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Abstract 
Motivation: The 昀椀eld of geometric deep learning has recently had a profound impact on several scienti昀椀c domains such as protein structure 
prediction and design, leading to methodological advancements within and outside of the realm of traditional machine learning. Within this 
spirit, in this work, we introduce GCPNET, a new chirality-aware SE(3)-equivariant graph neural network designed for representation learning of 
3D biomolecular graphs. We show that GCPNET, unlike previous representation learning methods for 3D biomolecules, is widely applicable to a 
variety of invariant or equivariant node-level, edge-level, and graph-level tasks on biomolecular structures while being able to (1) learn important 
chiral properties of 3D molecules and (2) detect external force 昀椀elds.
Results: Across four distinct molecular-geometric tasks, we demonstrate that GCPNET’s predictions (1) for protein–ligand binding af昀椀nity 
achieve a statistically signi昀椀cant correlation of 0.608, more than 5%, greater than current state-of-the-art methods; (2) for protein structure rank-
ing achieve statistically signi昀椀cant target-local and dataset-global correlations of 0.616 and 0.871, respectively; (3) for Newtownian many-body 
systems modeling achieve a task-averaged mean squared error less than 0.01, more than 15% better than current methods; and (4) for molecu-
lar chirality recognition achieve a state-of-the-art prediction accuracy of 98.7%, better than any other machine learning method to date.
Availability and implementation: The source code, data, and instructions to train new models or reproduce our results are freely available at 
https://github.com/BioinfoMachineLearning/GCPNet.

1 Introduction

Over the last several years, the field of deep learning has pio-
neered many new methods designed to process graph- 

structured inputs. Being a ubiquitous form of information, 

graph-structured data arises from numerous sources such as 

the fields of physics and chemistry, e.g. in the form of inter-
acting particle systems or molecular graphs. Moreover, the 

relational nature of graph-structured data allows one to iden-

tify and characterize topological associations between entities 

in large real-world networks (e.g. social networks).
In scientific domains such as computational biology and 

chemistry, graphs are often used to represent the 3D structures 
of molecules (Ma et al. 2022), chemical compounds (Wu et al. 

2022), and even large biomolecules such as proteins (Karimi 

et al. 2019, Baldassarre et al. 2021, Xia and Ku 2021, 

Morehead et al. 2022b, Wang et al. 2023a). Underlying many 
of these successful examples of graph representations are graph 

neural networks (GNNs), a class of machine learning algo-

rithms specialized in processing irregularly-structured input 

data such as graphs. Careful applications of GNNs in scientific 
domains have considered the physical symmetries present in 

many scientific data and have leveraged such symmetries to de-

sign new attention-based neural network architectures 
(Jumper et al. 2021, Morehead et al. 2022a).

Throughout their development, geometric deep learning 

methods have expanded to incorporate within them 

equivariance to various geometric symmetry groups to en-
hance their generalization capabilities and adversarial robust-
ness. Methods such as group-equivariant CNNs (Cohen and 
Welling 2016), Tensor Field Networks (Thomas et al. 2018), 
and equivariant GNNs (Batzner et al. 2022) such as GVP- 
GNNs (Jing et al. 2020, 2021) and ClofNet (Du et al. 2022) 
have paved the way for the development of future deep learn-
ing models that respect physical symmetries present in 3D 
data (e.g. rotation equivariance with respect to input 
data symmetries).

Within this spirit, in this work, we introduce a new geo-
metric GNN model, GCPNET, that is equivariant to the group 
of 3D rotations and translations (i.e. SE(3), the special 
Euclidean group, as studied in previous works (Fuchs et al. 
2021)) and, uniquely, that simultaneously guarantees chiral-
ity sensitivity and geometric (vector) information complete-
ness following graph message-passing on 3D point clouds. 
We demonstrate its expressiveness and flexibility for model-
ing physical systems through rigorous experiments for dis-
tinct molecular-geometric tasks. In detail, we provide the 
following contributions:

ÿ In contrast to prior geometric networks for molecules that 
are insensitive to their chemical chirality (Jing et al. 2020, 
2021), cannot detect global physical forces acting upon 
each atom (Wang et al. 2023b), or do not directly learn 
geometric features (Du et al. 2022), we present the first 
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geometric GNN architecture with the following desirable 
properties for learning from 3D molecules as described in 
Supplementary Table S11: (1) the ability to directly pre-
dict translation and rotation-invariant scalar properties 
and rotation-equivariant vector-valued quantities for 
nodes and edges, respectively; (2) a rotation and 
translation-equivariant method for iteratively updating 
node positions in 3D space; (3) sensitivity to molecular 
chirality; and (4) a means by which to learn from and ac-
count for the global forces acting upon the atoms within 
its inputs. 

ÿ We establish new state-of-the-art results for four distinct 
molecular-geometric representation learning tasks—molecu-
lar chirality recognition, protein–ligand binding affinity 
(LBA) prediction, protein structure ranking (PSR), and 
Newtonian many-body-systems modeling—where model 
predictions vary from analyzing individual nodes to summa-
rizing entire graph inputs. GCPNET’s performance for these 
tasks is statistically significant and surpasses that of previous 
state-of-the-art machine learning methods for 3D molecules. 

