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Abstract

Denoising difusion models embody a type of generative artifcial 

intelligence that can be applied in computer vision, natural language 

processing and bioinformatics. In this Review, we introduce the key  

concepts and theoretical foundations of three difusion modelling  

frameworks (denoising difusion probabilistic models, noise-conditioned 

scoring networks and score stochastic diferential equations). We then  

explore their applications in bioinformatics and computational biology,  

including protein design and generation, drug and small-molecule 

design, protein3ligand interaction modelling, cryo-electron microscopy 

image data analysis and single-cell data analysis. Finally, we highlight 

open-source difusion model tools and consider the future applications 

of difusion models in bioinformatics.
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probabilities through deep generative models with up to thousands 

of layers or time steps as well as the computing of conditional and 

posterior probabilities under the learned model. Based on this con-

cept, denoising diffusion probabilistic models (DDPMs)33 can achieve 

performance comparable to or better than other generative models 

(for example, decoder, energy-based models and GANs)46,94396 in image 

generation tasks. The diffusion network structure and training strategy 

can further be improved to boost performance50, surpassing GANs 

in image synthesis. For example, a multi-head attention mechanism 

and the BigGAN’s residual module95 can be applied for up-sampling 

and down-sampling of data to improve the resolution and quality of 

generated images. In addition, a denoising diffusion implicit model 

(DDIM)97 can be used to increase sampling rate.

Importantly, diffusion models can be applied in bioinformatics, 

for example, for denoising cryo-electron microscopy (cryo-EM) data98, 

single-cell gene-expression analysis99,100, protein design and genera-

tion84,91,1013107, drug and small-molecule design54,1083113 and protein3

ligand interaction modelling1143118. Diffusion models have the advantage 

of being able to handle high-dimensional data with high diversity and 

scalability.

In this Review, we provide a detailed survey of diffusion models, 

including denoising diffusion models, noise-conditioned score 

networks (NCSNs) and stochastic differential equations (SDEs), and 

discuss their applications in bioinformatics. We further highlight 

possible future developments of diffusion models, aiming to propose 

some challenging bioinformatics problems that may be tackled by 

creative diffusion models.

The concept of diffusion models
Diffusion models learn to reverse the process of data destruction or 

corruption (for example, introduced by noise), allowing the generation 

of realistic, clean data samples (for example, restoration of uncor-

rupted data). Thus, diffusion models can learn from data that has been 

progressively destroyed or degraded to generate new samples from a 

given distribution or to estimate the distribution from which a given 

sample is drawn (Box 2).

Diffusion models are based mainly on three frameworks, each with 

a different formulation of the forward and reverse processes (Fig. 2), 

that is, DDPMs32,33, NCSNs34,119 and score SDEs35,120.

Denoising diffusion probabilistic models
DDPMs, which were the first diffusion models able to generate high-

resolution data, typically contain two Markov chains (Box 2): the for-

ward chain gradually adds noise to scramble the original data, followed 

by a reverse chain that removes the noise from the data to recover the 

original data. If q x( )0  denotes the distribution of the original data, in 

which x0 denotes uncorrupted data, the transition kernel q x x( | )
t t−1  of 

the forward Markov process adding Gaussian perturbation at time t is 

denoted x β x β( ; 1 − , ),t t t t−1N Ι  in which t T�{1,…, }. Here T represents the  

number of diffusion steps; β �[0,1)
t

 is the hyperparameter denoting  

the variance schedule across diffusion steps; Ι is the identity matrix; and 

N(x;µ,σ) is the normal distribution of x with mean µ and covariance σ.  

If α β= 1 −t t
 and α α=∏t s

t

s=0 , a noisy sample xt can be obtained directly 

from the distribution conditioned on the original input x0:

q x x x α x α( | ) = ( ; , (1 − ) ) (1)
t t t t0 0N Ι

x α x α= + 1 − �, � ~ (0, ) (2)t t t0 N Ι

Key points

 • Difusion models are a generative artificial intelligence technology 

that can be applied in natural language processing, image synthesis 

and bioinformatics.

 • Difusion models have contributed greatly to computational 

protein design and generation, drug and small-molecule design, 

protein3ligand interaction modelling, cryo-electron microscopy data 

enhancement and single-cell data analysis.

 • Many difusion models are also available as open-source tools.

 • Although difusion models may potentially outperform other 

generative approaches, such as generative adversarial networks and 

variational auto-encoders, their computational resource requirements 

remain high.

Introduction
Deep learning1 was introduced to the field of bioinformatics and com-

putational biology in 2012 (ref. 2) (Box 1) and has been applied to many 

bioinformatics problems, such as protein structure prediction3, protein 

function prediction439, protein3ligand interaction prediction10314, 

gene-expression prediction15320 and gene regulatory network 

modelling21325. Various deep learning architectures, including convo-

lutional neural networks26, long short-term memory networks27, resid-

ual networks28, generative adversarial networks (GAN)29, graph neural 

networks (GNN)30 (Box 2) and transformers31 have been developed for 

bioinformatics data analysis.

Diffusion models leverage deep learning technology32335; how-

ever, they outperform other deep learning methods in many domains, 

including in image generation36342, image inpainting43,44 and speech 

synthesis45. Diffusion models are deep learning-based generative 

models32335 (Box 2) that aim to generate artificial yet realistic data 

(for example, a computer-generated Picasso painting or an answer 

to a user’s question) from input parameters. Compared to other gen-

erative models, such as autoregressive models46, normalizing flows47, 

energy-based models48, variational auto-encoders (VAEs)49 or GANs29, 

diffusion-based generative models have the ability to learn complex 

distributions, handle high-dimensional data and generate diverse 

data50355. In particular, diffusion models can surpass GANs29, which 

consist of a generator that generates data and a discriminator that 

can differentiate the generated data, in the challenging task of image 

synthesis33,50. In addition, diffusion models can be applied for com-

puter vision43,51,56371, natural language processing55,72375, temporal data 

modelling76381, multi-modal modelling36,37,82,83, and in medical image 

reconstruction84393.

Diffusion models were originally introduced32 to address a central 

problem in machine learning, that of modelling complex datasets using 

highly flexible families of probability distributions while ensuring 

that learning, sampling, inference and evaluation remain analytically 

or computationally tractable (Fig. 1). Inspired by non-equilibrium 

statistical physics, this approach systematically and slowly destroys 

the structure of data through an iterative forward diffusion process. 

Then, a reverse diffusion process is applied to restore the structure 

in the data, yielding a highly flexible and tractable generative model of 

the data, thereby enabling rapid learning, data sampling and evaluating 
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The forward process gradually introduces noise into the origi-

nal data until it is completely replaced by noise. The reverse process 

is the opposite operation, resulting in the generation of new sam-

ples. This process typically starts with unstructured noise obeying 

the prior distribution, and then, by applying a model 4 typically a 

trainable neural network 4 that has learning ability, noise is removed 

step by step to restore the original data. The neural network N can be  

formulated as:

p x x x µ x t σ x t( | ) = ( ; ( , ), ( , )) (3)θ t t t θ t θ t−1 −1N

Given the starting point data of the reverse process as 

Np X X( ) = ( ; 0, Ι)T T , the distribution of X0 conditioned on XT  is given by:

∏p X p X p X X( ) = ( ) ( | ) (4)
θ T T

t

T

θ t t0:
=1

−1

Eventually, a marginal distribution of X0 close to the original data 

x0 can be obtained by ∫p x p x x( ) = ( )d
θ θ T T0 0: 1: .

To train the model parameterized with θ so that it can learn the 

pattern of the original data and make p x( )
0

 close to the true data dis-

tribution q x( )
0

, the loss function to be minimized is set as the negative 

log-likelihood (equation (5)). We note that the process of minimizing 

the negative log-likelihood of the observed data under the model is 

equivalent to minimizing the Kullback3Leibler (KL) divergence between 

the empirical distribution defined by the original data ⋯q x x x( , , , )T0 1  

and the model distribution ⋯p x x x( , , , )
θ T0 1 :
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The objective of DDPM training is to minimize LVLB, also known 

as the variational lower bound of the log-likelihood. LVLB can also be 

parameterized to increase the quality of sample generation33.

