Zero-Shot Test-Time Adaptation Via Knowledge Distillation for Personalized Speech Denoising and Dereverberation

Sunwoo Kim, Mrudula Athi, Guangji Shi, Minje Kim, a) and Trausti Kristjansson *Amazon Lab126, Sunnyvale, CA 94089, USA*

We propose a personalization framework to adapt compact models to test time environments and improve their speech enhancement performance in noisy and reverberant conditions. The use-cases are when the end-user device encounters only one or a few speakers and noise types that tend to reoccur in the specific acoustic environment. Hence, we postulate a small personalized model that suffices to handle this focused subset of the original universal speech enhancement problem. The study addresses a major data shortage issue: although the goal is to learn from a specific user's speech signals and the test time environment, the target clean speech is unavailable for model training due to privacy-related concerns and technical difficulty of recording noise and reverberation-free voice signals. The proposed zero-shot personalization method utilizes no clean speech target. Instead, it employs the knowledge distillation framework, where the more advanced denoising results from an overly large teacher work as pseudo targets to train a small student model. Evaluation on various test time conditions suggest that the proposed personalization approach can significantly enhance the compact student model's test time performance. Personalized models outperform larger non-personalized baseline models, demonstrating that personalization achieves model compression with no loss in dereverberation and denoising performance.

[https://doi.org/10.1121/10.0024621]

Pages: 1-15

I. INTRODUCTION

Real-world speech signals are often corrupted by a varying level of interfering noise and reverberation, which can be detrimental to the performance of audio applications. Hence, speech enhancement (SE) algorithms are an essential component incorporated into the audio applications such as automatic speech recognition, diarization, voice-over-IP and transcription (Boll, 1979; Ephraim and Malah, 1984; Gannot et al., 1998). Among these potential applications, in this paper, we focus on the direct use of the enhanced speech for voice communication, i.e., improving the perceptual speech quality of the end user is our goal.

Recent advancements with deep neural networks (DNN) for SE have shown superior performance compared to traditional machine learning and signal processing methods (Chazan et al., 2017; Wang and Chen, 2018; Xu et al., 2014). However, these state-of-the-art applications require significant memory and computational bandwidth, rendering them difficult for deployment onto devices for practical uses. Resource constrained devices, such as hearing aids or wearable devices, cannot efficiently handle real-time inference tasks for the SE applications when the models are with multi-layered complex architectures.

a) Also at: University of Illinois at Urbana-Champaign, 61801, USA.; minje@illinois.edu Consequently, research in model compression methods has gained interest to address the practicality of deep-learning architectures for real-time applications. Common compression methods such as quantization, pruning and knowledge distillation have shown great promise in reducing the model size and complexity while minimizing the drop in generalization performance. However, this kind of compression methods can be seen as context-agnostic since they do not utilize the specificity of the test time context. Instead, they tend to seek a general-purpose compression technique that works reasonably well in various real-world test conditions. As a result, a certain level of performance drop is inevitable after compression.

In this paper, we aim at developing a *context-aware* DNN compression method for SE. We envision that a compressed model can reduce its run-time complexity without losing its performance if it focuses on a particular test environment. We contrast the proposed concept and the ordinary DNN-based SE models, which are typically designed as general-purpose frameworks with a large architecture. A DNN's large capacity is fully utilized when it is trained on a large training set that consists of various speakers and noise sources, generalizing well to unseen test time conditions, e.g., different speakers, noise sources, signal-to-noise ratios (SNR), and room acoustics. In some practical use cases though, it suffices for the enhancement model to perform well only for the specific test time context. For instance, a family-owned smart assistant device sitting in the living room needs to perform well only for the family members' voices and their home acoustics, but not necessarily for the other situations. Compared to the general-purpose SE model, the generalist, our context-aware compression method can allow a model to adapt to the specific speakers and their acoustic context, overcoming the generalization losses. We call this kind of context-aware SE models as personalized speech enhancement (PSE) systems. Since the test time context contains limited variability, a small personalized model can even outperform larger and more complex universal generalist models, demonstrating personalization as a form of model compression.

The proposed personalized SE models achieve context-awareness by reducing the domain mismatch between the training and test datasets. The topic of domain adaptation has been an active area of research in machine learning. One common procedure for domain transfer is regularizing the differences between the learned representations of source and target datasets. It has been applied for emotion, speech, and speaker recognition (Deng et al., 2014; Sun et al., 2017). However, these applications rely on ample target data, which cannot be assumed if the target problem is narrowly defined as in our PSE cases. Few-shot adaptation can be a solution, as it requires only a small amount of ground-truth signal (Sivaraman and Kim, 2022). However, it can be challenging to obtain ground-truth user information due to recent privacy infringement, data leakage issues.

In contrast to aforementioned approaches, zero-shot learning is a solution suitable for training tasks where no additional labeled data is available (Wang et al., 2019; Xian et al., 2018). In the context of personalization, a zero-shot approach means that it does not require test users' clean speech data or their home acoustic environment, while its goal is still to adapt to the test time specificity.

However, zero-shot learning for SE has not been widely studied vet. In (Sivaraman and Kim, 2020, 2021), a mixture of local expert model is introduced as a zeroshot solution to test time adaptation of an SE model. It achieves the adaptation goal by selecting a pre-defined specialist model for a given noisy test signal. Although it is a valid adaptation method, it only works on a few predefined contexts, rather than actively learning from the test time speaker's personality or the unique context. In (Sivaraman et al., 2021), self-supervised learning methods are proposed to achieve PSE, where a data purification algorithm identifies clean speech frames from test time noisy speech. Although it achieves the PSE goals, it is not fully utilizing the test time observations which can be rare. Other works introduce a zero-shot solution for deep clustering-based speech separation models to estimate absent ground-truth labels (Drude et al., 2019: Tzinis et al., 2019). However, due to the sheer size and inference costs, deep clustering models are difficult to fit on small devices. In addition, these models are typically for speech separation problems rather than SE.

In this paper, we present a zero-shot learning approach to personalization for joint dereverberation and denoising based on the knowledge distillation (KD) framework (Hinton et al., 2015). As a zero-shot learning method, it does not ask for clean ground-truth signals from the user, while it still aims at enhancing noisy reverberant mixtures. Since its goal is to train a small specialist model for a particular user's speech and recording environment, it qualifies as a personalization method. We extend this concept to a novel zero-shot learning approach for personalized SE. Since the teacher model works well in most test time environments, we consider its excellent SE results as if they were the target clean speech from the student model's perspective. That way, we can turn any noisy and reverberant test signals into labeled training examples by passing them through the teacher model. In this process, the teacher model remains as a generalist model, while the student model can use the teacher's generalization power to learn from the test time input signals, fulfilling the zero-shot learning condition.

Using a KD learning paradigm enables us to leverage noisy unlabeled data and obtain their corresponding soft targets generated by the teacher model. In this paper, we focus on domain adaptation when we have large unlabeled target-domain dataset and assume noisy speech data of a target test-time user to be more widely available as opposed to their clean labeled data. Under this assumption, we approach the PSE problem with a self-supervised method where corresponding pseudotargets are generated from large amounts of unpaired noisy speech data (Doersch et al., 2015; Manohar et al., 2018; Watanabe et al., 2017; Zhang et al., 2020). Our experiments show that the small student models can be personalized in this way, resulting in improved performance compared to their context-agnostic counterparts. Moreover, given that these models are still small, performance improvement reconstitutes the whole KD process as a model compression method. For example, our experiments consistently show that the personalized SE models can compete with their larger generalist counterparts. We envision that the compact student models can work as an affordable solution in edge devices with limited computing resources.

FIG. 1 provides an overview of the proposed KD-based PSE process. On the left, as a pre-training step, both the teacher and student models are trained from a generic dataset to cover all test time variations. However, the student model's constrained capacity tends to limit its SE performance. At the center, KD-based fine-tuning learns from the target test environment: the estimated clean speech by the student model is compared against the result from a larger teacher model, whose discrepancy is used to fine-tune the student model. The zero-shot framework enables test time adaptation.

