Bioinformatics, 2024, 40(2), btae087
https://doi.org/10.1093/bioinformatics/btae087
Advance Access Publication Date: 19 February 2024

Original Paper

OXFORD

Structural bioinformatics

Geometry-complete perceptron networks for 3D

molecular graphs

Alex Morehead ® '* and Jianlin Cheng ©® '

"Electrical Engineering & Computer Science, University of Missouri-Columbia, Columbia, MO 65211, United States

*Corresponding author. Department of Electrical Engineering & Computer Science, University of Missouri-Columbia, 201 Naka Hall, Columbia, MO 65211,
United States. E-mail: acmwhb@missouri.edu

Associate Editor: Alfonso Valencia

Abstract

Motivation: The field of geometric deep learning has recently had a profound impact on several scientific domains such as protein structure
prediction and design, leading to methodological advancements within and outside of the realm of traditional machine learning. Within this
spirit, in this work, we introduce GCPNET, a new chirality-aware SE(3)-equivariant graph neural network designed for representation learning of
3D biomolecular graphs. We show that GCPNET, unlike previous representation learning methods for 3D biomolecules, is widely applicable to a
variety of invariant or equivariant node-level, edge-level, and graph-level tasks on biomolecular structures while being able to (1) learn important
chiral properties of 3D molecules and (2) detect external force fields.

Results: Across four distinct molecular-geometric tasks, we demonstrate that GCPNEeT's predictions (1) for protein-ligand binding affinity
achieve a statistically significant correlation of 0.608, more than 5%, greater than current state-of-the-art methods; (2) for protein structure rank-
ing achieve statistically significant target-local and dataset-global correlations of 0.616 and 0.871, respectively; (3) for Newtownian many-body
systems modeling achieve a task-averaged mean squared error less than 0.01, more than 15% better than current methods; and (4) for molecu-
lar chirality recognition achieve a state-of-the-art prediction accuracy of 98.7%, better than any other machine learning method to date.

Availability and implementation: The source code, data, and instructions to train new models or reproduce our results are freely available at

https://github.com/BioinfoMachinelLearning/GCPNet.

1 Introduction

Over the last several years, the field of deep learning has pio-
neered many new methods designed to process graph-
structured inputs. Being a ubiquitous form of information,
graph-structured data arises from numerous sources such as
the fields of physics and chemistry, e.g. in the form of inter-
acting particle systems or molecular graphs. Moreover, the
relational nature of graph-structured data allows one to iden-
tify and characterize topological associations between entities
in large real-world networks (e.g. social networks).

In scientific domains such as computational biology and
chemistry, graphs are often used to represent the 3D structures
of molecules (Ma et al. 2022), chemical compounds (Wu et al.
2022), and even large biomolecules such as proteins (Karimi
et al. 2019, Baldassarre et al. 2021, Xia and Ku 2021,
Morehead et al. 2022b, Wang et al. 2023a). Underlying many
of these successful examples of graph representations are graph
neural networks (GNNs), a class of machine learning algo-
rithms specialized in processing irregularly-structured input
data such as graphs. Careful applications of GNNGs in scientific
domains have considered the physical symmetries present in
many scientific data and have leveraged such symmetries to de-
signh new attention-based neural network architectures
(Jumper et al. 2021, Morehead et al. 2022a).

Throughout their development, geometric deep learning
methods have expanded to incorporate within them

equivariance to various geometric symmetry groups to en-
hance their generalization capabilities and adversarial robust-
ness. Methods such as group-equivariant CNNs (Cohen and
Welling 2016), Tensor Field Networks (Thomas et al. 2018),
and equivariant GNNs (Batzner et al. 2022) such as GVP-
GNN:ss (Jing et al. 2020, 2021) and ClofNet (Du et al. 2022)
have paved the way for the development of future deep learn-
ing models that respect physical symmetries present in 3D
data (e.g. rotation equivariance with respect to input
data symmetries).

Within this spirit, in this work, we introduce a new geo-
metric GNN model, GCPNET, that is equivariant to the group
of 3D rotations and translations (i.e. SE(3), the special
Euclidean group, as studied in previous works (Fuchs et al.
2021)) and, uniquely, that simultaneously guarantees chiral-
ity sensitivity and geometric (vector) information complete-
ness following graph message-passing on 3D point clouds.
We demonstrate its expressiveness and flexibility for model-
ing physical systems through rigorous experiments for dis-
tinct molecular-geometric tasks. In detail, we provide the
following contributions:

* In contrast to prior geometric networks for molecules that
are insensitive to their chemical chirality (Jing et al. 2020,
2021), cannot detect global physical forces acting upon
each atom (Wang et al. 2023b), or do not directly learn
geometric features (Du et al. 2022), we present the first
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geometric GNN architecture with the following desirable
properties for learning from 3D molecules as described in
Supplementary Table S11: (1) the ability to directly pre-
dict translation and rotation-invariant scalar properties
and rotation-equivariant vector-valued quantities for
nodes and edges, respectively; (2) a rotation and
translation-equivariant method for iteratively updating
node positions in 3D space; (3) sensitivity to molecular
chirality; and (4) a means by which to learn from and ac-
count for the global forces acting upon the atoms within
its inputs.

