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ABSTRACT
In recent years, there has been an increased emphasis on reducing
the carbon emissions from electricity consumption. Many organi-
zations have set ambitious targets to reduce the carbon footprint
of their operations as a part of their sustainability goals. The car-
bon footprint of any consumer of electricity is computed as the
product of the total energy consumption and the carbon intensity
of electricity. Third-party carbon information services provide in-
formation on carbon intensity across regions that consumers can
leverage to modulate their energy consumption patterns to reduce
their overall carbon footprint. In addition, to accelerate their decar-
bonization process, large electricity consumers increasingly acquire
power purchase agreements (PPAs) from renewable power plants
to obtain renewable energy credits that o�set their “brown” energy
consumption.

There are primarily two methods for attributing carbon-free en-
ergy, or renewable energy credits, to electricity consumers: location-
based and market-based. These two methods yield signi�cantly
di�erent carbon intensity values for various consumers. As there
is a lack of consensus which method to use for carbon-free attri-
bution, a concurrent application of both approaches is observed in
practice. In this paper, we show that such concurrent applications
can cause discrepancies in the carbon savings reported by carbon
optimization techniques. Our analysis across three state-of-the-art
carbon optimization techniques shows possible overestimation of
up to 55.1% in the carbon reductions reported by the consumers
and even increased emissions for consumers in some cases. We also
�nd that carbon optimization techniques make di�erent decisions
under the market-based method and location-based method, and
the market-based method can yield up to 28.2% less carbon savings
than those claimed by the location-based method for consumers
without PPAs.
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1 INTRODUCTION
Recently, there has been an increased emphasis on decarbonizing
the electric grid, that has resulted in signi�cant increases in the de-
ployment of renewable energy sources, such as hydro, geothermal,
solar, and wind energy. The deployment of low-carbon electricity
sources reduces the overall carbon intensity (CI) of electricity —
measured as grams of ⇠$24@ emitted per :,⌘ of electricity gener-
ated or consumed — which in turn reduces the overall emissions
from electricity consumption. Until recently, the electric grid was
opaque and did not expose the mix of generation sources or the car-
bon intensity of supplied electricity to its consumers. However, the
emergence of third-party services such as Electricity Maps [9] and
WattTime [40] in recent years has enabled consumers to receive
real-time carbon intensity information. As shown in Figure 1, these
services can provide real-time estimates and forecasts of carbon
intensity, which indicate how green the electricity supply is in any
location at any speci�ed time.

Importantly, businesses and researchers are increasingly us-
ing these carbon intensity estimates and forecasts to modulate
their electricity usage and reduce their carbon emissions. Such
approaches seek to exploit spatial and temporal variations in the
carbon intensity, which occur due to di�erences in the generation
source mix (and di�erent penetration of renewables) across regions
and changes caused by the grid dispatch schedule at each location.
One popular carbon optimization technique is based on time shift-
ing, which moves �exible loads from high to low carbon intensity
periods. Examples include deferring electric vehicle (EV) charging
or delaying the execution of batch jobs to low-carbon periods of
the day. Another class of techniques has focused on spatial shifting,
where computing workloads like machine learning training are
moved to cloud regions with the greenest electricity. Since grid
electricity is unlikely to be entirely carbon-free for several decades,
such approaches are gaining in popularity for reducing the carbon
footprint of an organization or an individual.
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Figure 1: Carbon intensity of electricity varies spatially and
temporally, with regions and periods with more renewable
energy having lower carbon intensity values.

A key prerequisite for the above carbon optimization approaches
is the availability of accurate carbon intensity information. The
Greenhouse Gas (GHG) Protocol recognizes two primary methods
for attributing carbon-free energy [39]: the location-based method
and the market-based method. Each method yields a di�erent car-
bon intensity metric, which we denote as ⇠�;1 and ⇠�<1 for the
location-based and market-based methods, respectively. Location-
based (LB) attribution assumes that the electricity consumed by
each consumer is based on all generation sources (both fossil-based
and fossil-free) present at that location. In other words, this method
assumes that it is impossible to segregate the exact source that
generated the electricity consumed by each consumer, and all con-
sumers are assumed to use the same proportion of energy mix as
the grid’s generation mix.