Noise-conditioned score networks
In NCSNs, the score function of a probability density function p x( ) is 

represented by the gradient of the log density with respect to the input 

as p x∇ log ( )x . To learn and estimate the score function, a score-matching 

neural network sθ is trained. The goal of this neural network is to make 

s x p x( ) ≈ ∇ log ( )θ x . Therefore, the objective function of the scoring 

network can be defined as:

E s x p x
~

� ( ) − ∇ log ( )� (6)x p x θ x( ) 2

2

Even though the problem is well defined, optimizing equation (6) 

is numerically impossible because the value of p x∇ log ( )x  cannot be 

known. However, score functions can be learned from data by applying 

score matching121, denoising score matching1223124 or sliced score 

matching125.

Moreover, training remains difficult because the trained score 

functions are unreliable in low-dimensional manifold, because 

low-dimensional data is typically embedded in a high-dimensional 

space (the manifold hypothesis)34. This challenge can be addressed by 

introducing Gaussian noise to the data at various scales, which improves 

the data distribution’s suitability for score-based generative modelling. 

Thus, a single NCSN can be applied to estimate the score correspond-

ing to each noise level. If σ σ σ σ0< < <…< <…<t T1 2  is a sequence 

of Gaussian noise levels, N Ip x x x x( | ) = ( ; , σ ),
σ t t t

2

t
 p x p x( ) ≈ ( ),

σ 0
1

 and 

Ιp x( ) ≈ (0,
σT

N ). The NCSN s x σ( , )θ t  with the denoising score matching 

can then approximate the gradient log density function, mak-

ing s x σ p x t T( , ) ≈ ∇ log( ( )), ∀ ∈ {1,…, }θ t x σt
. And for xt, p x∇ log( ( ))x σt

 is 

derived as:

p x x
x x

∇ log ( | ) = −
−

σ
(7)x t

t

t
σt t

Consequently, the optimization objective function in equation (6) 

can be transformed into:

E E∑
T

λ σ s x σ
x x

σ

1
( )

~
� ( , ) +

−
� (8)

t

T

t p x x p x x θ t t
t

t=1
( ) ( | )

2

2

t t t

in which λ σ( )t  is a weighting function.

During the sampling phase, NCSNs use the annealed Langevin 

dynamics algorithm, which employs a Markov Chain Monte Carlo proce-

dure (Box 2) to sample from a distribution according to its score function 

p x∇ log ( )x . The Langevin method recursively computes xi as follows:

x x
γ

p x γω= +
2
∇ log ( ) + (9)i i x i−1

Box 1

Deep learning
Deep learning is a machine learning technology that applies artificial 

neural networks with many layers of neurons (hence, 8deep9) to 

model and extract complex patterns in data. Deep learning can then 

learn patterns and features from complex data to perform intelligent 

tasks, such as speech and image recognition, natural language 

processing and protein structure prediction. The artificial neurons in 

each layer receive input from the neurons in the previous layers until 

the final output layer produces a prediction (for example, classifying 

an image into a category or generating a sentence of text). During 

training of a deep learning model, the weights associated with the 

connections between neurons are adjusted to fit the training data. 

A major advantage of deep learning models over other machine 

learning methods is their ability to automatically learn hierarchical 

representations from raw data through multiple layers of abstraction. 

This enables deep learning models to achieve high prediction 

accuracy in many domains, such as precision medicine and 

healthcare (for example, medical image segmentation237,2583261 

and disease diagnosis2623265), finance (for example, algorithmic 

trading266,267 and risk management268) and agriculture (for example, 

crop monitoring269,270 and pest detection271). Some notable 

applications of deep learning are ChatGPT272 for natural language 

processing, DALL-E-2 (ref. 83) and GLIDE273 for image generation, and 

AlphaFold2 (ref. 163) for protein structure prediction.
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where γ determines the amplitude of the update in the score’s direction; 

x0 is sampled from the prior distribution; and the noise is drawn 

according to Ιω ~ (0,i N ).

NCSNs and DDPMs both operate on the principle of converting 

a basic noise distribution into a more intricate data distribution by 

collecting information during the introduction of noise, which is then 

reapplied when removing the noise. Both models are trained to tackle 

a noise regression problem, based on the principle of maximum likeli-

hood estimation. Notably, the objective formulation of score matching 

with Langevin dynamics in NCSN aligns with that of the re-weighted 

variant of the evidence lower bound of DDPM35,126,127. In terms of sample 

generation, both models employ ancestral sampling, which progres-

sively transforms a noise sample into a data sample, guided by data 

distribution gradients.

Score stochastic differential equations
With unlimited time steps or noise levels, DDPMs and NCSNs can be 

further generalized to a situation in which the perturbation and denois-

ing processes can be described as SDEs. This generalized approach35 of 

gradually transforming data into noise is called score SDE. The forward 

process of score SDE uses SDEs and requires an estimated score function 

of the noisy data distribution. It is equivalent to the Itô SDE128 solution, 

which consists of a drift component for mean transformation and a 

diffusion coefficient for describing noise:

x f x t t g t w t Td = ( , )d + ( )d , ∈ [0, ] (10)

where w represents the standard Wiener process known as Brownian 

motion, and f x t( , )  and g t( )  are the drift and diffusion coefficients of 

SDE, respectively. The forward process in DDPMs and score-based 

generative models is a special case of the discretizational SDE.

The formulation of the reverse diffusion process of SDE is given 

by equation (11)129, also called reverse-time SDE:

x f x t g t p x t g t wd = [ ( , ) − ( )∇ log ( )]d + ( )d (11)x t
2

where w is the standard Brownian motion running backward time, and 

dt represents the infinitesimal negative time step. The reverse SDE 

and forward SDE share the same marginal densities but in the opposite 

time direction35. As in DDPMs and NCSNs, to numerically solve 

reverse-time SDE, a trainable neural network s x t( , )θ  is employed to 

estimate the actual score function p x∇ log ( )x t
. The objective function 

can be defined as:

 E










λ t
s x t t p x t x

( )

2
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2
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Box 2

Key concepts relevant to difusion models
Difusion:  the movement of molecules, atoms, ions or energy from 

a region of higher concentration to a region of lower concentration 

along a concentration gradient until the concentration becomes 

equal in both regions. Difusion, which is driven by a gradient in 

Gibbs free energy or chemical potential, is a stochastic process 

owing to the inherent randomness in the movement of the difusing 

entities.

Generative model:  a type of machine learning model that aims at 

learning the underlying distribution of data to generate new, similar 

data. These models can approximate the joint probability distribution 

of input features and labels, if available, and generate new data points 

by sampling from the learned distribution.

Markov chain:  a stochastic model that describes a sequence of 

possible states, in which the probability of a state depends (or is 

conditioned) only on its previous state.

Markov chain Monte Carlo:  a statistical or computational simulation 

method that constructs a Markov chain to iteratively generate 

a sequence of samples according to a conditional probability 

distribution between two consecutive states. After running the 

Markov chain for enough iterations, the generated samples converge 

to the desired posterior distribution.

Graph neural network (GNN)30:  a type of deep learning model for 

processing graph-structured data (for example, molecular graphs 

and biological networks). Each node in a GNN receives messages 

from its neighbouring nodes, which are used to update its hidden 

representation. By iteratively updating node representations, the 

GNN can aggregate information from both the local neighbourhood 

and remotely connected nodes in the graph.

Equivariant GNN161:  a special type of GNN that is equivariant to a 

transformation (for example, translation and rotation) in the input 

data (for example, of a three-dimensional object, such as a protein 

structure). For example, the translation of an object in the input space 

leads to the translation of the same output of the object generated by 

the equivariant GNN in the output space without changing the value 

of the output.

SE(3)-equivariant networks162:  a special equivariant GNN model 

that preserves the symmetry of the special Euclidean group SE(3). 