* We establish new state-of-the-art results for four distinct
molecular-geometric representation learning tasks—molecu-
lar chirality recognition, protein-ligand binding affinity
(LBA) prediction, protein structure ranking (PSR), and
Newtonian many-body-systems modeling—where model
predictions vary from analyzing individual nodes to summa-
rizing entire graph inputs. GCPNET’s performance for these
tasks is statistically significant and surpasses that of previous
state-of-the-art machine learning methods for 3D molecules.

2 Methods

2.1 Preliminaries

2.1.1 Overview of the problem setting

We represent a 3D molecular structure (e.g. a protein or small
molecule) as a 3D k-nearest neighbors (k-NN) graph G =
(V,€) with V and € representing the graph’s set of nodes and
set of edges, respectively, and N = |V| and E = || represent-
ing the number of nodes and the number of edges in the
graph, respectively. In addition, X € RN*3 represents the re-
spective Cartesian coordinates for each node. We then design
E(3)-invariant (i.e. 3D rotation, reflection, and translation-
invariant) node features H € RN*” and edge features E €
REX¢ as well as O(3)-equivariant (3D rotation and reflection-
equivariant) node features y € RN*"*3) and edge features
& e REX®3) respectively.

Upon constructing such features, we apply several layers of
graph message-passing using a neural network @ (which later
on we refer to as GCPNET) that updates node and edge fea-
tures using invariant and equivariant representations for the
corresponding feature types. Importantly, ® guarantees, by
design, SE(3) equivariance with respect to its vector-valued
input coordinates and features (i.e. x; € X, y; € y, and &; € &)
and SE(3)-invariance regarding its scalar features (i.e. b, € H
and e; € E). In addition to SE(3) equivariance, ®’s scalar
graph representations achieve geometric self-consistency and
geometric completeness for the 3D structure of the input mo-
lecular graph G as formalized in the definitions below, where
[ represents an updated feature.

Definition 1 (SE(3) Equivariance).
Given (H,E', X/, ¢/, &) = ®(H,E, X, 1, &), we have
(H,E,QX 'T+g,Qq'T, Q¢") = ®(H,E, QX" +g,
Q1",Q¢h), vQeSO(3), g € R

Definition 2 (Geometric Self-Consistency).
Given a pair of molecular graphs G; and G,, with

geometric representation ®(H,E) = ®(G) is
considered geometrically self-consistent if
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®(G') = ®(G*) < 3Q € SO(3),3g € R™", for
i=1,...,n, X =QX; +g(Wangetal. 2022).

Definition 3 (Geometric Completeness).
Given a positional pair of nodes (x7, x?) in a 3D graph
G, with vectors af,- e RS, bf-f- € R™3, ‘and cf-]- c R
derived from (x}, x!), a local geometric representation
Fy = (a}, b, ch) € R**3 is considered geometrically
complete if F is non-degenerate, thereby forming a
local orthonormal basis located at the tangent space of

xt Duetal. (2022).

2.1.1.1 GCPNet model architecture

To satisfy the geometric constraints described in Section 2.1.1,
we introduce our architecture for @ satisfying Definitions (1),
(2), and (3) which we refer to as the Geometry-Complete SE(3)-
Equivariant Perceptron Network (GCPNET). We illustrate the
GCPNET algorithm in Fig. 1 and outline it in Algorithm 1.
Subsequently, we expand on our definition for GCP and
GCPConv in Section in the main text and Supplementary
Appendix A, respectively, while further illustrating GCP
in Fig. 2.

We can then prove the following three propositions (see
Supplementary Appendix B for a more detailed description of
the GCPNET algorithm and its corresponding prop-
erty proofs).

Proposition 1. GCPNETs are SE(3)-equivariant
— Def. (1).

Proposition 2. GCPNETs are geometry self-consistent
— Def. (2).

Proposition 3. GCPNETS are geometry-complete
— Def. (3).

2.1.2 Geometry-Complete perceptron module

As illustrated in Fig. 2, GCPNET represents the features for
nodes within an input graph as a tuple (b, y) to distinguish
scalar features (b €R”) from vector-valued features
(7 € R™<3). Similarly, GCPNET represents an input graph’s
edge features as a tuple (e, &) to differentiate scalar features
(e € R®) from vector-valued features (¢ € R**%). For concise-
ness, we will subsequently refer to both node and edge fea-
ture tuples as (s, V). We then define GCPf, ;(-) to represent
the GCP encoding process, where A represents a downscaling
hyperparameter (e.g. 3) and F; € R**3 denotes the SO(3)-
equivariant (i.e. 3D rotation-equivariant) frames constructed
using the Localize operation (i.e. the EquiFrame operation of
Du et al. (2022)) in Algorithm 1. Specifically, the frame