In contrast, market-based (MB) attribution assumes a consumer
or organization can choose the generation source that supplies their
electricity, even though it is technically infeasible to route speci�c
electricity generation to speci�c end-consumers even if both are
on the same grid. Hence, the attribution is done via market-based
accounting mechanisms, where an organization can claim renew-
able energy exclusively for their needs by purchasing Renewable
Energy Credits (RECs) [12] or through Power Purchase Agreements
(PPAs) [10, 11]. Consequently, consumers who have signed PPAs
will see a carbon intensity based on their renewable energy pur-
chases as well as any additional grid usage, while the remaining
consumers see a di�erent carbon intensity based on the remainder
of the generation sources (residual mix) at that location.

Carbon reduction algorithms can be classi�ed based on which at-
tribution method they use for their optimization and which method
they use for evaluating their carbon reduction. We use the terms
OPT;1 and OPT<1 to denote location-based and market-based opti-
mization and assume that they use ⇠�;1 and ⇠�<1 carbon intensity
metrics, respectively, for their optimization. Likewise, we use the
terms EVAL;1 (resp., EVAL<1 ) for algorithms that use ⇠�;1 (resp,
⇠�<1 ) for evaluating their carbon reduction. Much of the current
research on spatial and temporal shifting has optimized and eval-
uated its bene�ts under the location-based method (i.e., scenario
OPT;1_EVAL;1 ). Such approaches have not considered the grow-
ing use of PPAs in the energy markets and have not evaluated the
carbon emission reduction under the market-based method. Fur-
ther, the GHG protocol states that all parties should report their
emissions using both location- and market-based methods, but they

can use either of the methods to evaluate their carbon reduction
to meet their carbon emission goals [6, 39]. Thus, we see instances
of both methods used by di�erent parties, leading to discrepancies.
For example, carbon intensity services such as Electricity Maps [9]
and WattTime [40] provide location-based carbon intensity (⇠�;1 ).
At the same time, some of the renewable sources at that location
may be contracted through PPAs and organizations with those
PPAs prefer to use the market-based method, resulting in the same
green sources being attributed to multiple consumers. To prevent
this, we should use the market-based attribution (⇠�<1 ) to evaluate
carbon reductions of consumers without PPAs, although these con-
sumers optimize based on location-based carbon intensity (⇠�;1 ).
Thus, their reported carbon reduction based on location-based eval-
uation (i.e., OPT;1_EVAL;1 ) could di�er signi�cantly from their
actual carbon reduction after accounting for the PPAs (i.e., scenario
OPT;1_EVAL<1 ).

As a result, the two metrics for carbon intensity based on the two
attribution methods can yield di�erent results. However, accurate
attribution and carbon intensity estimation are critical for doing
carbon-aware optimization and properly understanding the bene�ts
under di�erent methods.
Our Contributions. In this paper, we highlight the di�erences and
challenges in using the di�erent carbon intensity metrics and the
resulting impact on popular carbon optimization techniques. We
take a data-driven approach where we �rst consider the carbon re-
duction bene�ts under the location-based method (OPT;1_EVAL;1 ).
We evaluate the discrepancies that can arise as carbon-free energy
is claimed by a subset of consumers using PPAs (OPT;1_EVAL<1 ).
Finally, we quantify the carbon reduction bene�ts if such opti-
mization approaches account for PPAs and optimize and evaluate
using the market-based method (i.e., scenario OPT<1_EVAL<1 ).
Speci�cally, our paper makes the following contributions:
(1) First, we show how the carbon intensity estimation varies de-

pending on the attribution method. Our analysis across 123
regions worldwide shows that the estimates can vary by up to
194% if all solar and wind energy in a region is contracted out.

(2) Next, we look at techniques optimizing for carbon using the
location-based method and analyze the discrepancy in car-
bon reduction between location- and market-based evaluations
(OPT;1_EVAL;1 versus OPT;1_EVAL<1 ). Our analysis of three
such techniques shows that location-based evaluations can pos-
sibly overestimate carbon reduction by up to 55.1%. In some
cases, location-based evaluations may even report reductions
when there is an increase in carbon emissions for consumers
without PPAs under market-based evaluations.

