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Denoising diffusion models embody a type of generative artificial
intelligence that can be applied in computer vision, natural language
processing and bioinformatics. In this Review, we introduce the key
concepts and theoretical foundations of three diffusion modelling
frameworks (denoising diffusion probabilistic models, noise-conditioned
scoring networks and score stochastic differential equations). We then
explore their applications in bioinformatics and computational biology,
including protein design and generation, drug and small-molecule
design, protein-ligand interaction modelling, cryo-electron microscopy
image data analysis and single-cell data analysis. Finally, we highlight
open-source diffusion model tools and consider the future applications
of diffusion models in bioinformatics.
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Review article

Key points

o Diffusion models are a generative artificial intelligence technology
that can be applied in natural language processing, image synthesis
and bioinformatics.

¢ Diffusion models have contributed greatly to computational
protein design and generation, drug and small-molecule design,
protein-ligand interaction modelling, cryo-electron microscopy data
enhancement and single-cell data analysis.

e Many diffusion models are also available as open-source tools.

o Although diffusion models may potentially outperform other
generative approaches, such as generative adversarial networks and
variational auto-encoders, their computational resource requirements
remain high.

Introduction

Deep learning' was introduced to the field of bioinformatics and com-
putational biology in2012 (ref.2) (Box 1) and has been applied to many
bioinformatics problems, such as protein structure prediction®, protein
function prediction*”’, protein-ligand interaction prediction' ™,
gene-expression prediction™?° and gene regulatory network
modelling” . Various deep learning architectures, including convo-
lutional neural networks?, long short-term memory networks?, resid-
ual networks?, generative adversarial networks (GAN)*’, graph neural
networks (GNN)** (Box 2) and transformers* have been developed for
bioinformatics data analysis.

Diffusion models leverage deep learning technology®*>; how-
ever, they outperform other deep learning methods in many domains,
including in image generation***, image inpainting*** and speech
synthesis®. Diffusion models are deep learning-based generative
models® (Box 2) that aim to generate artificial yet realistic data
(for example, a computer-generated Picasso painting or an answer
to auser’s question) from input parameters. Compared to other gen-
erative models, such as autoregressive models*’, normalizing flows*,
energy-based models*®, variational auto-encoders (VAEs)*’ or GANs”,
diffusion-based generative models have the ability to learn complex
distributions, handle high-dimensional data and generate diverse
data®®. In particular, diffusion models can surpass GANs*’, which
consist of a generator that generates data and a discriminator that
can differentiate the generated data, in the challenging task of image
synthesis®***°. In addition, diffusion models can be applied for com-
puter vision*****””! natural language processing>>’>”, temporal data
modelling”®, multi-modal modelling®***>%, and in medical image
reconstruction®”.

Diffusion models were originally introduced® to address a central
probleminmachinelearning, that of modelling complex datasets using
highly flexible families of probability distributions while ensuring
that learning, sampling, inference and evaluation remain analytically
or computationally tractable (Fig. 1). Inspired by non-equilibrium
statistical physics, this approach systematically and slowly destroys
the structure of data through an iterative forward diffusion process.
Then, a reverse diffusion process is applied to restore the structure
inthedata, yielding a highly flexible and tractable generative model of
the data, thereby enabling rapid learning, datasampling and evaluating

probabilities through deep generative models with up to thousands
of layers or time steps as well as the computing of conditional and
posterior probabilities under the learned model. Based on this con-
cept, denoising diffusion probabilistic models (DDPMs)* canachieve
performance comparable to or better than other generative models
(forexample, decoder, energy-based models and GANs)*****¢inimage
generationtasks. The diffusion network structure and training strategy
can further be improved to boost performance®, surpassing GANs
inimage synthesis. For example, a multi-head attention mechanism
and the BigGAN’s residual module® can be applied for up-sampling
and down-sampling of data to improve the resolution and quality of
generated images. In addition, a denoising diffusion implicit model
(DDIM)?” can be used to increase sampling rate.

Importantly, diffusion models can be applied in bioinformatics,
forexample, for denoising cryo-electron microscopy (cryo-EM) data®,
single-cell gene-expression analysis®”'°°, protein design and genera-
tion®*11911%7 qrug and small-molecule design®*'°*' and protein-
ligand interaction modelling™ "%, Diffusion models have the advantage
ofbeing able to handle high-dimensional data with high diversity and
scalability.

In this Review, we provide a detailed survey of diffusion models,
including denoising diffusion models, noise-conditioned score
networks (NCSNs) and stochastic differential equations (SDEs), and
discuss their applications in bioinformatics. We further highlight
possible future developments of diffusion models, aiming to propose
some challenging bioinformatics problems that may be tackled by
creative diffusion models.

The concept of diffusion models
Diffusion models learn to reverse the process of data destruction or
corruption (for example, introduced by noise), allowing the generation
of realistic, clean data samples (for example, restoration of uncor-
rupted data). Thus, diffusion models can learn from data that hasbeen
progressively destroyed or degraded to generate new samples froma
given distribution or to estimate the distribution from which a given
sampleis drawn (Box 2).

Diffusion models are based mainly on three frameworks, each with
adifferent formulation of the forward and reverse processes (Fig. 2),
thatis, DDPMs****, NCSNs**"” and score SDEs**'*°.

Denoising diffusion probabilistic models

DDPMs, which were the first diffusion models able to generate high-
resolution data, typically contain two Markov chains (Box 2): the for-
ward chaingradually adds noise to scramble the original data, followed
by areverse chain that removes the noise from the datatorecover the
original data. If g(x,)) denotes the distribution of the original data, in
which x, denotes uncorrupted data, the transition kernel qOx1x.-1) of
the forward Markov process adding Gaussian perturbation at time tis
denoted M(x;; ./1- B,x,_,, B 1), inwhichtefl, ..., T}.Here Trepresentsthe
number of diffusion steps; f,€[0,1) is the hyperparameter denoting
the variance schedule across diffusion steps; lis the identity matrix; and
N(x;u,0) is the normal distribution of x with mean g and covariance o.
Ifa,=1-p,anda, = M., a,, anoisy sample x, can be obtained directly
from the distribution conditioned on the original input x:

q(x, 1xp) = N(x,; \Japx,, (1-ap)l) o))

X = A xg+ J1-0 €, €-MO,T) ()
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The forward process gradually introduces noise into the origi-
nal data until it is completely replaced by noise. The reverse process
is the opposite operation, resulting in the generation of new sam-
ples. This process typically starts with unstructured noise obeying
the prior distribution, and then, by applying a model — typically a
trainable neural network — that has learning ability, noise is removed
step by step to restore the original data. The neural network N can be
formulated as:

Po(x,_ 1)) = Nxey; Hp(Xe, £), Ol 1)) 3)
Given the starting point data of the reverse process as
p(X;) = N(X;; 0, 1), thedistribution of X, conditioned on X;is given by:

.
PyX, ) =pX) [] pyXe-1 1X) “)
: =1

Eventually, amarginal distribution of X, close to the original data
Xocan be obtained by p, (xo) = [ p,(xo.7)dx;.7-

To train the model parameterized with 8 so that it can learn the
pattern of the original data and make p(x,)) close to the true data dis-
tribution g(x,), the loss function to be minimized is set as the negative
log-likelihood (equation (5)). We note that the process of minimizing
the negative log-likelihood of the observed data under the model is
equivalent tominimizing the Kullback-Leibler (KL) divergence between
the empirical distribution defined by the original data g(x,, x;, -+, X7)
and the model distributionpo(xo,xl, -, Xp):

E[-logp, (xo)] < KL(g(xo, %, - , %) 1|y (X0, X%, -+, Xr))

= Eq[—logipo(xozr) }

q0q.7b) . )
=Eq{—logp(xr) -y logpe X1 }

21 qxebe,_y)

=-Lysg

The objective of DDPM training is to minimize L, 5, also known
as the variational lower bound of the log-likelihood. L, ; can also be
parameterized to increase the quality of sample generation®,

Noise-conditioned score networks

In NCSNs, the score function of a probability density function p(x) is
represented by the gradient of the log density with respect to the input
asV,logp (x). Tolearnand estimate the score function, ascore-matching
neural network syis trained. The goal of this neural network is to make
sg(x) = V. logp(x) . Therefore, the objective function of the scoring
network can be defined as:

Ey_p |l 5600) = Ve logp()ll; (6)

Eventhough the problemis well defined, optimizing equation (6)
is numerically impossible because the value of V. logp(x) cannot be
known. However, score functions canbe learned from databy applying
score matching', denoising score matching'*'** or sliced score
matching'>.