t—=

encodings are defined as Fj; = (af, b}, c}), with aj

i Y Tij
xtxxt

xt—xt
Sy ¥ S o t— gt x bt
W= Ui = R and 6 =dj < bj,

respectively. In
Supplementary Appendix B, we discuss how these frame
encodings are direction information-complete for edges,
allowing networks incorporating them to effectively detect
and leverage for downstream tasks the force fields present
within real-world many-body systems such as small mole-

cules and proteins.
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ii. Geometry—Complete Graph Convolution with GCPNet
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Figure 1. A framework overview for our proposed Geometry-Complete Perceptron Network (GCPNEeT). Our framework consists of (i) a graph (topology)
definition process, (i) a GCPNEeT-based graph neural network for 3D molecular representation learning, and (iii) demonstrated application areas for

GCPNET. Zoom in for the best viewing experience.
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Figure 2. An overview of our proposed Geometry-Complete Perceptron (GCP) module. The GCP module introduces node and edge-centric encodings of
3D frames as input features that are used to directly update both scalar and vector-valued features with geometric information-completeness guarantees

as well as chirality sensitivity.

Expressing Vector Representations with V. The GCP mod-
ule then expresses vector representations V as follows. The
features V with representation depth r are downscaled by 1.

2= {vwy |wy, € R0} (1)
Additionally, V is separately downscaled in preparation to

be subsequently embedded as direction-sensitive edge sca-
lar features.

Ve ={vw, lw,, € R’X(3X3>} (2)

Deriving Scalar Representations s'. To update scalar repre-
sentations, the GCP module, in the following manner, derives

two invariant sources of information from V and combines
them with s:

g5 = (Vs Fj) € R’ (3)
! Z qij if Vs representsnodes
- i ‘
g=q W@lL5" ) (4)
qii if Vi representsedges
Ssqa) =sUq Uzl ()

where - denotes the inner product, N(-) represents the neigh-
bors of a node, and || - ||, denotes the L, norm. Then, denote
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t as the representation depth of s, and let s, ;) € R*"+(7%
with representation depth (¢ + 9 + (r/1)) be projected to s’
with representation depth #":

Sy = {S(S‘q@ws + bs|wS c R(t+9+(r/i))><t/} 6)

s = as(sy) (7)

Note that embedding geometric frames Fj; as g; in
Equation (3) ultimately enables GCPNET to iteratively learn
chirality-sensitive and global force-aware representations of
each 3D network input. Moreover, Equation (4) allows
GCPNET to encode local geometric substructures for each
node, where the theoretical importance of such network be-
havior is discussed in detail by Du et al. (2022).

Deriving Vector Representations V'. The GCP module
then concludes by updating vector representations as follows:

V, = {zw, |w,, € R} (8)

V' = {V, © 64(c" (s,)wg + by)|w, € R™7'} (9)

where ® represents element-wise multiplication and the gat-
ing function o, is applied row-wise to preserve SO(3) equivar-
iance within V’.

Conceptually, the GCP module is autoregressively applied
to tuples (s, V) a total of w times to derive rich scalar and
vector-valued features. The module does so by blending both
feature types iteratively with the 3D direction and informa-
tion completeness guarantees provided by geometric frame
encodings F;. We note that this model design runs in con-
trast with prior GNNs for physical systems such as GVP-
GNN:s (Jing et al. 2020, 2021) and ClofNet (Du et al. 2022),
which are either insensitive to chemical chirality and global
atomic forces or do not directly learn geometric features for
downstream prediction tasks, making the proposed GCP
module well suited for learning directly from 3D molecu-
lar graphs.

2.2 Learning from 3D Graphs with GCPNet

In this section, we propose a flexible manner in which to per-
form 3D graph convolution with our proposed GCP module,
as illustrated in Fig. 1 and employed in Algorithm 1. For in-
terested readers, in Supplementary Appendix B, we provide
an expanded derivation and description of how to perform
3D graph convolution with GCPNET.

2.2.1 The GCPNet algorithm

In this section, we describe our overall 3D graph convolution
learning algorithm driven by GCPNET (Algorithm 1). We also
discuss the rationale behind our design decisions for GCPNET
and provide examples of use cases in which one might apply
GCPNET for specific learning tasks.

On Line 2 of Algorithm 1, the Centralize operation
removes the center of mass from each node position in the in-
put graph to ensure that such positions are subsequently 3D
translation-invariant.