(3) Finally, we analyze how much carbon reduction these tech-
niques can get when both optimized and evaluated using the
market-based method (OPT<1_EVAL<1 ). Our evaluation �nds
that for consumers without PPAs, OPT<1_EVAL<1 can result
in up to 28.2% less carbon savings than claimed by prior work
under the location-based method (OPT;1_EVAL;1 ) if all solar
and wind energy is under PPA. We also �nd that the optimizers
make di�erent decisions when using the market-based method
than using the location-based method, as ⇠�;1 can signi�cantly
di�er from ⇠�<1 .
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2 BACKGROUND
In this section, we provide background on the carbon intensity of
electricity, di�erent carbon attribution methods, and the current
state-of-the-art carbon-optimization techniques in use.

2.1 Carbon Intensity of Electricity
Electricity is generated using a mix of conventional non-renewable
sources like coal, petroleum, and gas and renewable sources like
solar, wind, and hydro. The mix of sources varies across grids of
di�erent regions. For example, California depends mainly on solar
and natural gas, while hydro is Sweden’s main electricity generation
source. Electricity demand is time-varying within a region, and
the grid must ensure that the supply always matches the demand.
Renewable sources like solar and wind are volatile; their generation
depends on weather conditions and cannot be controlled. As a
result, the grid maintains a set of generators that can be turned on
or o� quickly to meet the demand, and hence, the source mix also
varies temporally. While electricity is also often exchanged between
grids, we ignore electricity exchange in this paper for simplicity.

Carbon emitted due to electricity generation ismeasured in terms
of carbon intensity. The average carbon intensity (CI) of electricity
is the amount of carbon emitted (in grams) per unit of electrical
energy produced or consumed (in kWh). In this paper, we use the
terms electricity (or energy) production and electricity (or energy)
generation interchangeably. The carbon intensity of electricity can
be mathematically formulated as a weighted average (refer [26]):

�E4A064 ⇠0A1>= �=C4=B8C~ (⇠�0E6) =
Õ (⇢8 ⇤⇠⇢�8 )Õ

⇢8
(1)

where ⇢8 is the electrical energy produced (",⌘) by a source 8
& ⇠⇢�8 is the carbon emission factor (6/:,⌘) of that source.

Since the sourcemix is variable, the carbon intensity of electricity
also varies across regions and with time. Figure 1 shows how the
average carbon intensity in California (CAISO) di�ers from Texas
(ERCOT), and how it varies within a day in both regions. Non-
renewable sources have higher CEFs than renewable sources. For
example, coal and natural gas have CEFs of 760 g/kWh and 370
g/kWh, respectively, while all renewable sources have zero CEF.
Since CAISO has a higher renewable penetration than ERCOT,
CAISO has a lower average carbon intensity. Also, within CAISO
itself, the carbon intensity is lower during the day when there is
solar generation than at night when natural gas compensates for
the lack of solar and meets the demand.

2.2 Carbon Attribution Methods
To mitigate the e�ect of GHG emissions from electricity, compa-
nies are increasingly setting targets to become carbon-neutral [37]
or even net-zero [38]. The term “net-zero” refers to achieving an
overall balance between GHG emissions produced and emissions
taken out of the atmosphere. In this paper, we only consider scope
2 emissions, that is, indirect greenhouse gas (GHG) emissions re-
sulting from the purchase of electricity [39]. Few companies are
shifting their demand to low-carbon regions or periods to reduce
their emissions, but many companies are investing in renewable
energy via Power Purchase Agreements (PPAs). PPAs are usually
long-term contracts for renewable energy between a consumer and
an electricity producer, wherein the consumer can claim renewable

Figure 2: An illustration of the Power Purchase Agreement
(PPA) commonly used to meet carbon-free energy targets. Solid
lines denote the physical flow of electricity; dashed lines denote
the transactional flows.