2 Methods

2.1 Preliminaries
2.1.1 Overview of the problem setting

We represent a 3D molecular structure (e.g. a protein or small 
molecule) as a 3D k-nearest neighbors (k-NN) graph G ¼
ðV; EÞ with V and E representing the graph’s set of nodes and 
set of edges, respectively, and N ¼ jVj and E ¼ jEj represent-
ing the number of nodes and the number of edges in the 
graph, respectively. In addition, X 2 RNÿ3 represents the re-
spective Cartesian coordinates for each node. We then design 
E(3)-invariant (i.e. 3D rotation, reflection, and translation- 
invariant) node features H 2 RNÿh and edge features E 2
REÿe as well as O(3)-equivariant (3D rotation and reflection- 
equivariant) node features v 2 RNÿðmÿ3Þ and edge features 
n 2 REÿðxÿ3Þ, respectively.

Upon constructing such features, we apply several layers of 
graph message-passing using a neural network U (which later 
on we refer to as GCPNET) that updates node and edge fea-
tures using invariant and equivariant representations for the 
corresponding feature types. Importantly, U guarantees, by 
design, SE(3) equivariance with respect to its vector-valued 
input coordinates and features (i.e. xi 2 X; vi 2 v, and nij 2 n) 
and SE(3)-invariance regarding its scalar features (i.e. hi 2 H 
and eij 2 E). In addition to SE(3) equivariance, U’s scalar 
graph representations achieve geometric self-consistency and 
geometric completeness for the 3D structure of the input mo-
lecular graph G as formalized in the definitions below, where 
w0 represents an updated feature. 

Definition 1 (SE(3) Equivariance). 
Given ðH0;E0;X0; v0; n0Þ ¼ UðH;E;X; v; nÞ, we have 
ðH0;E0;QX 0Tþ g;Qv 0T; Qn0

T

Þ ¼ UðH;E; QXT þ g;
QvT;QnTÞ, 8Q 2 SOð3Þ; 8g 2 R3ÿ1.  

Definition 2 (Geometric Self-Consistency). 
Given a pair of molecular graphs G1 and G2, with 
X1 ¼ fx1

i gi¼1;...;N and X2 ¼ fx2
i gi¼1;...;N, respectively, a 

geometric representation UðH;EÞ ¼ UðGÞ is 
considered geometrically self-consistent if 

UðG1Þ ¼ UðG2Þ () 9Q 2 SOð3Þ;9g 2 R3ÿ1, for 
i ¼ 1; . . . ; n;X1T

i ¼ QX2T

i þ g (Wang et al. 2022).  

Definition 3 (Geometric Completeness). 
Given a positional pair of nodes ðxt

i ;x
t
jÞ in a 3D graph 

G, with vectors at
ij 2 R

1ÿ3; bt
ij 2 R

1ÿ3, and ct
ij 2 R

1ÿ3 

derived from ðxt
i ;x

t
jÞ, a local geometric representation 

F
t
ij ¼ ða

t
ij; b

t
ij; c

t
ijÞ 2 R

3ÿ3 is considered geometrically 
complete if F t

ij is non-degenerate, thereby forming a 
local orthonormal basis located at the tangent space of 
xt

i Du et al. (2022).   

2.1.1.1 GCPNet model architecture

To satisfy the geometric constraints described in Section 2.1.1, 
we introduce our architecture for U satisfying Definitions (1), 
(2), and (3) which we refer to as the Geometry-Complete SE(3)- 
Equivariant Perceptron Network (GCPNET). We illustrate the 
GCPNET algorithm in Fig. 1 and outline it in Algorithm 1. 
Subsequently, we expand on our definition for GCP and 
GCPConv in Section in the main text and Supplementary 
Appendix A, respectively, while further illustrating GCP 
in Fig. 2.

We can then prove the following three propositions (see 
Supplementary Appendix B for a more detailed description of 
the GCPNET algorithm and its corresponding prop-
erty proofs).

Proposition 1. GCPNETS are SE(3)-equivariant 
!Def. (1).  

Proposition 2. GCPNETS are geometry self-consistent 
!Def. (2).  

Proposition 3. GCPNETS are geometry-complete 
!Def. (3).   

2.1.2 Geometry-Complete perceptron module

As illustrated in Fig. 2, GCPNET represents the features for 
nodes within an input graph as a tuple ðh; vÞ to distinguish 
scalar features ðh 2 RhÞ from vector-valued features 
ðv 2 Rmÿ3Þ. Similarly, GCPNET represents an input graph’s 
edge features as a tuple ðe; nÞ to differentiate scalar features 
ðe 2 ReÞ from vector-valued features ðn 2 Rxÿ3Þ. For concise-
ness, we will subsequently refer to both node and edge fea-
ture tuples as (s, V). We then define GCPF ij;kðÿÞ to represent 
the GCP encoding process, where k represents a downscaling 
hyperparameter (e.g. 3) and F ij 2 R3ÿ3 denotes the SO(3)- 
equivariant (i.e. 3D rotation-equivariant) frames constructed 
using the Localize operation (i.e. the EquiFrame operation of 
Du et al. (2022)) in Algorithm 1. Specifically, the frame 

encodings are defined as F t
ij ¼ ða

t
ij;b

t
ij; c

t
ijÞ, with at

ij ¼

xt
i
−xt

j

jjxt
i
−xt

j
jj ;b

t
ij ¼

xt
i
ÿxt

j

jjxt
i
ÿxt

j
jj ; and ct

ij ¼ at
ij ÿ bt

ij, respectively. In 

Supplementary Appendix B, we discuss how these frame 
encodings are direction information-complete for edges, 
allowing networks incorporating them to effectively detect 
and leverage for downstream tasks the force fields present 
within real-world many-body systems such as small mole-
cules and proteins.
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Expressing Vector Representations with V. The GCP mod-
ule then expresses vector representations V as follows. The 
features V with representation depth r are downscaled by k. 