Thereafter, following Du et al. (2022), the Localize opera-
tion on Line 3 crafts translation-invariant and SO(3)-
equivariant frame encodings F7}; = (af;, bf;, c;;). As described

dij» Vij> Cij
in more detail in Supplementary Appendix B, these frame
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Algorithm 1. GCPNEeT

Require: (h; e H, ;€ 7), (6 €E, &€ &), x; € X, graph G
1: Initialize X° = X¢ — Centralize(X)

2: Fjj = Localize(x; € X°, x; € XO)

3: Project (MY, 19), (&Y, “0) — GCP((hy, 1)), (&jy &), Fi)
4:for /=1to L do

5: (hl/'7 Xf‘)7 X// =
6: end for

7: if Updating Node Positions then

8 Fj=Localize(x € X', x; € X))

9 Finalize (X*) — Decentralize(X")
10: else
11 xt=x0
12: end if
13: Project (ht, z5), (ek, &) «— GCP,((M, x)), (€5, &), F)

ij i ¢
Ensure: (h-, 1}), (e}, g*L) xk

GCPConv/((h", £71), (€D, &), X1, Fy)

encodings are chirality-sensitive and direction information-
complete for edges, imbuing networks that incorporate them
with the ability to more easily detect force field interactions
present in many real-world atomic systems, as we demon-
strate through corresponding experiments in Section 3.

Before applying any geometry-complete graph convolution
layers, on Line 4 we use GCP, to embed our input node and
edge features into scalar and vector-valued values, respec-
tively, while incorporating geometric frame information.
Subsequently, in Lines 5-6, each layer of geometry-complete
graph convolution is performed autoregressively via
GCPConv' starting from these initial node and edge feature
embeddings, all while maintaining information flow originat-
ing from the geometric frames F.

On Lines 8 through 12, we finalize our procedure with
which to update in an SE(3)-equivariant manner the position
of each node in an input 3D graph. In particular, we update
node positions by residually adding learned vector-valued
node features ( yy ) to the node positions produced by the pre-
vious GCPConv layer (/-1). As shown in Supplementary
Appendix B, such updates are initially SO(3)-equivariant,
and on Line 10 we ensure these updates also become 3D
translation-equivariant by adding back to each node position
the input graph’s original center of mass via the Decentralize
operation. In total, this procedure produces SE(3)-
equivariant updates to node positions. Additionally, for mod-
els that update node positions, we note that Line 9 updates
frame encodings F;; using the model’s final predictions for
node positions to provide more information-rich feature pro-
jections on Line 14 via GCP, to conclude the forward pass
of GCPNET.

2.2.2 Network utilities

In summary, GCPNET receives an input 3D graph G with
node positions x, scalar node and edge features, b and e, as
well as vector-valued node and edge features, y and ¢&. The
model is then capable of e.g. (1) predicting scalar node, edge,
or graph-level properties while maintaining SE(3) invariance;
(2) estimating vector-valued node, edge, or graph-level prop-
erties while ensuring SE(3) equivariance; or (3) updating
node positions in an SE(3)-equivariant manner.
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3 Results

In this work, we consider four distinct modeling tasks com-
prised of seven datasets in total, where implementation
details are discussed in Supplementary Appendix D. We note
that additional experiments are included in Supplementary
Appendix C for interested readers.

3.1 Molecular chirality detection

3.1.1 Assessing model sensitivity to molecular chirality
Molecular chirality is an essential geometric property of 3D
molecules for models to consider when making predictions
for downstream tasks. Simply put, this property describes the
“handedness” of 3D molecules, in that, certain molecules
cannot be geometrically superimposed upon a mirror reflec-
tion of themselves using only 3D rotation and translation
operations. This subsequently poses a key challenge for ma-
chine learning models: Can such predictive models effectively
sensitize their predictions to the effects of molecular chirality
such that, under 3D reflections, their molecular feature repre-
sentations change accordingly? To answer this question using
modern machine learning methods, we adopt the rectus/sinis-
ter (RS) 3D molecular dataset of Adams et al. (2021) (i.e. a
70/15/15 train/validation/test split of PubChem3D (Bolton
et al. 2011) where conformers correspond to the same 2D
graphs in the same partition to prevent data leakage between
splits) to evaluate the ability of state-of-the-art machine
learning methods to distinguish between right-handed and
left-handed versions of a 3D molecule. In addition, we care-
fully follow their experimental setup including dataset split-
ting; evaluation criteria; scalar feature sets of atom types,
degrees, charges, numbers of hydrogens, hybridizations, and
bond types and distances; and vector feature sets of atom ori-
entations and pairwise bond displacements, respectively),
where we evaluate each method’s classification accuracy in
distinguishing between right and left-handed versions of a
molecule. Baseline methods for this task include state-of-the-
art invariant neural networks (INNs) and equivariant neural
networks (ENNs), where we list each method’s latest results
for this task as reported in Schneuing et al. (2022).

3.1.2 Contribution of frame embeddings for chirality
sensitivity

Table 1 shows that GCPNET is more accurately able to detect
the effects of molecular chirality compared to all other base-
line methods (including all other SE(3)-equivariant models),
even without performing any hyperparameter tuning. In par-
ticular, GCPNET outperforms ChIRo (Adams et al. 2021), a
GNN specifically designed to detect different forms of chiral-
ity in 3D molecules. Moreover, when we ablate GCPNET’s
embeddings of local geometric frames, we find that this E(3)-

Table 1. Comparison of GCPNEeT with baseline methods for the RS task.

equivariant (i.e. scalar-wise 3D rotation and reflection-
invariant) version of GCPNET is no longer able to solve this
important molecular recognition task, resulting in prediction
accuracies at parity with random guessing. These two previ-
ous observations highlight that (1) GCPNET’s local frame
embeddings are critical components of the model’s sensitivity
to molecular chirality and that, (2) using such frame embed-
dings, GCPNET can flexibly learn representations of 3D mole-
cules that are more predictive of chemical chirality compared
to hand-crafted methods for such tasks. Moreover, these
results highlight that, in order to effectively account for the
effects of chirality on molecular structures, a method must be
SE(3)-equivariant such that it employs SE(3)-invariant (and,
thereby, reflection-varying) features for its scalar downstream
predictions.