Moreover, training remains difficult because the trained score
functions are unreliable in low-dimensional manifold, because
low-dimensional data is typically embedded in a high-dimensional

Box 1

Deep learning

Deep learning is a machine learning technology that applies artificial
neural networks with many layers of neurons (hence, ‘deep’) to
model and extract complex patterns in data. Deep learning can then
learn patterns and features from complex data to perform intelligent
tasks, such as speech and image recognition, natural language
processing and protein structure prediction. The artificial neurons in
each layer receive input from the neurons in the previous layers until
the final output layer produces a prediction (for example, classifying
an image into a category or generating a sentence of text). During
training of a deep learning model, the weights associated with the
connections between neurons are adjusted to fit the training data.

A major advantage of deep learning models over other machine
learning methods is their ability to automatically learn hierarchical
representations from raw data through multiple layers of abstraction.
This enables deep learning models to achieve high prediction
accuracy in many domains, such as precision medicine and
healthcare (for example, medical image segmentation®¥2°¢-26!

and disease diagnosis®®**®), finance (for example, algorithmic
trading®®®*®’ and risk management?®®) and agriculture (for example,
crop monitoring®®?’° and pest detection?”'). Some notable
applications of deep learning are ChatGPT?* for natural language
processing, DALL-E-2 (ref. 83) and GLIDE?” for image generation, and
AlphaFold2 (ref. 163) for protein structure prediction.

space (the manifold hypothesis)**. This challenge can be addressed by
introducing Gaussian noise to the dataat various scales, whichimproves
the datadistribution’s suitability for score-based generative modelling.
Thus, asingle NCSN can be applied to estimate the score correspond-
ing to each noise level. If 0<0,<0,<...<0,<... <07 is a sequence
of Gaussian noise levels, p, (xtlx) j\/’(xt,x otl) p, (x) p(x,), and
p, (x) MO, D). TheNCSng(x ot)w1ththedenonsmgscorematchmg
can then approximate the gradient log density function, mak-
ingsy(x,0,) = Vlog(p, (x)) vtell,..., T}.And forx,,VXlog(pUt (x))is
derived as:

v, logp, (x ) = - %)

t

Consequently, the optimization objective functionin equation (6)
canbetransformed into:

_ 2
X (8)

t 2

T

1 X,

? ZIA(Gt)Ep(x)Ext.,pt(xrlx) Il Sﬂ(xt' Ut) +=t
t=

in which A(o,) is a weighting function.

During the sampling phase, NCSNs use the annealed Langevin
dynamicsalgorithm, whichemploys a Markov Chain Monte Carlo proce-
dure (Box 2) tosample fromadistribution accordingtoitsscore function
V. logp (x). The Langevin method recursively computes x;as follows:

%=X+ %Vxlogp(x) +. Ve 9)
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Box 2

Key concepts relevant to diffusion models

Diffusion: the movement of molecules, atoms, ions or energy from
a region of higher concentration to a region of lower concentration
along a concentration gradient until the concentration becomes
equal in both regions. Diffusion, which is driven by a gradient in
Gibbs free energy or chemical potential, is a stochastic process
owing to the inherent randomness in the movement of the diffusing
entities.

Generative model: a type of machine learning model that aims at
learning the underlying distribution of data to generate new, similar
data. These models can approximate the joint probability distribution
of input features and labels, if available, and generate new data points
by sampling from the learned distribution.

Markov chain: a stochastic model that describes a sequence of
possible states, in which the probability of a state depends (or is
conditioned) only on its previous state.

Markov chain Monte Carlo: a statistical or computational simulation
method that constructs a Markov chain to iteratively generate

a sequence of samples according to a conditional probability
distribution between two consecutive states. After running the
Markov chain for enough iterations, the generated samples converge
to the desired posterior distribution.

Graph neural network (GNN)*°: a type of deep learning model for
processing graph-structured data (for example, molecular graphs
and biological networks). Each node in a GNN receives messages

wherey determines the amplitude of the update in the score’s direction;
X, is sampled from the prior distribution; and the noise is drawn
according to w; - V{0, I).

NCSNs and DDPMs both operate on the principle of converting
a basic noise distribution into a more intricate data distribution by
collectinginformation during theintroduction of noise, whichis then
reapplied when removing the noise. Both models are trained to tackle
anoise regression problem, based on the principle of maximum likeli-
hood estimation. Notably, the objective formulation of score matching
with Langevin dynamics in NCSN aligns with that of the re-weighted
variant of the evidence lower bound of DDPM*>**'?, In terms of sample
generation, both models employ ancestral sampling, which progres-
sively transforms a noise sample into a data sample, guided by data
distribution gradients.

Score stochastic differential equations

With unlimited time steps or noise levels, DDPMs and NCSNs can be
further generalized to asituationin which the perturbation and denois-
ing processes can be described as SDEs. This generalized approach® of
gradually transforming datainto noiseis called score SDE. The forward
process of score SDE uses SDEs and requires an estimated score function
of the noisy data distribution. It is equivalent to the Itd SDE™*® solution,

from its neighbouring nodes, which are used to update its hidden
representation. By iteratively updating node representations, the
GNN can aggregate information from both the local neighbourhood
and remotely connected nodes in the graph.

Equivariant GNN'®": 3 special type of GNN that is equivariant to a
transformation (for example, translation and rotation) in the input
data (for example, of a three-dimensional object, such as a protein
structure). For example, the translation of an object in the input space
leads to the translation of the same output of the object generated by
the equivariant GNN in the output space without changing the value
of the output.

SE(3)-equivariant networks'®?: a special equivariant GNN model
that preserves the symmetry of the special Euclidean group SE(3).

If a SE(3) transformation is applied to the input, the output generated
by the networks undergoes an equivalent transformation. Achieving
SE(3) equivariance allows the model to capture the inherent
symmetries and geometric properties of the input 3D data.

SE(3)-transformer'®®: a specific implementation of SE(3)-equivariant
networks using the transformer’s self-attention mechanism to
achieve SE(3) symmetry, including three-dimensional rotations and
translations. The SE(3)-transformer is particularly useful for tasks
involving three-dimensional structures, such as protein structure
prediction and protein design, where different (x, y, z) coordinates
of the same protein structure appearing in different orientations and
positions can be treated as the exact same object.

which consists of a drift component for mean transformation and a
diffusion coefficient for describing noise:

dx=f(x,t)de+g(t)dw,t€[0,T] (10)

where w represents the standard Wiener process known as Brownian
motion,and f (x, t) and g (¢) are the drift and diffusion coefficients of
SDE, respectively. The forward process in DDPMs and score-based
generative modelsis aspecial case of the discretizational SDE.

The formulation of the reverse diffusion process of SDE is given
by equation (11)'%, also called reverse-time SDE:

dx=[f (x,0) -g*(t)V,logp,(x)]de +g () dw

wherew is the standard Brownian motion running backward time, and
dt represents the infinitesimal negative time step. The reverse SDE
and forward SDE share the same marginal densities butin the opposite
time direction®. As in DDPMs and NCSNs, to numerically solve
reverse-time SDE, a trainable neural network sy(x, t) is employed to
estimate the actual score function V,logp, (x). The objective function
canbedefined as:

11

A(2)

Ex(t)~p(x<r)|x<o)>,x<o)~pdata{7”590( 0,0~ Vx(z)logp,(X(t)lX(O))Ilﬁ} (12)
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where t~U([0, T]) denotes the uniform distribution over [0, T] and A
isaweighting function. Inaddition, several sampling techniques, such
asthe predictor-corrector sampler, can be employed to generate good
samples. This procedure uses ascore-based method (thatis, annealed
Langevin dynamics) as a corrector after using a numerical approach
to sample datafrom the reverse-time SDE.