When deploying our framework, we ultimately use only the student model on the device for the PSE inference (the rightmost figure). Even after being deployed, this student model can continue to be refined: the device collects more contaminated speech signals from the test scene, which are then fed to the teacher model to pro-

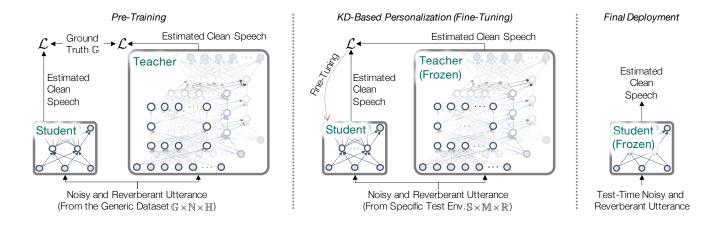


FIG. 1. An overview of the proposed KD-based PSE process. (Left) The pre-training process for both teacher and student models using generic dataset. (Center) The KD-based personalization process. (Right) The student model's inference process after the personalization.

duce the corresponding pseudo clean speech target. The pairs of newly collected input and pseudo target signals are used to fine-tune the student model. We could carefully organize the KD fine-tuning process by keeping the teacher model also on the device and performing the KD process during the device's idle time, it is a more secure because the user data stays in the device. However, the KD-based training process can be burdensome unless it is scheduled carefully. It is also possible that the teacher model and a copy of the student model are placed externally on a cloud server, where the actual fine-tuning operations are conducted. Then, the student models can be frequently updated on the server side and transferred to the user device. This cloud computing option may be more efficient, although it may be inappropriate for privacy-sensitive applications.

This paper extends our preliminary study (?), where we proposed a personalization procedure for speech denoising. In addition to the previous denoising application, we extend our application to dereverberation by integrating variability in room acoustics. Reverberation introduces additional challenges since speech intelligibility is degraded when corrupted by severe reverberations, and even more when combined with background noise (Han et al., 2015). During test time, we assume the test time source location and room geometry are unknown, and locations of both speaker and the acoustic environment can change. For evaluation, we evaluate against real rooms from various settings available in public datasets. To our best knowledge, this end-to-end zero-shot personalization framework for model compression is novel in the topic of joint speech dereverberation and denoising. Our proposed framework not only demonstrates the effectiveness of personalization for the front-end denoising and dereverberation application, but also illustrates the potential for utilizing teacher's outputs as pseudo-targets in a zero-shot scenario. We show in our experiments the relationship between the amount of noisy reverberant speech samples and performances of our personalized models, and draw connections to real-life scenarios where ample test time data may not be readily available. Finally, we illustrate use-cases where the teacher's estimates can be used to gauge test time performances and detect catastrophic forgetting (French, 1999) that occur from fine-tuning on specific instances (e.g. different noise sources or room conditions), and offer a simple remedy for this issue.

The rest of the paper is organized as follows. In Section II, we describe the student-teacher framework for test time adaptation. Experimental setup are provided in Section III, including the descriptions about various individual room acoustics. In Section IV, we provide extensive evaluation on the effects of personalization to various unseen environments. Concluding remarks are presented in Section V.

II. THE PROPOSED KD-BASED ZERO-SHOT PSE ALGORITHM

Given a monaural signal recorded in a noisy and reverberant environment, we formulate the signal model as

$$y[t] = x[t] + \alpha n[t] = s[t] * h[t] + \alpha n[t]$$
 (1)

where s, n, h and x denote speech source, background noise, room impulse response (RIR) function and reverberant speech, respectively. The symbol '*' stands for the convolution operator. The parameter α controls the signal-to-noise ratio (SNR) between the reverberant speech and interfering noise source. Our goal in this study is to recover the clean anechoic version of the single-talker speech signal s from the corresponding noisy-reverberant observation y.

We propose a KD-based zero-shot PSE algorithm, which aims at joint denoising and dereverberation. Our goal is to fine-tune a compact student model after it is deployed, so it adapts to the unseen test speaker and environment continuously. In doing so, the teacher model's powerful generalization performance plays a significant role as it performs denoising and dereverberation simultaneously, a behavior that the student model attempts to learn from.

A. Training Teacher SE Models

First, we train the teacher model $\mathcal{T}(\cdot)$ using a large-scale dataset consisting of dry speech sources, various noise signals, and RIR filters. Here, the teacher model $\mathcal{T}(\cdot)$ is defined with a large model architecture, so it can properly approximate the complex general-purpose joint speech denoising and dereveberation function. Once trained, $\mathcal{T}(\cdot)$ is frozen and *not* fine-tuned, assuming that its SE performance as a generalist meets the quality standard in most test cases. Another assumption is that it is too complex for the given test time user device to perform real-time SE inference tasks.

To train the teacher models, we use generic training datasets. The formulation of the training dataset is as follows. The clean speech utterances are taken from a large corpus containing many speakers, $s \in \mathbb{G}$; the noise recordings are also from a large corpus containing various noise types, $n \in \mathbb{N}$; the RIRs are similarly from a large collection recorded in various rooms, $h \in \mathbb{H}$. We use them to synthesize the noisy and reverberant signals y as input (Eq. (1)).

Hence, the goal of the teacher model is to jointly denoise and dereverb y, so the model can estimate the waveforms \hat{s} that closely approximate the target clean anechoic speech, i.e., $s \approx \hat{s} \leftarrow \mathcal{T}(y)$. The optimization on $\mathcal{T}(\cdot)$ reduces the loss between the target utterance s and reconstruction \hat{s} , i.e., $\arg\min_{\Theta_{\mathcal{T}}} \mathcal{L}(s||\mathcal{T}(y;\Theta_{\mathcal{T}}))$, where $\Theta_{\mathcal{T}}$ denotes the trainable parameters of the teacher model. Note that the training process for the teacher models correspond to the typical supervised learning method for general-purpose SE. Detailed model and optimization descriptions are provided in Sec. III B.

B. Pre-Training Student Speech Enhancement Models

Our student models $S(\cdot)$ are pre-trained in a similar way to the teacher models, i.e., by updating its own model parameters $\arg\min_{\Theta_S} \mathcal{L}(s||S(y;\Theta_S))$ using the same generic datasets, \mathbb{G} , \mathbb{N} , and \mathbb{H} . However, its small capacity hinders it from generalizing well to the unseen test conditions. Hence, we argue that further improvement is required for these student models to meet the quality requirement. We introduce the KD-based test time personalization algorithm in Sec. II C which is designed to reduce the performance gap between $\mathcal{T}(\cdot)$ and $S(\cdot)$. In this regard, the purpose of pre-training $S(\cdot)$ is to prepare the student model better than a random initialization, primed for the next fine-tuning step. Further details on model and training are also given in Sec. III B.

C. Test time Personalized Speech Enhancement

During the test time, we assume that the enhancement system is exposed to mixture signals composed of clean speech utterances from the test speaker, $s \in \mathbb{S}$, background noise sources, $n \in \mathbb{M}$, and RIRs, $h \in \mathbb{R}$. Note that we differentiate these test sets from the training sets, i.e., $\mathbb{G} \neq \mathbb{S}$, $\mathbb{N} \neq \mathbb{M}$, and $\mathbb{H} \neq \mathbb{R}$. Meanwhile, we also assume that the noisy and reverberant speech signals defined by the combination of all speech, noise and RIRs available in the training sets $\mathbb{G} \times \mathbb{N} \times \mathbb{H}$ mixed through Eqn. 1 are representative enough to encompass the test time variations, i.e., $\mathbb{S} \times \mathbb{M} \times \mathbb{R} \subseteq \mathbb{G} \times \mathbb{N} \times \mathbb{H}$. In practice, however, there might be corner cases that even the large dataset $\mathbb{G} \times \mathbb{N} \times \mathbb{H}$ cannot successfully represent, which the proposed method could fail to adapt to. Hence, we postulate that if a teacher model is large enough it can serve as an unbiased solution to the denoising and dereverberation problem. Meanwhile, a small student model is also of our interest if it is small enough for the resourceconstrained edge device. However, it may be too biased to generalize well to the test time SE task due to its small model capacity.

Given these assumptions, we propose a personalization framework that can adapt to a new environment without requiring test user's ground-truth clean speech samples or any other auxiliary information of the speakers and acoustic scene. Since we formulate the proposed personalization method as a fine-tuning process, we begin with a compact student model, $S(\cdot)$, pre-trained in a context-agnostic manner as in Sec. II B. To fine-tune the student model, its enhancement result from dereverberation and denoising, \hat{s}_{S} , must be compared against the target to compute the loss and perform backpropagation. However, since we assume the target is not available, we use the pseudo target computed from the teacher model.

