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We propose a personalization framework to adapt compact models to test time environments
and improve their speech enhancement performance in noisy and reverberant conditions.
The use-cases are when the end-user device encounters only one or a few speakers and noise
types that tend to reoccur in the specific acoustic environment. Hence, we postulate a
small personalized model that suffices to handle this focused subset of the original universal
speech enhancement problem. The study addresses a major data shortage issue: although
the goal is to learn from a specific user’s speech signals and the test time environment, the
target clean speech is unavailable for model training due to privacy-related concerns and
technical difficulty of recording noise and reverberation-free voice signals. The proposed
zero-shot personalization method utilizes no clean speech target. Instead, it employs the
knowledge distillation framework, where the more advanced denoising results from an overly
large teacher work as pseudo targets to train a small student model. Evaluation on various
test time conditions suggest that the proposed personalization approach can significantly
enhance the compact student model’s test time performance. Personalized models outperform
larger non-personalized baseline models, demonstrating that personalization achieves model
compression with no loss in dereverberation and denoising performance.
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I.INTRODUCTION Consequently, research in model compression meth-
ods has gained interest to address the practicality of
deep-learning architectures for real-time applications.
Common compression methods such as quantization,
pruning and knowledge distillation have shown great
promise in reducing the model size and complexity while
minimizing the drop in generalization performance. How-
ever, this kind of compression methods can be seen as
context-agnostic since they do not utilize the specificity
of the test time context. Instead, they tend to seek a
general-purpose compression technique that works rea-
sonably well in various real-world test conditions. As a
result, a certain level of performance drop is inevitable
after compression.

In this paper, we aim at developing a contezt-aware
DNN compression method for SE. We envision that a
compressed model can reduce its run-time complexity
without losing its performance if it focuses on a particular
test environment. We contrast the proposed concept and
the ordinary DNN-based SE models, which are typically
designed as general-purpose frameworks with a large ar-
chitecture. A DNN’s large capacity is fully utilized when
it is trained on a large training set that consists of var-
ious speakers and noise sources, generalizing well to un-
seen test time conditions, e.g., different speakers, noise

Real-world speech signals are often corrupted by a
varying level of interfering noise and reverberation, which
can be detrimental to the performance of audio applica-
tions. Hence, speech enhancement (SE) algorithms are
an essential component incorporated into the audio appli-
cations such as automatic speech recognition, diarization,
voice-over-IP and transcription (Boll, 1979; Ephraim and
Malah, 1984; Gannot et al., 1998). Among these poten-
tial applications, in this paper, we focus on the direct
use of the enhanced speech for voice communication, i.e.,
improving the perceptual speech quality of the end user
is our goal.

Recent advancements with deep neural networks
(DNN) for SE have shown superior performance com-
pared to traditional machine learning and signal pro-
cessing methods (Chazan et al., 2017; Wang and Chen,
2018; Xu et al., 2014). However, these state-of-the-art ap-
plications require significant memory and computational
bandwidth, rendering them difficult for deployment onto
devices for practical uses. Resource constrained devices,
such as hearing aids or wearable devices, cannot effi-
ciently handle real-time inference tasks for the SE appli-
cations when the models are with multi-layered complex

architectures. sources, signal-to-noise ratios (SNR), and room acous-
tics. In some practical use cases though, it suffices for the
enhancement model to perform well only for the specific
@) Also at: University of Illinois at Urbana-Champaign, 61801, test time context. For instance, a family-owned smart as-
USA. ; minje@illinois.edu sistant device sitting in the living room needs to perform
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well only for the family members’ voices and their home
acoustics, but not necessarily for the other situations.
Compared to the general-purpose SE model, the gener-
alist, our context-aware compression method can allow a
model to adapt to the specific speakers and their acous-
tic context, overcoming the generalization losses. We
call this kind of context-aware SE models as personalized
speech enhancement (PSE) systems. Since the test time
context contains limited variability, a small personalized
model can even outperform larger and more complex uni-
versal generalist models, demonstrating personalization
as a form of model compression.

The proposed personalized SE models achieve
context-awareness by reducing the domain mismatch be-
tween the training and test datasets. The topic of domain
adaptation has been an active area of research in machine
learning. One common procedure for domain transfer is
regularizing the differences between the learned represen-
tations of source and target datasets. It has been applied
for emotion, speech, and speaker recognition (Deng et al.,
2014; Sun et al., 2017). However, these applications rely
on ample target data, which cannot be assumed if the
target problem is narrowly defined as in our PSE cases.
Few-shot adaptation can be a solution, as it requires only
a small amount of ground-truth signal (Sivaraman and
Kim, 2022). However, it can be challenging to obtain
ground-truth user information due to recent privacy in-
fringement, data leakage issues.

In contrast to aforementioned approaches, zero-shot
learning is a solution suitable for training tasks where no
additional labeled data is available (Wang et al., 2019;
Xian et al., 2018). In the context of personalization, a
zero-shot approach means that it does not require test
users’ clean speech data or their home acoustic environ-
ment, while its goal is still to adapt to the test time
specificity.

However, zero-shot learning for SE has not been
widely studied yet. In (Sivaraman and Kim, 2020, 2021),
a mixture of local expert model is introduced as a zero-
shot solution to test time adaptation of an SE model.
It achieves the adaptation goal by selecting a pre-defined
specialist model for a given noisy test signal. Although it
is a valid adaptation method, it only works on a few pre-
defined contexts, rather than actively learning from the
test time speaker’s personality or the unique context. In
(Sivaraman et al., 2021), self-supervised learning meth-
ods are proposed to achieve PSE, where a data purifi-
cation algorithm identifies clean speech frames from test
time noisy speech. Although it achieves the PSE goals,
it is not fully utilizing the test time observations which
can be rare. Other works introduce a zero-shot solution
for deep clustering-based speech separation models to es-
timate absent ground-truth labels (Drude et al., 2019;
Tzinis et al., 2019). However, due to the sheer size and
inference costs, deep clustering models are difficult to fit
on small devices. In addition, these models are typically
for speech separation problems rather than SE.