z ¼ fvwdz
jwdz

2 Rrÿðr=kÞg (1) 

Additionally, V is separately downscaled in preparation to 
be subsequently embedded as direction-sensitive edge sca-
lar features. 

Vs ¼ fvwds
jwds

2 Rrÿð3ÿ3Þg (2) 

Deriving Scalar Representations s0. To update scalar repre-
sentations, the GCP module, in the following manner, derives 

two invariant sources of information from V and combines 
them with s: 

qij ¼ ðVs ÿ F ijÞ 2 R9 (3) 

q ¼

1

jN ðiÞj

X

j2N ðiÞ

qij if Vs representsnodes

qij if Vs representsedges

8

>

<

>

:

(4) 

sðs;q;zÞ ¼ s [ q [ jjzjj2 (5) 

where ÿ denotes the inner product, NðÿÞ represents the neigh-
bors of a node, and jj ÿ jj2 denotes the L2 norm. Then, denote 

Figure 1. A framework overview for our proposed Geometry-Complete Perceptron Network (GCPNET). Our framework consists of (i) a graph (topology) 
de昀椀nition process, (ii) a GCPNET-based graph neural network for 3D molecular representation learning, and (iii) demonstrated application areas for 
GCPNET. Zoom in for the best viewing experience.

Figure 2. An overview of our proposed Geometry-Complete Perceptron (GCP) module. The GCP module introduces node and edge-centric encodings of 
3D frames as input features that are used to directly update both scalar and vector-valued features with geometric information-completeness guarantees 
as well as chirality sensitivity.
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t as the representation depth of s, and let sðs;q;zÞ 2 Rtþ9þðr=kÞ

with representation depth ðt þ 9þ ðr=kÞÞ be projected to s0

with representation depth t0: 

sv ¼ fsðs;q;zÞws þ bsjws 2 Rðtþ9þðr=kÞÞÿt0g (6) 

s0 ¼ rsðsvÞ (7) 

Note that embedding geometric frames F ij as qij in 
Equation (3) ultimately enables GCPNET to iteratively learn 
chirality-sensitive and global force-aware representations of 
each 3D network input. Moreover, Equation (4) allows 
GCPNET to encode local geometric substructures for each 
node, where the theoretical importance of such network be-
havior is discussed in detail by Du et al. (2022).

Deriving Vector Representations V0. The GCP module 
then concludes by updating vector representations as follows: 

Vu ¼ fzwuz
jwuz

2 Rðr=kÞÿr0g (8) 

V0 ¼ fVu ÿ rgðr
þðsvÞwg þ bgÞjwg 2 Rt0ÿr0g (9) 

where ÿ represents element-wise multiplication and the gat-
ing function rg is applied row-wise to preserve SO(3) equivar-
iance within V0.

Conceptually, the GCP module is autoregressively applied 
to tuples (s, V) a total of x times to derive rich scalar and 
vector-valued features. The module does so by blending both 
feature types iteratively with the 3D direction and informa-
tion completeness guarantees provided by geometric frame 
encodings F ij. We note that this model design runs in con-
trast with prior GNNs for physical systems such as GVP- 
GNNs (Jing et al. 2020, 2021) and ClofNet (Du et al. 2022), 
which are either insensitive to chemical chirality and global 
atomic forces or do not directly learn geometric features for 
downstream prediction tasks, making the proposed GCP 
module well suited for learning directly from 3D molecu-
lar graphs.

2.2 Learning from 3D Graphs with GCPNet
In this section, we propose a flexible manner in which to per-
form 3D graph convolution with our proposed GCP module, 
as illustrated in Fig. 1 and employed in Algorithm 1. For in-
terested readers, in Supplementary Appendix B, we provide 
an expanded derivation and description of how to perform 
3D graph convolution with GCPNET.

2.2.1 The GCPNet algorithm

In this section, we describe our overall 3D graph convolution 
learning algorithm driven by GCPNET (Algorithm 1). We also 
discuss the rationale behind our design decisions for GCPNET 

and provide examples of use cases in which one might apply 
GCPNET for specific learning tasks.

On Line 2 of Algorithm 1, the Centralize operation 
removes the center of mass from each node position in the in-
put graph to ensure that such positions are subsequently 3D 
translation-invariant.

Thereafter, following Du et al. (2022), the Localize opera-
tion on Line 3 crafts translation-invariant and SO(3)- 
equivariant frame encodings F t

ij ¼ ða
t
ij;b

t
ij; c

t
ijÞ. As described 

in more detail in Supplementary Appendix B, these frame 

encodings are chirality-sensitive and direction information- 
complete for edges, imbuing networks that incorporate them 
with the ability to more easily detect force field interactions 
present in many real-world atomic systems, as we demon-
strate through corresponding experiments in Section 3.

