydreaming

Participants 120 U.S. participants were recruited on Pro-
lific and randomly assigned to a subset of the trials (n=40
participants per video).

Stimuli Stimuli consisted of 36 short videos. Each video
showed a static puzzle for some length of time (a pause),
followed by the appearance of the words “Got it!”, and an
animation of the shortest solution. Although the experiment
referenced that an agent named Alex was solving the puzzles
(see Procedure), the videos only showed the puzzle and never
showed any agents. The videos were generated by pairing a
set of 12 puzzles (shown in Fig. [3) with three different pause
times. All puzzles were paired with a 15 second pause, a 30
second pause, and a randomly sampled puzzle-specific pause.
This enabled us to both test how each puzzle’s computational
demands affect inferences while controlling for time (via the
matched pauses), and also explore the full range of inferences
that can emerge from differences in time (via the randomly
selected time pauses). Each random pause was sampled from
the set of pauses from 2.5 to 30 seconds by 2.5 second inter-
vals (excluding 15 and 30, as they were already used), and
from 30 to 60 seconds by 5 second intervals. We varied the
intervals so as to sample more pause times between 2.5 and
30 seconds, in which range the model’s inferences change the
most.

Procedure Participants completed a brief tutorial teaching
them the rules of Rush Hour and explaining that a charac-
ter, Alex, would be solving Rush Hour puzzles. Alex would
pause to solve the puzzle in their mind and then say “Got it”
and produce the solution. Participants were told that Alex
sometimes thinks about the puzzle for the whole pause, but
sometimes, Alex daydreams, and that their job as participants
was to tell what Alex was doing during the pause.

To help align the participants’ priors about thinking time
to the model’s, participants watched two warm-up videos of
Alex pausing to solve a puzzle (using a different puzzle for
each video) before saying “Got it!” and producing the solu-
tion. Each warm-up video used the mean pause time pre-
dicted by the model for that puzzle, and participants were
told that these videos showed Alex’s average puzzle-solving
speed when Alex did not daydream. Thus, this helped align
participants’ priors about how quickly Alex thinks.

In the testing phase, each participant watched 12 videos:
one from each puzzle paired with a pause time (balanced
such that 40 participants viewed each video). The order of
the videos was randomized, along with which of the three
pause times they saw for each puzzle. Because some of these
videos have short pause times, they might not give the par-
ticipant enough time to evaluate the puzzle’s complexity. For
that reason, participants were shown a static preview of the
puzzle for 10 seconds before they were allowed to proceed to
the video. For each video, participants were asked to answer
the question “What was Alex doing?” by positioning a slider
with endpoints “thinking for the whole pause” (coded as 0)

to “daydreaming for the whole pause” (coded as 100) and the
midpoint labeled “thinking for half, daydreaming for half.”

Model predictions Daydreaming was modeled as a
Bernoulli random variable day with probability pgyaydream =
0.5. The length of the daydream #; was sampled from a uni-
form distribution over [0,60] seconds. The pause time was
then represented as ¢ x n + 4 * day, where the first term is the
time spent solving the puzzle. Given the board state and con-
ditioning on the noisy observed pause time (with observation
noise added as described previously in the Relating Computa-
tion to Timing section), we used the generative model to infer
how long Alex daydreamed.

Results Participant judgments were averaged for each
video (for a total of 36 observations) and compared directly
to our model predictions. Overall, participant judgments
were quantitatively aligned with our computational model
(r =0.92, Clos9: (0.86-0.96); see Fig. ). The middle row
in Fig. [3] shows trial-by-trial results which reveal how both
participants and our model showed fine-grained sensitivity to
both the puzzle’s complexity and to the pause time.