If a SE(3) transformation is applied to the input, the output generated 

by the networks undergoes an equivalent transformation. Achieving 

SE(3) equivariance allows the model to capture the inherent 

symmetries and geometric properties of the input 3D data.

SE(3)-transformer198:  a specific implementation of SE(3)-equivariant 

networks using the transformer9s self-attention mechanism to 

achieve SE(3) symmetry, including three-dimensional rotations and 

translations. The SE(3)-transformer is particularly useful for tasks 

involving three-dimensional structures, such as protein structure 

prediction and protein design, where diferent (x, y, z) coordinates 

of the same protein structure appearing in diferent orientations and 

positions can be treated as the exact same object.
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where t T~ ([0, ])U  denotes the uniform distribution over T[0, ]  and λ 

is a weighting function. In addition, several sampling techniques, such 

as the predictor3corrector sampler, can be employed to generate good 

samples. This procedure uses a score-based method (that is, annealed 

Langevin dynamics) as a corrector after using a numerical approach 

to sample data from the reverse-time SDE.

Improving diffusion models
The aforementioned diffusion models can be further improved through 

extension in training speed126,1303133, increasing data sampling (data gen-

eration) speed97,1343139, integration with other neural networks38,120,1403142, 

and applications to different data types53,73,1433151. Many of these improve-

ment strategies are available as open-source tools152 (Table 1), which 

has opened up their application to a diverse range of bioinformatics 

problems (Box 3). Importantly, diffusion models can handle different 

data types, such as one-dimensional (1D) DNA and protein sequences, 

two-dimensional (2D) biomedical images, three-dimensional (3D) 

protein structures and vectorized gene-expression data.

Protein design and generation
The computational generation of new, physically foldable protein 

structures allows the design of proteins with specific functions or struc-

tural properties for protein engineering and drug discovery. However, 

deep generative models (Box 2), such as VAEs and GANs1533159, are lim-

ited to generating only small proteins or domains of large proteins 

(for example, of immunoglobulins). Alternatively, diffusion models 

can be applied to protein design and generation, because large and 

diverse proteins can be generated by guiding the model at each step 

of the iterative generation process.

Protein structures in protein generation153,154 are typically 

described by a 2D matrix (map) that contains the pairwise distances 

and angles between all the residues in the protein. For example, 

ProteinSGM, based on a score-based generative model91, applies a 

diffusion model of 2D image generation using such a representa-

tion to create protein structures: a score-based generation diffusion 

model with SDEs is used to generate a series of 2D matrices that include 

inter-residue pairwise distances d, and the ω, θ and φ angles between 

two residues. These constraints are then fed into Rosetta160 to build 

native-like protein structures. For unconditional protein structure 

generation, ProteinSGM can generate proteins from random noise. 

For conditional protein structure generation, such as scaffold inpaint-

ing and functional site inpainting, the tool can generate protein struc-

tures that satisfy user-defined constraints, similar to solving an image 

inpainting problem. However, ProteinSGM requires post-processing 

by Rosetta using Markov Chain Monte Carlo (Box 2), which makes the 

prediction computationally expensive.

Unlike ProteinSGM, Foldingdiff101 represents the protein backbone 

structures (only N3Ca3C atoms for each residue) with a series of con-

secutive angles to capture the relative orientation of the constituent 

atom acid residues. A simple language transformer model31 with DDPM 

can then be applied to generate protein structures unconditionally, 

as the angles are invariant to translation and rotation. However, using 

a transformer to predict sequence-like consecutive angles has the 

drawback that errors from the early prediction accumulate and con-

siderably affect the final structure, including collisions between atoms. 

In addition, the approach cannot be generalized to generate complex 

structures with more than one chain.

Inspired by Foldingdiff, DiffSDS102 introduces a 1D directional 

representation derived from invariant atom features, similar to 

torsion angle representation, which enables an encoder3decoder 

language model to perform the diffusion process. In the language 

model, the encoder (with a hidden atom-direction-space layer) trans-

forms the invariant features into equivalent direction vectors, whereas 

the decoder reverses the transformation. By performing the diffusion 

process in this direction and by conditioning angle spaces on geo-

metric restraints, DiffSDS can restore protein backbone structures of 

higher quality than the deep-learning-based protein design method 

RFDesign156: DiffSDS is two times better at generating proteins that 

resemble natural proteins (protein likeness), as measured by Rosetta 

energies, about 18 times better in terms of connectivity errors and 60% 

better at generating non-overlapping scores with existing backbones 

than RFDesign.

The integration of diffusion models with GNNs30 (Box 2) ena-

bles the direct generation of 3D protein coordinates, resulting in an 

end-to-end generative model. SE(3)-equivariant161,162 (Box 2) DDPMs, 

which are usually used in small-molecule generation, can also be 

applied to generate protein structures in a representation-frame-

independent manner163. For example, independent DDPM models 

equipped with invariant point attention163 structural modules can be 

trained with the distribution of atom features (for example, coordinates 

in a canonical frame with respect to backbone atoms, residue type 

and side-chain angles) to generate a protein’s backbone, sequence and 

side-chain rotamers84. By jointly diffusing the structure and sequence, 

while incorporating coarse structural constraints, the model can gradu-

ally generate the fully atomistic protein structure and sequence, allow-

ing controllable protein backbone generation and protein structure 

inpainting. The sequence recovery rate of this method is comparable 

to that of other machine-learning-based and physics-based methods, 

such as 3DConv164, RosettaFixBB and RosettaReIBB165. Similarly, Genie103 

makes use of the SE(3)-equivariant feature from the invariant point 

attention module in conjunction with DDPM to generate protein back-

bones unconditionally, also introducing geometric asymmetry with an 

invariant encoder to directly inject noise into residue coordinates, as 

well as an SE(3) equivariant decoder with an invariant point attention 

module to predict noise.

SMCDiff104 applies a similar deep learning architecture (that 

is, an SE(3)-equivariant GNN) (Box 2) to the motif-scaffolding gen-

eration problem, dividing the problem into two parts: unconditional 

protein backbone generation (ProtDiff) and conditional sampling 

in diffusion models based on a protein motif (SMCDiff), similar to 

inpainting. Unconditional protein generation is achieved by training 

a SE(3)-equivariant GNN (Box 2), built from residue coordinates and 

embedded features from the protein sequence, to generate protein 

backbones. By contrast, conditional sampling is formulated on an 

unconditional diffusion model as a sequential Monte Carlo simula-

tion problem, which may be solved by particle filtering. However, 

the network does not include torsion angles as features and may 

therefore generate unnatural proteins (for example, left-handed 

helices). SMCDiff was the first deep generative model that lever-

aged the power of diffusion models to address the motif-scaffolding 

generation problem.

RFdiffusion105, which integrates a conditional DDPM diffusion 

model with the pre-trained protein 3D structure prediction model 

RoseTTAFold166, can directly generate final 3D coordinates. Inspired 

by the recycling process in AlphaFold2, a self-conditioning prediction 

strategy is applied, in which the current prediction is conditioned on 

the prediction from the previous timesteps, thereby considerably 

improving the performance of the model. Starting from random noise, 
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RFdiffusion can generate large protein structures unconditionally, 

which can then be used in the design of protein monomers. Using 

protein motif coordinates as input, RFdiffusion can also construct 

scaffolds conditionally for functional motif and enzyme active site 

scaffolding105. Given a point group symmetry, RFdiffusion can maintain 

the symmetry during the prediction owing to the equivariance design 

of RoseTTAFold. Therefore, this approach can be applied to symmetric 

protein oligomer and motif scaffolding (for example, for the design 

of therapeutic167 and metal-binding proteins168,169). We note that com-

pared to the other methods discussed in this section, some proteins 

designed by RFdiffusion have not only been validated in silico, but 

also by biochemical and biophysical experiments170,171, making it one 

of the first generative artificial intelligence methods of protein design 

that have been experimentally validated. Furthermore, RFdiffusion 

outperforms other methods, such as RFDesign, in the design of large 

protein structures and high-order protein oligomers, demonstrating 

the advantage of diffusion models.