Before applying any geometry-complete graph convolution 
layers, on Line 4 we use GCPe to embed our input node and 
edge features into scalar and vector-valued values, respec-
tively, while incorporating geometric frame information. 
Subsequently, in Lines 5–6, each layer of geometry-complete 
graph convolution is performed autoregressively via 
GCPConvl starting from these initial node and edge feature 
embeddings, all while maintaining information flow originat-
ing from the geometric frames F ij.

On Lines 8 through 12, we finalize our procedure with 
which to update in an SE(3)-equivariant manner the position 
of each node in an input 3D graph. In particular, we update 
node positions by residually adding learned vector-valued 
node features (vl

vi
) to the node positions produced by the pre-

vious GCPConv layer (l−1). As shown in Supplementary 
Appendix B, such updates are initially SO(3)-equivariant, 
and on Line 10 we ensure these updates also become 3D 
translation-equivariant by adding back to each node position 
the input graph’s original center of mass via the Decentralize 
operation. In total, this procedure produces SE(3)- 
equivariant updates to node positions. Additionally, for mod-
els that update node positions, we note that Line 9 updates 
frame encodings F ij using the model’s final predictions for 
node positions to provide more information-rich feature pro-
jections on Line 14 via GCPp to conclude the forward pass 
of GCPNET.

2.2.2 Network utilities

In summary, GCPNET receives an input 3D graph G with 
node positions x, scalar node and edge features, h and e, as 
well as vector-valued node and edge features, v and n. The 
model is then capable of e.g. (1) predicting scalar node, edge, 
or graph-level properties while maintaining SE(3) invariance; 
(2) estimating vector-valued node, edge, or graph-level prop-
erties while ensuring SE(3) equivariance; or (3) updating 
node positions in an SE(3)-equivariant manner.

Algorithm 1. GCPNET

Require: ðhi 2 H; vi 2 vÞ; ðeij 2 E; nij 2 nÞ; xi 2 X, graph G
1: Initialize X0 ¼ XC  CentralizeðXÞ
2: F ij ¼ Localizeðxi 2 X0; xj 2 X0Þ

3: Project ðh0
i ; v0

i Þ; ðe
0
ij ; n0

ij Þ  GCPeððhi ; viÞ; ðeij ; nijÞ; F ijÞ

4: for l¼1 to L do

5:   ðhl
i ; vl

iÞ; xl
i ¼ GCPConvlððhl−1

i ; vl−1
i Þ; ðe

0
ij ; n0

ij Þ; xl−1
i ; F ijÞ

6: end for

7: if Updating Node Positions then

8:   F
L
ij ¼ Localizeðxi 2 Xl ; xj 2 XlÞ

9:   Finalize ðXLÞ  DecentralizeðXlÞ

10: else

11:   xL
i ¼ x0

i

12: end if

13: Project ðhL
i ; vL

i Þ; ðe
L
ij ; nL

ij Þ  GCPpððhl
i ; vl

iÞ; ðe
0
ij ; n0

ij Þ; F
L
ij Þ

Ensure: ðhL
i ; vL

i Þ; ðe
L
ij ; nL

ij Þ; xL
i
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3 Results

In this work, we consider four distinct modeling tasks com-
prised of seven datasets in total, where implementation 
details are discussed in Supplementary Appendix D. We note 
that additional experiments are included in Supplementary 
Appendix C for interested readers.

3.1 Molecular chirality detection
3.1.1 Assessing model sensitivity to molecular chirality

Molecular chirality is an essential geometric property of 3D 
molecules for models to consider when making predictions 
for downstream tasks. Simply put, this property describes the 
“handedness” of 3D molecules, in that, certain molecules 
cannot be geometrically superimposed upon a mirror reflec-
tion of themselves using only 3D rotation and translation 
operations. This subsequently poses a key challenge for ma-
chine learning models: Can such predictive models effectively 
sensitize their predictions to the effects of molecular chirality 
such that, under 3D reflections, their molecular feature repre-
sentations change accordingly? To answer this question using 
modern machine learning methods, we adopt the rectus/sinis-
ter (RS) 3D molecular dataset of Adams et al. (2021) (i.e. a 
70/15/15 train/validation/test split of PubChem3D (Bolton 
et al. 2011) where conformers correspond to the same 2D 
graphs in the same partition to prevent data leakage between 
splits) to evaluate the ability of state-of-the-art machine 
learning methods to distinguish between right-handed and 
left-handed versions of a 3D molecule. In addition, we care-
fully follow their experimental setup including dataset split-
ting; evaluation criteria; scalar feature sets of atom types, 
degrees, charges, numbers of hydrogens, hybridizations, and 
bond types and distances; and vector feature sets of atom ori-
entations and pairwise bond displacements, respectively), 
where we evaluate each method’s classification accuracy in 
distinguishing between right and left-handed versions of a 
molecule. Baseline methods for this task include state-of-the- 
art invariant neural networks (INNs) and equivariant neural 
networks (ENNs), where we list each method’s latest results 
for this task as reported in Schneuing et al. (2022).