Interestingly, the Uniform Computation model also pro-
duced a high quantitative fit to participant judgments (r =
0.84, Closg,: (0.70-0.91)) but, critically, this fit was reliably
lower than that of our main model (& = 0.09, Closq,: (0.02,
0.18)). That both the main and Uniform Computation mod-
els fit participant judgments well lends support to the hy-
pothesis that people’s inferences rely on an estimate of how
much computation each puzzle requires (as both models es-
timate computation), but that the main model significantly
outperformed the Uniform Computation model indicates that
people’s estimates of computation reflect an expectation that
agents rationally decide what to think about.

Finally, the Action-Based model failed to predict partici-
pant judgments as accurately (r = 0.67, Clgsg,: (0.43, 0.82)),
and performed reliably worse than our main model (8 = 0.26,
Close: (0.11, 0.45)), despite the fact that this model was di-
rectly fit to participant judgments. This suggests that people’s
judgments cannot be explained simply based on the number
of moves in a puzzle’s solution, and instead rely on some
measure of how much thinking was required.

Experiment 2: Thinking vs. Remembering

Participants 120 U.S. participants were recruited on Pro-
lific and randomly assigned to a subset of the trials (n=40
participants per video).

Stimuli Stimuli consisted of 36 short videos, like those in
Exp. 1. The same 12 puzzles were again paired with three
different pause times. Two of the pause times were fixed at 1
and 3 seconds. A third pause time for each puzzle was ran-
domly sampled from 5 to 10 seconds, by 1 second intervals.

Procedure The procedure was almost identical to the pro-
cedure in Exp. 1, except that participants were told that Alex
had solved all of these puzzles before. Sometimes, Alex re-
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Figure 2: Results from both experiments. Each point represents the result on a video, with mean participant judgements on
the y-axis and model predictions on the x-axis. The black line is the best-fit line, and shaded region gives a 95% confidence
interval. Each plot includes the Pearson correlation followed by 95% confidence intervals in parenthesis. A) shows the results
for Experiment 1: Thinking vs. Daydreaming, and B) shows the results for Experiment 2: Thinking vs. Remembering.

membered the entire puzzle perfectly, and other times, Alex
did not remember the puzzle at all, and had to figure it out
again from scratch. Still other times, Alex remembered part
of the solution, but had to solve the rest of the puzzle. To
align priors with the model, participants viewed the same two
warm-up videos as in Exp. 1, and were told that in these
videos, Alex did not remember the puzzle at all and was fig-
uring it out from scratch. For each video, participants had
to indicate how much of the puzzle Alex remembered, on a
scale from “remembered 0% of the puzzle” (coded as 0) to
“remembered 100% of the puzzle” (coded as 100), with the
midpoint labelled “remembered about 50% of the puzzle.”

Model predictions Memory was modeled as a discrete
event which could happen at any of the n steps during puz-
zle solving, and which suddenly generated the rest of the so-
lution, cutting the thinking short. The pause time was then
t* i, where ¢ is the amount of time it takes to think about each
move (see Relating Computation to Timing) and i was sam-
pled from a discrete uniform distribution on [0,7]. Given the
board state and conditioning on the noisy observed pause time
(see Relating Computation to Timing for details), we used the
generative model to infer how many of the n puzzle-solving
steps Alex remembered.

Results As in Exp. 1, participant judgments were aver-
aged for each video (for a total of 36 observations). Overall,

our main computational model quantitatively captured aver-
age participant judgements (» = 0.90, Clgsq,: (0.81-0.95); see
Fig. 2B). The last row of Fig. [3] shows trial-by-trial results,
revealing how both participant judgments and model predic-
tions showed similar sensitivity to the puzzle’s complexity
relative to the duration of the observed pause. The fact that
the same computational model was able to capture two differ-
ent sets of intuitions (inferring daydreaming from time lags
in Exp. 1 and inferring remembering from accelerated re-
sponses in Exp. 2) suggests that a representation of rational
computation underlies people’s ability to draw multiple kinds
of inferences about other people’s mental processes.