In this paper, we present a zero-shot learning ap-
proach to personalization for joint dereverberation and
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denoising based on the knowledge distillation (KD)
framework (Hinton et al., 2015). As a zero-shot learn-
ing method, it does not ask for clean ground-truth sig-
nals from the user, while it still aims at enhancing noisy
reverberant mixtures. Since its goal is to train a small
specialist model for a particular user’s speech and record-
ing environment, it qualifies as a personalization method.
We extend this concept to a novel zero-shot learning
approach for personalized SE. Since the teacher model
works well in most test time environments, we consider
its excellent SE results as if they were the target clean
speech from the student model’s perspective. That way,
we can turn any noisy and reverberant test signals into
labeled training examples by passing them through the
teacher model. In this process, the teacher model remains
as a generalist model, while the student model can use
the teacher’s generalization power to learn from the test
time input signals, fulfilling the zero-shot learning condi-
tion.

Using a KD learning paradigm enables us to lever-
age noisy unlabeled data and obtain their correspond-
ing soft targets generated by the teacher model. In this
paper, we focus on domain adaptation when we have
large unlabeled target-domain dataset and assume noisy
speech data of a target test-time user to be more widely
available as opposed to their clean labeled data. Un-
der this assumption, we approach the PSE problem with
a self-supervised method where corresponding pseudo-
targets are generated from large amounts of unpaired
noisy speech data (Doersch et al., 2015; Manohar et al.,
2018; Watanabe et al., 2017; Zhang et al., 2020). Our
experiments show that the small student models can be
personalized in this way, resulting in improved perfor-
mance compared to their context-agnostic counterparts.
Moreover, given that these models are still small, per-
formance improvement reconstitutes the whole KD pro-
cess as a model compression method. For example, our
experiments consistently show that the personalized SE
models can compete with their larger generalist coun-
terparts. We envision that the compact student models
can work as an affordable solution in edge devices with
limited computing resources.

FIG. 1 provides an overview of the proposed KD-
based PSE process. On the left, as a pre-training step,
both the teacher and student models are trained from a
generic dataset to cover all test time variations. However,
the student model’s constrained capacity tends to limit
its SE performance. At the center, KD-based fine-tuning
learns from the target test environment: the estimated
clean speech by the student model is compared against
the result from a larger teacher model, whose discrepancy
is used to fine-tune the student model. The zero-shot
framework enables test time adaptation.

When deploying our framework, we ultimately use
only the student model on the device for the PSE infer-
ence (the rightmost figure). Even after being deployed,
this student model can continue to be refined: the device
collects more contaminated speech signals from the test
scene, which are then fed to the teacher model to pro-
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FIG. 1. An overview of the proposed KD-based PSE process. (Left) The pre-training process for both teacher and student

models using generic dataset. (Center) The KD-based personalization process. (Right) The student model’s inference process

after the personalization.

duce the corresponding pseudo clean speech target. The
pairs of newly collected input and pseudo target signals
are used to fine-tune the student model. We could care-
fully organize the KD fine-tuning process by keeping the
teacher model also on the device and performing the KD
process during the device’s idle time, it is a more secure
because the user data stays in the device. However, the
KD-based training process can be burdensome unless it
is scheduled carefully. It is also possible that the teacher
model and a copy of the student model are placed ex-
ternally on a cloud server, where the actual fine-tuning
operations are conducted. Then, the student models can
be frequently updated on the server side and transferred
to the user device. This cloud computing option may
be more efficient, although it may be inappropriate for
privacy-sensitive applications.

This paper extends our preliminary study (?), where
we proposed a personalization procedure for speech de-
noising. In addition to the previous denoising applica-
tion, we extend our application to dereverberation by
integrating variability in room acoustics. Reverberation
introduces additional challenges since speech intelligibil-
ity is degraded when corrupted by severe reverberations,
and even more when combined with background noise
(Han et al., 2015). During test time, we assume the test
time source location and room geometry are unknown,
and locations of both speaker and the acoustic environ-
ment can change. For evaluation, we evaluate against real
rooms from various settings available in public datasets.
To our best knowledge, this end-to-end zero-shot person-
alization framework for model compression is novel in the
topic of joint speech dereverberation and denoising. Our
proposed framework not only demonstrates the effective-
ness of personalization for the front-end denoising and
dereverberation application, but also illustrates the po-
tential for utilizing teacher’s outputs as pseudo-targets
in a zero-shot scenario. We show in our experiments
the relationship between the amount of noisy reverber-
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ant speech samples and performances of our personal-
ized models, and draw connections to real-life scenarios
where ample test time data may not be readily available.
Finally, we illustrate use-cases where the teacher’s esti-
mates can be used to gauge test time performances and
detect catastrophic forgetting (French, 1999) that occur
from fine-tuning on specific instances (e.g. different noise
sources or room conditions), and offer a simple remedy
for this issue.

The rest of the paper is organized as follows. In Sec-
tion II, we describe the student-teacher framework for
test time adaptation. Experimental setup are provided
in Section III, including the descriptions about various
individual room acoustics. In Section IV, we provide
extensive evaluation on the effects of personalization to
various unseen environments. Concluding remarks are
presented in Section V.

Il. THE PROPOSED KD-BASED ZERO-SHOT PSE ALGO-
RITHM

Given a monaural signal recorded in a noisy and re-
verberant environment, we formulate the signal model
as

y[t] = x[t] + an[t] = s[t] = h[t] + an]t] (1)

where s, n, h and x denote speech source, background
noise, room impulse response (RIR) function and re-
verberant speech, respectively. The symbol ‘x’ stands
for the convolution operator. The parameter « con-
trols the signal-to-noise ratio (SNR) between the rever-
berant speech and interfering noise source. Our goal
in this study is to recover the clean anechoic version of
the single-talker speech signal s from the corresponding
noisy-reverberant observation y.

We propose a KD-based zero-shot PSE algorithm,
which aims at joint denoising and dereverberation. Our
goal is to fine-tune a compact student model after it is
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deployed, so it adapts to the unseen test speaker and en-
vironment continuously. In doing so, the teacher model’s
powerful generalization performance plays a significant
role as it performs denoising and dereverberation simul-
taneously, a behavior that the student model attempts
to learn from.

A. Training Teacher SE Models

First, we train the teacher model 7(-) using a large-
scale dataset consisting of dry speech sources, various
noise signals, and RIR filters. Here, the teacher model
T () is defined with a large model architecture, so it
can properly approximate the complex general-purpose
joint speech denoising and dereveberation function. Once
trained, 7 (-) is frozen and not fine-tuned, assuming that
its SE performance as a generalist meets the quality stan-
dard in most test cases. Another assumption is that it is
too complex for the given test time user device to perform
real-time SE inference tasks.