FrameDiff106 applies diffusion models to explore whether a 

pre-trained protein structure predictor is necessary for protein back-

bone generation. Here, using denoising score matching, a principled 

SE(3) diffusion model can better formulate the protein backbone gen-

eration problem, achieving comparable performance with four-fold 

fewer network weights and without the need to train another protein 

structure prediction network, compared to RFdiffusion.

Chroma107 is a GNN30-based conditional diffusion model designed 

to generate large single-chain proteins and protein complexes with 

desired properties and functions. This model can generate protein 

structures that are over 3,000 residues in size, which surpasses the size 

limit for proteins generated by several other networks (that is, Protein-

SGM, Foldingdiff, DiffSDS and SMCDiff) (<2,000 residues). To reduce 

computational complexity, Chroma uses a random graph generation 

procedure that preserves both short- and long-range interactions. As a 

result, Chroma can produce high-quality, diverse new protein struc-

tures, and enables the programmable generation of proteins that are 

conditioned on several different properties, such as residue3residue 

distances, symmetry and shape.

Small-molecule generation and drug design
Drug discovery involves the identification and optimization of small 

molecules that can interact with specific biological targets, such 

as enzymes or receptors, to modulate their activity and ultimately 

achieve a therapeutic effect. Deep learning, particularly deep gen-

erative models, enables the rapid generation and evaluation of a large 

number of such potential drug candidates1723175.

The conditional diffusion model, which is a deep learning method 

based on discrete graph structures (CDGS), allows the generation of 

molecular graphs of small molecules with similar data distributions 

to real-number molecular graphs108. This method employs a hybrid 

message-passing block architecture, which comprises a standard 

message-passing layer for collecting local features, such as node-edge 

dependencies, and an attention-based message-passing layer for 

extracting and transmitting global information in the architecture. 

The molecular graphs are embedded with distinct components for 

node features and edge matrices, with channels for edge existence 

and edge types. The CDGS model has enabled the application of diffu-

sion models in the molecular graph domain, which is crucial for drug 

discovery and material science. This approach accurately models the 

complex dependency between graph structures and features during 

the generative process, using SDEs to describe the graph diffusion 

process. The continuous forward process is applied directly to edge 

existence variables, and the reverse process first decodes discrete 

graph structures, which serve as the condition for each sampling step. 

A specialized hybrid graph noise prediction model is used to extract 

global and local node-edge dependencies from intermediate graph 

states. This diffusion-based model can obtain high-fidelity samples in 

200 steps of network evaluations using the Euler3Maruyama method176. 

In addition, a fast ordinary differential equation solver, which applies 

the semi-linear structure of probability flow ordinary differential 

equations for graphs, promotes rapid, high-quality graph sampling. 

CDGS outperforms other methods in molecular graph generation, 

including flow-based methods (for example, GraphAF177, GraphDF178, 

MoFlow179 and GraphCNF180) and other diffusion models (EDP-GNN151, 

GraphEBM181 and GDSS148). CDGS also performs better in generic graph 

generation than ER182, VGAE183, GpraphRNN184 and GRAN185, demon-

strating its potential to facilitate drug discovery and material design 

by representing molecular structures and restricting the molecule 

search space.

The E(3)-equivariant diffusion model (EDM)54 (Box 2) performs 

the diffusion process on atom coordinates and atom types in the 

Euclidean space to generate small molecule structures with up to 

29 atoms, compared to nine heavy atoms that can be achieved with 

equivariant normalizing flows186. An EDM represents each small mole-

cule as a point cloud that can be described by a graph with nodes v V∈i  

representing atoms in the molecule based on an equivalent transfor-

mation, thereby combining the equivariant GNN and the diffusion 

process. The former contains L layers of equivariant graph convolu-

tional layers that take each atom’s 3D coordinates and features as input 

to model molecule structures with geometric symmetries, whereas 

the latter gradually adds Gaussian noise to both the coordinates and 

features of the atom, thereby improving training, performance 

and scalability, compared to other E(3)-equivariant models, such as 

G-Schnet187 and equivariant normalizing flows186 as well as graph-based 

molecule-generative models, such as GraphVAE188, GraphTransformer189 

and Set2GraphVAE190.

Based on the equivariant GNN architecture and inspired by the 

physics governing the formation of small molecules, the Lyapunov 

function applies physical and statistics prior information (diffusion 

informative prior bridge)109 to guide the diffusion process in model 

training and generate high-quality and realistic molecules. In this 

approach, problem-dependent prior information, in particular, physi-

cal and statistics information, is injected into the diffusion process 

instead of imposing or improving deep learning architectures. Several 

energy functions, integrated with the physical and statistical prior 

information, are then used as a prior bridge to guide the model training 

without any extra modification of the equivariant GNN architecture. 

Thereby, the Lyapunov function shows better molecule-generation 

performance in terms of physical energy and molecule stability109 and 

better uniformity-promoted 3D point cloud generation compared 

Fig. 1 | Timeline of advances in diffusion models and their applications 

in bioinformatics. Data are taken from refs. 32336,54,61,72,84,91,97,99, 

1013118,130,133,136,1383140,150,151,256,257,273. Cryo-EM, cryogenic electron 

microscopy; SDE, stochastic differential equations; DPM, diffusion probabilistic 

model; ODE, ordinary differential equations.
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to EDM54 and point cloud diffusion143, which apply the traditional 

Gaussian noise in model training, as well as equivariant normalizing  

flows186.

Dynamic graph score matching (DGSM)110 is a deep learning model 

developed for predicting stable 3D conformations from 2D molecular 

graphs, primarily used in computational chemistry. The model can 

also be extended to protein sidechain conformation prediction and 

complex multi-molecular prediction (for example, predicting the 

interaction of more than three small molecules without explicit 

bonds)110. Deep learning methods often consider only the local interac-

tions between bonded atoms, while neglecting the long-range 

interactions among unbound atoms, which are crucial for constructing 

accurate 3D molecular structures. To overcome this limitation, DGSM 

treats each molecule as a graph =< , >g v e , where a node in v represents 

an atom and its features (for example, coordinates), and an edge in 

e represents a bond between two atoms. The distance Dij between each 

pair of atoms, that is, the edge length in the graph, can then be com-

puted from their coordinates. For each pair of unbound atoms, the 

distance Dij can be perturbed by a Gaussian noise level at each training 

step. A message passing neural network191 is then applied, using edge 

length and edge type in the graph as inputs to dynamically embed the 

molecular 2D graph by adding Gaussian noise to the distance between 

pairs of unbound atoms. Using the score-matching method, the model 

can then directly estimate the gradient fields of the logarithm density 

of atomic coordinates. Importantly, the model can be trained in an 

end-to-end fashion, thereby addressing the limitation of physics-based 

simulation methods that do not account for long-range interactions 

between non-bounded atoms. Thus, DGSM outperforms other meth-

ods, including RDKit192, CGCF193 and ConfGF144 in terms of matching 

score and coverage score, confirming the benefit of modelling 

long-range interactions.

SDEGen111 is a multi-stage diffusion model that can generate 

molecules by adopting multiple architectures in different stages 

with different purposes; here, molecular conformations, including 

distances between two atoms within three-hop edges, edge type 

and atom type, and their corresponding graphs, are used as inputs 

for three different multilayer perceptrons to generate their embed-

dings. The distance embeddings are corrupted by Gaussian noise and 

the atom-type embeddings are then updated by a GNN (Box 2). The 

noisy distance embeddings, edge-type embeddings and the updated 

atom-type embeddings are then combined into final bond embed-

dings. Finally, the SDE network is parameterized. This multi-stage 

model is not as streamlined as end-to-end models, but it outperforms 

several other models, including DGSM194, CGCF193, ConfGF144, CVGAE195 

and DMCG196, by multiple metrics, such as coverage score and match-

ing score, in particular, when considering long-range interactions in 

molecules.