This process falls in the category of the student-teacher framework in which a student model is optimized using a teacher model's prediction (Hinton et al., 2015). In the context of personalized speech enhancement, we employ a large pre-trained teacher model $\mathcal{T}(\cdot)$ whose predicted clean utterance serves as the target to compute the student model's loss. Both student and teacher models are initialized with pre-trained generic enhancement models as discussed in Sec. II A and II B, respectively. During the test time, the student model is optimized as: $\arg\min_{\Theta_{\tilde{S}}} \mathcal{L}(\hat{s}_{\mathcal{T}}||\tilde{\mathcal{S}}(\boldsymbol{y};\Theta_{\tilde{\mathcal{S}}}))$, where $\hat{s}_{\mathcal{T}}$ is the estimates of clean speech signals obtained from the teacher model and $\Theta_{\tilde{\mathcal{S}}}$ are trainable parameters of the student model. We distinguish this fine-tuned student model $\tilde{\mathcal{S}}(\cdot)$ from the pre-trained one $\mathcal{S}(\cdot)$ from now on.

The teacher's estimate $\hat{s}_{\mathcal{T}}$ is only an approximation of the ground-truth target s, and can contain artifacts from dereverberation and denoising (Xu et al., 2014). However, under a zero-shot PSE setup, we assume having these synthesized pseudo targets is better than nothing. Hence, the performance of the fine-tuning results depends on the quality of $\hat{s}_{\mathcal{T}}$. To this end, we employ relatively large models that surely outperform the student models

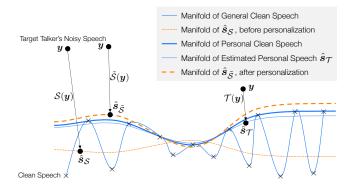


FIG. 2. Manifold learning perspective of SE, considering small model sizes and the potential subsampling of the dataset to construct personalized dataset and model.

on the test signals, i.e., $\mathcal{L}(s||\hat{s}_{\mathcal{T}}) < \mathcal{L}(s||\hat{s}_{\mathcal{S}})$. Given its large capacity, the teacher model generalizes better to unseen inputs compared to the student model. Thus, we hypothesize that the student still learns from these imperfect targets and adapts to the test environment. On our experiments both on simulated signals and real-world test environments, we show this assumed performance gap exists, guaranteeing the performance improvement by the KD process.

D. Interpretation from a Manifold Assumption

By training under the SE criterion, models learn to produce latent representations that are robust to corruptions in input data and are useful for recovering the clean speech. Successfully learned latent representations are discriminative and can capture useful structure and variations in the input distribution as discussed in the context of denoising autoencoders (Vincent et al., 2010). We interpret the process of SE using the manifold assumption: high dimensional clean speech data lie on a low dimensional manifold (Chapelle et al., 2006). Data samples are mapped onto a manifold that represents a feature space that preserves the local structure of the data. The objective of our models is to learn the underlying manifold of the speech signals such that they can accurately map the noisy samples to their respective positions on the manifold of clean speech during test time. In FIG. 2 we see generic clean speech samples s (the crosses) form a complex manifold (the thin solid line). Meanwhile, under our PSE assumption that test time environments will contain smaller subset of sources (e.g. speakers, noises and room variation), the models would only need to learn the manifold of those subsets, which imply a simpler manifold (the thick solid line) than the generic speech's. Under this interpretation, the target speaker's corrupt examples are mapped away from the manifold of clean signals. SE models try to project the off-the-manifold examples y back onto the manifold. The farther away y is from the manifold, the more corrupt the example, and the model takes bigger efforts to reach the

TABLE I. Corpus and notation of speech, noise and RIR datasets used during pre-training and personalization.

	Corpus		Notation
C l-	Librispeech	train-clean-360	G
Speech	(Panayotov et al., 2015)	test-clean	$\mathbb{S}_{ft/va/te}$
Noise	MUSAN (Snyder et al., 2015)		N
Noise	ESC50 (Piczak, 2015)		$\mathbb{M}_{ft/va/te}$
	AIR (Jeub <i>et al.</i> , 2009)		
RIR	PORI (Merimaa e	H	
	RWCP (Nakamura		
	BUT (Szöke et al., 2019)		$\mathbb{R}_{ft/va/te}$
	REVERB (Kinoshita et al., 2013)		

manifold. Note that the corrupted samples \boldsymbol{y} are spoken by the same target person, and therefore, the target manifold is the simpler one (thick line) than the complex one (the thin solid line) by all people.

We expect a large complex model $\mathcal{T}(y)$ to better approximate the manifold given its larger architecture. Hence, its prediction of the personal clean speech forms an approximation (thin dotted line) similar to the original one (the thick solid line). On the contrary, smaller models are likely to learn a poor approximation $\hat{s}_{\mathcal{S}}$ (the thin dash). The aim of our proposed personalization framework is to distill the better manifold determined by $\hat{s}_{\mathcal{T}}$ to the smaller student models to help better approximate the manifold. By doing so, student models fine-tuned under our framework will be able to better define and map points y closer to the test time manifold, approximated by $\hat{s}_{\tilde{\mathcal{S}}}$ (the thick dash).

III. EXPERIMENTAL SETUP

A. Datasets

TABLE I summarizes the datasets we used for the experiments. For pre-training, we used clean speech recordings from the LibriSpeech corpus (Panayotov et al., 2015), and noise recordings from the MUSAN (Snyder et al., 2015) and ESC50 dataset (Piczak, 2015). For RIRs, we used publicly available recordings downloaded using Kaldi scripts¹. The RIR data sources consist of the Aachen Impulse Response Database (Jeub et al., 2009), PORI concert hall impulse responses (Merimaa et al., 2005), and RWCP Sound Scene Database in Real Acoustical Environments (Nakamura et al., 2000). We used Librispeech's train-clean-360, MUSAN's free-sound and the collective RIR data for training, which we denote as \mathbb{G} , \mathbb{N} and \mathbb{H} respectively. A comprehensive summary of RIR datasets including information on RT60, number of rooms, microphone to loudspeaker distance can be found in (Merimaa et al., 2005) and (Szöke et al., 2019). This exposes the generalist models to up to 251 speakers, 843 noise recordings, and 334 RIRs during training. The noisy mixtures are obtained by adding the noise to speech signals at random input SNR levels uniformly chosen between -5 and $10~\mathrm{dB}.$

For fine-tuning, or zero-shot PSE, we used 44 speakers from Librispeech's test-clean and noise from the ESC-50 dataset for environmental sound classification with 50 different noise types from 5 categories consisting of animals, natural and water soundscape, nonspeech human sounds, interior-domestic sounds, and exteriorurban sounds. For RIRs, we used 5 rooms from BUT Speech@FIT Reverb Database (BUT) (Szöke et al., 2019) and real rooms from the Reverb 2014 Challenge (RVB) dataset (Kinoshita et al., 2013) for a total of 11 rooms. Each room in the BUT dataset contains 31 microphones and 5 source positions in average. RIRs were measured for each speaker position using exponential sine sweep method. For RVB dataset, there are 3 types of rooms (small, medium and large) and 2 types of microphone placement (near and far). RIRs are collected from 2 microphone angles per room. Further information on RIR datasets along with speech and noise corpuses can be found in Table 1 (Szöke et al., 2019).

We synthesize K = 44 unique test time environments, each of which consists of a test speaker, a noise source, and a RIR configuration defined by the location of the speaker and microphone. In particular, given a test environment index $k \in \{1, ..., K\}$, we sample clean utterances from the k-th speaker $\mathbb{S}^{(k)}$, convolve it with k-th room's RIR $\mathbb{R}^{(k)}$ and add noises from k-th noise type $\mathbb{M}^{(k)}$. For each test environment, $\mathbb{S}^{(k)}$ are split into separate sets for fine-tuning, validation, and testing: the partitions are approximately 5, 1, and 1 minutes of clean speech, which we denote by $\mathbb{S}_{\mathrm{ft}}^{(k)}$, $\mathbb{S}_{\mathrm{va}}^{(k)}$ and $\mathbb{S}_{\mathrm{te}}^{(k)}$, respectively. The noise and RIR samples are prepared similarly and partitioned into three separate sets. We synthe size noisy and reverberant input signals by combining $\mathbb{S}^{(k)}_{\mathrm{ft}},~\mathbb{M}^{(k)}_{\mathrm{ft}},~\text{and}~\mathbb{R}^{(k)}_{\mathrm{ft}}.$ Having them as input, the student model is fine-tuned via the KD process, where the teacher model's denoising results are used as the pseudo target. In other words, the student model for generic SE is first deployed to the device and can be personalized to the user's specificity using 5 minutes of noisy and reverberant recordings of the test environment. Then, $\mathbb{S}_{va}^{(k)}$, $\mathbb{M}_{va}^{(k)}$, and $\mathbb{R}_{va}^{(k)}$ are used to validate the student model during fine-tuning, mainly to prevent overfitting. Note that this does not mean that the PSE algorithm needs clean speech for validation: the validation process still relies on the teacher's estimate of clean speech as the target to compute the validation loss. Hence, early stopping is still conducted in a zero-shot manner. We report our PSE models' final performance using the test sets, $\mathbb{S}_{\text{te}}^{(k)}$, $\mathbb{M}_{\text{te}}^{(k)}$, and $\mathbb{R}_{\text{te}}^{(k)}$, for which we do compute the final enhancement performance by comparing to the groundtruth clean speech signals $\mathbb{S}_{\text{te}}^{(k)}$.