Improving diffusion models

The aforementioned diffusionmodels canbe furtherimproved through
extensionin training speed?*"*°**, increasing data sampling (data gen-
eration) speed”** ™ integration with other neural networks>>120140-142,
andapplications to different data types®>’>'**">, Many of these improve-
ment strategies are available as open-source tools"’ (Table 1), which
has opened up their application to a diverse range of bioinformatics
problems (Box 3). Importantly, diffusion models can handle different
datatypes, such as one-dimensional (1D) DNA and protein sequences,
two-dimensional (2D) biomedical images, three-dimensional (3D)
protein structures and vectorized gene-expression data.

Protein design and generation

The computational generation of new, physically foldable protein
structures allows the design of proteins with specific functions or struc-
tural properties for protein engineering and drug discovery. However,
deep generative models (Box 2), such as VAEs and GANs'>*°, are lim-
ited to generating only small proteins or domains of large proteins
(for example, of immunoglobulins). Alternatively, diffusion models
can be applied to protein design and generation, because large and
diverse proteins can be generated by guiding the model at each step
of the iterative generation process.

Protein structures in protein generation are typically
described by a 2D matrix (map) that contains the pairwise distances
and angles between all the residues in the protein. For example,
ProteinSGM, based on a score-based generative model”, applies a
diffusion model of 2D image generation using such a representa-
tion to create protein structures: a score-based generation diffusion
model with SDEsis used to generate a series of 2D matrices thatinclude
inter-residue pairwise distances d, and the w, 8 and ¢ angles between
two residues. These constraints are then fed into Rosetta'° to build
native-like protein structures. For unconditional protein structure
generation, ProteinSGM can generate proteins from random noise.
For conditional protein structure generation, such as scaffold inpaint-
ing and functional site inpainting, the tool can generate protein struc-
tures that satisfy user-defined constraints, similar to solving animage
inpainting problem. However, ProteinSGM requires post-processing
by Rosetta using Markov Chain Monte Carlo (Box 2), which makes the
prediction computationally expensive.

Unlike ProteinSGM, Foldingdiff'” represents the protein backbone
structures (only N-Ca-C atoms for each residue) with a series of con-
secutive angles to capture the relative orientation of the constituent
atomacid residues. A simple language transformer model* with DDPM
can then be applied to generate protein structures unconditionally,
astheanglesareinvariant to translation and rotation. However, using
a transformer to predict sequence-like consecutive angles has the
drawback that errors from the early prediction accumulate and con-
siderably affect the final structure, including collisions between atoms.
Inaddition, the approach cannotbe generalized to generate complex
structures with more than one chain.

Inspired by Foldingdiff, DiffSDS'** introduces a 1D directional
representation derived from invariant atom features, similar to

153,154

torsion angle representation, which enables an encoder-decoder
language model to perform the diffusion process. In the language
model, the encoder (with a hidden atom-direction-space layer) trans-
forms theinvariant featuresinto equivalent direction vectors, whereas
the decoder reverses the transformation. By performing the diffusion
process in this direction and by conditioning angle spaces on geo-
metric restraints, DiffSDS can restore protein backbone structures of
higher quality than the deep-learning-based protein design method
RFDesign®¢: DiffSDS is two times better at generating proteins that
resemble natural proteins (protein likeness), as measured by Rosetta
energies, about 18 times better in terms of connectivity errors and 60%
better at generating non-overlapping scores with existing backbones
than RFDesign.

The integration of diffusion models with GNNs*° (Box 2) ena-
bles the direct generation of 3D protein coordinates, resulting in an
end-to-end generative model. SE(3)-equivariant’®'*> (Box 2) DDPMs,
which are usually used in small-molecule generation, can also be
applied to generate protein structures in a representation-frame-
independent manner'®. For example, independent DDPM models
equipped with invariant point attention'® structural modules can be
trained withthe distribution of atom features (for example, coordinates
in a canonical frame with respect to backbone atoms, residue type
andside-chainangles) to generate a protein’s backbone, sequence and
side-chain rotamers®. By jointly diffusing the structure and sequence,
whileincorporating coarse structural constraints, the model can gradu-
ally generate the fully atomistic protein structure and sequence, allow-
ing controllable protein backbone generation and protein structure
inpainting. The sequence recovery rate of this method is comparable
to that of other machine-learning-based and physics-based methods,
suchas3DConv'®*, RosettaFixBB and RosettaRelBB'®. Similarly, Genie'*
makes use of the SE(3)-equivariant feature from the invariant point
attention modulein conjunction with DDPM to generate protein back-
bones unconditionally, also introducing geometric asymmetry withan
invariant encoder to directly inject noise into residue coordinates, as
well as an SE(3) equivariant decoder with aninvariant point attention
module to predict noise.

SMCDiff'°* applies a similar deep learning architecture (that
is, an SE(3)-equivariant GNN) (Box 2) to the motif-scaffolding gen-
eration problem, dividing the probleminto two parts: unconditional
protein backbone generation (ProtDiff) and conditional sampling
in diffusion models based on a protein motif (SMCDiff), similar to
inpainting. Unconditional protein generationis achieved by training
aSE(3)-equivariant GNN (Box 2), built from residue coordinates and
embedded features from the protein sequence, to generate protein
backbones. By contrast, conditional sampling is formulated on an
unconditional diffusion model as a sequential Monte Carlo simula-
tion problem, which may be solved by particle filtering. However,
the network does not include torsion angles as features and may
therefore generate unnatural proteins (for example, left-handed
helices). SMCDiff was the first deep generative model that lever-
aged the power of diffusion models to address the motif-scaffolding
generation problem.

RFdiffusion'®, which integrates a conditional DDPM diffusion
model with the pre-trained protein 3D structure prediction model
RoseTTAFold'*®, can directly generate final 3D coordinates. Inspired
by therecycling processin AlphaFold2, aself-conditioning prediction
strategy is applied, in which the current prediction is conditioned on
the prediction from the previous timesteps, thereby considerably
improving the performance of the model. Starting from random noise,
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First diffusion probabilistic models®? @

First-score-based generative models®* @

First-score-based graph generative models™ @ —
Denoising diffusion probabilistic models*® @ —]

Denoising diffusion implicit models?” @ —

Score-based generative modelling through SDE* @ —
Improved denoising diffusion probabilistic models™® @ —
Score-based generative modeling in latent space® @ —|
Discrete denoising diffusion model”? @ —|

High-resolution image synthesis with latent diffusion models® « —|

GLIDE: text-guided diffusion models for image generation?* © —

Analytic DPM: improve log likelihood, speed up DPM™38 @

Diffusion distillation for rapid sampling'® @

Video diffusion models®" @

DPM:-solver: a fast ODE solver for DPM sampling in 10 steps'®® @

Analog bits: generating discrete data using diffusion models'® @

DreamFusion: text to 3D using 2D diffusion?® @

Enhancing DPM sample quality with self-attention?>> @

DPM-solver++: fast solver for guided sampling of DPM™*° @

@ Optimization of diffusion equations
® Diffusion equation development
Tipping point of diffusion applications

Applications in bioinformatics

CryoDRGN: cryo-EM data reconstruction?®®

DGSM: predict 3D conformations from 2D graphs'

EDM: small-molecule generation®

DiffMD: molecular dynamics simulation™?

ProSSDG: protein structure and sequence generation®*
SMCDiff: motif scaffolding'*

ProteinSGM: protein structure generation®'

DISPR: single-cell image reconstruction®®

SDEGen: molecule generation from conformation and graph™
FoldingDiff: single-chain protein structure generation™
NeuralPLexer: protein-ligand structure prediction™”
DiffBridge: molecule structure generation'®

DiffSBDD: protein-ligand docking with known pocket™
DiffDock: protein-ligand structure prediction"®
DiffLinker: molecule linkers generation™

DiffBP: ligand generation with known protein pocket™
Chroma'”” and Rfdiffusion': protein complex generation
DiffSDS: protein backbone structure inpainting'?

Genie: protein backbone structure generation'®?

NERE: protein-ligand affinity prediction"®

CDGS: molecular graph generation'®®

FrameDiff: protein backbone generation'®
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Fig.1| Timeline of advances in diffusion models and their applications
inbioinformatics. Data are taken from refs. 32-36,54,61,72,84,91,97,99,
101-118,130,133,136,138-140,150,151,256,257,273. Cryo-EM, cryogenic electron

microscopy; SDE, stochastic differential equations; DPM, diffusion probabilistic
model; ODE, ordinary differential equations.