DiffMD112 is a score-based denoise diffusion model that can be 

applied to improve molecular dynamics simulations. Deep-learning-

based molecular dynamics models typically depend on intermedi-

ate force fields and can thus only be applied to static molecules, not 

considering thermodynamics. DiffMD addresses this problem by 

applying score-based conditional diffusion models, employing the 

equivariant geometric transformer to take atomic coordinates, velocity 
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and features embedded in molecular dynamics trajectories directly 

as input. In each layer, the model introduces velocities, directions 

and other geometric information using the spherical Fourier3Bessel 

transformation to update the input information. During the diffusion 

process, the conditional noise, based on the accelerations of atoms in 

previous frames, is added to the inputs for the equivariant geometric 

Table 1 | Open-source tools for implementing and improving diffusion models

Tool Name Year Model type or improvement Difusion 

frameworka

Network architecture GitHub

NCSN34 2019 Foundational model NCSN Variant of U-Net CODE

DDPM33 2020 Foundational model DDPM U-Net237 CODE

Score SDE35 2020 Foundational model Score SDE Variant of U-Net CODE

EDP-GNN151 2020 Diffusion on graph data NCSN Variant of GNN CODE

Improved diffusion130 2021 Speed up training DDPM U-Net CODE

Cold diffusion131 2021 Speed up training Score SDE U-Net CODE

DDIM97 2021 Speed up sampling DDPM U-Net CODE

Diffusion-point-cloud143 2021 Point cloud DDPM Autoencoder CODE

LSGM140 2021 Mixed modelling Score SDE Autoencoder CODE

ConfGF144 2021 Diffusion on graph data Score SDE GNN CODE

PVD145 2021 Point cloud DDPM Autoencoder CODE

sdeflow-light252 2021 SDE unification Score SDE VAE CODE

Gotta Go Fast134 2021 Speed up sampling Score SDE Variant of U-Net CODE

Score-flow120 2021 Mixed modelling Score SDE U-Net CODE

DiffFlow141 2021 Mixed modelling Score SDE U-Net CODE

FastDPM132 2021 Speed up training Score SDE U-Net CODE

argmax_flows73 2021 Categorical data DDPM VAE, DenseNet CODE

Soft Truncation253 2021 Likelihood optimization Score SDE Variant of U-Net CODE

ARDM146 2022 Categorical data DDPM Variant autoregressive models CODE

k-Diffusion135 2022 Speed up sampling Score SDE Variant of U-Net CODE

DPM-Solver136 2022 Speed up sampling Score SDE Plugin method CODE

VQ-diffusion254 2022 Vector quantized DDPM Vector quantized VAE CODE

Improved VQ-Diff255 2022 Vector quantized DDPM Vector quantized VAE CODE

Diffusion GAN38 2022 Mixed modelling DDPM GANs CODE

DiffuseVAE142 2022 Mixed modelling DDPM VAE CODE

PNDM137 2022 Speed up sampling Score SDE Variant of U-Net CODE

GeoDiff147 2022 Diffusion on graph data DDPM Variant of VAE CODE

VDM126 2022 Speed up training DDPM Variant of VAE CODE

Analytic-DPM138 2022 Speed up sampling NCSN U-Net CODE

Point Diffusion-Refinement53 2022 Point cloud DDPM Variant of U-Net CODE

GDSS148 2022 Diffusion on graph data Score SDE Multiple stage architecture CODE

Riemannian-score-sde149 2022 Diffusion on manifold data Score SDE Multilayer perceptron CODE

Diffusion Distillation133 2022 Speed up training DDPM Variant of U-Net CODE

bit-diffusion150 2022 Diffusion on discrete data DDPM Variant of U-Net CODE

DreamFusion256 2022 Generate 3D data DDPM Multi-stage architecture CODE

diffusers257 2022 Improve sample quality DDPM Multiple network architectures CODE

DPM-Solver++139 2022 Speed up sampling DDPM Multiple network architectures CODE

aThe diffusion frameworks are general models that are typically combined with specific deep learning architectures (network architectures) to generate or denoise a specific type of data. Tools 

intended to increase sampling speed and the quality of diffusion are tested with various network architectures, and their associated network architectures are categorized as 8multiple network 

architectures9. NCSN, noise-conditioned score network; U-Net, U-shaped neural network; DDPM, denoising diffusion probabilistic model; score SDE, score stochastic differential equation; 

GNN, graph neural network; VAE, variational autoencoder; GAN, generative adversarial network.

https://github.com/ermongroup/ncsn
https://github.com/hojonathanho/diffusion
https://github.com/yang-song/score_sde
https://github.com/ermongroup/GraphScoreMatching
https://github.com/openai/improved-diffusion
https://github.com/arpitbansal297/cold-diffusion-models
https://github.com/ermongroup/ddim
https://github.com/luost26/diffusion-point-cloud
https://github.com/NVlabs/LSGM
https://github.com/DeepGraphLearning/ConfGF
https://github.com/alexzhou907/PVD
https://github.com/CW-Huang/sdeflow-light
https://github.com/AlexiaJM/score_sde_fast_sampling
https://github.com/yang-song/score_flow
https://github.com/qsh-zh/DiffFlow
https://github.com/FengNiMa/FastDPM_pytorch
https://github.com/didriknielsen/argmax_flows
https://github.com/Kim-Dongjun/Soft-Truncation
https://github.com/google-research/google-research/tree/master/autoregressive_diffusion
https://github.com/crowsonkb/k-diffusion
https://github.com/luchengthu/dpm-solver
https://github.com/microsoft/VQ-Diffusion
https://github.com/cientgu/VQ-Diffusion
https://github.com/Zhendong-Wang/Diffusion-GAN
https://github.com/kpandey008/DiffuseVAE
https://github.com/luping-liu/PNDM
https://github.com/MinkaiXu/GeoDiff
https://github.com/google-research/vdm
https://github.com/baofff/Analytic-DPM
https://github.com/ZhaoyangLyu/Point_Diffusion_Refinement
https://github.com/harryjo97/gdss
https://github.com/oxcsml/riemannian-score-sde
https://github.com/google-research/google-research/tree/master/diffusion_distillation
https://github.com/google-research/pix2seq
https://github.com/ashawkey/stable-dreamfusion
https://github.com/huggingface/diffusers
https://github.com/luchengthu/dpm-solver
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transformer to estimate the score function, that is, the gradient of 

the log density of the biomolecule conformations. DiffMD outper-

forms several deep-learning-based molecular dynamics methods, 

including tensor field networks162, radial fields197, SE(3)-transformers198, 

graph mechanics networks199 and SCFNN200 in terms of average 

root-mean-squared error.

Fragment-based drug design can also be used for the discovery 

of new small molecules in a 3D space. Here, the aim is to design linkers 

consisting of atoms that can connect molecular fragments into a com-

plete molecule. DiffLinker113 uses an E(3)-equivariant 3D conditional 

diffusion model to generate these molecular linkers and to connect 

multiple molecular fragments to form a single connected molecule. 

The prediction is made by applying a GNN to predict the linker size 

(the atom number of the linker) and atom types. The coordinates of 

the atoms are sampled from the normal distribution, followed by a 

reverse diffusion process of the atom features conditioned on the 

input fragments. Compared to DeLinker201 and 3DLinker202, DiffLinker 

can perform better in terms of average quantitative estimation of 

drug-likeness, synthetic accessibility, the average number of rings 

in the linker, and the validity, uniqueness and novelty of the samples, 

thereby generating more realistic molecules.

Protein–ligand interaction modelling
Predicting the conformation of a ligand bound to a protein is important 

in the investigation of protein3ligand interactions and protein func-

tion as well as for the discovery of new drugs. Various protein3ligand 

docking, machine learning and auto-regressive models have been 

developed to address this problem10,2033206; however, these approaches 

are limited by their low geometrical accuracy. Alternatively, DiffBP114 

can generate ligands that bind to a specific protein pocket without 

requiring the ligand structure as input; here, a pre-generation net-

work is used to generate the centre of mass and atom number of the 

ligand, followed by diffusion models in conjunction with equivariant 

GNNs161,207 to generate high-quality ligand candidates33,35. Compared 

to auto-regressive methods, such as 3DSBDD205, Pocket2Mol206 and 

GraphBP203, which generate one atom at a time without consider-

ing interactions among all atoms, DiffBP can generate all atoms of 

a ligand that bind to a target protein, exhibiting high binding affini-

ties (for example, 41.07%114 for DiffBP, compared to 12.22%114 for 

3DSBDD, 23.98%114 for Pocket2Mol and 29.54%114 for GraphBP) on 

the CrossDocked208 dataset curated from protein3ligand complex 

structures in the Protein Data Bank (PDB).