When we simulate various test conditions, the noise and speech sources are mixed under four different input SNR levels (i.e. -5 dB, 0 dB, 5 dB and 10 dB). All speech and noise audio files are loaded at 16 kHz sampling rate and standardized to have unit-variance.

B. Models

Our student models are based on the uni-directional gated recurrent unit (GRU) architecture (Cho et al., 2014). Recurrent neural networks with gating technology, such as the long short-term memory cell (LSTM) (Hochreiter and Schmidhuber, 1997) and GRUs, have been predominantly used in speech enhancement due to their ability to overcome the gradient vanishing or explosion issues during backpropagation through time (BPTT). As for GRUs, although it was first introduced as a computationally efficient alternative of LSTM for machine translation, it was quickly adopted for speech enhancement tasks due to their flexibility in handling continuous input sequences (e.g., audio spectra) and learning continuous latent variables (Chazan et al., 2017; Luo et al., 2020; Sivaraman and Kim, 2020). In the speech enhancement literature, LSTM and GRU can be combined with CNN layers for better performance (Hu et al., 2020), but the hybrid architecture adds more burden to the hardware design. In this paper, we focus on the simple GRU-only architecture that is more suitable for CPU operations, and show the PSE method's merits. However, the proposed principles should apply to other architectural choices.

We use frequency-domain representations obtained through the short-time Fourier transform (STFT) as inputs to the enhancement models. STFT is with a Hann windowed frame of 1024 samples and a hop size of 256 samples. The recurrent unit reads each STFT maganitude spectrum sequentially and updates the hidden state at each frame. For our denoising application, we apply a dense layer to map the hidden unit outputs from the GRU layer into complex ideal ratio masks (Williamson et al., 2015). The denoising mask is applied element-wise to the mixture complex spectrogram, then transformed back to the time-domain signal \hat{s} through inverse STFT. We use negative scale-invariant signal-to-noise ratio (SI-SNR) as the loss function (Le Roux et al., 2019). While the GRU architecture for the student models is fixed with two hidden layers, we vary their hidden units from 32 to 1024 to verify the impact of personalization on the different architectural choices.

Meanwhile, as for the teacher model, we employ two different network architectures. First, we use a 3×1024 GRU architecture, which is large enough to outperform the students. In addition, we also employ Dual-Path RNN (DPRNN) (Luo et al., 2020) as an alternative teacher model. DPRNN was chosen because of its higher performance and smaller model size compared to other time-domain models such as Conv-TasNet (Luo and Mesgarani, 2019). More advanced transformer based models such as Dual-Path Transformer (DPTNet) (Chen et al., 2020) report higher performance with comparative size to DPRNN in speech separation tasks, but we found empirically that the DPRNN performs better for our dereverberation and denoising task.

Indeed, the DPRNN teacher outperforms the GRU teacher due to its structural advantage. Hence, we contrast the impact of the two teacher models on the PSE

TABLE II. Complexity of student and teacher models in MACs and number of parameters. MACs are computed given 1-second inputs.

Models		MACs (G)	Param. (M)
Student	GRU (2×32)	0.006	0.09
	GRU (2×64)	0.013	0.20
	GRU (2×128)	0.030	0.48
	GRU (2×256)	0.079	1.25
	GRU (2×512)	0.232	3.68
	GRU (2×1024)	0.762	12.08
Teacher	GRU (3×1024)	1.159	18.37
	DPRNN (Luo et al., 2020)	15.238	3.63

TABLE III. Notations for pre-trained and fine-tuned models.

Notation	Description		
$\overline{\mathcal{T}_{\mathrm{GRU}}}$	The frozen GRU teacher trained from generic datasets		
$\mathcal{T}_{ ext{DPRNN}}$	The frozen DPRNN teacher trained from generic datasets		
$\overline{\mathcal{S}}$	Initial student pre-trained from generic datasets		
$ ilde{\mathcal{S}}_{ ext{GRU}}$	Student, fine-tuned on \mathcal{T}_{GRU} 's test output		
$ ilde{\mathcal{S}}_{ ext{DPRNN}}$	Student, fine-tuned on \mathcal{T}_{DPRNN} 's test output		
$ ilde{\mathcal{S}}_{\mathrm{GT}}$	Student, fine-tuned on the test time ground-truth targets		

performance after the KD-based fine-tuning process. The DPRNN model is configured using implementation available in Asteroid's source separation toolkit (Pariente et al., 2020). Same architecture as reported in (Luo et al., 2020) is adopted (i.e. 6 repeats), while we trained it with our single-speaker SE setup rather than the original speech separation task. The model architectures, their respective number of parameters, and the multiplier-accumulator (MAC) operation counts are shown in Table II. Note that DPRNN is not the largest model but it requires extensive MAC operations.

Here, we introduce new notations to distinguish the two teacher model architectures: \mathcal{T}_{GRU} and $\mathcal{T}_{\text{DPRNN}}$. In addition, we also denote the fine-tuned students models differently from the pre-trained initial model \mathcal{S} and add the subscript to indicate what it learns from: $\tilde{\mathcal{S}}_{\text{GRU}}$ and $\tilde{\mathcal{S}}_{\text{DPRNN}}$, respectively. We include a student model fine-tuned on the ground-truth oracle clean speech targets as a performance upper bound and denote it as $\tilde{\mathcal{S}}_{\text{GT}}$. Summary of notations for pre-trained and fine-tuned models are listed in Table III. Note that the systems denoted with tilde, $\tilde{\mathcal{S}}_{\text{GRU}}$, $\tilde{\mathcal{S}}_{\text{DPRNN}}$, and $\tilde{\mathcal{S}}_{\text{GT}}$, represent personalized student models, while the generalist models, \mathcal{S} , \mathcal{T}_{GRU} , and $\mathcal{T}_{\text{DPRNN}}$, are discussed to report the performance of either the teacher models or the baseline.

The Adam optimizer (Kingma and Ba, 2015) was used with learning rate of 1×10^{-4} for pre-training and 1×10^{-5} for fine-tuning.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Objective performance analyses

The box plots in FIG. 3 show the enhancement performances of various models under K = 44 environments synthesized with different noise level conditions. The results are shown for pre-trained and fine-tuned student models as well as for teacher models as reference. Figures from 3a to 3d show comprehensive denoising and dereverberation results across cases with severe (-5dB) to moderate (+10dB) test time SNR levels. We see that the overall performance decreases due to the additive background noise. While their final input SNR values are controlled by varying the loudness of the test noise sources $\mathbb{M}_{\text{te}}^{(k)}$, the speech sources are also degraded by the reverberation defined by the test time RIR set $\mathbb{R}_{\text{te}}^{(k)}$. In these figures, we observed that our proposed personalization framework improves dereverberation and denoising performances of pre-trained student models under all noise and room conditions, i.e., $\tilde{\mathcal{S}}_{GRU}$ and $\tilde{\mathcal{S}}_{DPRNN}$ results are always better than the S results on average if their model complexity is the same. From these results, we can infer that personalization helps significantly improve the joint dereverberation and denoising performance for all student architectures.

In addition, we also observe that the personalized models learned from the DPRNN teacher, \mathcal{S}_{DPRNN} , always outperform their corresponding ones fine-tuned using the GRU teacher, $\tilde{\mathcal{S}}_{GRU}$. $\tilde{\mathcal{S}}_{GRU}$ at times perform similarly to $T_{\rm GRU}$ especially in the case of the 2 × 1024 and 3×1024 student and teacher models. This is due to both models trained under the same cIRM estimation objective, sharing similar GRU architecture, as opposed to the more advanced DPRNN's architecture and its endto-end speech enhancement objective. The results signify the importance of the teacher model's performance. Since each fine-tuned student models stem from the same pre-trained GRU model, this shows that the fine-tuned performance depends on the quality of the teacher model. It is also noticeable that the structural discrepancy between the student and teacher, i.e., $\tilde{\mathcal{S}}_{GRU}$ (a GRU) and \mathcal{T}_{DPRNN} (a DPRNN), is not an issue. It implies that the proposed framework can potentially employ various advanced teacher models as the deep learning research improves the state of the art in the future.