RFdiffusion can generate large protein structures unconditionally,
which can then be used in the design of protein monomers. Using
protein motif coordinates as input, RFdiffusion can also construct
scaffolds conditionally for functional motif and enzyme active site
scaffolding'®. Givena point group symmetry, RFdiffusion can maintain
the symmetry during the prediction owing to the equivariance design
of RoseTTAFold. Therefore, thisapproach canbe applied to symmetric
protein oligomer and motif scaffolding (for example, for the design
of therapeutic'’ and metal-binding proteins'®®'®°). We note that com-
pared to the other methods discussed in this section, some proteins
designed by RFdiffusion have not only been validated in silico, but
also by biochemical and biophysical experiments”>"”!, making it one
ofthefirst generative artificial intelligence methods of protein design
that have been experimentally validated. Furthermore, RFdiffusion
outperforms other methods, such as RFDesign, in the design of large
protein structures and high-order protein oligomers, demonstrating
the advantage of diffusion models.

FrameDiff'°® applies diffusion models to explore whether a
pre-trained protein structure predictor is necessary for protein back-
bone generation. Here, using denoising score matching, a principled
SE(3) diffusion model can better formulate the protein backbone gen-
eration problem, achieving comparable performance with four-fold
fewer network weights and without the need to train another protein
structure prediction network, compared to RFdiffusion.

Chroma'” isa GNN*’-based conditional diffusion model designed
to generate large single-chain proteins and protein complexes with
desired properties and functions. This model can generate protein
structures thatare over 3,000 residuesin size, which surpasses the size
limit for proteins generated by several other networks (that is, Protein-
SGM, Foldingdiff, DiffSDS and SMCDiff) (<2,000 residues). To reduce
computational complexity, Chroma uses arandom graph generation
procedure that preserves both short-and long-range interactions. Asa
result, Chroma can produce high-quality, diverse new protein struc-
tures, and enables the programmable generation of proteins that are
conditioned on several different properties, such as residue-residue
distances, symmetry and shape.

Small-molecule generation and drug design

Drug discovery involves the identification and optimization of small
molecules that can interact with specific biological targets, such
as enzymes or receptors, to modulate their activity and ultimately
achieve a therapeutic effect. Deep learning, particularly deep gen-
erative models, enables the rapid generation and evaluation of alarge
number of such potential drug candidates'*"”.

The conditional diffusion model, whichis a deep learning method
based on discrete graph structures (CDGS), allows the generation of
molecular graphs of small molecules with similar data distributions
to real-number molecular graphs'®®, This method employs a hybrid
message-passing block architecture, which comprises a standard
message-passing layer for collecting local features, such as node-edge
dependencies, and an attention-based message-passing layer for
extracting and transmitting global information in the architecture.
The molecular graphs are embedded with distinct components for
node features and edge matrices, with channels for edge existence

and edgetypes. The CDGS model has enabled the application of diffu-
sion models in the molecular graph domain, which s crucial for drug
discovery and material science. This approach accurately models the
complex dependency between graph structures and features during
the generative process, using SDEs to describe the graph diffusion
process. The continuous forward process is applied directly to edge
existence variables, and the reverse process first decodes discrete
graphstructures, which serve as the condition for each sampling step.
A specialized hybrid graph noise prediction model is used to extract
global and local node-edge dependencies from intermediate graph
states. This diffusion-based model can obtain high-fidelity samplesin
200 steps of network evaluations using the Euler-Maruyamamethod'.
Inaddition, afast ordinary differential equation solver, which applies
the semi-linear structure of probability flow ordinary differential
equations for graphs, promotes rapid, high-quality graph sampling.
CDGS outperforms other methods in molecular graph generation,
including flow-based methods (for example, GraphAF"”’, GraphDF"%,
MoFlow"? and GraphCNF"®*°) and other diffusion models (EDP-GNN™,
GraphEBM™' and GDSS"®). CDGS also performs better in generic graph
generation than ER', VGAE'™?, GpraphRNN*** and GRAN'®, demon-
strating its potential to facilitate drug discovery and material design
by representing molecular structures and restricting the molecule
search space.

The E(3)-equivariant diffusion model (EDM)** (Box 2) performs
the diffusion process on atom coordinates and atom types in the
Euclidean space to generate small molecule structures with up to
29 atoms, compared to nine heavy atoms that can be achieved with
equivariant normalizing flows™®. An EDM represents each small mole-
culeasapointcloud that canbe described by agraphwithnodesy, € V
representing atoms in the molecule based on an equivalent transfor-
mation, thereby combining the equivariant GNN and the diffusion
process. The former contains L layers of equivariant graph convolu-
tional layers that take each atom’s 3D coordinates and features asinput
to model molecule structures with geometric symmetries, whereas
the latter gradually adds Gaussian noise to both the coordinates and
features of the atom, thereby improving training, performance
and scalability, compared to other E(3)-equivariant models, such as
G-Schnet' and equivariant normalizing flows' as well as graph-based
molecule-generative models, suchas GraphVAE™®, GraphTransformer'
and Set2GraphVAE"°,

Based on the equivariant GNN architecture and inspired by the
physics governing the formation of small molecules, the Lyapunov
function applies physical and statistics prior information (diffusion
informative prior bridge)'*’ to guide the diffusion process in model
training and generate high-quality and realistic molecules. In this
approach, problem-dependent prior information, in particular, physi-
cal and statistics information, is injected into the diffusion process
instead ofimposing orimproving deep learning architectures. Several
energy functions, integrated with the physical and statistical prior
information, arethenusedasaprior bridge to guide the model training
without any extra modification of the equivariant GNN architecture.
Thereby, the Lyapunov function shows better molecule-generation
performance in terms of physical energy and molecule stability'” and
better uniformity-promoted 3D point cloud generation compared
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Fig.2|Forward and reverse processes of diffusion models. Forward and
reverse processes are shown for denoising diffusion probabilistic models
(DDPMs), noise-conditioned score networks (NCSNs) and score stochastic
differential equations (score SDEs). The forward process progressively (from
time O to 7) adds noise to data (for example, toanimage of acat or a three-
dimensional protein structure). The reverse process generates cleaner data from
noisier data (thatis, it denoises data) from time Tto 0. x,denotes uncorrupted

Reverse process

data, ¢ €{l, ..., Ttwhere Trepresents the number of diffusion steps; g, € [0,1)is
the hyperparameter denoting the variance schedule across the diffusion steps;
lis the identity matrix; M(x; i, o) is the normal distribution of x with mean u and
standard deviationo; a,=1-f,anda, = M- a;; w represents the standard Wiener
process known as Brownian motion; f (x, t) and g (¢) are the drift and diffusion
coefficients of SDE, respectively; and p(x)is the probability density function.

to EDM** and point cloud diffusion'*, which apply the traditional
Gaussian noise in model training, as well as equivariant normalizing
flows'°.

Dynamicgraph score matching (DGSM)'°is adeep learning model
developed for predicting stable 3D conformations from 2D molecular
graphs, primarily used in computational chemistry. The model can
also be extended to protein sidechain conformation prediction and
complex multi-molecular prediction (for example, predicting the
interaction of more than three small molecules without explicit
bonds)"’. Deep learning methods often consider only the local interac-
tions between bonded atoms, while neglecting the long-range
interactions among unbound atoms, which are crucial for constructing
accurate 3D molecular structures. To overcome this limitation, DGSM
treats eachmoleculeasagraph g=<v,e> whereanodeinvrepresents
an atom and its features (for example, coordinates), and an edge in
erepresents abond between two atoms. The distance Dybetween each
pair of atoms, that is, the edge length in the graph, can then be com-
puted from their coordinates. For each pair of unbound atoms, the
distance D;can be perturbed by a Gaussian noise level at each training
step. A message passing neural network™" is then applied, using edge
length and edge type in the graph as inputs to dynamically embed the
molecular2D graph by adding Gaussian noise to the distance between
pairs of unbound atoms. Using the score-matching method, the model
canthendirectly estimate the gradient fields of the logarithm density
of atomic coordinates. Importantly, the model can be trained in an
end-to-end fashion, thereby addressing the limitation of physics-based
simulation methods that do not account for long-range interactions

between non-bounded atoms. Thus, DGSM outperforms other meth-
ods, including RDKit"?, CGCF"* and ConfGF"** in terms of matching
score and coverage score, confirming the benefit of modelling
long-range interactions.