DiffSBDD115 adopts a DDPM equipped with an E(3)-equivariant 

neural network to generate new ligands, including atomic features 

binding to specific protein pockets; here, ligand generation can either 

be protein-conditioned, based on the binding site to the protein, or 

the ligand can be impainted after learning the joint distribution of the 

protein3ligand complexes. Compared to 3DSBDD and Pocket2Mol, 

DiffSBDD can generate more diverse ligands with higher affinity on 

the CrossDocked dataset115 .

Unlike diffusion models applied for protein pocket docking, 

DiffDock116 uses the structure of the protein and ligand as input and 

does not require knowledge of the location of the binding site (that is, 

blind docking); here, the diffusion process is applied to ligand posi-

tions, represented by ligand translation and rotation, sampling multi-

ple positions, which are then ranked based on a confidence score using 

a trained scoring model and a trained confidence model, which are built 

on top of SE(3)-equivariant GNNs (Box 2). The scoring model samples 
different positions of the ligand, and the confidence model selects the 
ligand positions with the highest confidence score, similar to the struc-
tural and scoring modules of AlphaFold2163 for protein structure predic-
tion. DiffDock has been tested on the PDBBind dataset, outperforming 
search-based methods, such as SMINA209, QuickVina-W210, GLIDE211 and 
GNINA212, and the deep learning methods EquiBind213 and TANKBind214. 
Specifically, DiffDock achieved a top-1 success rate of 38.2% (the per-
centage of top-1 predictions with root-mean-square deviation <2)Å), 

Box 3

A practical guide for applying difusion models in bioinformatics
Difusion models are particularly useful in the generation, design 
or analysis of small molecules, proteins and biological images. 
To decide which difusion model to apply to a specific problem, 
the representation of the specific data type (for example, small 
molecules) needs to be considered to be suitable for processing by 
a deep learning model in the difusion process. The conformations 
of small molecules and drugs can be represented in several ways to 
facilitate the difusion process; for example, they can be treated as a 
string, such as the SELF-referencing embedded string, which can be 
converted into a two-dimensional (2D) matrix. This matrix can be used 
as input for graph neural networks (GNNs) under a difusion model 
framework to generate three-dimensional (3D) molecular graphs, as 
exemplified by dynamic graph score matching 110. Alternatively, they 
can be presented as 3D graphs that contain spatial direction and 
torsion angles between atoms, which can be used by a combination 
of SE(3)-equivariant GNNs162 and difusion models, such as the E(3)-
equivariant difusion model54 to capture their essential properties. 
In addition, small molecules can be represented as 3D atomic point 

clouds to be processed by equivariant GNNs, as in DifLinker113. 
Proteins can be represented as either one-dimensional (1D) sequential 
features suitable for a 1D transformer or 2D contact and distance 
maps suitable for processing by convolutional neural networks. 
The 3D structure of proteins is usually represented as graphs that 
consist of nodes denoting residues and edges that represent residue 
pairs in contact, which can be handled by both standard GNNs and 
SE(3)-equivariant GNNs in combination with difusion models. For 
imaging data, such as cryo-electron microscopy images, various 
difusion models initially developed for image generation, such as 
CascadedDif60, can be applied. Biomolecules or cell shapes may 
also be represented by 3D images, which can be reconstructed 
from 2D images by a combination of autoencoder or U-Net237 with 
a difusion model, as in CryoDRGN98 and DISPR99. These can model 
the distribution of ground-truth data to generate higher-quality 3D 
images than other generative artificial intelligence methods. For 
example, DISPR outperforms a VAE-based deep generative model 
SHAPR238 in the context of 3D cell shape reconstruction.
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which is significantly better than the energetics-based method GLIDE 
(21.8%; P = 2.7)×)1027) and the geometric deep-learning-based method 
TANKBind (20.4%; P = 1.0)×)10212)116.

Similar to DiffDock, NeuralPLexer117 is a deep generative network 
that leverages SDEs to predict complex protein3ligand structures 
based on the protein structure and molecular graphs of the ligand as 
input in blind docking. The key component in the model is an equivari-
ant structure diffusion module, which predicts the atomic coordinates 
on a heterogeneous graph formed by protein atoms, ligand atoms, 
protein backbone frames and ligand local frames. Using SDEs, the 
model can handle unbound or predicted protein structure inputs and 
can automatically accommodate changes in the protein structure in 
response to ligand binding. Compared with the deep learning method 
EquiBind213 and the physics-based method CB-Dock215 on the PDBBind216 
dataset, NeuralPLexer can generate a more accurate ligand structure 
with higher geometrical accuracy, with an approximately 70% success 
rate for a ligand with root-mean-square deviation <2)Å, which is higher 
than that of EquiBind (about 40%) and CB-Dock (about 38%) and has a 
lower steric clash rate of 0.105.

Finally, a deep generative energy-based diffusion model can pre-
dict the binding affinity for a protein3ligand pair, if trained with a set 
of protein3ligand complexes, without requiring labels for binding 
affinities118. During training, the network first predicts the rotation 
score for the perturbed ligand with respect to the protein pocket using 
an equivariant rotation prediction network, called Neural Euler’s Rota-
tion Equation (NERE). By training the model with the SE(3) denoising 
score matching, the log-likelihood is considered to be the binding affin-
ity between the protein and ligand in a pair. Tested on the protein3ligand 
dataset PDBbind216 and the structural antibody database SAbDab217, the 
model achieves an accuracy of 0.656 in predicting protein3ligand 
binding affinity, which is better than that of other unsupervised meth-
ods: 0.647 for Molecular Mechanics Generalized Born Surface Area218 
(MM/GBSA), 0.617 for Astex Statistical Potential219 (ASP) and 0.602 
for DrugScore2018 (ref. 220). This model further performs compa-
rably to other supervised methods in predicting antibody3antigen 
binding118: Zlab RerANK221, ZRANK2222, RosettaDock223, PyDock224, 
Scoring by Intermolecular Pairwise Propensities of Exposed Residues 
(SIPPER)225, Atomic Potential Protein Interactions Scored Atomically 
(AP_PISA)226, Coarse Grained Protein Interaction Energy (CP_PIE)227 and  
FIREDOCK228.

Cryo-electron microscopy data analysis
Single-particle cryo-electron microscopy (cryo-EM)2293235 is a key imag-
ing technique for determining and visualizing the 3D conformation 
(structure) of large biomolecular complexes (for example, protein 
complexes) at atomic resolution; here, the images of protein complexes 
obtained by cryo-EM are used to reconstruct their 3D conformation 
represented by 3D density maps.

The protein structure reconstruction method CryoDRGN236 
introduces a latent variable Z to define a conformational space V for a 
protein complex on cryo-EM density maps. CryoDRGN is based on a VAE 
framework that learns a continuous distribution in the latent space for 
protein structures from cryo-EM data. However, although CryoDRGN 
can simulate complicated structural dynamics, the Gaussian prior 
distribution of VAE does not match the posterior aggregate approxi-
mation, which limits the generative capability of the model236. Alterna-
tively, a continuous-time diffusion model (that is, score SDEs) can be 
implemented in CryoDRGN to learn a high-quality generative model for 
capturing protein conformations directly from cryo-EM imaging data. 