To train the teacher models, we use generic training
datasets. The formulation of the training dataset is as
follows. The clean speech utterances are taken from a
large corpus containing many speakers, s € G; the noise
recordings are also from a large corpus containing various
noise types, n € N; the RIRs are similarly from a large
collection recorded in various rooms, h € H. We use
them to synthesize the noisy and reverberant signals y
as input (Eq. (1)).

Hence, the goal of the teacher model is to jointly de-
noise and dereverb y, so the model can estimate the wave-
forms § that closely approximate the target clean ane-
choic speech, i.e., s & § «+ T (y). The optimization on
T (-) reduces the loss between the target utterance s and
reconstruction 8, i.e., argming. L£(s||T (y; ©7)), where
©7 denotes the trainable parameters of the teacher
model. Note that the training process for the teacher
models correspond to the typical supervised learning
method for general-purpose SE. Detailed model and op-
timization descriptions are provided in Sec. IIIB.

B. Pre-Training Student Speech Enhancement Models

Our student models S(-) are pre-trained in a simi-
lar way to the teacher models, i.e., by updating its own
model parameters argming, £(s|[S(y; ®s)) using the
same generic datasets, G, N, and H. However, its small
capacity hinders it from generalizing well to the unseen
test conditions. Hence, we argue that further improve-
ment is required for these student models to meet the
quality requirement. We introduce the KD-based test
time personalization algorithm in Sec. II C which is de-
signed to reduce the performance gap between 7(-) and
S(+). In this regard, the purpose of pre-training S(-) is
to prepare the student model better than a random ini-
tialization, primed for the next fine-tuning step. Further
details on model and training are also given in Sec. III B.

4 J. Acoust. Soc. Am. / Feb. 2024

C. Test time Personalized Speech Enhancement

During the test time, we assume that the enhance-
ment system is exposed to mixture signals composed of
clean speech utterances from the test speaker, s € §,
background noise sources, n € M, and RIRs, h € R.
Note that we differentiate these test sets from the train-
ing sets, i.e., G #S,N #£ M, and H # R. Meanwhile, we
also assume that the noisy and reverberant speech signals
defined by the combination of all speech, noise and RIRs
available in the training sets G x N x H mixed through
Eqn. 1 are representative enough to encompass the test
time variations, i.e., SXx M xR C G x N x H. In practice,
however, there might be corner cases that even the large
dataset G x N x H cannot successfully represent, which
the proposed method could fail to adapt to. Hence, we
postulate that if a teacher model is large enough it can
serve as an unbiased solution to the denoising and dere-
verberation problem. Meanwhile, a small student model
is also of our interest if it is small enough for the resource-
constrained edge device. However, it may be too biased
to generalize well to the test time SE task due to its small
model capacity.

Given these assumptions, we propose a personaliza-
tion framework that can adapt to a new environment
without requiring test user’s ground-truth clean speech
samples or any other auxiliary information of the speak-
ers and acoustic scene. Since we formulate the proposed
personalization method as a fine-tuning process, we be-
gin with a compact student model, S(-), pre-trained in a
context-agnostic manner as in Sec. IIB. To fine-tune the
student model, its enhancement result from dereverber-
ation and denoising, s, must be compared against the
target to compute the loss and perform backpropagation.
However, since we assume the target is not available, we
use the pseudo target computed from the teacher model.

This process falls in the category of the student-
teacher framework in which a student model is optimized
using a teacher model’s prediction (Hinton et al., 2015).
In the context of personalized speech enhancement, we
employ a large pre-trained teacher model 7 (-) whose pre-
dicted clean utterance serves as the target to compute
the student model’s loss. Both student and teacher mod-
els are initialized with pre-trained generic enhancement
models as discussed in Sec. ITA and II B, respectively.
During the test time, the student model is optimized as:
argming ; L(37(|S(y; Og)), where 87 is the estimates of
clean speech signals obtained from the teacher model and
®; are trainable parameters of the student model. We
distinguish this fine-tuned student model S(-) from the
pre-trained one S(-) from now on.

The teacher’s estimate §7 is only an approximation
of the ground-truth target s, and can contain artifacts
from dereverberation and denoising (Xu et al., 2014).
However, under a zero-shot PSE setup, we assume having
these synthesized pseudo targets is better than nothing.
Hence, the performance of the fine-tuning results depends
on the quality of §7. To this end, we employ relatively
large models that surely outperform the student models

Zero-Shot Test-Time Adaptation Via KD for PSE
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on the test signals, i.e., L(s||§7) < L(s]|8s). Given its
large capacity, the teacher model generalizes better to
unseen inputs compared to the student model. Thus, we
hypothesize that the student still learns from these im-
perfect targets and adapts to the test environment. On
our experiments both on simulated signals and real-world
test environments, we show this assumed performance
gap exists, guaranteeing the performance improvement
by the KD process.

D. Interpretation from a Manifold Assumption

By training under the SE criterion, models learn to
produce latent representations that are robust to cor-
ruptions in input data and are useful for recovering the
clean speech. Successfully learned latent representations
are discriminative and can capture useful structure and
variations in the input distribution as discussed in the
context of denoising autoencoders (Vincent et al., 2010).
We interpret the process of SE using the manifold as-
sumption: high dimensional clean speech data lie on a
low dimensional manifold (Chapelle et al., 2006). Data
samples are mapped onto a manifold that represents a
feature space that preserves the local structure of the
data. The objective of our models is to learn the under-
lying manifold of the speech signals such that they can
accurately map the noisy samples to their respective po-
sitions on the manifold of clean speech during test time.
In FIG. 2 we see generic clean speech samples s (the
crosses) form a complex manifold (the thin solid line).
Meanwhile, under our PSE assumption that test time
environments will contain smaller subset of sources (e.g.
speakers, noises and room variation), the models would
only need to learn the manifold of those subsets, which
imply a simpler manifold (the thick solid line) than the
generic speech’s. Under this interpretation, the target
speaker’s corrupt examples are mapped away from the
manifold of clean signals. SE models try to project the
off-the-manifold examples y back onto the manifold. The
farther away y is from the manifold, the more corrupt the
example, and the model takes bigger efforts to reach the
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TABLE 1. Corpus and notation of speech, noise and RIR
datasets used during pre-training and personalization.