energy credits for their investment (refer Figure 2) and lower the
emissions caused by the electricity they consume. Based on scope 2
GHG guidance protocol [39], there are two methods of attributing
the carbon emissions to consumers depending on how the green
energy and the source mix of electricity are attributed.
Location-based (LB) method. In the location-based method, all
the consumers inside a geographical location get the same elec-
tricity mix. Green energy is attributed to the grid, and the average
carbon intensity of the grid mix, including both renewable and
non-renewable sources in proportion to the electricity generated
by them, is used. This is done regardless of any green energy in-
vestments made by any speci�c consumer, and all consumers share
any renewable investment made by a particular consumer.
Market-based (MB) method. In the market-based method, a con-
sumer who has invested in renewables can claim the credit for the
purchased electricity and reduce their carbon emissions even if
their invested green energy is not physically delivered via trans-
mission lines. All invested green energy is �rst attributed to the
investing parties, and then the carbon intensity of the residual grid
mix without the invested renewables is estimated. Investing con-
sumers meet any remaining demand using the residual mix. On
the other hand, consumers without any renewable investments
account for their carbon emissions only using the carbon intensity
of the residual mix. Thus, a consumer investing in electricity that
matches the amount of their energy consumption can claim to be
100% renewable even if the electricity they physically use comes
from a grid mix with renewable and non-renewable sources.

2.3 Carbon Optimization Techniques
Countries, organizations, and even individuals are taking measures
to reduce their carbon emissions in recent years. Popular carbon
optimization techniques in practice today try to take advantage of
the spatial and temporal variations in carbon intensity and do more
work when and where the carbon intensity is low. Broadly, there
are three categories of optimization techniques in the literature:
(1) Spatial load shifting: Cloud services have geographically dis-

tributed data centers (DCs) to provide clients with high availabil-
ity and fault tolerance. Some carbon optimization techniques
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have leveraged this fact to redirect client requests to the green-
est available data center and thus reduce the carbon emission
of computing [15, 25]. For example, a request serviced in Cali-
fornia will emit less carbon than one in Texas (refer Figure 1)
for the same amount of compute.

(2) Temporal load shifting: Cloud providers and applications
leverage workload �exibility and schedule workloads at low-
carbon periods to reduce the carbon footprint [33, 41]. For ex-
ample, given a 24-hour deadline for a 2-hour job, scheduling
the job during the day in California will emit less carbon than
during the night for the same amount of compute (refer Fig-
ure 1). Beyond the computing industry, there has been work
on charging electric vehicles (EVs) during greener times [7] to
reduce the carbon footprint.

(3) Resource autoscaling: For cloud applications with limited
temporal and spatial �exibility, the carbon footprint can also be
reduced by increasing the resources allocated to an application
during low-carbon periods while scaling back the resources
during other periods with high carbon intensity [18]. Since
the application execution does not need to be delayed, it often
�nishes faster than the temporal load-shifting technique.

3 CARBON INTENSITY ESTIMATION
In this section, we show how carbon intensity can be estimated in
two ways, based on the di�erent carbon-free energy attribution
methods discussed in Section 2.2, and the e�ects of PPAs on carbon
intensity calculation. We also discuss how these two estimates
di�er across regions and times. We consider all renewables to be
carbon-free, with zero emissions.

3.1 Location-Based Carbon Intensity
When we consider all the sources generating electricity in a region,
we call it the total grid mix, and we refer to the associated carbon
intensity as the total grid carbon intensity. The location-based attri-
bution method always considers the total grid mix regardless of any
renewable investments; hence, the carbon intensity of electricity
in this method (⇠�;1 ) is the same as the total grid carbon intensity
and can be calculated using Equation 1. That is,

⇠�;1 =
Õ (⇢8 ⇥⇠⇢�8 )

⇢
(2)

where ⇢ is the total electricity production in a grid, and
Õ(⇢8 ) = ⇢.

The value of the carbon intensity is same for everyone who consumes
electricity from that grid.

3.2 Market-Based Carbon Intensity
If some renewable (carbon-free) sources are contracted out via PPAs,
we refer to the remaining source mix in the grid as the residual grid
mix, and we call the associated carbon intensity residual carbon
intensity (⇠�A4B ). In this paper, we only consider solar and wind
energy when we say renewables under contract since these are
the primary sources used in PPAs today. In a grid, suppose ⇢8 be
the total electricity generated (MWh) by a source 8 , out of which
let ⇢??08 be the electricity contracted through PPA. Suppose ⇢ be
the total electricity generated in that grid, and ⇢??0 be the total
electricity under PPA. Therefore,

Õ
⇢8 = ⇢, and

Õ
⇢??08 = ⇢??0 . In

the market-based method, entities with PPAs claim the greenness

Figure 3:Average increase in⇠�A4B across 123 regionsworldwide
when all solar and wind energy is contracted out.