SDEGen™ is a multi-stage diffusion model that can generate
molecules by adopting multiple architectures in different stages
with different purposes; here, molecular conformations, including
distances between two atoms within three-hop edges, edge type
and atom type, and their corresponding graphs, are used as inputs
for three different multilayer perceptrons to generate their embed-
dings. The distance embeddings are corrupted by Gaussian noise and
the atom-type embeddings are then updated by a GNN (Box 2). The
noisy distance embeddings, edge-type embeddings and the updated
atom-type embeddings are then combined into final bond embed-
dings. Finally, the SDE network is parameterized. This multi-stage
modelis not as streamlined as end-to-end models, butit outperforms
several other models, including DGSM"*, CGCF'?, ConfGF'**, CVGAE'*
and DMCG'®, by multiple metrics, such as coverage score and match-
ing score, in particular, when considering long-range interactions in
molecules.

DiffMD" is a score-based denoise diffusion model that can be
applied to improve molecular dynamics simulations. Deep-learning-
based molecular dynamics models typically depend on intermedi-
ate force fields and can thus only be applied to static molecules, not
considering thermodynamics. DiffMD addresses this problem by
applying score-based conditional diffusion models, employing the
equivariantgeometric transformer to take atomic coordinates, velocity
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and features embedded in molecular dynamics trajectories directly  transformationto update the inputinformation. During the diffusion
as input. In each layer, the model introduces velocities, directions  process, the conditional noise, based onthe accelerations of atomsin
and other geometric information using the spherical Fourier-Bessel  previous frames, is added to the inputs for the equivariant geometric

Table 1| Open-source tools for implementing and improving diffusion models

Tool Name Year Model type orimprovement Diffusion Network architecture GitHub
framework®
NCSN* 2019 Foundational model NCSN Variant of U-Net CODE
DDPM* 2020 Foundational model DDPM U-Net®™’ CODE
Score SDE*® 2020 Foundational model Score SDE Variant of U-Net CODE
EDP-GNN™' 2020 Diffusion on graph data NCSN Variant of GNN CODE
Improved diffusion' 2021 Speed up training DDPM U-Net CODE
Cold diffusion™" 2021 Speed up training Score SDE U-Net CODE
DDIMY’ 2021 Speed up sampling DDPM U-Net CODE
Diffusion-point-cloud'* 2021 Point cloud DDPM Autoencoder CODE
LSGM™° 2021 Mixed modelling Score SDE Autoencoder CODE
ConfGF'"* 2021 Diffusion on graph data Score SDE GNN CODE
PVD'*® 2021 Point cloud DDPM Autoencoder CODE
sdeflow-light®*? 2021 SDE unification Score SDE VAE CODE
Gotta Go Fast'™* 2021 Speed up sampling Score SDE Variant of U-Net CODE
Score-flow'” 2021 Mixed modelling Score SDE U-Net CODE
DiffFlow"! 2021 Mixed modelling Score SDE U-Net CODE
FastDPM'* 2021 Speed up training Score SDE U-Net CODE
argmax_flows’ 2021 Categorical data DDPM VAE, DenseNet CODE
Soft Truncation®* 2021 Likelihood optimization Score SDE Variant of U-Net CODE
ARDM'™® 2022 Categorical data DDPM Variant autoregressive models CODE
k-Diffusion'®® 2022 Speed up sampling Score SDE Variant of U-Net CODE
DPM-Solver'®® 2022 Speed up sampling Score SDE Plugin method CODE
VQ-diffusion®* 2022 Vector quantized DDPM Vector quantized VAE CODE
Improved VQ-Diff**® 2022 Vector quantized DDPM Vector quantized VAE CODE
Diffusion GAN®® 2022 Mixed modelling DDPM GANs CODE
DiffuseVAE'* 2022 Mixed modelling DDPM VAE CODE
PNDM™’ 2022 Speed up sampling Score SDE Variant of U-Net CODE
GeoDiff'¥’ 2022 Diffusion on graph data DDPM Variant of VAE CODE
VDM'? 2022 Speed up training DDPM Variant of VAE CODE
Analytic-DPM™# 2022 Speed up sampling NCSN U-Net CODE
Point Diffusion-Refinement®® 2022 Point cloud DDPM Variant of U-Net CODE
GDSS™® 2022 Diffusion on graph data Score SDE Multiple stage architecture CODE
Riemannian-score-sde'*’ 2022 Diffusion on manifold data Score SDE Multilayer perceptron CODE
Diffusion Distillation™® 2022 Speed up training DDPM Variant of U-Net CODE
bit-diffusion’® 2022 Diffusion on discrete data DDPM Variant of U-Net CODE
DreamFusion®*® 2022 Generate 3D data DDPM Multi-stage architecture CODE
diffusers®’ 2022 Improve sample quality DDPM Multiple network architectures CODE
DPM-Solver++"*° 2022 Speed up sampling DDPM Multiple network architectures CODE

The diffusion frameworks are general models that are typically combined with specific deep learning architectures (network architectures) to generate or denoise a specific type of data. Tools
intended to increase sampling speed and the quality of diffusion are tested with various network architectures, and their associated network architectures are categorized as ‘multiple network
architectures’. NCSN, noise-conditioned score network; U-Net, U-shaped neural network; DDPM, denoising diffusion probabilistic model; score SDE, score stochastic differential equation;
GNN, graph neural network; VAE, variational autoencoder; GAN, generative adversarial network.

Nature Reviews Bioengineering


https://github.com/ermongroup/ncsn
https://github.com/hojonathanho/diffusion
https://github.com/yang-song/score_sde
https://github.com/ermongroup/GraphScoreMatching
https://github.com/openai/improved-diffusion
https://github.com/arpitbansal297/cold-diffusion-models
https://github.com/ermongroup/ddim
https://github.com/luost26/diffusion-point-cloud
https://github.com/NVlabs/LSGM
https://github.com/DeepGraphLearning/ConfGF
https://github.com/alexzhou907/PVD
https://github.com/CW-Huang/sdeflow-light
https://github.com/AlexiaJM/score_sde_fast_sampling
https://github.com/yang-song/score_flow
https://github.com/qsh-zh/DiffFlow
https://github.com/FengNiMa/FastDPM_pytorch
https://github.com/didriknielsen/argmax_flows
https://github.com/Kim-Dongjun/Soft-Truncation
https://github.com/google-research/google-research/tree/master/autoregressive_diffusion
https://github.com/crowsonkb/k-diffusion
https://github.com/luchengthu/dpm-solver
https://github.com/microsoft/VQ-Diffusion
https://github.com/cientgu/VQ-Diffusion
https://github.com/Zhendong-Wang/Diffusion-GAN
https://github.com/kpandey008/DiffuseVAE
https://github.com/luping-liu/PNDM
https://github.com/MinkaiXu/GeoDiff
https://github.com/google-research/vdm
https://github.com/baofff/Analytic-DPM
https://github.com/ZhaoyangLyu/Point_Diffusion_Refinement
https://github.com/harryjo97/gdss
https://github.com/oxcsml/riemannian-score-sde
https://github.com/google-research/google-research/tree/master/diffusion_distillation
https://github.com/google-research/pix2seq
https://github.com/ashawkey/stable-dreamfusion
https://github.com/huggingface/diffusers
https://github.com/luchengthu/dpm-solver

Review article

Box 3

A practical guide for applying diffusion models in bioinformatics

Diffusion models are particularly useful in the generation, design

or analysis of small molecules, proteins and biological images.

To decide which diffusion model to apply to a specific problem,

the representation of the specific data type (for example, small
molecules) needs to be considered to be suitable for processing by
a deep learning model in the diffusion process. The conformations
of small molecules and drugs can be represented in several ways to
facilitate the diffusion process; for example, they can be treated as a
string, such as the SELF-referencing embedded string, which can be
converted into a two-dimensional (2D) matrix. This matrix can be used
as input for graph neural networks (GNNs) under a diffusion model
framework to generate three-dimensional (3D) molecular graphs, as
exemplified by dynamic graph score matching "°. Alternatively, they
can be presented as 3D graphs that contain spatial direction and
torsion angles between atoms, which can be used by a combination
of SE(3)-equivariant GNNs'®? and diffusion models, such as the E(3)-
equivariant diffusion model® to capture their essential properties.