‘ Corpus ‘ Notation
Librispeech train-clean-360|G
Speech
(Panayotov et al., 2015) test-clean  |Sjfi/vay/te
) MUSAN (Snyder et al., 2015) N
Noise
ESC50 (Piczak, 2015) Mft/va/te
AIR (Jeub et al., 2009)
PORI (Merimaa et al., 2005) H
RIR RWCP (Nakamura et al., 2000)
BUT (Szoke et al., 2019)
th/va/te
REVERB (Kinoshita et al., 2013)

manifold. Note that the corrupted samples y are spo-
ken by the same target person, and therefore, the target
manifold is the simpler one (thick line) than the complex
one (the thin solid line) by all people.

We expect a large complex model T (y) to better
approximate the manifold given its larger architecture.
Hence, its prediction of the personal clean speech forms
an approximation (thin dotted line) similar to the orig-
inal one (the thick solid line). On the contrary, smaller
models are likely to learn a poor approximation §s (the
thin dash). The aim of our proposed personalization
framework is to distill the better manifold determined
by &7 to the smaller student models to help better ap-
proximate the manifold. By doing so, student models
fine-tuned under our framework will be able to better
define and map points y closer to the test time manifold,
approximated by 85 (the thick dash).

11l. EXPERIMENTAL SETUP
A. Datasets

TABLE 1 summarizes the datasets we used for the
experiments. For pre-training, we used clean speech
recordings from the LibriSpeech corpus (Panayotov et al.,
2015), and noise recordings from the MUSAN (Snyder
et al., 2015) and ESC50 dataset (Piczak, 2015). For
RIRs, we used publicly available recordings downloaded
using Kaldi scripts'. The RIR data sources consist of the
Aachen Impulse Response Database (Jeub et al., 2009),
PORI concert hall impulse responses (Merimaa et al.,
2005), and RWCP Sound Scene Database in Real Acous-
tical Environments (Nakamura et al., 2000). We used
Librispeech’s train-clean-360, MUSAN’s free-sound
and the collective RIR data for training, which we denote
as G, N and H respectively. A comprehensive summary
of RIR datasets including information on RT60, num-
ber of rooms, microphone to loudspeaker distance can be
found in (Merimaa et al., 2005) and (Szoke et al., 2019).
This exposes the generalist models to up to 251 speakers,
843 noise recordings, and 334 RIRs during training. The
noisy mixtures are obtained by adding the noise to speech

Zero-Shot Test-Time Adaptation Via KD for PSE 5



signals at random input SNR levels uniformly chosen be-
tween -5 and 10 dB.

For fine-tuning, or zero-shot PSE, we used 44 speak-
ers from Librispeech’s test-clean and noise from the
ESC-50 dataset for environmental sound classification
with 50 different noise types from 5 categories consist-
ing of animals, natural and water soundscape, nonspeech
human sounds, interior-domestic sounds, and exterior-
urban sounds. For RIRs, we used 5 rooms from BUT
Speech@FIT Reverb Database (BUT) (Szoke et al., 2019)
and real rooms from the Reverb 2014 Challenge (RVB)
dataset (Kinoshita et al., 2013) for a total of 11 rooms.
Each room in the BUT dataset contains 31 microphones
and 5 source positions in average. RIRs were measured
for each speaker position using exponential sine sweep
method. For RVB dataset, there are 3 types of rooms
(small, medium and large) and 2 types of microphone
placement (near and far). RIRs are collected from 2 mi-
crophone angles per room. Further information on RIR
datasets along with speech and noise corpuses can be
found in Table 1 (Szoke et al., 2019).

We synthesize K = 44 unique test time environ-
ments, each of which consists of a test speaker, a noise
source, and a RIR configuration defined by the location
of the speaker and microphone. In particular, given a
test environment index k € {1,..., K}, we sample clean
utterances from the k-th speaker S(*), convolve it with
k-th room’s RIR R(®*) and add noises from k-th noise
type M), For each test environment, S®*) are split into
separate sets for fine-tuning, validation, and testing: the
partitions are approximately 5, 1, and 1 minutes of clean
speech, which we denote by Sgtk ), S\(,];) and SES), respec-
tively. The noise and RIR samples are prepared simi-
larly and partitioned into three separate sets. We syn-
thesize noisy and reverberant input signals by combining
S§f ), M§f ), and Rgtk ), Having them as input, the stu-
dent model is fine-tuned via the KD process, where the
teacher model’s denoising results are used as the pseudo
target. In other words, the student model for generic SE
is first deployed to the device and can be personalized to
the user’s specificity using 5 minutes of noisy and rever-

berant recordings of the test environment. Then, S‘(,’;),

M\(,’;), and R\(,];) are used to validate the student model
during fine-tuning, mainly to prevent overfitting. Note
that this does not mean that the PSE algorithm needs
clean speech for validation: the validation process still
relies on the teacher’s estimate of clean speech as the
target to compute the validation loss. Hence, early stop-
ping is still conducted in a zero-shot manner. We report
our PSE models’ final performance using the test sets,

s® M® | and RES), for which we do compute the final

te » te »
enhancement performance by comparing to the ground-
truth clean speech signals SEE).

When we simulate various test conditions, the noise
and speech sources are mixed under four different input
SNR levels (i.e. -5 dB, 0 dB, 5 dB and 10 dB). All speech
and noise audio files are loaded at 16 kHz sampling rate
and standardized to have unit-variance.
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B. Models

Our student models are based on the uni-directional
gated recurrent unit (GRU) architecture (Cho et al.,
2014). Recurrent neural networks with gating technol-
ogy, such as the long short-term memory cell (LSTM)
(Hochreiter and Schmidhuber, 1997) and GRUs, have
been predominantly used in speech enhancement due
to their ability to overcome the gradient vanishing or
explosion issues during backpropagation through time
(BPTT). As for GRUs, although it was first introduced as
a computationally efficient alternative of LSTM for ma-
chine translation, it was quickly adopted for speech en-
hancement tasks due to their flexibility in handling con-
tinuous input sequences (e.g., audio spectra) and learn-
ing continuous latent variables (Chazan et al., 2017; Luo
et al., 2020; Sivaraman and Kim, 2020). In the speech
enhancement literature, LSTM and GRU can be com-
bined with CNN layers for better performance (Hu et al.,
2020), but the hybrid architecture adds more burden to
the hardware design. In this paper, we focus on the sim-
ple GRU-only architecture that is more suitable for CPU
operations, and show the PSE method’s merits. How-
ever, the proposed principles should apply to other ar-
chitectural choices.