We also notice that $\hat{\mathcal{S}}_{DPRNN}$ can catch up to $\hat{\mathcal{S}}_{GT}$'s performance, which is only marginally better. This suggests that fine-tuning on imperfect pseudo-targets generated by $\tilde{\mathcal{T}}_{DPRNN}$ has almost the same benefits as when ground-truth targets are utilized. Given the student models' small architecture and limited generalization capacity, our personalization procedure can fine-tune the student model to its optimal performance, but by relying only on the teacher's SE results.

After personalization, the small student models consistently show significant improvements on their pretraining-based initialization. Hence, it verifies that our personalization framework is a model compression

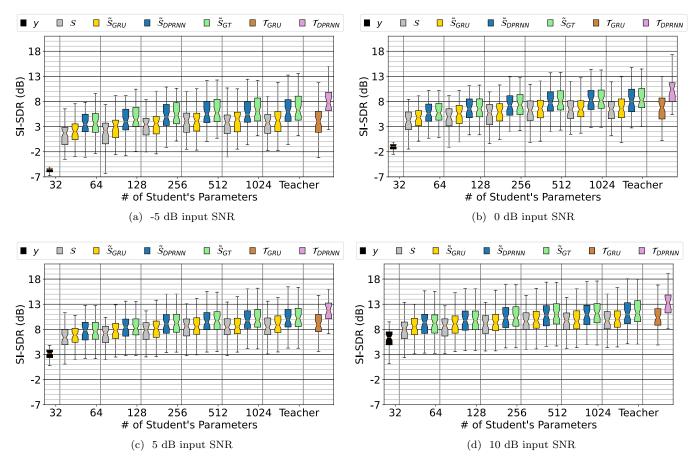


FIG. 3. Comparison of joint dereverberation and denoising performances from pre-trained generalists against personalized specialists under various input SNR levels. Subfigures from (a)-(d) demonstrate results from input SNR levels -5, 0, +5 and +10dB respectively. Student models are initialized as 2-layered GRU generalists. Teacher models are provided as references.

method, if we compare the improved PSE models to those pre-trained generalist models. Indeed, a smaller personalized model can compete with a large generalist, e.g. 2 \times 32 $\mathcal{S}_{\text{DPRNN}}$ vs. 2 \times 1024 \mathcal{S} for -5 dB input SNR as in FIG. 3a. According to Table II, a personalized 2 × 32 specialist saves 11.99M parameters and 756M MACs compared to a 2×1024 generalist (for 1-second inputs), which is more than 99% reduction in terms of spatial and arithmetic complexity. Hence, even if further compression methods, e.g., 8-bit quantization, are always available to the 2 \times 1024 \mathcal{S} model, it will still most likely be more complex than $2 \times 32 \, \mathcal{S}_{\text{DPRNN}}$. Furthermore, applying compression on larger models will subsequently lower their performance depending on the type and amount of compression. On the contrary, the 2 \times 32 $\ddot{\mathcal{S}}_{\text{DPRNN}}$ outperforms the 2 \times 1024 \mathcal{S} even after its 99% reduction of complexity. This demonstrates that our framework works as a mode of lossless model compression. Hence, we argue that it is more advantageous to personalize the models instead of increasing generalists' computational capacity for better generalization capabilities. In addition, since PSE shows improved performances in both denoising and dereverberation tasks in various unique test

environments, our personalization framework can be seen as a genuine *adaptive system* that specializes not only in each individual user, but in the specific noise source and reverberant condition of the test time environment.

FIG. 4 show the SE performance of various models on the reverberation-only input signals, i.e., with no additive background noise. It gives a separate view to the proposed PSE method's dereverberation performance from the joint denoising and dereverberation setup. In addition, the dereverberation results are shown separately as two cases, in which one half of the environments (K = 22)are with low input SI-SDR (FIG. 4a) and the other with high input SI-SDR (FIG. 4b). For the lower SI-SDR cases, the results in FIG. 4a show that our framework can successfully personalize to different room acoustics. Contrary to joint dereverberation and denoising results, the improvements for $\mathcal{S}_{\mathrm{DPRNN}}$ are minimal compared to those of \mathcal{S}_{GRU} . This trend is not observed in FIG. 4b that reports results from upper SI-SDR cases. First, the generalist models \mathcal{S} worsen the sound quality. Since the SI-SDR of the reverberant inputs were already high, the pre-trained generalists must have injected artifacts that significantly decrease the quality of the signal. This is

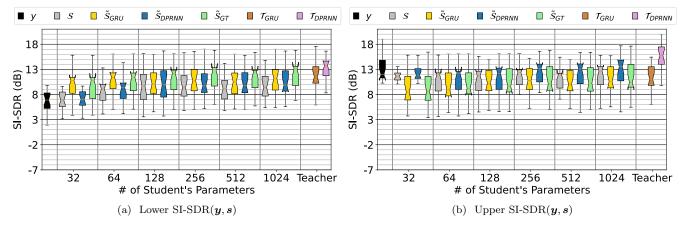


FIG. 4. Dereverberation performances of pre-trained generalist and personalized specialists on reverberant inputs without additional background noise (i.e., dereverberation-only experiments). The results are shown as two separate cases, where SI-SDR of input reverberant signals are low for half of the environments (K = 22) as shown in FIG. 4a and high for other half in FIG. 4b.

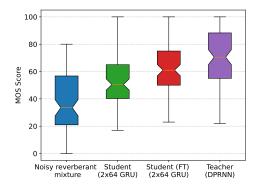


FIG. 5. Subjective test results from 8 participants. Each participant was asked to rate the noisy reverberant mixture and the outputs from the student model, fine-tuned student model, and the teacher model.

also evident in the \hat{S}_{GT} baselines where the model is fine-tuned on ground-truth anechoic targets. Hence, the goal of personalization in these cases is to be able to mitigate this performance degradation of the processed signals. Indeed, \hat{S}_{DPRNN} show improved performance over the initial worsened estimates by the pre-trained models, demonstrating the KD framework's consistent capacity to produce pseudo-labels for fine-tuning student models.

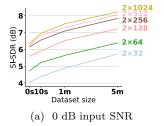
B. Subjective performance analyses on real-world test environments

We additionally conducted a subjective listening test with 8 participants using real-world noisy reverberant recordings from the voiceHome-2 dataset (Bertin *et al.*, 2019). We trained ten personalized models from ten test speakers, whose noisy and reverberant samples were

recorded in different rooms from different houses with varying speaker position and background noise types according to the voiceHome-2 dataset's setup. Since the dataset was recorded in the real-world test environment, there is no clean utterance available for supervised learning, making our experiment realistic. The test was done by asking ten listeners for their perceptual evaluation of the test sequences. FIG. 5 presents their mean opinion scores (MOS). Each trial consists of an input noisy and reverberant sample \mathbf{y} , a small student model \mathcal{S} 's enhancement result, the fine-tuned student model $\tilde{\mathcal{S}}_{\mathrm{DPRNN}}$'s output, and the DPRNN teacher model \mathcal{T}_{DPRNN} 's result. The student models are with 64 hidden units. From the figure we can observe that the personalized student models $\mathcal{S}_{\mathrm{DPRNN}}$ outperforms the baseline student models. The statistically significant improvement aligns with the objective metrics. While this dataset contains only indoor recordings, this provides additional analysis not only regarding the significance of the metrics but also the effectiveness of the PSE framework.

C. Evaluation of personalization using varying amounts of fine-tuning datasets

Our proposed personalization showed great improvements under 5 minutes of fine-tuning data, which is noisy and reverberant speech recorded from the same acoustic scene during test time. However, we cannot assume this amount of data to be readily available for realistic scenarios. Hence, we test our framework on varying amounts of noisy reverberant mixtures as well, i.e., 10 seconds and 1 minute. FIG. 6 shows the average SI-SDR improvements from using varying lengths of noisy input data across all K environments. We only use the DPRNN teacher's estimates for fine-tuning since we have observed its effectiveness from the previous section. For brevity, we test on 0 dB and 10 dB input SNR cases.



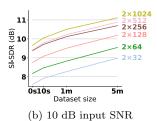


FIG. 6. Relative improvements in SI-SDR from different dataset sizes for fine-tuning on various input SNR levels under severe 0dB SNR level (FIG. 6a) and moderate 10dB SNR level (FIG. 6b). Student models are 2-layered GRU with varying number of hidden units fine-tuned on DPRNN teacher models ($\tilde{\mathcal{S}}_{\text{DPRNN}}$).