In addition, small molecules can be represented as 3D atomic point

transformer to estimate the score function, that is, the gradient of
the log density of the biomolecule conformations. DiffMD outper-
forms several deep-learning-based molecular dynamics methods,
including tensor field networks'®, radial fields'”’, SE(3)-transformers'®s,
graph mechanics networks'” and SCFNN?°? in terms of average
root-mean-squared error.

Fragment-based drug design can also be used for the discovery
of newsmallmoleculesina3D space. Here, the aimis to design linkers
consisting of atoms that can connect molecular fragmentsintoacom-
plete molecule. DiffLinker uses an E(3)-equivariant 3D conditional
diffusion model to generate these molecular linkers and to connect
multiple molecular fragments to form a single connected molecule.
The prediction is made by applying a GNN to predict the linker size
(the atom number of the linker) and atom types. The coordinates of
the atoms are sampled from the normal distribution, followed by a
reverse diffusion process of the atom features conditioned on the
input fragments. Compared to DeLinker’* and 3DLinker**, DiffLinker
can perform better in terms of average quantitative estimation of
drug-likeness, synthetic accessibility, the average number of rings
inthe linker, and the validity, uniqueness and novelty of the samples,
thereby generating more realistic molecules.

Protein-ligand interaction modelling

Predicting the conformation of aligand boundto a proteinisimportant
inthe investigation of protein-ligand interactions and protein func-
tion as well as for the discovery of new drugs. Various protein-ligand
docking, machine learning and auto-regressive models have been
developed to address this problem'%?%*2°¢; however, these approaches
are limited by their low geometrical accuracy. Alternatively, DiffBP"*
can generate ligands that bind to a specific protein pocket without
requiring the ligand structure as input; here, a pre-generation net-
work is used to generate the centre of mass and atom number of the
ligand, followed by diffusion modelsin conjunction with equivariant

clouds to be processed by equivariant GNNSs, as in DiffLinker'™.
Proteins can be represented as either one-dimensional (1D) sequential
features suitable for a 1D transformer or 2D contact and distance
maps suitable for processing by convolutional neural networks.

The 3D structure of proteins is usually represented as graphs that
consist of nodes denoting residues and edges that represent residue
pairs in contact, which can be handled by both standard GNNs and
SE(3)-equivariant GNNs in combination with diffusion models. For
imaging data, such as cryo-electron microscopy images, various
diffusion models initially developed for image generation, such as
CascadedDiff®°, can be applied. Biomolecules or cell shapes may
also be represented by 3D images, which can be reconstructed

from 2D images by a combination of autoencoder or U-Net** with

a diffusion model, as in CryoDRGN®® and DISPR*. These can model
the distribution of ground-truth data to generate higher-quality 3D
images than other generative artificial intelligence methods. For
example, DISPR outperforms a VAE-based deep generative model
SHAPR?® in the context of 3D cell shape reconstruction.

GNNs'*?% to generate high-quality ligand candidates®*. Compared
to auto-regressive methods, such as 3DSBDD?*, Pocket2Mol** and
GraphBP**?, which generate one atom at a time without consider-
ing interactions among all atoms, DiffBP can generate all atoms of
aligand that bind to a target protein, exhibiting high binding affini-
ties (for example, 41.07%"* for DiffBP, compared to 12.22%"* for
3DSBDD, 23.98%" for Pocket2Mol and 29.54%"* for GraphBP) on
the CrossDocked?*® dataset curated from protein-ligand complex
structures in the Protein Data Bank (PDB).

DiffSBDD'” adopts a DDPM equipped with an E(3)-equivariant
neural network to generate new ligands, including atomic features
binding to specific protein pockets; here, ligand generation can either
be protein-conditioned, based on the binding site to the protein, or
theligand can be impainted after learning the joint distribution of the
protein-ligand complexes. Compared to 3DSBDD and Pocket2Mol,
DiffSBDD can generate more diverse ligands with higher affinity on
the CrossDocked dataset™.

Unlike diffusion models applied for protein pocket docking,
DiffDock uses the structure of the protein and ligand as input and
doesnotrequire knowledge of the location of the binding site (that s,
blind docking); here, the diffusion process is applied to ligand posi-
tions, represented by ligand translation and rotation, sampling multi-
ple positions, whichare then ranked based on a confidence score using
atrained scoringmodel and a trained confidence model, which are built
ontop of SE(3)-equivariant GNNs (Box 2). The scoring model samples
different positions of the ligand, and the confidence model selects the
ligand positions with the highest confidence score, similar to the struc-
tural and scoring modules of AlphaFold2'** for protein structure predic-
tion. DiffDock hasbeentested onthe PDBBind dataset, outperforming
search-based methods, such as SMINA**’, QuickVina-W*°, GLIDE*" and
GNINA??, and the deep learning methods EquiBind*”* and TANKBind**.
Specifically, DiffDock achieved a top-1 success rate of 38.2% (the per-
centage of top-1 predictions with root-mean-square deviation <2 A),
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whichissignificantly better than the energetics-based method GLIDE
(21.8%; P=2.7 x107) and the geometric deep-learning-based method
TANKBind (20.4%; P=1.0 x 103",

Similar to DiffDock, NeuralPLexer' is a deep generative network
that leverages SDEs to predict complex protein-ligand structures
based on the protein structure and molecular graphs of the ligand as
inputinblind docking. The key componentin the modelis an equivari-
antstructure diffusion module, which predicts the atomic coordinates
on a heterogeneous graph formed by protein atoms, ligand atoms,
protein backbone frames and ligand local frames. Using SDEs, the
model can handle unbound or predicted protein structure inputs and
can automatically accommodate changes in the protein structure in
response to ligand binding. Compared with the deep learning method
EquiBind®” and the physics-based method CB-Dock** on the PDBBind**
dataset, NeuralPLexer can generate a more accurate ligand structure
with higher geometrical accuracy, withan approximately 70% success
rate for aligand with root-mean-square deviation <2 A, whichis higher
thanthat of EquiBind (about 40%) and CB-Dock (about 38%) and has a
lower steric clash rate of 0.105.

Finally, adeep generative energy-based diffusion model can pre-
dict the binding affinity for a protein-ligand pair, if trained with a set
of protein-ligand complexes, without requiring labels for binding
affinities"®. During training, the network first predicts the rotation
score for the perturbed ligand with respect to the protein pocket using
anequivariant rotation prediction network, called Neural Euler’s Rota-
tion Equation (NERE). By training the model with the SE(3) denoising
score matching, thelog-likelihood is considered to be the binding affin-
itybetweenthe proteinandligandinapair. Tested onthe protein-ligand
dataset PDBbind*° and the structural antibody database SAbDab?”, the
model achieves an accuracy of 0.656 in predicting protein-ligand
binding affinity, whichisbetter than that of other unsupervised meth-
ods: 0.647 for Molecular Mechanics Generalized Born Surface Area”®
(MM/GBSA), 0.617 for Astex Statistical Potential* (ASP) and 0.602
for DrugScore2018 (ref. 220). This model further performs compa-
rably to other supervised methods in predicting antibody-antigen
binding"®: Zlab RerANK**, ZRANK2%???, RosettaDock?*, PyDock?***,
Scoring by Intermolecular Pairwise Propensities of Exposed Residues
(SIPPER)**, Atomic Potential Protein Interactions Scored Atomically
(AP_PISA)**®, Coarse Grained Protein Interaction Energy (CP_PIE)** and
FIREDOCK?*,

Cryo-electron microscopy data analysis
Single-particle cryo-electron microscopy (cryo-EM)****is akey imag-
ing technique for determining and visualizing the 3D conformation
(structure) of large biomolecular complexes (for example, protein
complexes) atatomic resolution; here, the images of protein complexes
obtained by cryo-EM are used to reconstruct their 3D conformation
represented by 3D density maps.