3.2 Protein-Ligand binding affinity prediction

3.2.1 Evaluating predictions of protein-ligand

binding affinity

Protein-LBA prediction challenges methods to estimate the
binding affinity of a protein-ligand complex as a single scalar
value (Townshend et al. 2020). Accurately estimating such
values in a matter of seconds using a machine learning model
can provide invaluable and timely information in the typical
drug discovery pipeline (Rezaei et al. 2020). The correspond-
ing dataset for this SE(3)-invariant task is derived from the
ATOMS3D dataset (Townshend et al. 2020) and is comprised
of 4463 nonredundant protein-ligand complexes, where
cross-validation splits are derived using a strict 30% sequence
identity cutoff. Results are reported in terms of the root mean
squared error (RMSE), Pearson’s correlation (p), and
Spearman’s correlation (Sp) between a method’s predictions
on the test dataset and the corresponding ground-truth bind-
ing affinity values represented as pK = —log19(K), where K
is the binding affinity measured in Molar units. Baseline
comparison methods for this task include a variety of state-
of-the-art CNNgs, recurrent neural networks (RNNs), GNNs,
and ENNs, with additional baselines utilizing explicit
protein-ligand  interaction  information  listed in
Supplementary Table S2. Using the same dataset and dataset
splits, results for these methods are reported as in Wang et al.
(2023b), Aykent and Xia (2022), and Liu et al. (2023), re-
spectively. Note, however, that due to their lack of official
publicly-available PyTorch Geometric (Fey and Lenssen
2019) source code, for this task we include simple PyTorch
Geometric reproductions of PaiNN (Schiitt ef al. 2021) and
the Equivariant Transformer (ET) (Tholke and De Fabritiis
2022) as additional equivariant GNN and Transformer base-
lines, respectively. Consequently, due to computational re-
source constraints, we do not perform any hyperparameter
tuning for these two methods.

Type Method Symmetries R/S Accuracy (%) 1

INN ChIRo (Schneuing ef al. 2022) SE(3) 98.5
SchNet (Schneuing et al. 2022) E(3) 54.4
DimeNet++ (Schneuing et al. 2022) E(3) 65.7
SphereNet (Schneuing ez al. 2022) SE(3) 98.2

ENN EGNN (Schneuing et al. 2022) E@3) 50.4
SEGNN (Schneuing ez al. 2022) SE(3) 83.4

Ours GCPNET w/o Frames E(3) 50.2+0.6
GCPNET SE(3) 98.7+0.1

The results are averaged over three independent runs. The top-1 (best) results for this task are in bold, and the second-best results are underlined.
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The results shown in Table 2 reveal that, in operating on
atom-level protein-ligand graph representations, GCPNET
achieves the best performance for predicting protein—-LBA by
a significant margin, notably improving performance across
all metrics by 7% on average. Here, to the best of our knowl-
edge, GCPNET is one of the first methods capable of achiev-
ing Pearson and Spearman binding affinity correlations
greater than 0.6 on the PDBBind dataset (Wang et al. 2005)
curated as part of the ATOM3D benchmark (which employs
a strict 30% sequence identity cutoff) (Townshend et al.
2020). Moreover, we find that these correlations are highly
statistically significant (i.e. Pearson’s P-value of 2e-50,
Spearman’s P-value of 2e—49, and Kendall’s tau correlation
of 0.432 with a P-value of 3e—45).

3.2.2 Ablating network components reveals impact of

model design

Denoted as “GCPNET w/o ... ” in Table 2, our ablation stud-
ies with GCPNET for the LBA task demonstrate the contribu-
tion of each component in its model design. In particular, our
proposed local frame embeddings improve GCPNET’s perfor-
mance by more than 15% across all metrics (GCPNET w/o
Frames), where we hypothesize these performance improve-
ments come from using these frame embeddings to enhance
the model’s sensitivity to molecular chirality. Similarly, our
proposed residual GCP module (i.e. ResGCP) improves
GCPNET’s performance by 23% on average.

Specifically of interest is the observation that independent
removal of scalar and vector-valued features within GCPNET
appears to severely decrease GCPNET’s performance for LBA
prediction. Notably, removing the model’s access to scalar-
valued node and edge features (i.e. one-hot atom types and
edge distance embeddings, respectively) degrades perfor-
mance by 70% on average, while not allowing the model to

Table 2. Comparison of GCPNEeT with baseline methods for the LBA task.