Like in Exp. 1, neither of the two alternative models were
able to capture participant judgments as well as our main
model. While the Uniform Computation model had a high
quantitative fit to participant judgments (r = 0.76, Closg,:
(0.57-0.87)), this fit was reliably lower than that of our main
model (8 = 0.15, Clgs¢: (0.03, 0.30)), confirming the im-
portance of the expectation of rational thinking. The Action-
Based model failed to reliably predict participant judgments
(r=0.23, Clos9: (-0.11-0.52)) and performed worse than our
main model (& = 0.67, Clgsq,: (0.38, 1.00)), despite that it
was directly fit to these judgments. This indicates that ob-
served actions alone are not enough to explain participant
judgments.
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Discussion

Here, we proposed that the ability to reason about other peo-
ple’s mental processes is critical to human social intelligence
and underlies a wide range of everyday intuitions that we
use to navigate the social world (e.g., Is this person listen-
ing to me? Are they distracted or daydreaming? Is this per-
son thinking about this for the first time? Or did they al-
ready know what I'm telling them?). We hypothesized that
inferences about other people’s mental processes are struc-
tured around a mental representation of computation, and
furthermore, that estimation of this computation is based on
a principle of rational mental effort — the expectation that
other people rationally allocate their thinking resources so as
to minimize the amount of thinking that they have to do to
achieve their goals. Extending initial work (Berke & Jara-
Ettinger, |[2021) into a more general framework, we presented
a computational model that describes others’ thinking using
a generative model of rational computation, implemented in
the context of Rush Hour puzzles. Our computational model
captured fine-grained human intuitions on two different kinds
of everyday inferences: 1) whether and how much someone
is daydreaming rather than focused on thinking and 2) how
much of a problem or solution someone remembers. In both
settings, participants showed sensitivity to pause time and
puzzle complexity in exactly the way our model predicted,
and their responses could not be explained by a model that
posited thinking but lacked the notion of rational mental ef-
fort, nor by a model that attempted to draw these inferences
from observable action.

While this work focused on two particular intuitions about
mental processes, the approach we proposed might be able
to capture a much broader set of intuitions about other peo-
ple’s thinking. For example, our framework could also ex-
plain inferences about which goal someone is thinking about
(when each goal requires a different amount of computation),
or whether someone might have a false belief (e.g. if we
know that the answer to a question is surprisingly tricky, and
there’s a seeming obvious but incorrect solution). Our com-

putational framework might be particularly useful applied to
inferences in language, building on previous empirical work
(e.g., |Arnold et al. 2007} [Fox Tree 2002} Heller et al. 2015;
Kidd et al. [2011; |[Loy et al. 2017} |Orena & White|2015)) by
modeling instances where a speaker’s pauses can reveal as-
pects of their mental life (such as when someone pauses to
remember something, or to carefully rehearse their words be-
fore broaching a sensitive topic). This suggests an exciting
space of social inferences about other people’s thinking that
has been previously neglected by classical ToM work focused
on inferences about other people’s beliefs and desires.

One question that our work raises is how people acquire
a generative model that enables them to estimate computa-
tion and how computation relates to behavior. Intuitively, this
model is incredibly complex and context-sensitive, as our in-
tuitions about thinking vary based on the situation. One possi-
bility is that this generative model depends on our own first-
person experience. In our debriefing questionnaires, many
participants reported simulating solving the puzzles them-
selves. It is possible that the best way to estimate the amount
of computation required to solve a problem is by solving
the problem oneself. Critically, however, while first-person
thinking might help estimate computation, it would be unable
to explain the full range of human inferences about think-
ing, as we are intuitively able to reason about people who
can think faster or slower than us in different tasks (rather
than represent everyone else’s minds as replicas of our own).
Likewise, we can recognize that other people might not make
the same thinking errors that we do, or they might make dif-
ferent mistakes (rather than assume others perform the exact
same computations as we did). Understanding the origins of
these intuitions about other people’s thinking is a direction
we hope to explore in future work.

Altogether, this work advances our understanding of the
computations that underlie the human mind’s ability to make
rich inferences about other minds, even inferring complex
processing from the simplest of behaviors, like a pause in ac-
tion.
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