We use frequency-domain representations obtained
through the short-time Fourier transform (STFT) as in-
puts to the enhancement models. STFT is with a Hann
windowed frame of 1024 samples and a hop size of 256
samples. The recurrent unit reads each STFT magani-
tude spectrum sequentially and updates the hidden state
at each frame. For our denoising application, we apply
a dense layer to map the hidden unit outputs from the
GRU layer into complex ideal ratio masks (Williamson
et al., 2015). The denoising mask is applied element-wise
to the mixture complex spectrogram, then transformed
back to the time-domain signal § through inverse STFT.
We use negative scale-invariant signal-to-noise ratio (SI-
SNR) as the loss function (Le Roux et al., 2019). While
the GRU architecture for the student models is fixed with
two hidden layers, we vary their hidden units from 32 to
1024 to verify the impact of personalization on the dif-
ferent architectural choices.

Meanwhile, as for the teacher model, we employ two
different network architectures. First, we use a 3 x 1024
GRU architecture, which is large enough to outperform
the students. In addition, we also employ Dual-Path
RNN (DPRNN) (Luo et al., 2020) as an alternative
teacher model. DPRNN was chosen because of its higher
performance and smaller model size compared to other
time-domain models such as Conv-TasNet (Luo and Mes-
garani, 2019). More advanced transformer based models
such as Dual-Path Transformer (DPTNet) (Chen et al.,
2020) report higher performance with comparative size
to DPRNN in speech separation tasks, but we found em-
pirically that the DPRNN performs better for our dere-
verberation and denoising task.

Indeed, the DPRNN teacher outperforms the GRU
teacher due to its structural advantage. Hence, we con-
trast the impact of the two teacher models on the PSE

Zero-Shot Test-Time Adaptation Via KD for PSE



TABLE II. Complexity of student and teacher models in
MACs and number of parameters. MACs are computed given
1-second inputs.

Models | MAGs (G)|Param. (M)
GRU (2x32) 0.006 0.09
GRU (2x64) 0.013 0.20
GRU (2x128) 0.030 0.48
Student
GRU (2x256) 0.079 1.25
GRU (2x512) 0.232 3.68
GRU (2x1024) 0.762 12.08
GRU (3x1024) 1.159 18.37
Teacher
DPRNN (Luo et al., 2020)| 15.238 3.63

TABLE III. Notations for pre-trained and fine-tuned models.

Notation | Description

Taru The frozen GRU teacher trained from generic datasets

Toprnn | The frozen DPRNN teacher trained from generic datasets

S Initial student pre-trained from generic datasets

Scru Student, fine-tuned on Tgru’s test output

SDPRNN Student, fine-tuned on Tpprnn’s test output

Ser Student, fine-tuned on the test time ground-truth targets

performance after the KD-based fine-tuning process. The
DPRNN model is configured using implementation avail-
able in Asteroid’s source separation toolkit (Pariente
et al., 2020). Same architecture as reported in (Luo et al.,
2020) is adopted (i.e. 6 repeats), while we trained it
with our single-speaker SE setup rather than the original
speech separation task. The model architectures, their
respective number of parameters, and the multiplier-
accumulator (MAC) operation counts are shown in Table
II. Note that DPRNN is not the largest model but it re-
quires extensive MAC operations.

Here, we introduce new notations to distinguish the
two teacher model architectures: 7aru and Tppryn. In
addition, we also denote the fine-tuned students models
differently from the pre-trained initial model S and add
the subscript to indicate what it learns from: Sqru and
SpPRNN, respectively. We include a student model fine-
tuned on the ground-truth oracle clean speech targets as
a performance upper bound and denote it as Sgr. Sum-
mary of notations for pre-trained and fine-tuned models
are listed in Table III. Note that the systems denoted
with tilde, SGRU7 SDPRNN, and SGT, represent person-
alized student models, while the generalist models, S,
Taru, and TpprNN, are discussed to report the perfor-
mance of either the teacher models or the baseline.

The Adam optimizer (Kingma and Ba, 2015) was
used with learning rate of 1 x 10~ for pre-training and
1 x 1075 for fine-tuning.

J. Acoust. Soc. Am. / Feb. 2024

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Objective performance analyses

The box plots in FIG. 3 show the enhancement per-
formances of various models under K = 44 environments
synthesized with different noise level conditions. The re-
sults are shown for pre-trained and fine-tuned student
models as well as for teacher models as reference. Fig-
ures from 3a to 3d show comprehensive denoising and
dereverberation results across cases with severe (-5dB) to
moderate (+10dB) test time SNR levels. We see that the
overall performance decreases due to the additive back-
ground noise. While their final input SNR values are con-
trolled by varying the loudness of the test noise sources

M) the speech sources are also degraded by the rever-

te
beration defined by the test time RIR set RE’:). In these

figures, we observed that our proposed personalization
framework improves dereverberation and denoising per-
formances of pre-trained student models under all noise
and room conditions, i.e., Sgru and SpprnN results are
always better than the S results on average if their model
complexity is the same. From these results, we can in-
fer that personalization helps significantly improve the
joint dereverberation and denoising performance for all
student architectures.

In addition, we also observe that the personalized
models learned from the DPRNN teacher, Spprnn, al-
ways outperform their corresponding ones fine-tuned us-
ing the GRU teacher, Sqgru. Sgru at times perform
similarly to Tgru especially in the case of the 2 x 1024
and 3 x 1024 student and teacher models. This is due to
both models trained under the same cIRM estimation ob-
jective, sharing similar GRU architecture, as opposed to
the more advanced DPRNN’s architecture and its end-
to-end speech enhancement objective. The results sig-
nify the importance of the teacher model’s performance.
Since each fine-tuned student models stem from the same
pre-trained GRU model, this shows that the fine-tuned
performance depends on the quality of the teacher model.
It is also noticeable that the structural discrepancy be-
tween the student and teacher, i.e., Sgru (a GRU) and
Topryn (a2 DPRNN), is not an issue. It implies that
the proposed framework can potentially employ various
advanced teacher models as the deep learning research
improves the state of the art in the future. ~

We also notice that Spprnn can catch up to Sagr’s
performance, which is only marginally better. This sug-
gests that fine-tuning on imperfect pseudo-targets gener-
ated by Tpprnn has almost the same benefits as when
ground-truth targets are utilized. Given the student
models’ small architecture and limited generalization ca-
pacity, our personalization procedure can fine-tune the
student model to its optimal performance, but by rely-
ing only on the teacher’s SE results.