This CryoDRGN98 model is first trained with the standard VAE model 
using cryo-EM images in Fourier space. The latent space Z, which is 
predicted by the encoder of the trained VAE, is then fed into the denoise 
diffusion model based on a ResNet architecture28 to approximate the 
distribution of the latent variable Z. Finally, the synthesized latent 
variable Z, which is sampled from the diffusion model and is similar to 
the target protein’s distribution, is used as input for the decoder of the 
VAE to generate protein structures with better quality (higher similar-
ity with the target proteins’ distribution) than a VAE, which directly 
reconstructs protein structures by learning continuous distribution 
in latent space.

Single-cell image and gene-expression analysis
Reconstructing the 3D shape of a cell from a single-cell 2D micros-
copy image using computational methods is useful for studying the 
morphological features of cells. However, each 2D image may permit 
multiple 3D reconstructions, and therefore, different 2D slices may lead 
to different predictions of the 3D shape. To tackle this issue, DISPR99 
employs the U-net architecture237 and a diffusion process to generate 
a single-cell 3D shape from 2D images. During training and evaluation, 
this approach uses a 2D image of an individual cell as an inductive bias. 
The 2D image is then concatenated with its 3D Gaussian noisy segmen-
tation mask as input for the diffusion-based model to predict realistic 
3D cell shapes. DISPR benefits from this training approach and its sto-
chastic property. Unlike VAE-based architectures used in SHAPR238 and 
its variants239, which produce a single, deterministic reconstruction, 
DISPR employs a stochastic model trained on Gaussian noise and is 
thus capable of predicting an infinite number of cell shapes, provid-
ing a more comprehensive representation of dynamic cell structures. 
DISPR represents the first use of a diffusion model in the context of 
3D cell shape reconstruction, outperforming VAE-based deep genera-
tive models, such as SHAPR238, in terms of volume, surface area and 
roughness reconstruction99.

Single-cell RNA sequencing can assess the expression of genes in 
individual cells. However, cells typically contain low quantities of RNA, 
which may cause noisy measurements (for example, varied measure-
ments and experimental bias) of gene expression; moreover, values may 
be missed (dropouts). Therefore, it is important to denoise single-cell 
RNA-sequencing data and impute missing values. DEWAKSS100 applies 
a diffusion model with a K-nearest-neighbour (KNN) graph to select 
denoising hyperparameters using the noise2self self-supervision 
method, thereby not depending on an explicit noise model but on 
an invariant function of data features. Unlike heuristic-based meth-
ods, such as MAGIC240 and KNN-smoothing241, which also use KNN 
graph architecture but may lead to over-smoothing of data variance, 
DEWAKSS can preserve variances across multiple gene-expression 
dimensions.

Open-source diffusion model tools
Some diffusion models that can be applied to bioinformatics have 
been implemented as open-source tools (Table 2). However, these 
tools do not use NCSNs34 as the diffusion framework, mainly because 
NSCNs face problems in terms of sampling and training and can thus 
not achieve high accuracy in image generation. Therefore, NCSNs 
are less adopted in bioinformatics and computational biology than 
DDPMs33 and score SDEs35, which are equipped with efficient sampling 
and training methods32 for high-definition image generation. Nev-
ertheless, as the first diffusion model, NSCN has made substantial 
contributions to the development of the field. Furthermore, many 
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bioinformatics applications also include deep learning components 
to deal with data generation and denoising challenges specific to their  
application.

Outlook
Diffusion models can be applied in several bioinformatics applica-
tions and may be further extended to other computational biology 
areas owing to their ability to denoise data and generate realistic new 
data (Table 3).

3D genomics data analysis
High‐throughput chromosome conformation capture (Hi-C) is a 
key technology for studying 3D conformations of chromosomes 
and genomes, applying next-generation sequencing techniques to 
sequence chromosomal regions that are spatially close to each other 
(that is, in contact)242. Thus, Hi-C data captures the interactions between 
chromosomal regions of a genome to build 3D conformations of the 
genome243,244 and study long-range gene-enhancer interactions. This 
approach typically requires the data to be converted into 2D chromo-
somal contact matrices (maps), which store the frequency at which 
chromosome region i interacts with chromosome region j, where i and  
j are the indices of chromosome regions. Therefore, a Hi-C contact matrix  
can be considered an image. However, Hi-C data, in particular, single-cell 
Hi-C data, are usually noisy and incomplete, so that chromosomal inter-
actions in chromosomal contact matrices may be false positives or 
interactions may be missing in the matrices. Deep learning methods 
(for example, GANs) can be applied to denoise Hi-C data245; in addition, 
diffusion models (for example, DDPM) may enable denoising of Hi-C 
chromosomal contact matrices to improve 3D genome conformation 
modelling and to study spatial interactions between genes and regula-
tory elements (for example, enhancers). However, the deep learning 

architecture of DDPM is typically the U-Net, which may not be as power-
ful as the deep residual network used in the Hi-C data denoising method 
ScHiCEDRN246. Thus, if applied to Hi-C data denoising, the architecture 
of DDPM would have to be updated to deep residual networks to improve 
its denoising ability.

Single-cell reconstruction and inference
The activity of a single cell can be captured by various ’omics data, 
such as transcriptomics (RNA-seq), proteomics, chromosome acces-
sibility (ATAC-Seq) and epigenetics (bisulfite sequencing), which may 
benefit from diffusion models; for example, data could be inferred to 
one modality (for example, RNA-Seq) from another modality, such 
as ATAC-Seq data and genome methylation data; missing spots in 
single-cell spatial transcriptomic data could be calculated; spots (each 
consisting of multiple cells) in 10× spatial transcriptomic data could 
be decomposed into single cell data (super-resolution); and single-cell 
data could be used to build 3D models of the spatial arrangement of 
cells. Moreover, diffusion models designed to denoise images could also 
be applied to denoise single-cell ’omics data, such as transcriptomics, 
proteomics, metabolomics and epigenetics data.

DNA regulatory element design
The expression of genes is modulated by short DNA sequences on 
genomes, called regulatory elements, such as enhancers and pro-
moters. Designing regulatory elements is an important approach to 
designing synthetic cells using synthetic biology. Generative models, 
such as GANs247, can be applied to design enhancers that regulate the 
expression of genes and the development of cell types. However, dif-
fusion models have shown better performance in image synthesis than 
GANs50 and may thus be more suitable for the design of enhancers and 
other gene regulatory elements.

Table 2 | Open-source diffusion model tools for bioinformatics

Applications Tool name Denoising condition Difusion framework Network architecture Github

Protein design and generation ProteinSGM91 Conditioned and 
unconditioned

Score SDE Convolutional neural network CODE

FoldingDiff101 Unconditioned DDPM Transformer CODE

Genie103 Unconditioned DDPM Variant SE(3)-transformer CODE

SMCDiff104 Conditioned Score SDE EGNN CODE

FrameDiff106 Unconditioned Score SDE SE(3)-transformer CODE

RFdiffusion105 Conditioned and 
unconditioned

DDPM SE(3)-transformer CODE

Chroma107 Conditioned Score SDE GNN CODE

Small-molecule generation and 
drug design

EDM54 Conditioned DDPM EGNN CODE

SDEGen111 Conditioned Score SDE GNN CODE

DiffLinker113 Conditioned DDPM EGNN CODE

Protein3ligand interaction 
modelling

DiffBP114 Conditioned DDPM EGNN CODE

DiffSBDD115 Conditioned DDPM EGNN CODE

DiffDock116 Conditioned Score SDE Variant EGNN CODE

Cryo-EM data analysis CryoDRGN98 Conditioned Score SDE VAE CODE

Single-cell image and 
gene-expression data analysis

DISPR99 Conditioned DDPM U-Net CODE

Score SDE, score stochastic differential equation; DDPM, denoising diffusion probabilistic model; EGNN, equivariant GNN; GNN, graph neural network; cryo-EM, cryogenic electron 

microscopy; VAE, variational autoencoder; U-Net, U-shaped neural network.