Morehead and Cheng

access vector-valued node and edge features (i.e. sequence-
based orientation vectors and pairwise atom displacement
vectors, respectively) reduces performance by 42% on aver-
age. One possible explanation for these observations is that
both types of feature representations the baseline GCPNET
model learns (i.e. scalars and vectors) are useful for under-
standing protein-ligand interactions. In addition, our ablation
results in Table 2 suggest that our proposed frame embed-
dings and ResGCP module are complementary to these scalar
and vector-valued features in the context of predicting the
binding affinity of a protein-ligand complex.

3.3 Protein model quality assessment

3.3.1 Evaluating ranking predictions for protein

structure decoys

Protein structure ranking requires methods to predict the
overall quality of a 3D protein structure when comparing it
to a reference (i.e. native) protein structure (Townshend et al.
2020). The quality of a protein structure is reported as a sin-
gle scalar value representing a method’s predicted global dis-
tance test (GDT_TS) score (Zemla 2003) between the
provided decoy structure and the native structure. Such infor-
mation is crucial in drug discovery efforts when one is tasked
with designing a drug (e.g. ligand) that should bind to a par-
ticular protein target, notably when such targets have not yet
had their 3D structures experimentally determined and have
rather had them predicted computationally using methods
such as AlphaFold 2 (Jumper et al. 2021). The respective
dataset for this SE(3)-invariant task is also derived from the
ATOMS3D dataset (Townshend et al. 2020) and is comprised
of 40 950 decoy structures corresponding to 649 total tar-
gets, where cross-validation splits are created according to a
target’s release year in the Critical Assessment of Techniques
for Protein Structure Prediction (CASP) competition

Type Method RMSE | p1 Sp 1
CNN 3DCNN (Wang et al. 2023b) 1.416 +0.021 0.550 0.553
DeepDTA (Wang et al. 2023b) 1.866 +0.080 0.472 0.471
DeepAffinity (Aykent and Xia 2022) 1.893+0.650 0.415 0.426
RNN Bepler and Berger (Wang et al. 2023b) 1.985+0.006 0.165 0.152
TAPE (Wang et al. 2023b) 1.890+0.035 0.338 0.286
ProtTrans (Wang et al. 2023b) 1.544+£0.015 0.438 0.434
GNN GCN (Wang et al. 2023b) 1.601 +0.048 0.545 0.533
DGAT (Aykent and Xia 2022) 1.719£0.047 0.464 0.472
DGIN (Aykent and Xia 2022) 1.765+0.076 0.426 0.432
DGAT-GCN (Aykent and Xia 2022) 1.550£0.017 0.498 0.496
MaSIF (Wang et al. 2023b) 1.484+0.018 0.467 0.455
IEConv (Wang et al. 2023b) 1.554+0.016 0.414 0.428
Holoprot-Full Surface (Wang et al. 2023b) 1.464 =0.006 0.509 0.500
Holoprot-Superpixel (Wang et al. 2023b) 1.491+0.004 0.491 0.482
ProNet-Amino-Acid (Wang et al. 2023b) 1.455+0.009 0.536 0.526
ProNet-Backbone (Wang et al. 2023b) 1.458+0.003 0.546 0.550
ProNet-All-Atom (Wang et al. 2023b) 1.463 +0.001 0.551 0.551
GeoSSL-DDM (Liu et al. 2023) 1.451+0.030 0.577 0.572
ENN Cormorant (Aykent and Xia 2022) 1.568+0.012 0.389 0.408
PaiNN 1.698 +0.050 0.366 0.358
ET 1.490+0.019 0.564 0.532
GVP (Aykent and Xia 2022) 1.594 +0.073 0.434 0.432
GBP (Aykent and Xia 2022) 1.405 =0.009 0.561 0.557
Ours GCPNET w/o Frames 1.485+0.015 0.521 0.504
GCPNET w/o RESGCP 1.514+0.008 0.471 0.468
GCPNET w/o Scalars 1.685+0.000 0.050 0.000
GCPNET w/o Vectors 1.727 +0.005 0.270 0.304
GCPNET 1.352+0.003 0.608 0.607

The results are averaged over three independent runs. The top-1 (best) results for this task are in bold, and the second-best results are underlined.
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(Kryshtafovych er al. 2021). Results are reported in terms of
the Pearson’s correlation (p), Spearman’s correlation (Sp),
and Kendall’s tau correlation (K) between a method’s predic-
tions on the test dataset and the corresponding ground-truth
GDT_TS values, where local results are averaged across pre-
dictions for individual targets and global results are averaged
directly across all targets. Baseline comparison methods for
this task include a composition of state-of-the-art CNNs,
GNNs, and ENNs (including our reproductions of PaiNN
and ET), as well as previous statistics-based methods. Using
the same dataset and dataset splits, results for these methods
are reported as in Aykent and Xia (2022) and Townshend
et al. (2020), respectively.