After personalization, the small student models con-
sistently show significant improvements on their pre-
training-based initialization. —Hence, it verifies that
our personalization framework is a model compression

Zero-Shot Test-Time Adaptation Via KD for PSE 7
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FIG. 3. Comparison of joint dereverberation and denoising performances from pre-trained generalists against personalized

specialists under various input SNR levels. Subfigures from (a)-(d) demonstrate results from input SNR levels -5, 0, +5 and
+10dB respectively. Student models are initialized as 2-layered GRU generalists. Teacher models are provided as references.

method, if we compare the improved PSE models to those
pre-trained generalist models. Indeed, a smaller person-
alized model can compete with a large generalist, e.g. 2
X 32 SpprnN VS. 2 X 1024 S for -5 dB input SNR as
in FIG. 3a. According to Table II, a personalized 2 x
32 specialist saves 11.99M parameters and 756 M MACs
compared to a 2 x 1024 generalist (for 1-second inputs),
which is more than 99% reduction in terms of spatial and
arithmetic complexity. Hence, even if further compres-
sion methods, e.g., 8-bit quantization, are always avail-
able to the 2 x 1024 S model, it will still most likely be
more complex than 2 x 32 Sppryn. Furthermore, apply-
ing compression on larger models will subsequently lower
their performance depending on the type and amount of
compression. On the contrary, the 2 x 32 Spprnn out-
performs the 2 x 1024 S even after its 99% reduction
of complexity. This demonstrates that our framework
works as a mode of lossless model compression. Hence,
we argue that it is more advantageous to personalize the
models instead of increasing generalists’ computational
capacity for better generalization capabilities. In addi-
tion, since PSE shows improved performances in both de-
noising and dereverberation tasks in various unique test

8 J. Acoust. Soc. Am. / Feb. 2024

environments, our personalization framework can be seen
as a genuine adaptive system that specializes not only in
each individual user, but in the specific noise source and
reverberant condition of the test time environment.
FIG. 4 show the SE performance of various models on
the reverberation-only input signals, i.e., with no additive
background noise. It gives a separate view to the pro-
posed PSE method’s dereverberation performance from
the joint denoising and dereverberation setup. In addi-
tion, the dereverberation results are shown separately as
two cases, in which one half of the environments (K = 22)
are with low input SI-SDR (FIG. 4a) and the other with
high input SI-SDR (FIG. 4b). For the lower SI-SDR
cases, the results in FIG. 4a show that our framework
can successfully personalize to different room acoustics.
Contrary to joint dereverberation and denoising results,
the improvements for Sppryn are minimal compared to
those of Sqgry. This trend is not observed in FIG. 4b
that reports results from upper SI-SDR cases. First, the
generalist models & worsen the sound quality. Since the
SI-SDR. of the reverberant inputs were already high, the
pre-trained generalists must have injected artifacts that
significantly decrease the quality of the signal. This is

Zero-Shot Test-Time Adaptation Via KD for PSE
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FIG. 5. Subjective test results from 8 participants.

and the outputs from the student model, fine-tuned student
model, and the teacher model.

also evident in the Sgr baselines where the model is fine-
tuned on ground-truth anechoic targets. Hence, the goal
of personalization in these cases is to be able to miti-
gate this performance degradation of the processed sig-
nals. Indeed, Spprnn show improved performance over
the initial worsened estimates by the pre-trained models,
demonstrating the KD framework’s consistent capacity
to produce pseudo-labels for fine-tuning student models.

B. Subjective performance analyses on real-world test envi-
ronments

We additionally conducted a subjective listening test
with 8 participants using real-world noisy reverberant
recordings from the voiceHome-2 dataset (Bertin et al.,
2019). We trained ten personalized models from ten
test speakers, whose noisy and reverberant samples were

J. Acoust. Soc. Am. / Feb. 2024

recorded in different rooms from different houses with
varying speaker position and background noise types ac-
cording to the voiceHome-2 dataset’s setup. Since the
dataset was recorded in the real-world test environment,
there is no clean utterance available for supervised learn-
ing, making our experiment realistic. The test was done
by asking ten listeners for their perceptual evaluation of
the test sequences. FIG. 5 presents their mean opinion
scores (MOS). Each trial consists of an input noisy and
reverberant sample y, a small student model §’s enhance-
ment result, the fine-tuned student model Spprnn’s out-
put, and the DPRNN teacher model 7Tpprnn’s result.
The student models are with 64 hidden units. From
the figure we can observe that the personalized student
models Spprnn outperforms the baseline student mod-
els. The statistically significant improvement aligns with
the objective metrics. While this dataset contains only
indoor recordings, this provides additional analysis not
only regarding the significance of the metrics but also
the effectiveness of the PSE framework.

C. Evaluation of personalization using varying amounts of
fine-tuning datasets

Our proposed personalization showed great improve-
ments under 5 minutes of fine-tuning data, which is noisy
and reverberant speech recorded from the same acoustic
scene during test time. However, we cannot assume this
amount of data to be readily available for realistic scenar-
ios. Hence, we test our framework on varying amounts of
noisy reverberant mixtures as well, i.e., 10 seconds and 1
minute. FIG. 6 shows the average SI-SDR improvements
from using varying lengths of noisy input data across
all K environments. We only use the DPRNN teacher’s
estimates for fine-tuning since we have observed its effec-
tiveness from the previous section. For brevity, we test
on 0 dB and 10 dB input SNR cases.

Zero-Shot Test-Time Adaptation Via KD for PSE 9
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Relative improvements in SI-SDR from different

TABLE IV. Descriptions of different unseen environments

Config.| Speaker .
IDg D FGen der) Noise Room RIR
A 260 (M) Crying baby Q301 BUT
B 1221 (F) Rooster E112 BUT
C 1995 (M) |Crackling Fire CR2 BUT
D 3575 (F) Car Horn R112 BUT
E 908 (M) Sea Waves Small-Far |RVB
F 1320 (F) Clapping |Medium-Near | RVB
G 2830 (M) Crickets Medium-Far |RVB
H 4992 (F) Train Large-Far |RVB

As expected, the length of available datasets for fine-
tuning is proportional to the test time performance of the
personalized student models. This experiment illustrates
a realistic use-case where initially 5 minutes of noisy data
will not be directly available, but rather 10 seconds and
later 1 minute of test time signals will be gradually col-
lected over time in a realistic data collection scenario.
From both figures, we can observe that smaller personal-
ized models can still outperform a larger generalist even
with less fine-tuning data. For example, in FIG. 6a, 2 x
256 SpprNN personalized on only 10 seconds of data can
outperform the largest generalist.