The protein structure reconstruction method CryoDRGN?***
introduces alatent variable Zto define a conformational space Vfora
proteincomplex on cryo-EM density maps. CryoDRGN is based ona VAE
framework thatlearns a continuous distributionin thelatent space for
protein structures from cryo-EM data. However, although CryoDRGN
can simulate complicated structural dynamics, the Gaussian prior
distribution of VAE does not match the posterior aggregate approxi-
mation, which limits the generative capability of the model**. Alterna-
tively, a continuous-time diffusion model (that is, score SDEs) can be
implemented in CryoDRGN to learna high-quality generative model for
capturing protein conformations directly from cryo-EM imaging data.

This CryoDRGN® model is first trained with the standard VAE model
using cryo-EM images in Fourier space. The latent space Z, which is
predicted by the encoder of the trained VAE, is then fed into the denoise
diffusion model based on a ResNet architecture®® to approximate the
distribution of the latent variable Z. Finally, the synthesized latent
variable Z, which is sampled from the diffusion model and is similar to
thetarget protein’s distribution, is used asinput for the decoder of the
VAE to generate protein structures with better quality (higher similar-
ity with the target proteins’ distribution) than a VAE, which directly
reconstructs protein structures by learning continuous distribution
inlatent space.

Single-cellimage and gene-expression analysis
Reconstructing the 3D shape of a cell from a single-cell 2D micros-
copy image using computational methods is useful for studying the
morphological features of cells. However, each 2D image may permit
multiple 3D reconstructions, and therefore, different 2D slices may lead
to different predictions of the 3D shape. To tackle this issue, DISPR”
employs the U-net architecture”’ and a diffusion process to generate
asingle-cell3D shape from 2D images. During training and evaluation,
thisapproach uses a2Dimage of anindividual cell as aninductive bias.
The2Dimage is then concatenated with its 3D Gaussian noisy segmen-
tation mask asinput for the diffusion-based model to predict realistic
3D cell shapes. DISPR benefits from this training approach and its sto-
chastic property. Unlike VAE-based architectures used in SHAPR**® and
its variants®*’, which produce a single, deterministic reconstruction,
DISPR employs a stochastic model trained on Gaussian noise and is
thus capable of predicting an infinite number of cell shapes, provid-
ingamore comprehensive representation of dynamic cell structures.
DISPR represents the first use of a diffusion model in the context of
3D cellshapereconstruction, outperforming VAE-based deep genera-
tive models, such as SHAPR?*®, in terms of volume, surface area and
roughness reconstruction”.

Single-cell RNA sequencing can assess the expression of genesin
individual cells. However, cells typically contain low quantities of RNA,
which may cause noisy measurements (for example, varied measure-
ments and experimental bias) of gene expression; moreover, values may
bemissed (dropouts). Therefore, itisimportant to denoise single-cell
RNA-sequencing dataand impute missing values. DEWAKSS'*’ applies
a diffusion model with a K-nearest-neighbour (KNN) graph to select
denoising hyperparameters using the noise2self self-supervision
method, thereby not depending on an explicit noise model but on
an invariant function of data features. Unlike heuristic-based meth-
ods, such as MAGIC**° and KNN-smoothing**, which also use KNN
graph architecture but may lead to over-smoothing of data variance,
DEWAKSS can preserve variances across multiple gene-expression
dimensions.

Open-source diffusion model tools

Some diffusion models that can be applied to bioinformatics have
been implemented as open-source tools (Table 2). However, these
tools do not use NCSNs** as the diffusion framework, mainly because
NSCNs face problems in terms of sampling and training and can thus
not achieve high accuracy in image generation. Therefore, NCSNs
are less adopted in bioinformatics and computational biology than
DDPMs* and score SDEs*, which are equipped with efficient sampling
and training methods* for high-definition image generation. Nev-
ertheless, as the first diffusion model, NSCN has made substantial
contributions to the development of the field. Furthermore, many
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Table 2 | Open-source diffusion model tools for bioinformatics

Applications Tool name Denoising condition Diffusion framework Network architecture Github
Protein design and generation ProteinSGM®' Conditioned and Score SDE Convolutional neural network CODE
unconditioned
FoldingDiff'' Unconditioned DDPM Transformer CODE
Genie'® Unconditioned DDPM Variant SE(3)-transformer CODE
SMCDiff'* Conditioned Score SDE EGNN CODE
FrameDiff'*® Unconditioned Score SDE SE(3)-transformer CODE
RFdiffusion'® Conditioned and DDPM SE(3)-transformer CODE
unconditioned
Chroma'”’ Conditioned Score SDE GNN CODE
Small-molecule generationand EDM* Conditioned DDPM EGNN CODE
drug design SDEGen"" Conditioned Score SDE GNN CODE
DiffLinker Conditioned DDPM EGNN CODE
Protein-ligand interaction DiffBp™ Conditioned DDPM EGNN CODE
modelling DiffSBDD"® Conditioned DDPM EGNN CODE
DiffDock™™® Conditioned Score SDE Variant EGNN CODE
Cryo-EM data analysis CryoDRGN® Conditioned Score SDE VAE CODE
Single-cell image and DISPR* Conditioned DDPM U-Net CODE

gene-expression data analysis

Score SDE, score stochastic differential equation; DDPM, denoising diffusion probabilistic model; EGNN, equivariant GNN; GNN, graph neural network; cryo-EM, cryogenic electron

microscopy; VAE, variational autoencoder; U-Net, U-shaped neural network.

bioinformatics applications also include deep learning components
to deal with data generation and denoising challenges specific to their
application.

Outlook

Diffusion models can be applied in several bioinformatics applica-
tions and may be further extended to other computational biology
areas owing to their ability to denoise data and generate realistic new
data (Table 3).

3D genomics data analysis

High-throughput chromosome conformation capture (Hi-C) is a
key technology for studying 3D conformations of chromosomes
and genomes, applying next-generation sequencing techniques to
sequence chromosomal regions that are spatially close to each other
(thatis, in contact)** Thus, Hi-C data captures the interactions between
chromosomal regions of a genome to build 3D conformations of the
genome”*?** and study long-range gene-enhancer interactions. This
approach typically requires the data to be converted into 2D chromo-
somal contact matrices (maps), which store the frequency at which
chromosomeregioniinteracts with chromosomeregionj, whereiand
Jjaretheindices of chromosomeregions. Therefore, a Hi-C contact matrix
canbe considered animage. However, Hi-C data, in particular, single-cell
Hi-C data, are usually noisy and incomplete, so that chromosomalinter-
actions in chromosomal contact matrices may be false positives or
interactions may be missing in the matrices. Deep learning methods
(forexample, GANs) can be applied to denoise Hi-C data®”; inaddition,
diffusion models (for example, DDPM) may enable denoising of Hi-C
chromosomal contact matrices to improve 3D genome conformation
modelling and to study spatial interactions between genes and regula-
tory elements (for example, enhancers). However, the deep learning

architecture of DDPMis typically the U-Net, which may not be as power-
fulasthe deepresidual network used in the Hi-C datadenoising method
ScHiCEDRN?*. Thus, if applied to Hi-C data denoising, the architecture
of DDPMwould have tobe updated to deep residual networks toimprove
its denoising ability.

Single-cell reconstruction and inference

The activity of a single cell can be captured by various ‘'omics data,
such as transcriptomics (RNA-seq), proteomics, chromosome acces-
sibility (ATAC-Seq) and epigenetics (bisulfite sequencing), which may
benefit from diffusion models; for example, data could be inferred to
one modality (for example, RNA-Seq) from another modality, such
as ATAC-Seq data and genome methylation data; missing spots in
single-cell spatial transcriptomic data could be calculated; spots (each
consisting of multiple cells) in 10x spatial transcriptomic data could
be decomposed into single cell data (super-resolution); and single-cell
data could be used to build 3D models of the spatial arrangement of
cells.Moreover, diffusion models designed to denoise images could also
be applied to denoise single-cell‘'omics data, such as transcriptomics,
proteomics, metabolomics and epigenetics data.