Figure 4:Weekly trace showing how⇠�A4B in California di�ers
from ⇠�;1 as more and more renewables are contracted out.

of their invested electricity. Thus, all the contracted carbon-free
energy is removed before calculating ⇠�A4B . Then,

⇠�A4B =

Õ ((⇢8 � ⇢??08 ) ⇥⇠⇢�8 )
⇢ � ⇢??0

, (3)

Therefore, the carbon intensity of a consumer using the market-
based method (⇠�<1 ) in that grid can be obtained using

⇠�<1 = (1 � 5 ) ⇥⇠�A4B (4)

where 5 2 [0, 1] is the fraction of electricity consumption met by
PPA. Thus, contrary to the location-based method, themarket-based
carbon intensity varies across the consumers in the same grid. For
consumers with no PPAs (5 = 0), ⇠�<1 = ⇠�A4B , whereas for a
consumer able to meet their total demand via PPAs, ⇠�<1 = 0. The
market-based method always favors the investors of carbon-free
energy over non-investors.

3.3 Di�erences between Location-Based and
Market-Based Carbon Intensity

In this paper, we only consider consumers without PPAs for our
analysis. Since⇠�<1 = ⇠�A4B for those consumers, we use these nota-
tions interchangeably.⇠�A4B will naturally be higher than⇠�;1 since
the fraction of renewables in the residual mix will be smaller than
in the total mix. We now show how ⇠�A4B di�ers from ⇠�;1 across
regions and even temporally within a region. For this analysis, we
used grid and carbon intensity data from 123 regions worldwide
(data obtained from Electricity Maps [9]).
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Figure 3 shows a histogram of the percentage increase in ⇠�A4B
over ⇠�;1 for all the regions when all renewables are contracted
out. The regions with high solar and wind penetration show a high
increase in ⇠�A4B . The median increase across all the considered
regions is 11.9%, with the highest di�erence being 194% in South
Australia. As solar and wind penetration increases in most grids
worldwide along with the amount of electricity purchased via PPAs,
this di�erence will only increase with time.

Within a region, ⇠�A4B increases with increasing amounts of
purchased renewable energy. We show how the carbon intensity
changes in the California grid (CAISO) over a week as more and
more renewables are purchased (refer Figure 4). CAISO grid gener-
ates a large fraction of electricity from solar, and hence, its carbon
intensity is much lower in the day when solar energy is available.
However, with an increasing PPA percentage, not only does ⇠�A4B
increase, but temporal variations in carbon intensity also decrease.

Figure 5 shows the di�erence between ⇠�A4B and ⇠�;1 across the
di�erent months of 2022, assuming all solar and wind energy is
purchased. Since CAISO has a lot of solar-generated electricity,
the di�erence is far greater during spring and summer than during
winter. This is because, during spring and summer, a greater fraction
of electricity is generated from solar as there is more sunlight. We
observe a similar e�ect diurnally, with the di�erence being higher
during the day than at night (refer Figure 16).

As⇠�A4B increases with increasing amounts of contracted renew-
able energy, sometimes a region having lower ⇠�;1 (or lower ⇠�A4B
initially) than another region may have a higher ⇠�A4B than the
second region. For example, in Figure 6, both in South Australia
(AUS-SA) and in California’s CAISO grid, ⇠�A4B becomes higher
than that of New England’s ISO-NE grid beyond a certain point
as more and more renewables are contracted out. This is because
AUS-SA and CAISO have a much higher proportion of solar and
wind, which makes the residual energy browner faster than the
ISO-NE grid.

Thus, ⇠�A4B varies signi�cantly from ⇠�;1 across the regions
and seasonally (or diurnally) even within a region, with some low-
carbon regions becoming browner than other high-carbon regions
as more and more carbon-free energy is contracted out.

3.4 Carbon Intensity Estimation in Practice
The two attribution methods provide two carbon intensity metrics
that di�er signi�cantly. For example, Electricity Maps’ data [30]
shows that the electricity mix in Norway comprises 99% renewables.
Hence, ⇠�;1 in Norway using location-based attribution is nearly
zero. However, renewable generators in Norway sell electricity to
consumers in other countries (who are in physically disjoint grids),
and the residual mix is only left with 15% renewable sources [2],
resulting in a much higher ⇠�A4B . Thus, even though consumers in
Norway consume nearly carbon-free electricity, they can not claim
to consume that green energy under the market-based attribution
rules (since the renewable credits have been sold to other parties).