D.PSE models’ generalization performance on unseen
speakers, noises, and room RIRs

Personalization could potentially worsen the gener-
alization performance if a model fine-tuned on a specific
test environment must generalize to other unseen test en-
vironments comprised of unseen speakers, noise types, or
room conditions. The performance degradation is mainly
due to the catastrophic forgetting phenomenon (French,
1999): fine-tuning on the target test time environment
changes the weights that were initially pre-trained on the
general-purpose training set. This can be problematic if
the model is relocated or the surrounding is changed (e.g.,

10 J. Acoust. Soc. Am. / Feb. 2024

furniture rearrangement or new additions to room such
as draping that could alter the acoustics).

We examine this behavior by challenging an already
personalized student with a different unseen environ-
ment. For this experiment, we design K = 8 different
environments with balanced speaker gender, noise class
and various room dimensions. Details of the configura-
tions can be found in Table IV. Further details on di-
mensions of the rooms can be found in Table VII in Ap-
pendix A. The student models are personalized to each k-
th room, using noisy reverberant signals generated from

85‘5)7 M;’?, and R(»}? for K different personalized student
models in total. The fine-tuned models are then evalu-
ated on each j-th room using set-aside unseen datasets

Sgi)7 M,(fi), and R,Ei) taken from the same K = 8 config-
urations, i.e., j € {1---K}. Thus, k = j is the desired
personalization setup, while j # k represents the k-th
PSE model challeged to work on the j-th environment.
2x64 RNN student and DPRNN teacher was used to pro-
duce the figure. Additive background noise were scaled
to 0 dB input SNR.

In FIG. 7, we show the relative differences between
the pre-trained generalist and personalized student mod-
els evaluated on all K = 8 environments. We report the
result using SI-SDR, short-time objective intelligibility
(STOI)? (Taal et al., 2011), and perceptual evaluation of
speech quality (PESQ)® (Rix et al., 2001) scores for an
in-depth evaluation on personalization and its following
effects on other environments. We apply various metrics
SI-SDR, STOI and PESQ to provide a comprehensive
measure of the noisy and reverberant conditions. It is not
straightforward to find a metric for enhancement meth-
ods that necessarily leads to improvements for different
downstream applications since different metrics capture
different distortion measures. Considering ASR as an ex-
ample, WER and STOI have shown a higher correlation
coeflicient than other objective evaluation metrics; how-
ever, under realistic conditions there are various factors
that effect the ASR performance and there is no single
metric that have shown to necessarily lead to better WER
(Chai et al., 2018; Fukumori et al., 2013).

The negative values in the cells indicate performance
degradation incurred from personalization. Each j-th cell
in the k-th row corresponds to the performances of the
model personalized on k-th environment and evaluated
on the j-th environment. For example, the first row cor-
responds to the performances of the student-model fine-
tuned in environment “A” evaluated on all K configura-
tions.

Unsurprisingly, the diagonal axes generally show
highest improvements since those cells represent evalu-
ation results of student models personalized on the same
environment. This supports the main argument of our
proposed framework. On the other hand, there are
under-performing cases such as models fine-tuned on “E”
performing poorly on “A” (-1.1 dB ASI-SDR) and “F”
(-0.9 dB ASI-SDR). Interestingly, the inverse relation-
ship does not always hold. Although the model person-
alized on “B” generalize well to “A” (1.0 dB ASI-SDR),

Zero-Shot Test-Time Adaptation Via KD for PSE
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V STOI (FIG. 8b) and V PESQ (FIG. 8c) scores are measured using the teacher model’s outputs as the reference.

the model fine-tuned on “A” does not for “B” (-0.2 dB
ASI-SDR). These results show that personalizing on one
condition can incur negative effects when the model has
to generalize to another environment.

Although this reveals a weakness of the proposed
framework, this problem can be addressed with a sim-
ple solution, by resetting or re-adjusting the model when
sudden worsened performance is detected. However, it
is not straightforward to detect such a performance drop
during the test time. As a remedy, we propose to com-
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pare the PSE result to the teacher model’s estimate as
an indirect way to evaluate the speech quality. It is be-
cause there are no ground-truth test time data available.
In FIG. 8, we show the results from a same experimen-
tal setup with FIG. 7, but with the scores computed
from using the teacher’s estimates as the reference, i.e.,
the pseudo targets. We see that the SI-SDR, STOI and
PESQ scores measured against teacher’s estimates (FIG.
8) are different from those measured against the ground-
truth targets (FIG. 7). However, the scores measured us-
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TABLE V. Locations and source-mic distance of Room L212.

Location ID|Location [mxmxm]‘Source—Mic Distance [m]

A 0.41x1.13x1.98 4.87
B 6.96x0.77x1.98 2.11
C 5.34%x2.48%1.39 0.90
D 4.72x1.32x1.88 0.87
E 3.21x1.67x0.46 2.12

TABLE VI. Locations and source-mic distance of Room D105.

Location ID | Location [mxmxm]‘Source—Mic Distance [m]

A 11.93%22.93x3.63 13.76
B 5.23x9.90x1.82 4.18
C 14.79%20.79x4.47 14.76
D 6.01x6.06x1.97 7.85
E 9.65x6.22x3.12 10.01
F 0.70x5.48x2.02 7.86

ing teacher’s outputs are still close approximates to the
ground-truth metrics. This showcases another merit of
using the teacher’s estimates. We can reliably use these
pseudo metrics to estimate a model’s test time perfor-
mance and decide to reset back to the pre-trained gener-
alist version or to initiate a fine-tuning process to adjust
the model to the new test environment.

Figures 7b and 7c also show that the relative dif-
ferences in SI-SDR, STOI and PESQ are not always
correlated to one another. Cells with high relative SI-
SDR improvements does not necessarily show improve-
ments in intelligibility (e.g., model personalized on “B”
evaluated on “A”). This could be due to the loss func-
tion defined by ASI-SDR to optimize the student-models
during the fine-tuning process. A better optimization
objective could be explored to prevent such differences.
Nonetheless, personalization on intended environments
generally shows large improvements without significant
performance degradation.