https://gitlab.com/mjslee0921/proteinsgm
https://github.com/microsoft/foldingdiff
https://github.com/aqlaboratory/genie
https://github.com/blt2114/ProtDiff_SMCDiff
https://github.com/jasonkyuyim/se3_diffusion
https://github.com/RosettaCommons/RFdiffusion
https://github.com/lucidrains/chroma-pytorch
https://github.com/ehoogeboom/e3_diffusion_for_molecules
https://github.com/HaotianZhangAI4Science/SDEGen
https://github.com/YinanHuang/3DLinker
https://github.com/divelab/AIRS/tree/main/OpenMI/GraphBP
https://github.com/arneschneuing/DiffSBDD
https://github.com/gcorso/DiffDock
https://github.com/zhonge/cryodrgn
https://github.com/marrlab/DISPR
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Table 3 | Applications of diffusion models in bioinformatics

Applications Tool name Key function and strength Input Output Difusion targeta

Protein design 
and generation

ProteinSGM91 Inpaints plausible backbones/domains; generates 
native-like structures; allows precise and modular design

Inter-residue 6D 
feature maps

Full-atomistic structure Inter-residue 6D 
feature maps

FoldingDiff101 Mirrors native folding process; alleviates the need 
for equivariant networks; unconditionally generates 
realistic protein structures

6 consecutive 
backbone angles

Protein backbone 
structure

6 consecutive 
backbone angles

DiffSDS102 Reduces computational complexity and cost; 
efficiently imposes geometric constraints; 
outperforms previous strong baselines

6 consecutive 
backbone angles

Masked protein 
backbone structure

6 consecutive 
backbone angles

ProSSDG84 Operates at large scales; generates realistic proteins 
structures with sequences; allows interactive structure 
generation

Secondary 
structure; coarse 
constraints

All-atomistic protein 
structure

Coarse 
constraints

Genie103 Dual representation for protein residues; designability 
and diversity

Oriented reference 
frames

Protein backbone 
structure

Oriented 
reference frames

SMCDiff104 Efficiently samples scaffolds; samples conditioned 
on given motif; theoretically guarantees conditional 
samples

Molecular graph 
structure

Scaffold structure given 
input motif

Molecular graph 
structure

RFdiffusion105 Generates diverse outputs; can be guided toward 
specific design objectives; explicitly models 3D 
structure

Sequence, 
predicted structure

Diverse, complex, 
functional protein

RF frames from 
a predicted 
structure

FrameDiff106 Generates designable monomers and diverse protein 
backbones; does not require pretrained structure 
predictor

Molecular graph 
structure

Designable monomer 
backbone structure

Molecular graph 
structure

Chroma107 Jointly models structures and sequences; 
sub-quadratic computational scaling; arbitrary 
conditional sampling

Protein graph 
structure

Proteins with desired 
functions

Protein graph 
structure

Small-molecule 
generation and 
drug design

CDGS108 Incorporates discrete graph structures; specialized 
graph noise prediction model; similarity-constrained 
molecule optimization pipeline

Graph structures 
and inherent 
features

Molecular graphs Discrete graph 
structure

EDM54 Equivariant to Euclidean transformations; operates on 
continuous and categorical features; admits likelihood 
computation

Atom coordinates, 
atom types

3D molecular graphs Coordinates 
and categorical 
features

DiffBridge109 Incorporates prior information; generates realistic 
molecules; uses physically informed diffusion bridges

Masked points in 3D 
Euclidean space

Realistic molecules or 
point cloud

Molecular graph 
structure

DGSM110 Models local and long-range interactions; dynamically 
constructs graph structures; estimates gradient fields 
of logarithm density

2D molecular 
graphs

Stable 3D 
conformations

Molecular graph 
structure

SDEGen111 Captures multimodal conformation distribution; 
quickly searches low-energy conformations and 
higher efficiency

Small molecules Representative 
conformations

Encoding of 
graph structure

DiffMD112 No intermediate variables; directly estimates gradient 
of log density; incorporates directions and velocities of 
atomic motions

3D coordinates, 
velocities, and 
invariant features

Molecule simulation 
trajectories

Atomic position 
coordinates

DiffLinker113 Links arbitrary number of fragments; generates diverse 
and synthetically accessible molecules; conditions on 
protein pockets

Molecule structure A molecule 
incorporating all the 
input fragments

Molecular graph 
structure

Protein3ligand 
interaction 
modelling

DiffBP114 Non-autoregressive generation; generates molecules 
with high affinity to target proteins and desirable drug 
properties

Protein3ligand 
structure

Protein3ligand structure 
given input protein

Protein graph 
structure

DiffSBDD115 Generates diverse drug-like ligands; efficient in silico 
experiments; uses experimentally determined binding 
data

Protein3ligand 
structure

High-affinity ligands 
given protein pockets

Protein graph 
structure

DiffDock116 Maps manifold to product space; provides confidence 
estimates; maintains precision on computationally 
folded structures

Protein3ligand 
structure

Ranked ligand poses, 
confidence scores

Ligand poses

NeuralPLexer117 Repacks failed AlphaFold2 sites; enables end-to-end 
design; generalizes to ligand-unbound or predicted 
protein structure inputs

Protein backbone 
template and ligand 
molecular graphs

Full-atom protein3
ligand structure

Contact maps, 
geometry prior

NERE118 Benchmarks on protein3ligand and antibody3antigen 
dataset; outperforms other unsupervised methods

Protein3ligand 
complex

Binding affinity of the 
protein3ligand structure

Ligand atom 
coordinates
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Cryo-electron microscopy image denoising
Diffusion models can reconstruct complex protein structures from 
3D cryo-EM density maps, which are typically made of noisy and 
low-contrast 2D cryo-EM protein particle images, isolated from large 
2D cryo-EM protein images (also called cryo-EM micrographs). How-
ever, denoising original cryo-EM images to build better 3D cryo-EM 
density maps remains challenging. Although image preprocessing 
techniques, such as EMAN2 (ref. 248), can denoise cryo-EM images249, 
diffusion models trained on many noisy images at various noise levels 
and their clean counterparts may allow the recovery of clean cryo-EM 
images more effectively than conventional image processing tech-
niques that have not been trained to learn the noise distribution of 
cryo-EM images250.

Peptide design
Peptides, which are short, typically unfolded amino acid sequences, can 
bind to proteins to modulate their function, which has been explored 
for drug design. Diffusion models can not only be designed to gener-
ate new proteins but could also be adapted to create peptides that can 
modulate protein function. For example, diffusion models pretrained 
for protein design may be retrained on a peptide dataset to design 
peptides through transfer learning.

Protein structure refinement and mutation prediction
The tertiary and quaternary structures of many proteins and protein 
complexes can be fairly accurately predicted by AlphaFold2 (ref. 163) 
and AlphaFold-multimer251, respectively. However, such predicted 
structures may contain structural errors and may thus need to be 
refined. Conditioned on a predicted structure input, diffusion mod-
els may be able to remove noise from the predicted structure to bring 
it closer to the native structure. Similarly, it remains challenging to 
predict how an amino acid mutation alters the structure of a protein, 
which may affect protein function and phenotype. Diffusion models 
have generative capability, demonstrated in protein design, and may 
therefore be able to transform the known structure of a protein with-
out mutation (wild-type protein) to the structure of the same protein 
with mutations (mutant) to predict structural changes induced by 
mutations.

Limitations of current diffusion models
Although diffusion models may be applied for various bioinformat-
ics applications, potentially outperforming GANs and VAEs, some 
limitations remain to be addressed. First, the training process of dif-
fusion models involves the introduction of Gaussian noise to the data, 
resulting in a long training time. Second, although considerable efforts 
have been directed towards increasing the sampling speed in diffusion 

models, the sampling time of most models still exceeds that of other 
deep generative models (for example, GANs and VAEs). The long sam-
pling time hinders some real-time applications of diffusion models. 
Developing a streamlined approach of single-step noise addition and 
removal may reduce the training and sampling time. Third, the com-
putational resource requirements of diffusion models are higher than 
those of GANs and VAEs. Therefore, the trade-off between performance 
improvement and computational resource demand needs to be evalu-
ated when deciding which model to use. Furthermore, new applications 
of diffusion models are often non-trivial and may require validation of 
suitable data representations (embeddings), types of diffusion model 
and deep learning architectures.
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