If everyone followed either location- or market-based carbon
attribution, there will be no discrepancy [20]. However, in prac-
tice, there is no consensus on which method to use, resulting in
some organizations using one approach while others using the al-
ternate one. The concurrent use of both approaches by di�erent

Figure 5: In California, the di�erence between ⇠�A4B and ⇠�;1
varies seasonally, with spring and summer months showing
more di�erence when there is more solar energy.

Figure 6: Carbon intensity of the residual electricity increases
with the fraction of PPA-contracted solar and wind capacity.

entities can result in discrepancies in the carbon emission reduc-
tions reported by the consumers. The buyers of PPAs can claim the
resulting carbon-free energy for themselves to meet a portion of
their electricity demand and rely on third-party carbon intensity
services [9, 26, 27, 40] to estimate the carbon emissions of their
remaining demand. Consumers without PPAs rely on these services
to estimate the carbon emissions of their entire demand. However,
current carbon information services typically may not have infor-
mation about the residual mix and provide location-based carbon
intensity ⇠�;1 estimates. This happens mainly due to the lack of
availability of real-time data — data about the residual grid mix
often lags by years [2, 17] — but this is relatively common in the
present scenario [16]. Consequently, renewables under PPAs in
a region may be counted doubly by di�erent or sometimes even
the same set of consumers. As shown in Section 3.2, since ⇠�A4B
varies signi�cantly from⇠�;1 , this can result in an overestimation of
the “greenness” of electric grids, leading to discrepancies in carbon
emissions reported by the consumers.

The concurrent use of both attribution methods due to a lack
of visibility into ⇠�A4B also presents signi�cant challenges when
performing carbon-aware optimizations. If a consumer without
PPAs uses ⇠�;1 for optimization instead of ⇠�A4B when others have
already claimed the contracted electricity, it can lead to sub-optimal
decision-making and often overestimated amount of reported car-
bon emissions reductions. In the following section, we explain the
e�ects of di�erent carbon intensity signals on current state-of-the-
art carbon optimizations in the computing industry.
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4 DISCREPANCIES IN CARBON-SAVINGS
WITH CONCURRENT ATTRIBUTION

As mentioned in Section 2.3, there has been signi�cant research in
the computing industry and beyond to reduce the carbon footprint
by leveraging the spatial and temporal variations of carbon inten-
sity [7, 15, 18, 25, 33, 41]. All these techniques depend on accurate
knowledge of real-time and forecasted carbon intensity. Section 3
highlighted how the current carbon intensity estimation approaches
can lead to discrepancies in the face of location- and market-based
mechanisms. Carbon optimization techniques use third-party car-
bon intensity services [9, 26, 27, 40] for decision-making, which
use the location-based method and are inherently PPA-unaware.
However, the reported savings only apply if everyone follows the
location-based method or if no electricity is contracted. In reality,
a fraction of carbon-free energy is under PPA in any region and
claimed by electricity buyers. So, that energy should not be counted
doubly when others are estimating their carbon emissions.

In this section, we show the discrepancy between the carbon
savings reported when a carbon optimization technique makes deci-
sions and evaluates based on ⇠�;1 (OPT;1_EVAL;1 ) and the carbon
savings obtained with the same decisions but evaluated with ⇠�<1
(OPT;1_EVAL<1 ). We only show this from the viewpoint of con-
sumers without any PPAs. We hypothesize that the discrepancies
will be similar for consumers whose PPAs are insu�cient to meet
their demand but to a lesser extent. However, detailed analysis for
consumers with PPAs is kept as future work. We show this for the
following three state-of-the-art decarbonization techniques:

• Carbon-aware spatial load shifting.
• Carbon-aware temporal load shifting.
• Carbon-aware resource autoscaling.

When evaluated using the market-based method, carbon savings
decrease with an increasing PPA percentage and can even be neg-
ative in some cases. That is, PPA-unaware decisions made using
these techniques can increase carbon emissions for the consumer.
Since PPA information and ⇠�A4B are not accessible in real time,
this is what is potentially happening in practice. In this section,
we show the extreme case where all renewables are contracted
out, thus resulting in the maximum possible discrepancy between
location- and market-based evaluations.