3.1.2 Contribution of frame embeddings for chirality 
sensitivity

Table 1 shows that GCPNET is more accurately able to detect 
the effects of molecular chirality compared to all other base-
line methods (including all other SE(3)-equivariant models), 
even without performing any hyperparameter tuning. In par-
ticular, GCPNET outperforms ChIRo (Adams et al. 2021), a 
GNN specifically designed to detect different forms of chiral-
ity in 3D molecules. Moreover, when we ablate GCPNET’s 
embeddings of local geometric frames, we find that this E(3)- 

equivariant (i.e. scalar-wise 3D rotation and reflection- 
invariant) version of GCPNET is no longer able to solve this 
important molecular recognition task, resulting in prediction 
accuracies at parity with random guessing. These two previ-
ous observations highlight that (1) GCPNET’s local frame 
embeddings are critical components of the model’s sensitivity 
to molecular chirality and that, (2) using such frame embed-
dings, GCPNET can flexibly learn representations of 3D mole-
cules that are more predictive of chemical chirality compared 
to hand-crafted methods for such tasks. Moreover, these 
results highlight that, in order to effectively account for the 
effects of chirality on molecular structures, a method must be 
SE(3)-equivariant such that it employs SE(3)-invariant (and, 
thereby, reflection-varying) features for its scalar downstream 
predictions.

3.2 Protein-Ligand binding affinity prediction
3.2.1 Evaluating predictions of protein–ligand 
binding affinity

Protein–LBA prediction challenges methods to estimate the 
binding affinity of a protein–ligand complex as a single scalar 
value (Townshend et al. 2020). Accurately estimating such 
values in a matter of seconds using a machine learning model 
can provide invaluable and timely information in the typical 
drug discovery pipeline (Rezaei et al. 2020). The correspond-
ing dataset for this SE(3)-invariant task is derived from the 
ATOM3D dataset (Townshend et al. 2020) and is comprised 
of 4463 nonredundant protein–ligand complexes, where 
cross-validation splits are derived using a strict 30% sequence 
identity cutoff. Results are reported in terms of the root mean 
squared error (RMSE), Pearson’s correlation (p), and 
Spearman’s correlation (Sp) between a method’s predictions 
on the test dataset and the corresponding ground-truth bind-
ing affinity values represented as pK ¼ − log 10ðKÞ, where K 
is the binding affinity measured in Molar units. Baseline 
comparison methods for this task include a variety of state- 
of-the-art CNNs, recurrent neural networks (RNNs), GNNs, 
and ENNs, with additional baselines utilizing explicit 
protein-ligand interaction information listed in 
Supplementary Table S2. Using the same dataset and dataset 
splits, results for these methods are reported as in Wang et al. 
(2023b), Aykent and Xia (2022), and Liu et al. (2023), re-
spectively. Note, however, that due to their lack of official 
publicly-available PyTorch Geometric (Fey and Lenssen 
2019) source code, for this task we include simple PyTorch 
Geometric reproductions of PaiNN (Sch¬utt et al. 2021) and 
the Equivariant Transformer (ET) (Th¬olke and De Fabritiis 
2022) as additional equivariant GNN and Transformer base-
lines, respectively. Consequently, due to computational re-
source constraints, we do not perform any hyperparameter 
tuning for these two methods.

Table 1. Comparison of GCPNET with baseline methods for the RS task.

Type Method Symmetries R/S Accuracy (%) "

INN ChIRo (Schneuing et al. 2022) SE(3) 98.5
SchNet (Schneuing et al. 2022) E(3) 54.4
DimeNetþþ (Schneuing et al. 2022) E(3) 65.7
SphereNet (Schneuing et al. 2022) SE(3) 98.2

ENN EGNN (Schneuing et al. 2022) E(3) 50.4
SEGNN (Schneuing et al. 2022) SE(3) 83.4

Ours GCPNET w/o Frames E(3) 50.2 ± 0.6
GCPNET SE(3) 98.7 ± 0.1

The results are averaged over three independent runs. The top-1 (best) results for this task are in bold, and the second-best results are underlined.
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The results shown in Table 2 reveal that, in operating on 
atom-level protein-ligand graph representations, GCPNET 

achieves the best performance for predicting protein–LBA by 
a significant margin, notably improving performance across 
all metrics by 7% on average. Here, to the best of our knowl-
edge, GCPNET is one of the first methods capable of achiev-
ing Pearson and Spearman binding affinity correlations 
greater than 0.6 on the PDBBind dataset (Wang et al. 2005) 
curated as part of the ATOM3D benchmark (which employs 
a strict 30% sequence identity cutoff) (Townshend et al. 
2020). Moreover, we find that these correlations are highly 
statistically significant (i.e. Pearson’s P-value of 2e−50, 
Spearman’s P-value of 2e−49, and Kendall’s tau correlation 
of 0.432 with a P-value of 3e−45).

3.2.2 Ablating network components reveals impact of 
model design

Denoted as “GCPNET w/o … ” in Table 2, our ablation stud-
ies with GCPNET for the LBA task demonstrate the contribu-
tion of each component in its model design. In particular, our 
proposed local frame embeddings improve GCPNET’s perfor-
mance by more than 15% across all metrics (GCPNET w/o 
Frames), where we hypothesize these performance improve-
ments come from using these frame embeddings to enhance 
the model’s sensitivity to molecular chirality. Similarly, our 
proposed residual GCP module (i.e. RESGCP) improves 
GCPNET’s performance by 23% on average.