TABLE IV. Descriptions of different unseen environments

(Config.	Speaker	Noise	Room	RIR
_	ID	ID (Gender)			
	A	260 (M)	Crying baby	Q301	BUT
	В	1221 (F)	Rooster	E112	BUT
	С	1995 (M)	Crackling Fire	CR2	BUT
	D	3575 (F)	Car Horn	R112	BUT
	\mathbf{E}	908 (M)	Sea Waves	Small-Far	RVB
_	F	1320 (F)	Clapping	Medium-Near	RVB
_	G	2830 (M)	Crickets	Medium-Far	RVB
	Н	4992 (F)	Train	Large-Far	RVB

As expected, the length of available datasets for fine-tuning is proportional to the test time performance of the personalized student models. This experiment illustrates a realistic use-case where initially 5 minutes of noisy data will not be directly available, but rather 10 seconds and later 1 minute of test time signals will be gradually collected over time in a realistic data collection scenario. From both figures, we can observe that smaller personalized models can still outperform a larger generalist even with less fine-tuning data. For example, in FIG. 6a, 2 \times 256 $\tilde{\mathcal{S}}_{\mathrm{DPRNN}}$ personalized on only 10 seconds of data can outperform the largest generalist.

D. PSE models' generalization performance on unseen speakers, noises, and room RIRs

Personalization could potentially worsen the generalization performance if a model fine-tuned on a specific test environment must generalize to other unseen test environments comprised of unseen speakers, noise types, or room conditions. The performance degradation is mainly due to the *catastrophic forgetting* phenomenon (French, 1999): fine-tuning on the target test time environment changes the weights that were initially pre-trained on the general-purpose training set. This can be problematic if the model is relocated or the surrounding is changed (e.g.,

furniture rearrangement or new additions to room such as draping that could alter the acoustics).

We examine this behavior by challenging an already personalized student with a different unseen environment. For this experiment, we design K = 8 different environments with balanced speaker gender, noise class and various room dimensions. Details of the configurations can be found in Table IV. Further details on dimensions of the rooms can be found in Table VII in Appendix A. The student models are personalized to each kth room, using noisy reverberant signals generated from $\mathbb{S}_{ft}^{(k)}$, $\mathbb{M}_{ft}^{(k)}$, and $\mathbb{R}_{ft}^{(k)}$ for K different personalized student models in total. The fine-tuned models are then evaluated on each j-th room using set-aside unseen datasets $\mathbb{S}_{te}^{(j)}$, $\mathbb{M}_{te}^{(j)}$, and $\mathbb{R}_{te}^{(j)}$ taken from the same K=8 configurations, i.e., $j\in\{1\cdots K\}$. Thus, k=j is the desired personalization setup, while $j \neq k$ represents the k-th PSE model challeged to work on the *j*-th environment. 2×64 RNN student and DPRNN teacher was used to produce the figure. Additive background noise were scaled to 0 dB input SNR.

In FIG. 7, we show the relative differences between the pre-trained generalist and personalized student models evaluated on all K=8 environments. We report the result using SI-SDR, short-time objective intelligibility $(STOI)^2$ (Taal et al., 2011), and perceptual evaluation of speech quality (PESQ)³ (Rix et al., 2001) scores for an in-depth evaluation on personalization and its following effects on other environments. We apply various metrics SI-SDR, STOI and PESQ to provide a comprehensive measure of the noisy and reverberant conditions. It is not straightforward to find a metric for enhancement methods that necessarily leads to improvements for different downstream applications since different metrics capture different distortion measures. Considering ASR as an example, WER and STOI have shown a higher correlation coefficient than other objective evaluation metrics; however, under realistic conditions there are various factors that effect the ASR performance and there is no single metric that have shown to necessarily lead to better WER (Chai et al., 2018; Fukumori et al., 2013).

The negative values in the cells indicate performance degradation incurred from personalization. Each j-th cell in the k-th row corresponds to the performances of the model personalized on k-th environment and evaluated on the j-th environment. For example, the first row corresponds to the performances of the student-model finetuned in environment "A" evaluated on all K configurations.

Unsurprisingly, the diagonal axes generally show highest improvements since those cells represent evaluation results of student models personalized on the same environment. This supports the main argument of our proposed framework. On the other hand, there are under-performing cases such as models fine-tuned on "E" performing poorly on "A" (-1.1 dB Δ SI-SDR) and "F" (-0.9 dB Δ SI-SDR). Interestingly, the inverse relationship does not always hold. Although the model personalized on "B" generalize well to "A" (1.0 dB Δ SI-SDR),

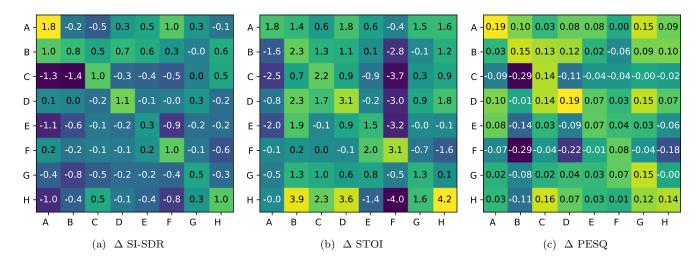


FIG. 7. Joint denoising and dereverberation results of $2\times64~\tilde{\mathcal{S}}_{\text{DPRNN}}$ on different environments with 0 dB input SNR. Each of the K=8 different environments are marked from "A" to "H". Each cell corresponds to the performances of the model personalized on one environment and evaluated on each environments. The objective scores ∇ SI-SDR (FIG. 7a), ∇ STOI (FIG. 7b) and ∇ PESQ (FIG. 7c) are measured using ground-truth anechoic targets as the reference.

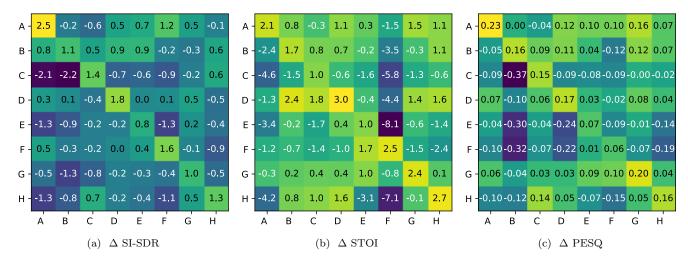


FIG. 8. Joint denoising and dereverberation results of $2\times64~\tilde{\mathcal{S}}_{\mathrm{DPRNN}}$ on different environments with 0 dB input SNR. Each of the K=8 different environments are marked from "A" to "H". Each cell corresponds to the performances of the model personalized on one environment and evaluated on each environments. In this setup, the objective scores ∇ SI-SDR (FIG. 8a), ∇ STOI (FIG. 8b) and ∇ PESQ (FIG. 8c) scores are measured using the teacher model's outputs as the reference.

the model fine-tuned on "A" does not for "B" (-0.2 dB Δ SI-SDR). These results show that personalizing on one condition can incur negative effects when the model has to generalize to another environment.

Although this reveals a weakness of the proposed framework, this problem can be addressed with a simple solution, by *resetting* or *re-adjusting* the model when sudden worsened performance is detected. However, it is not straightforward to detect such a performance drop during the test time. As a remedy, we propose to com-

pare the PSE result to the teacher model's estimate as an indirect way to evaluate the speech quality. It is because there are no ground-truth test time data available. In FIG. 8, we show the results from a same experimental setup with FIG. 7, but with the scores computed from using the teacher's estimates as the reference, i.e., the pseudo targets. We see that the SI-SDR, STOI and PESQ scores measured against teacher's estimates (FIG. 8) are different from those measured against the ground-truth targets (FIG. 7). However, the scores measured us-

TABLE V. Locations and source-mic distance of Room L212.

Location ID		Source-Mic Distance [m]
A	$0.41 \times 1.13 \times 1.98$	4.87
В	$6.96 \times 0.77 \times 1.98$	2.11
С	$5.34 \times 2.48 \times 1.39$	0.90
D	$4.72 \times 1.32 \times 1.88$	0.87
E	$3.21 \times 1.67 \times 0.46$	2.12

TABLE VI. Locations and source-mic distance of Room D105.