Conveying a similar message to that in Table 2, the results
in Table 3 demonstrate that, in operating on atom-level
protein graphs, GCPNET performs best against all other state-
of-the-art models for the task of estimating a 3D protein struc-
ture’s quality (i.e. PSR). In this setting, GCPNET outperforms
all other methods across all local and global metrics by 2.5%
on average. Once again, GCPNET’s predictions are highly sta-
tistically significant, this time with Pearson, Spearman, and
Kendall tau P-values all below 1e—50, respectively.

3.3.2 Identifying components for effective protein

structure ranking

Our ablation studies with GCPNET, in the context of PSR,
once more reveal that the design of our local frames, ResGCP
module, and scalar and vector feature channels are all benefi-
cial for enhancing GCPNet’s ability to analyze a given 3D
graph input. Here, in sensitizing the model to chemical chiral-
ity, our local frame embeddings improve GCPNET’s perfor-
mance for PSR by 4% on average. Similarly, our ResGCP
module improves the model’s performance by $5%.
Interestingly, without access to scalar-valued node and edge
features (i.e. the same as those used for the LBA task),
GCPNET is unable to produce valid predictions for the PSR
test dataset due to what appears to be a phenomenon of
vector-wise latent variable collapse (Dieng et al. 2019). This
finding suggests that, for the PSR task, the baseline GCPNET

Table 3. Comparison of GCPNEeT with baseline methods for the PSR task.

model relies strongly on the scalar-valued representations it
produces. Lastly, including vector-valued node and edge fea-
tures (i.e. the same as those used for the LBA task) within
GCPNET improves the model’s performance for the PSR task
by 9%.

3.4 Future position forecasting for newtonian
particle systems

3.4.1 Evaluating trajectory predictions for Newtonian
many-body systems

Newtonian many-body systems modeling (NMS) asks meth-
ods to forecast the future positions of particles in many-body
systems of various sizes (Du et al. 2022), bridging the gap be-
tween the domains of machine learning and physics. In our
experimental results for the NMS task, the four systems (i.e.
datasets) on which we evaluate each method are comprised
of increasingly more nodes and are influenced by force fields
of increasingly complex directional origins for which to
model, namely electrostatic force fields for 5-body (ES(5))
and 20-body (ES(20)) systems as well as for 20-body systems
under the influence of an additional gravity field (G+ES(20))
and Lorentz-like force field (L+ES(20)), respectively. The
four datasets for this SE(3)-equivariant task were generated
using the descriptions and source code of Du et al. (2022),
where each dataset is comprised of 7000 total trajectories.
Results are reported in terms of the mean squared error
(MSE) between a method’s node position predictions on the
test dataset and the corresponding ground-truth node posi-
tions after 1000 timesteps. Baseline comparison methods for
this task include a collection of state-of-the-art GNNs,
ENNs, and Transformers (including our reproductions of
PaiNN and ET), where we list each method’s latest results for
this task as reported in Du et al. (2022).

The results in Table 4 show that GCPNET achieves the low-
est MSE averaged across all four NMS datasets, improving
upon the state-of-the-art MSE for trajectory predictions in this
task by 19% on average. In particular, GCPNET achieves the
best results for two of the four NMS datasets considered in
this work, where these two datasets are respectively the first

Local Global

Method pl Sp1 K1 p1 Sp1 K71

3DCNN (Aykent and Xia 2022) 0.557 0.431 0.308 0.780 0.789 0.592
GCN (Townshend et al. 2020) 0.500 0.411 0.289 0.747 0.750 0.547
ProQ3D (Aykent and Xia 2022) 0.444 0.432 0.304 0.796 0.772 0.594
VoroMQA (Aykent and Xia 2022) 0.412 0.419 0.291 0.688 0.651 0.505
RWplus (Aykent and Xia 2022) 0.192 0.167 0.137 0.033 0.056 0.011
SBROD (Aykent and Xia 2022) 0.431 0.413 0.291 0.551 0.569 0.393
Ornate (Aykent and Xia 2022) 0.393 0.371 0.256 0.625 0.669 0.481
DimeNet (Aykent and Xia 2022) 0.302 0.351 0.285 0.614 0.625 0.431
GraphQA (Aykent and Xia 2022) 0.357 0.379 0.251 0.821 0.820 0.618
PaiNN 0.518 0.444 0.315 0.773 0.813 0.611
ET 0.564 0.466 0.330 0.813 0.814 0.611
GVP (Aykent and Xia 2022) 0.581 0.462 0.331 0.805 0.811 0.616
GBP (Aykent and Xia 2022) 0.612 0.517 0.372 0.856 0.853 0.656
GCPNET w/o Frames 0.588 0.512 0.367 0.854 0.851 0.657
GCPNET w/o RESGCP 0.576 0.509 0.365 0.852 0.847 0.648
GCPNET w/o Scalars N/A N/A N/A N/A N/A N/A
GCPNET w/o Vectors 0.571 0.497 0.356 0.802 0.804 0.608
GCPNET 0.616 0.534 0.385 0.871 0.869 0.676