Specifically of interest is the observation that independent 
removal of scalar and vector-valued features within GCPNET 

appears to severely decrease GCPNET’s performance for LBA 
prediction. Notably, removing the model’s access to scalar- 
valued node and edge features (i.e. one-hot atom types and 
edge distance embeddings, respectively) degrades perfor-
mance by 70% on average, while not allowing the model to 

access vector-valued node and edge features (i.e. sequence- 
based orientation vectors and pairwise atom displacement 
vectors, respectively) reduces performance by 42% on aver-
age. One possible explanation for these observations is that 
both types of feature representations the baseline GCPNET 

model learns (i.e. scalars and vectors) are useful for under-
standing protein-ligand interactions. In addition, our ablation 
results in Table 2 suggest that our proposed frame embed-
dings and RESGCP module are complementary to these scalar 
and vector-valued features in the context of predicting the 
binding affinity of a protein-ligand complex.

3.3 Protein model quality assessment
3.3.1 Evaluating ranking predictions for protein 
structure decoys

Protein structure ranking requires methods to predict the 
overall quality of a 3D protein structure when comparing it 
to a reference (i.e. native) protein structure (Townshend et al. 
2020). The quality of a protein structure is reported as a sin-
gle scalar value representing a method’s predicted global dis-
tance test (GDT_TS) score (Zemla 2003) between the 
provided decoy structure and the native structure. Such infor-
mation is crucial in drug discovery efforts when one is tasked 
with designing a drug (e.g. ligand) that should bind to a par-
ticular protein target, notably when such targets have not yet 
had their 3D structures experimentally determined and have 
rather had them predicted computationally using methods 
such as AlphaFold 2 (Jumper et al. 2021). The respective 
dataset for this SE(3)-invariant task is also derived from the 
ATOM3D dataset (Townshend et al. 2020) and is comprised 
of 40 950 decoy structures corresponding to 649 total tar-
gets, where cross-validation splits are created according to a 
target’s release year in the Critical Assessment of Techniques 
for Protein Structure Prediction (CASP) competition 

Table 2. Comparison of GCPNET with baseline methods for the LBA task.

Type Method RMSE # p " Sp "

CNN 3DCNN (Wang et al. 2023b) 1.416 ± 0.021 0.550 0.553
DeepDTA (Wang et al. 2023b) 1.866 ± 0.080 0.472 0.471
DeepAffinity (Aykent and Xia 2022) 1.893 ± 0.650 0.415 0.426

RNN Bepler and Berger (Wang et al. 2023b) 1.985 ± 0.006 0.165 0.152
TAPE (Wang et al. 2023b) 1.890 ± 0.035 0.338 0.286
ProtTrans (Wang et al. 2023b) 1.544 ± 0.015 0.438 0.434

GNN GCN (Wang et al. 2023b) 1.601 ± 0.048 0.545 0.533
DGAT (Aykent and Xia 2022) 1.719 ± 0.047 0.464 0.472
DGIN (Aykent and Xia 2022) 1.765 ± 0.076 0.426 0.432
DGAT-GCN (Aykent and Xia 2022) 1.550 ± 0.017 0.498 0.496
MaSIF (Wang et al. 2023b) 1.484 ± 0.018 0.467 0.455
IEConv (Wang et al. 2023b) 1.554 ± 0.016 0.414 0.428
Holoprot-Full Surface (Wang et al. 2023b) 1.464 ± 0.006 0.509 0.500
Holoprot-Superpixel (Wang et al. 2023b) 1.491 ± 0.004 0.491 0.482
ProNet-Amino-Acid (Wang et al. 2023b) 1.455 ± 0.009 0.536 0.526
ProNet-Backbone (Wang et al. 2023b) 1.458 ± 0.003 0.546 0.550
ProNet-All-Atom (Wang et al. 2023b) 1.463 ± 0.001 0.551 0.551
GeoSSL-DDM (Liu et al. 2023) 1.451 ± 0.030 0.577 0.572

ENN Cormorant (Aykent and Xia 2022) 1.568 ± 0.012 0.389 0.408
PaiNN 1.698 ± 0.050 0.366 0.358
ET 1.490 ± 0.019 0.564 0.532
GVP (Aykent and Xia 2022) 1.594 ± 0.073 0.434 0.432
GBP (Aykent and Xia 2022) 1.405 ± 0.009 0.561 0.557

Ours GCPNET w/o Frames 1.485 ± 0.015 0.521 0.504
GCPNET w/o RESGCP 1.514 ± 0.008 0.471 0.468
GCPNET w/o Scalars 1.685 ± 0.000 0.050 0.000
GCPNET w/o Vectors 1.727 ± 0.005 0.270 0.304
GCPNET 1.352 ± 0.003 0.608 0.607

The results are averaged over three independent runs. The top-1 (best) results for this task are in bold, and the second-best results are underlined.
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(Kryshtafovych et al. 2021). Results are reported in terms of 
the Pearson’s correlation (p), Spearman’s correlation (Sp), 
and Kendall’s tau correlation (K) between a method’s predic-
tions on the test dataset and the corresponding ground-truth 
GDT_TS values, where local results are averaged across pre-
dictions for individual targets and global results are averaged 
directly across all targets. Baseline comparison methods for 
this task include a composition of state-of-the-art CNNs, 
GNNs, and ENNs (including our reproductions of PaiNN 
and ET), as well as previous statistics-based methods. Using 
the same dataset and dataset splits, results for these methods 
are reported as in Aykent and Xia (2022) and Townshend 
et al. (2020), respectively.