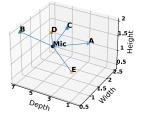
Location ID	$Location~[m{\times}m{\times}m]$	Source-Mic Distance [m]
A	$11.93 \times 22.93 \times 3.63$	13.76
В	$5.23 \times 9.90 \times 1.82$	4.18
C	$14.79 \times 20.79 \times 4.47$	14.76
D	$6.01 \times 6.06 \times 1.97$	7.85
E	$9.65 \times 6.22 \times 3.12$	10.01
F	$0.70 \times 5.48 \times 2.02$	7.86

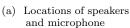
ing teacher's outputs are still close approximates to the ground-truth metrics. This showcases another merit of using the teacher's estimates. We can reliably use these pseudo metrics to estimate a model's test time performance and decide to reset back to the pre-trained generalist version or to initiate a fine-tuning process to adjust the model to the new test environment.

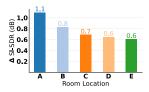
Figures 7b and 7c also show that the relative differences in SI-SDR, STOI and PESQ are not always correlated to one another. Cells with high relative SI-SDR improvements does not necessarily show improvements in intelligibility (e.g., model personalized on "B" evaluated on "A"). This could be due to the loss function defined by ΔSI -SDR to optimize the student-models during the fine-tuning process. A better optimization objective could be explored to prevent such differences. Nonetheless, personalization on intended environments generally shows large improvements without significant performance degradation.

E. Generalization performance to unseen locations within a same room

Next, we evaluate on a scenario in which a student model is personalized on a single location of a room and tested on unseen positions within the same room. So far, our experiments utilized all RIRs $\mathbb{R}_{ft}^{(k)}$ from the k-th room to construct the test time fine-tuning dataset. It was to make the PSE model robust to the variations of RIR filters, which vary vastly depending on the microphonespeaker distance, vicinity to walls or corners, occluding objects, and other factors (Shinn-Cunningham et al., 2005). In this subsection, we fine-tune a student model using noisy reverberant data generated using a RIR signal from a specified location i within the same k-th room, $\mathbb{R}_{i}^{(k)}$. As with other experiments, utterances from a single

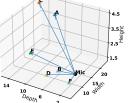


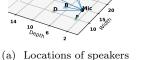




(b) Average Δ SI-SDR per source location

Denoising and dereverberation evaluation results from fine-tuning in room L212 from location "A" and generalizing to unseen locations. Locations of the mic along with various positions within the room are shown in FIG. 9a. The generalization results of the model on noisy reverberation speech from all positions in the room are provided in FIG. 9b.





and microphone

FIG. 10b.



(b) Average Δ SI-SDR per speaker location

FIG. 10. Denoising and dereverberation evaluation results from fine-tuning in room D105 from location "A" and generalizing to unseen locations. Locations of the mic along with various positions within the room are shown in FIG. 10a. The generalization results of the model on noisy reverberation speech from all positions in the room are provided in

user $\mathbb{S}_{ft}^{(k)}$ and one noise type $\mathbb{M}_{ft}^{(k)}$ are used for fine-tuning. For evaluation, we select RIRs from unseen speaker locations within the same room, $\mathbb{R}_{j}^{(k)}$ where $j \neq i$. Unseen speech samples from $\mathbb{S}_{te}^{(k)}$ and noise sources $\mathbb{M}_{te}^{(k)}$ are used to generate the noisy reverberant evaluation set. For brevity, we experiment on 2×64 student models and 0 dB input SNR for additive background noise.

Two rooms from the BUT Reverb Database were selected for this experiment: a small office (L212) and a large conference room (D105). Their speaker locations and distance from the microphone are described in tables V and VI, respectively. Geometric information of all the other rooms can be found in Table VII in Appendix

FIG. 9a shows several speaker positions from room L212 used in this experiment. We fine-tune on noisy reverberant speech from an arbitrary position "A" and evaluate on other locations of the room. We experiment

using the same room but on multiple different speakers and noises described in Table IV. FIG. 9b shows the average generalization results. Despite the changes in location of the test time speech source, fine-tuning on one location of a room can improve dereverberation and denoising results for unseen locations within the same room at least to some degree. The same behavior can be seen in FIG. 10 for a much larger room, D105, although the generalization power drops drastically when the unseen location is too different from the one used for fine-tuning, e.g., as in "F". This demonstrates that a stationary personalized device is capable of performing robust speech enhancement on a non-stationary user within the same room, as opposed to suffering from drastic changes in entire room geometry (Sec. IV D).

V. CONCLUSION

In this paper, we proposed a zero-shot knowledge distillation approach to personalizing speech enhancement models for joint dereveberation and denoising. Our goal was to adapt a small model to dynamically changing test time SE environment instead of employing a large generalist model, which can be too heavy for embedded systems. In doing so, we exploited widely available noisy mixtures during test time rather than leveraging groundtruth targets or any extra information of the acoustic environment, which are rarely available in the real-world use cases. To improve the usability of the corrupt examples found in the test scene, our framework synthesizes pseudo-targets by executing a superior-quality SE routine on an overly complex teacher model. We suggest that this knowledge distillation-based personalization can be performed on a regular basis or when a significant change is detected in the test time acoustic scene. Since this fine-tuning task can be performed either in the cloud or when the device is idle, we envision that it is not burdensome for the device.

Evaluation results demonstrate that the student model's performance greatly improves on specific test time speakers and acoustic environments. The improvements were consistent under various noise and room conditions. Furthermore, the improvements can be seen regardless of model size or the amount of fine-tuning data available: the fine-tuned performance is dependent on the amount of data, but this does not pose a serious limitation on our framework as we can observe improvements even with minimal data. It is also noticeable that the architectural difference between the student and teacher models does not impact the personalization process. Therefore, we expect that our proposed framework can benefit from advancements in the future deep learning-based speech enhancement research. Since our small personalized student model can give superior performances to large generalist models, we claim that the knowledge distillation-based fine-tuning method provides another mode of model compression that does not sacrifice performance, i.e., lossless model compression.

While fine-tuning on specific environments can harm the generalization on other unseen scenes, the teacher's estimates can again be utilized to gauge the change of environments. A decision can be made to reset the student's parameters back to its pre-trained value, followed by another personalization procedure for further adaptation. Also, our study shows that models personalized on one location can still show improved generalization on unseen locations within the same room, demonstrating robustness to non-stationary sources.

Major limitations of our current study for personalized speech enhancement comes from the dependency on the quality of the teacher model and especially the amount of fine-tuning data available. Another weakness is our experiments tested on test time environments containing only a single speaker and one unique noise source per room. Future research shall consider expanding this study to minimize the amount of utterances required for the KD procedure and to perform speech enhancement and separation under multi-speaker conditions.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the National Science Foundation under Grant No. 2046963.

APPENDIX A: DIMENSIONS OF ROOMS

TABLE VII describes the detailed geometric information about the BUT Reverb Database used in our experiments.

TABLE VII. Descriptions of rooms from BUT Reverb Database

Room ID	Size $[m \times m \times m]$	Volume [m ³]	Type
Q301	$10.7 \times 6.9 \times 2.6$	192	Office
L207	$4.6 \times 6.9 \times 3.1$	98	Office
L212	$7.5 \times 4.6 \times 3.1$	107	Office
L227	$6.2 \times 2.6 \times 14.2$	229	Stairs
R112	$4.4 \times 2.8 \times 2.6$	~ 40	Hotel Room
CR2	$28.2 \times 11.1 \times 3.3$	1033	Conference Room
E112	$28.2 \times 11.1 \times 3.3$	~ 900	Lecture Room
D105	$17.2 \times 22.8 \times 6.9$	~ 2000	Lecture Room
C236	$7.0 \times 4.1 \times 3.6$	102	Meeting Room

¹muhttps://github.com/kaldi-asr/kaldi/blob/master/egs/ aspire/s5/local/multi_condition/rirs/

²muhttps://github.com/mpariente/pystoi

³muhttps://github.com/vBaiCai/python-pesq

Bertin, N., Camberlein, E., Lebarbenchon, R., Vincent, E., Sivasankaran, S., Illina, I., and Bimbot, F. (2019). "Voicehome-