DNAregulatory element design

The expression of genes is modulated by short DNA sequences on
genomes, called regulatory elements, such as enhancers and pro-
moters. Designing regulatory elements is an important approach to
designing synthetic cells using synthetic biology. Generative models,
such as GANs?, can be applied to design enhancers that regulate the
expression of genes and the development of cell types. However, dif-
fusion models have shown better performance inimage synthesis than
GANs* and may thus be more suitable for the design of enhancers and
other gene regulatory elements.
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Table 3 | Applications of diffusion models in bioinformatics

Applications Toolname

Key function and strength

Input

Output

Diffusion target®

Protein design ProteinSGM”'

and generation

Inpaints plausible backbones/domains; generates
native-like structures; allows precise and modular design

Inter-residue 6D
feature maps

Full-atomistic structure

Inter-residue 6D
feature maps

FoldingDiff'™'

Mirrors native folding process; alleviates the need
for equivariant networks; unconditionally generates
realistic protein structures

6 consecutive
backbone angles

Protein backbone
structure

6 consecutive
backbone angles

DiffSDS'%? Reduces computational complexity and cost; 6 consecutive Masked protein 6 consecutive
efficiently imposes geometric constraints; backbone angles backbone structure backbone angles
outperforms previous strong baselines

ProSSDG® Operates at large scales; generates realistic proteins Secondary All-atomistic protein Coarse
structures with sequences; allows interactive structure  structure; coarse structure constraints
generation constraints

Genie'® Dual representation for protein residues; designability ~ Oriented reference  Protein backbone Oriented
and diversity frames structure reference frames

SMCDiff"* Efficiently samples scaffolds; samples conditioned Molecular graph Scaffold structure given  Molecular graph
on given motif; theoretically guarantees conditional structure input motif structure
samples

RFdiffusion'®  Generates diverse outputs; can be guided toward Sequence, Diverse, complex, RF frames from
specific design objectives; explicitly models 3D predicted structure  functional protein a predicted
structure structure

FrameDiff'®®

Generates designable monomers and diverse protein
backbones; does not require pretrained structure
predictor

Molecular graph
structure

Designable monomer
backbone structure

Molecular graph
structure

Chroma'”’ Jointly models structures and sequences; Protein graph Proteins with desired Protein graph
sub-quadratic computational scaling; arbitrary structure functions structure
conditional sampling

Small-molecule CDGS'™® Incorporates discrete graph structures; specialized Graph structures Molecular graphs Discrete graph
generation and graph noise prediction model; similarity-constrained and inherent structure
drug design molecule optimization pipeline features

EDM>* Equivariant to Euclidean transformations; operateson  Atom coordinates, 3D molecular graphs Coordinates
continuous and categorical features; admits likelihood  atom types and categorical
computation features

DiffBridge'®® Incorporates prior information; generates realistic Masked pointsin 3D  Realistic molecules or Molecular graph
molecules; uses physically informed diffusion bridges  Euclidean space point cloud structure

DGSM"® Models local and long-range interactions; dynamically 2D molecular Stable 3D Molecular graph
constructs graph structures; estimates gradient fields  graphs conformations structure
of logarithm density

SDEGen™ Captures multimodal conformation distribution; Small molecules Representative Encoding of
quickly searches low-energy conformations and conformations graph structure
higher efficiency

DiffMD" No intermediate variables; directly estimates gradient 3D coordinates, Molecule simulation Atomic position
of log density; incorporates directions and velocities of  velocities, and trajectories coordinates
atomic motions invariant features

DiffLinker' Links arbitrary number of fragments; generates diverse  Molecule structure A molecule Molecular graph
and synthetically accessible molecules; conditions on incorporating all the structure
protein pockets input fragments

Protein-ligand DiffBp™ Non-autoregressive generation; generates molecules Protein-ligand Protein-ligand structure  Protein graph
interaction with high affinity to target proteins and desirable drug  structure given input protein structure
modelling properties

DiffSBDD™ Generates diverse drug-like ligands; efficient in silico Protein-ligand High-affinity ligands Protein graph
experiments; uses experimentally determined binding  structure given protein pockets structure
data

DiffDock™® Maps manifold to product space; provides confidence  Protein-ligand Ranked ligand poses, Ligand poses

estimates; maintains precision on computationally
folded structures

structure

confidence scores

NeuralPLexer"”

Repacks failed AlphaFold2 sites; enables end-to-end
design; generalizes to ligand-unbound or predicted
protein structure inputs

Protein backbone
template and ligand
molecular graphs

Full-atom protein-
ligand structure

Contact maps,
geometry prior

NERE"®

Benchmarks on protein-ligand and antibody-antigen
dataset; outperforms other unsupervised methods

Protein-ligand
complex

Binding affinity of the
protein-ligand structure

Ligand atom
coordinates
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Table 3 (continued) | Applications of diffusion models in bioinformatics

Applications Tool name Key function and strength Input Output Diffusion target®
Cryo-EM data CryoDRGN*® Accurate data distribution sampling ; fast latent space  Single-particle High-quality 3D Latent space of
analysis traversal; unlocks generative modelling tools cryo-EM imaging structure image embeds
Single-cell DISPR® Realistic 3D reconstructions; data augmentation tool 2D microscopy 3D cell shape 3D microscopy
image and in single-cell classification task; inverse biomedical images as a prior predictions point cloud
gene-expression problems
analysis

Y DEWAKSS'®® Maintains cellular identity; preserves data variance; Gene-expression Single-cell genomics Gene-expression

maintains cluster homogeneity

data data matrix

2The term ‘diffusion’ refers to the application of the forward and reverse diffusion processes on a specific data representation, that is, the target. Cryo-EM, cryogenic electron

microscopy. RF, RosettaFold.

Cryo-electron microscopy image denoising

Diffusion models can reconstruct complex protein structures from
3D cryo-EM density maps, which are typically made of noisy and
low-contrast 2D cryo-EM protein particle images, isolated from large
2D cryo-EM protein images (also called cryo-EM micrographs). How-
ever, denoising original cryo-EM images to build better 3D cryo-EM
density maps remains challenging. Although image preprocessing
techniques, such as EMAN2 (ref. 248), can denoise cryo-EM images®*’,
diffusion models trained on many noisy images at various noise levels
and their clean counterparts may allow the recovery of clean cryo-EM
images more effectively than conventional image processing tech-
niques that have not been trained to learn the noise distribution of

cryo-EM images>°.

Peptide design

Peptides, which are short, typically unfolded amino acid sequences, can
bind to proteins to modulate their function, which has been explored
for drug design. Diffusion models can not only be designed to gener-
atenew proteins but could also be adapted to create peptides that can
modulate protein function. For example, diffusion models pretrained
for protein design may be retrained on a peptide dataset to design
peptides through transfer learning.

Protein structure refinement and mutation prediction

The tertiary and quaternary structures of many proteins and protein
complexes can be fairly accurately predicted by AlphaFold2 (ref.163)
and AlphaFold-multimer®', respectively. However, such predicted
structures may contain structural errors and may thus need to be
refined. Conditioned on a predicted structure input, diffusion mod-
els may be able to remove noise from the predicted structure to bring
it closer to the native structure. Similarly, it remains challenging to
predict how an amino acid mutation alters the structure of a protein,
which may affect protein function and phenotype. Diffusion models
have generative capability, demonstrated in protein design, and may
therefore be able to transform the known structure of a protein with-
out mutation (wild-type protein) to the structure of the same protein
with mutations (mutant) to predict structural changes induced by
mutations.

Limitations of current diffusion models

Although diffusion models may be applied for various bioinformat-
ics applications, potentially outperforming GANs and VAEs, some
limitations remain to be addressed. First, the training process of dif-
fusionmodelsinvolves the introduction of Gaussian noise to the data,
resultingin along training time. Second, although considerable efforts
have been directed towards increasing the sampling speed in diffusion

models, the sampling time of most models still exceeds that of other
deep generative models (for example, GANs and VAEs). The long sam-
pling time hinders some real-time applications of diffusion models.
Developing a streamlined approach of single-step noise addition and
removal may reduce the training and sampling time. Third, the com-
putational resource requirements of diffusion models are higher than
those of GANs and VAEs. Therefore, the trade-off between performance
improvement and computational resource demand needs to be evalu-
atedwhendeciding which model to use. Furthermore, new applications
of diffusion models are often non-trivial and may require validation of
suitable datarepresentations (embeddings), types of diffusion model
and deep learning architectures.
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