Conveying a similar message to that in Table 2, the results 
in Table 3 demonstrate that, in operating on atom-level 
protein graphs, GCPNET performs best against all other state- 
of-the-art models for the task of estimating a 3D protein struc-
ture’s quality (i.e. PSR). In this setting, GCPNET outperforms 
all other methods across all local and global metrics by 2.5% 
on average. Once again, GCPNET’s predictions are highly sta-
tistically significant, this time with Pearson, Spearman, and 
Kendall tau P-values all below 1e−50, respectively.

3.3.2 Identifying components for effective protein 
structure ranking

Our ablation studies with GCPNET, in the context of PSR, 
once more reveal that the design of our local frames, RESGCP 
module, and scalar and vector feature channels are all benefi-
cial for enhancing GCPNet’s ability to analyze a given 3D 
graph input. Here, in sensitizing the model to chemical chiral-
ity, our local frame embeddings improve GCPNET’s perfor-
mance for PSR by 4% on average. Similarly, our RESGCP 
module improves the model’s performance by 5%. 
Interestingly, without access to scalar-valued node and edge 
features (i.e. the same as those used for the LBA task), 
GCPNET is unable to produce valid predictions for the PSR 
test dataset due to what appears to be a phenomenon of 
vector-wise latent variable collapse (Dieng et al. 2019). This 
finding suggests that, for the PSR task, the baseline GCPNET 

model relies strongly on the scalar-valued representations it 
produces. Lastly, including vector-valued node and edge fea-
tures (i.e. the same as those used for the LBA task) within 
GCPNET improves the model’s performance for the PSR task 
by 9%.

3.4 Future position forecasting for newtonian 
particle systems
3.4.1 Evaluating trajectory predictions for Newtonian 
many-body systems

Newtonian many-body systems modeling (NMS) asks meth-
ods to forecast the future positions of particles in many-body 
systems of various sizes (Du et al. 2022), bridging the gap be-
tween the domains of machine learning and physics. In our 
experimental results for the NMS task, the four systems (i.e. 
datasets) on which we evaluate each method are comprised 
of increasingly more nodes and are influenced by force fields 
of increasingly complex directional origins for which to 
model, namely electrostatic force fields for 5-body (ES(5)) 
and 20-body (ES(20)) systems as well as for 20-body systems 
under the influence of an additional gravity field (GþES(20)) 
and Lorentz-like force field (LþES(20)), respectively. The 
four datasets for this SE(3)-equivariant task were generated 
using the descriptions and source code of Du et al. (2022), 
where each dataset is comprised of 7000 total trajectories. 
Results are reported in terms of the mean squared error 
(MSE) between a method’s node position predictions on the 
test dataset and the corresponding ground-truth node posi-
tions after 1000 timesteps. Baseline comparison methods for 
this task include a collection of state-of-the-art GNNs, 
ENNs, and Transformers (including our reproductions of 
PaiNN and ET), where we list each method’s latest results for 
this task as reported in Du et al. (2022).

The results in Table 4 show that GCPNET achieves the low-
est MSE averaged across all four NMS datasets, improving 
upon the state-of-the-art MSE for trajectory predictions in this 
task by 19% on average. In particular, GCPNET achieves the 
best results for two of the four NMS datasets considered in 
this work, where these two datasets are respectively the first 

Table 3. Comparison of GCPNET with baseline methods for the PSR task.

Local Global

Method p " Sp " K " p " Sp " K "

3DCNN (Aykent and Xia 2022) 0.557 0.431 0.308 0.780 0.789 0.592
GCN (Townshend et al. 2020) 0.500 0.411 0.289 0.747 0.750 0.547
ProQ3D (Aykent and Xia 2022) 0.444 0.432 0.304 0.796 0.772 0.594
VoroMQA (Aykent and Xia 2022) 0.412 0.419 0.291 0.688 0.651 0.505
RWplus (Aykent and Xia 2022) 0.192 0.167 0.137 0.033 0.056 0.011
SBROD (Aykent and Xia 2022) 0.431 0.413 0.291 0.551 0.569 0.393
Ornate (Aykent and Xia 2022) 0.393 0.371 0.256 0.625 0.669 0.481
DimeNet (Aykent and Xia 2022) 0.302 0.351 0.285 0.614 0.625 0.431
GraphQA (Aykent and Xia 2022) 0.357 0.379 0.251 0.821 0.820 0.618
PaiNN 0.518 0.444 0.315 0.773 0.813 0.611
ET 0.564 0.466 0.330 0.813 0.814 0.611
GVP (Aykent and Xia 2022) 0.581 0.462 0.331 0.805 0.811 0.616
GBP (Aykent and Xia 2022) 0.612 0.517 0.372 0.856 0.853 0.656
GCPNET w/o Frames 0.588 0.512 0.367 0.854 0.851 0.657
GCPNET w/o RESGCP 0.576 0.509 0.365 0.852 0.847 0.648
GCPNET w/o Scalars N/A N/A N/A N/A N/A N/A
GCPNET w/o Vectors 0.571 0.497 0.356 0.802 0.804 0.608
GCPNET 0.616 0.534 0.385 0.871 0.869 0.676