E. Generalization performance to unseen locations within a
same room

Next, we evaluate on a scenario in which a student
model is personalized on a single location of a room and
tested on unseen positions within the same room. So far,
our experiments utilized all RIRs R(? from the k-th room
to construct the the test time fine-tuning dataset. It was
to make the PSE model robust to the variations of RIR
filters, which vary vastly depending on the microphone-
speaker distance, vicinity to walls or corners, occlud-
ing objects, and other factors (Shinn-Cunningham et al.,
2005). In this subsection, we fine-tune a student model
using noisy reverberant data generated using a RIR sig-
nal from a specified location 7 within the same k-th room,

ng). As with other experiments, utterances from a single
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Denoising and dereverberation evaluation results
eralizing to unseen locations. Locations of the mic along
with various positions within the room are shown in FIG.
9a. The generalization results of the model on noisy rever-
beration speech from all positions in the room are provided
in FIG. 9b.
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from fine-tuning in room D105 from location “A” and gener-

Denoising and dereverberation evaluation results

alizing to unseen locations. Locations of the mic along with
various positions within the room are shown in FIG. 10a.
The generalization results of the model on noisy reverbera-
tion speech from all positions in the room are provided in
FIG. 10b.

user S(fli) and one noise type M(’i) are used for fine-tuning.
For evaluation, we select RIRs from unseen speaker lo-
cations within the same room, ng) where j # i. Un-
seen speech samples from ng) and noise sources M,(f) are
used to generate the noisy reverberant evaluation set.
For brevity, we experiment on 2x64 student models and
0 dB input SNR for additive background noise.

Two rooms from the BUT Reverb Database were se-
lected for this experiment: a small office (L212) and a
large conference room (D105). Their speaker locations
and distance from the microphone are described in ta-
bles V and VI, respectively. Geometric information of all
the other rooms can be found in Table VII in Appendix
A.

FIG. 9a shows several speaker positions from room
L212 used in this experiment. We fine-tune on noisy
reverberant speech from an arbitrary position “A” and
evaluate on other locations of the room. We experiment
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using the same room but on multiple different speak-
ers and noises described in Table IV. FIG. 9b shows the
average generalization results. Despite the changes in lo-
cation of the test time speech source, fine-tuning on one
location of a room can improve dereverberation and de-
noising results for unseen locations within the same room
at least to some degree. The same behavior can be seen
in FIG. 10 for a much larger room, D105, although the
generalization power drops drastically when the unseen
location is too different from the one used for fine-tuning,
e.g., as in “F”. This demonstrates that a stationary per-
sonalized device is capable of performing robust speech
enhancement on a non-stationary user within the same
room, as opposed to suffering from drastic changes in
entire room geometry (Sec. IV D).

V. CONCLUSION

In this paper, we proposed a zero-shot knowledge dis-
tillation approach to personalizing speech enhancement
models for joint dereveberation and denoising. Our goal
was to adapt a small model to dynamically changing test
time SE environment instead of employing a large gen-
eralist model, which can be too heavy for embedded sys-
tems. In doing so, we exploited widely available noisy
mixtures during test time rather than leveraging ground-
truth targets or any extra information of the acoustic
environment, which are rarely available in the real-world
use cases. To improve the usability of the corrupt ex-
amples found in the test scene, our framework synthe-
sizes pseudo-targets by executing a superior-quality SE
routine on an overly complex teacher model. We sug-
gest that this knowledge distillation-based personaliza-
tion can be performed on a regular basis or when a sig-
nificant change is detected in the test time acoustic scene.
Since this fine-tuning task can be performed either in the
cloud or when the device is idle, we envision that it is not
burdensome for the device.

Evaluation results demonstrate that the student
model’s performance greatly improves on specific test
time speakers and acoustic environments. The improve-
ments were consistent under various noise and room con-
ditions. Furthermore, the improvements can be seen
regardless of model size or the amount of fine-tuning
data available: the fine-tuned performance is dependent
on the amount of data, but this does not pose a seri-
ous limitation on our framework as we can observe im-
provements even with minimal data. It is also notice-
able that the architectural difference between the student
and teacher models does not impact the personalization
process. Therefore, we expect that our proposed frame-
work can benefit from advancements in the future deep
learning-based speech enhancement research. Since our
small personalized student model can give superior per-
formances to large generalist models, we claim that the
knowledge distillation-based fine-tuning method provides
another mode of model compression that does not sacri-
fice performance, i.e., lossless model compression.
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While fine-tuning on specific environments can harm
the generalization on other unseen scenes, the teacher’s
estimates can again be utilized to gauge the change of
environments. A decision can be made to reset the stu-
dent’s parameters back to its pre-trained value, followed
by another personalization procedure for further adapta-
tion. Also, our study shows that models personalized on
one location can still show improved generalization on
unseen locations within the same room, demonstrating
robustness to non-stationary sources.

Major limitations of our current study for person-
alized speech enhancement comes from the dependency
on the quality of the teacher model and especially the
amount of fine-tuning data available. Another weakness
is our experiments tested on test time environments con-
taining only a single speaker and one unique noise source
per room. Future research shall consider expanding this
study to minimize the amount of utterances required for
the KD procedure and to perform speech enhancement
and separation under multi-speaker conditions.

ACKNOWLEDGMENTS

This material is based upon work supported in part
by the National Science Foundation under Grant No.
2046963.

APPENDIX A: DIMENSIONS OF ROOMS

TABLE VII describes the detailed geometric infor-
mation about the BUT Reverb Database used in our ex-
periments.

TABLE VII. Descriptions of rooms from BUT Reverb
Database

Room ID‘Size [mXxmxm] ‘Volume [m3]‘ Type
Q301 10.7x6.9%x2.6 192 Office
L207 4.6x6.9%x3.1 98 Office
L212 7.5x4.6x3.1 107 Office
L227 6.2x2.6x14.2 229 Stairs
R112 4.4x2.8%x2.6 ~ 40 Hotel Room

CR2 28.2x11.1x3.3 1033 Conference Room

E112 28.2x11.1x3.3 ~ 900 Lecture Room
D105 |17.2x22.8%x6.9 ~ 2000 Lecture Room
C236 7.0x4.1x3.6 102 Meeting Room

Imuhttps://github.com/kaldi-asr/kaldi/blob/master/egs/
aspire/s5/local/multi_condition/rirs/

?muhttps://github.com/mpariente/pystoi
Smuhttps://github.com/vBaiCai/python-pesq
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