Local metrics are averaged across target-aggregated metrics. The best results for this task are in bold, and the second-best results are underlined. N/A denotes

a metric that could not be computed.
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and third most difficult NMS datasets for methods to model.
On the two remaining datasets, GCPNET matches the perfor-
mance of prior state-of-the-art methods such as ClofNet (Du
et al. 2022). Moreover, across all four datasets, GCPNET’s tra-
jectory predictions yield an RMSE of 0.0963 and achieve
Pearson, Spearman, and Kendall’s tau correlations of 0.999,
0.999, and 0.981, respectively, where all such correlation val-
ues are highly statistically significant (i.e. P-values < 1e—50).
Note that, to calculate these correlation values, we score
GCPNET’s vector-valued predictions independently for each
coordinate axis and then average the resulting metrics. Also
note that we only compare methods such as ClofNet to
GCPNET in the context of the NMS task, as e.g. ClofNet is
specifically designed always to predict new 3D coordinates for
each of its 3D graph inputs, with coordinate updates being the
primary predictive target for the NMS dataset but with other
tasks not targeting updated coordinates.

3.4.2 Analyzing components for successful trajectory
forecasting

Once again, our ablation studies with GCPNET demonstrate
the importance of GCPNET’s local frame embeddings, scalar
node and edge features (i.e. invariant velocity encodings and
edge type and distance embeddings, respectively), and ResGCP
module. Here, we note that we were not able to include an ab-
lation study on GCPNET’s vector-valued node and edge fea-
tures (i.e. velocity and orientation encodings as well as
pairwise atom displacements, respectively) since they are di-
rectly used to predict node position displacements for trajec-
tory forecasting. Table 4 shows that each model component
synergistically enables GCPNET to achieve new state-of-the-art
results for the NMS task. In enabling the model to detect
global forces, our proposed local frame embeddings improve
GCPNET’s ability to learn many-body system dynamics by 6%
on average across all dataset contexts. Specifically interesting
to note is that these local frame embeddings improve the mod-
el’s trajectory predictions within the most complex dataset
context (i.e. L+ES(20)) by 14%, suggesting that such frame
embeddings improve GCPNET’s ability to learn many-body

Table 4. Comparison of GCPNEeT with baseline methods for the
NMS task.

Method ES(5) ES(20) G+ES(20) L+ES(20) Average

GNN (Du et al. 2022) 0.0131 0.0720 0.0721  0.0908  0.0620

TFN (Du et al. 2022) 0.0236 0.0794 0.0845  0.1243  0.0780

SE(3)-Transformer ~ 0.0329 0.1349 0.1000  0.1438  0.1029
(Du et al. 2022)

Radial Field (Du 0.0207 0.0377 0.0399 0.0779  0.0441
etal 2022)

PaiNN 0.0158 N/A N/A N/A N/A

ET 0.1653 0.1788 0.2122 0.2989 0.2138

EGNN (Du 0.0079 0.0128 0.0118 0.0368 0.0173
etal 2022)

ClofNet (Du 0.0065 0.0073 0.0072 0.0251 0.0115
etal. 2022)

GCPNET w/o Frames  0.0067 0.0074 0.0074  0.0200 0.0103
GCPNET w/o REsGCP  0.0090 0.0135 0.0099  0.0278 0.0150
GCPNET w/o Scalars  0.0119 0.0173 0.0170  0.0437  0.0225
GCPNET 0.0070 0.0071 0.0073 0.0173  0.0097

Results are reported in terms of the MSE for future position prediction over
four test datasets of increasing modeling difficulty, graph sizes, and
composed force field complexities. The final column reports each method’s
MSE averaged across all four test datasets. The best results for this task are
in bold, and the second-best results are underlined. N/A denotes an
experiment that could not be performed due to a method’s numerical
instability.

Morehead and Cheng

system dynamics even in the presence of complex global force
fields. Furthermore, GCPNET’s RESGCP module and scalar-
valued features improve the model’s performance for modeling
many-body systems by 35% and 57%, respectively.

Across all tasks studied in this work, GCPNET improves
upon the overall performance of all previous methods. Our
experiments demonstrate this for both node-level (e.g. NMS)
and graph-level (e.g. LBA) prediction tasks, verifying GCPNET’s
ability to encode useful information for both scales of granular-
ity. Furthermore, we have demonstrated the importance of each
model component within GCPNET, showing how these compo-
nents are complementary to each other in the context of repre-
sentation learning over 3D molecular data. Lastly, in
Supplementary Table S10, we report the run time of GCPNET
on each task’s test dataset to enable future methods to directly
compare their computational run time to that of GCPNET.

4 Conclusion

In this work, we introduced GCPNET, a state-of-the-art GNN
for 3D molecular graph representation learning. We have
demonstrated its utility through several benchmark studies.
In future work, we aim to develop extensions of GCPNET
that increase its geometric expressiveness as well as explore
applications of GCPNET for generative modeling of molecu-
lar structures.
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