Local metrics are averaged across target-aggregated metrics. The best results for this task are in bold, and the second-best results are underlined. N/A denotes 
a metric that could not be computed.
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and third most difficult NMS datasets for methods to model. 
On the two remaining datasets, GCPNET matches the perfor-
mance of prior state-of-the-art methods such as ClofNet (Du 
et al. 2022). Moreover, across all four datasets, GCPNET’s tra-
jectory predictions yield an RMSE of 0.0963 and achieve 
Pearson, Spearman, and Kendall’s tau correlations of 0.999, 
0.999, and 0.981, respectively, where all such correlation val-
ues are highly statistically significant (i.e. P-values < 1e−50). 
Note that, to calculate these correlation values, we score 
GCPNET’s vector-valued predictions independently for each 
coordinate axis and then average the resulting metrics. Also 
note that we only compare methods such as ClofNet to 
GCPNET in the context of the NMS task, as e.g. ClofNet is 
specifically designed always to predict new 3D coordinates for 
each of its 3D graph inputs, with coordinate updates being the 
primary predictive target for the NMS dataset but with other 
tasks not targeting updated coordinates.

3.4.2 Analyzing components for successful trajectory 
forecasting

Once again, our ablation studies with GCPNET demonstrate 
the importance of GCPNET’s local frame embeddings, scalar 
node and edge features (i.e. invariant velocity encodings and 
edge type and distance embeddings, respectively), and RESGCP 
module. Here, we note that we were not able to include an ab-
lation study on GCPNET’s vector-valued node and edge fea-
tures (i.e. velocity and orientation encodings as well as 
pairwise atom displacements, respectively) since they are di-
rectly used to predict node position displacements for trajec-
tory forecasting. Table 4 shows that each model component 
synergistically enables GCPNET to achieve new state-of-the-art 
results for the NMS task. In enabling the model to detect 
global forces, our proposed local frame embeddings improve 
GCPNET’s ability to learn many-body system dynamics by 6% 
on average across all dataset contexts. Specifically interesting 
to note is that these local frame embeddings improve the mod-
el’s trajectory predictions within the most complex dataset 
context (i.e. LþES(20)) by 14%, suggesting that such frame 
embeddings improve GCPNET’s ability to learn many-body 

system dynamics even in the presence of complex global force 

fields. Furthermore, GCPNET’s RESGCP module and scalar- 

valued features improve the model’s performance for modeling 

many-body systems by 35% and 57%, respectively.
Across all tasks studied in this work, GCPNET improves 

upon the overall performance of all previous methods. Our 

experiments demonstrate this for both node-level (e.g. NMS) 

and graph-level (e.g. LBA) prediction tasks, verifying GCPNET’s 

ability to encode useful information for both scales of granular-

ity. Furthermore, we have demonstrated the importance of each 

model component within GCPNET, showing how these compo-

nents are complementary to each other in the context of repre-

sentation learning over 3D molecular data. Lastly, in 

Supplementary Table S10, we report the run time of GCPNET 

on each task’s test dataset to enable future methods to directly 

compare their computational run time to that of GCPNET.

4 Conclusion

In this work, we introduced GCPNET, a state-of-the-art GNN 

for 3D molecular graph representation learning. We have 

demonstrated its utility through several benchmark studies. 

In future work, we aim to develop extensions of GCPNET 

that increase its geometric expressiveness as well as explore 

applications of GCPNET for generative modeling of molecu-

lar structures.
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Table 4. Comparison of GCPNET with baseline methods for the 
NMS task.

Method ES(5) ES(20) GþES(20) LþES(20) Average

GNN (Du et al. 2022) 0.0131 0.0720 0.0721 0.0908 0.0620
TFN (Du et al. 2022) 0.0236 0.0794 0.0845 0.1243 0.0780
SE(3)-Transformer 

(Du et al. 2022)
0.0329 0.1349 0.1000 0.1438 0.1029

Radial Field (Du 
et al. 2022)

0.0207 0.0377 0.0399 0.0779 0.0441

PaiNN 0.0158 N/A N/A N/A N/A
ET 0.1653 0.1788 0.2122 0.2989 0.2138
EGNN (Du 

et al. 2022)
0.0079 0.0128 0.0118 0.0368 0.0173

ClofNet (Du 
et al. 2022)

0.0065 0.0073 0.0072 0.0251 0.0115

GCPNET w/o Frames 0.0067 0.0074 0.0074 0.0200 0.0103
GCPNET w/o RESGCP 0.0090 0.0135 0.0099 0.0278 0.0150
GCPNET w/o Scalars 0.0119 0.0173 0.0170 0.0437 0.0225
GCPNET 0.0070 0.0071 0.0073 0.0173 0.0097

Results are reported in terms of the MSE for future position prediction over 
four test datasets of increasing modeling difficulty, graph sizes, and 
composed force field complexities. The final column reports each method’s 
MSE averaged across all four test datasets. The best results for this task are 
in bold, and the second-best results are underlined. N/A denotes an 
experiment that could not be performed due to a method’s numerical 
instability.
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