- 2, an extended corpus for multichannel speech processing in real homes," Speech Commun. 106, 68-78, muhttps://api.semanticscholar.org/CorpusID:59222643.
- Boll, S. F. (1979). "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. on Acoustics, Speech, and Signal Processing 27, 113–120.
- Chai, L., Du, J., and Lee, C.-H. (2018). "Acoustics-guided evaluation (age): a new measure for estimating performance of speech enhancement algorithms for robust asr," arXiv preprint arXiv:1811.11517.
- Chapelle, O., Schölkopf, B., and A.Zien (2006). Semi-Supervised Learning (MIT Press).
- Chazan, S., Goldberger, J., and Gannot, S. (2017). "Deep recurrent mixture of experts for speech enhancement," in Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, pp. 359–363.
- Chen, J., Mao, Q., and Liu, D. (2020). "Dual-path transformer network: Direct context-aware modeling for end-to-end monaural speech separation," arXiv preprint arXiv:2007.13975.
- Cho, K., Merriënboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation," in *Proc. of the Conference on Empirical Methods in Natural Language Processing (EMNLP)*.
- Deng, J., Zhang, Z., Eyben, F., and Schuller, B. (2014). "Autoencoder-based unsupervised domain adaptation for speech emotion recognition," IEEE Signal Proc. Letters 21(9), 1068– 1072.
- Doersch, C., Gupta, A., and Efros, A. A. (2015). "Unsupervised Visual Representation Learning by Context Prediction," in *Proc.* of the Int'l Conf. on Computer Vision.
- Drude, L., Hasenklever, D., and Haeb-Umbach, R. (2019). "Unsupervised training of a deep clustering model for multichannel blind source separation," in *Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing*, pp. 695–699.
- Ephraim, Y., and Malah, D. (1984). "Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator," IEEE Trans. on Acoustics, Speech, and Signal Processing 32(6), 1109–1121.
- French, R. M. (1999). "Catastrophic forgetting in connectionist networks," TRENDS in cognitive sciences 3(4), 128–135.
- Fukumori, T., Nakayama, M., Nishiura, T., and Yamashita, Y. (2013). "Estimation of speech recognition performance in noisy and reverberant environments using pesq score and acoustic parameters," in Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–4.
- Gannot, S., Burshtein, D., and Weinstein, E. (1998). "Iterative and sequential Kalman filter-based speech enhancement algorithms," IEEE Trans. on Speech and Audio Processing 6, 373–385.
- Han, K. et al. (2015). "Learning spectral mapping for speech dereverberation and denoising," Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing 23(6), 982–992.
- Hinton, G., Vinyals, O., and Dean, J. (2015). "Distilling the knowledge in a neural network," arXiv preprint arXiv:1503.02531.
- Hochreiter, S., and Schmidhuber, J. (1997). "Long Short-Term Memory," 9(8), 1735–1780.
- Hu, Y., Liu, Y., Lv, S., Xing, M., Zhang, S., Fu, Y., Wu, J., Zhang, B., and Xie, L. (2020). "DCCRN: Deep complex convolution recurrent network for phase-aware speech enhancement," in Proc. of the Annual Conf. of the Int'l Speech Comm. Association (Interspeech).
- Jeub, M., Schafer, M., and Vary, P. (2009). "A binaural room impulse response database for the evaluation of dereverberation algorithms," in *IEEE Int'l Conf. on Digital Signal Processing*, pp. 1–5.
- Kingma, D., and Ba, J. (2015). "Adam: A method for stochastic optimization," in Proc. of the Int'l Conf. on Learning Representations.
- Kinoshita, K. et al. (2013). "The reverb challenge: A common evaluation framework for dereverberation and recognition of reverberant speech," in Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE, pp. 1–4.
- Le Roux, J., Wisdom, S., Erdogan, H., and Hershey, J. R. (2019). "SDR half-baked or well done?," in *ICASSP 2019*-

- 2019 IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 626–630.
- Luo, Y., Chen, Z., and Yoshioka, T. (2020). "Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation," in *Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing*, pp. 46–50.
- Luo, Y., and Mesgarani, N. (2019). "Conv-TasNet: Surpassing ideal time–frequency magnitude masking for speech separation," IEEE/ACM Trans. on Audio, Speech, and Language Proc. 27(8), 1256–1266.
- Manohar, V., Ghahremani, P., Povey, D., and Khudanpur, S. (2018). "A teacher-student learning approach for unsupervised domain adaptation of sequence-trained asr models," in 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 250–257.
- Merimaa, J., Peltonen, T., and Lokki, T. (2005). "Concert hall impulse responses pori, finland: Reference," Tech. Rep.
- Nakamura, S., Hiyane, K., Asano, F., Nishiura, T., and Yamada, T. (2000). "Acoustical sound database in real environments for sound scene understanding and hands-free speech recognition," in *Int'l Conf. on Language Resources and Evaluation*, pp. 965– 968.
- Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015).
 "Librispeech: An ASR corpus based on public domain audio books," in Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing, pp. 5206–5210.
 Pariente, M. et al. (2020). "Asteroid: The PyTorch-Based Audio
- Pariente, M. et al. (2020). "Asteroid: The PyTorch-Based Audio Source Separation Toolkit for Researchers," in Proc. of the Annual Conf. of the Int'l Speech Comm. Association (Interspeech), pp. 2637–2641.
- Piczak, K. J. (2015). "Esc: Dataset for environmental sound classification," in Proc. of the 23rd ACM Int'l Conf. on Multimedia, pp. 1015–1018.
- Rix, A. W., Beerends, J. G., Hollier, M. P., and Hekstra, A. P. (2001). "Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs," in *Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing*, Vol. 2, pp. 749–752.
- Shinn-Cunningham, B. G., Kopco, N., and Martin, T. J. (2005). "Localizing nearby sound sources in a classroom: Binaural room impulse responses," Journal of the Acoustical Society of America 117(5), 3100–3115.
- Sivaraman, A., and Kim, M. (2020). "Sparse Mixture of Local Experts for Efficient Speech Enhancement," in *Proc. of the Annual Conf. of the Int'l Speech Comm. Association (Interspeech)*, pp. 4526–4530.
- Sivaraman, A., and Kim, M. (2021). "Zero-shot personalized speech enhancement through speaker-informed model selection," in *Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*.
- Sivaraman, A., and Kim, M. (2022). "Efficient Personalized Speech Enhancement Through Self-Supervised Learning," IEEE Journal of Selected Topics in Signal Processing 16(6), 1342–1356.
- Sivaraman, A., Kim, S., and Kim, M. (2021). "Personalized speech enhancement through self-supervised data augmentation and purification," in *Proc. of the Annual Conf. of the Int'l Speech Comm. Association (Interspeech)*.
- Snyder, D., Chen, G., and Povey, D. (2015). "MUSAN: A Music, Speech, and Noise Corpus," arXiv preprint arXiv:1510.08484.
- Sun, S., Zhang, B., Xie, L., and Zhang, Y. (2017). "An unsupervised deep domain adaptation approach for robust speech recognition," Neurocomputing 257, 79–87.
- Szöke, I. et al. (2019). "Building and evaluation of a real room impulse response dataset," IEEE Journal of Selected Topics in Signal Processing 13(4), 863–876.
- Taal, C. H., Hendriks, R. C., Heusdens, R., and Jensen, J. (2011).
 "An algorithm for intelligibility prediction of time-frequency weighted noisy speech," IEEE Trans. on Audio, Speech, and Language Processing 19(7), 2125–2136.
- Tzinis, E., Venkataramani, S., and Smaragdis, P. (2019). "Unsupervised deep clustering for source separation: Direct learning from mixtures using spatial information," in *Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing*, pp. 81–85.

- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," Journal of Machine Learning Research 11, 3371–3408.
- Wang, D. L., and Chen, J. (2018). "Supervised speech separation based on deep learning: An overview," IEEE/ACM Trans. on Audio, Speech, and Language Proc. 26(10), 1702–1726.
- Wang, W., Zheng, V. W., Yu, H., and Miao, C. (2019). "A survey of zero-shot learning: Settings, methods, and applications," ACM Trans. on Intelligent Systems and Technology 10(2), 1–37.
- Watanabe, S., Hori, T., Roux, J. L., and Hershey, J. R. (2017). "Student-Teacher Network Learning with Enhanced Features," in Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing, pp. 5275–5279.
- Williamson, D., Y, W., and Wang, D. (2015). "Complex ratio masking for monaural speech separation," IEEE Trans. on Audio,

- Speech, and Language Processing 24(3), 483–492.
- Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. (2018). "Zero-Shot Learning A Comprehensive Evaluation of the Good, the Bad and the Ugly," IEEE Trans. on Pattern Analysis and Machine Intelligence 41(9), 2251–2265.
- Xu, Y., Du, J., Dai, L.-R., and Lee, C.-H. (2014). "An experimental study on speech enhancement based on deep neural networks," IEEE Signal Proc. Letters 21(1), 65–68.
- Zhang, Z., Song, Y., Zhang, J., McLoughlin, I. V., and Dai, L. (2020). "Semi-supervised end-to-end asr via teacher-student learning with conditional posterior distribution.," in Proc. of the Annual Conf. of the Int'l Speech Comm. Association (Interspeech), pp. 3580–3584.