4.1 Spatial Load Shifting
Recently, Maji et al. [25] have developed a prototype for a carbon-
aware load balancer which redirects client requests to greener re-
gions while maintaining latency constraints. Speci�cally, given
N geographically distributed data centers, they use the following
equation to determine the optimal server to server a client request:

⇡⇠ =<8=(0.67 ⇥⇠� 8 + 0.33 ⇥ 38 ), 8 = 1 . . .# , (5)

where ⇠�8 is the carbon intensity in the region where ⇡⇠8 resides,
and 38 is client-to-⇡⇠8 distance. They used marginal carbon in-
tensity data from WattTime [40] for their optimization and for
calculating carbon emissions and reported an average reduction
of 21% carbon emissions (OPT;1_EVAL;1 ) over a carbon-unaware
load balancer that redirects clients only to the closest data center.

We simulated their technique and compared the carbon savings
against a carbon-unaware load balancer. Since their code and data

are proprietary, we developed a representative implementation of
their algorithm. We also used average carbon intensity data from
ElectricityMaps [9] instead of marginal carbon intensity.We believe
this is a valid replacement as their optimization works with both
marginal and average carbon intensities, and both Electricity Maps
and WattTime [40] estimate carbon intensity using the location-
based method [29]. We considered three data centers in California
(CAISO), New England (ISO-NE) and the UK and distributed clients
across the US and Europe. We then simulated for a day in 2022.

Figure 7c shows the results. The carbon-aware load balancer
reduces carbon emissions by up to 15.4% per kWh of electricity
consumed over a carbon-unaware load balancer when optimizing
and evaluating using the location-based method (OPT;1_EVAL;1 ).
It achieves this by redirecting more clients to California (CAISO)
during the day when solar is available, and ⇠�;1 of CAISO is much
lower than other regions (refer Figure 7a). However, not consid-
ering the renewables under PPA while deciding where to redirect
clients will raise discrepancies. If all renewables in the data cen-
ter regions are under PPA, ⇠�A4B of CAISO is higher than that of
ISO-NE (refer Figure 7b). In that case, redirecting more clients to
California reduces carbon savings. We see that using market-based
evaluations, the carbon-aware load balancer may potentially emit
up to 3.1% more carbon per kWh than a carbon-unaware load bal-
ancer over the course of the day. The maximum discrepancy we
observe on that day is 17.2% per kWh of electricity consumed when,
according to location-based evaluation (OPT;1_EVAL;1 ), there are
14.2% carbon savings, but according to market-based evaluation
(OPT;1_EVAL<1 ), there is a 3% carbon emission increase. Thus, a
consumer without any PPAs would have the impression of reducing
emissions, but due to concurrent attribution and a lack of visibility
into ⇠�A4B , carbon emissions have potentially increased.

Note that the discrepancy is per kWh of electricity consumed.
Hence, the increased carbon emissions in grams will potentially
be signi�cant for large-scale data centres consuming electricity in
MWh. Also, we showed the analysis for a day and for the above-
mentioned data center regions. Depending on the time of the year
and the location of the data centers, this discrepancy can possibly
be even higher. For example, in South Australia, ⇠�A4B can be up to
194% more than ⇠�;1 (refer Section 3.2). So, data centers in South
Australia will likely observe a much higher discrepancy.

4.2 Temporal Load Shifting
Next, we show the discrepancy in a carbon-aware job scheduling
algorithm that executes �exible workloads during greener periods
to reduce the carbon footprint. Wiesner et al. [41] use carbon inten-
sity forecasts to gain advanced knowledge of low-carbon periods
and execute periodically scheduled jobs during those periods. They
reported that for nightly jobs scheduled at 1 a.m. daily, with a �exi-
bility window of ±8 hours, carbon emissions could be reduced by
34.8% in California by scheduling the job during low-carbon hours
within that±8-hour window. Their carbon intensity forecasts are es-
timated using the location-based method, which does not consider
PPAs (OPT;1_EVAL;1 ). Hence, there is a discrepancy in the carbon
savings if some percentage of electricity is under PPA. We see that
when PPAs are accounted for during evaluation (OPT;1_EVAL<1 ),
and if all renewable energy is under PPA, using the same �exibility
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(a) Total carbon intensity
(⇠�;1 ).

(b) Residual carbon intensity
(⇠�A4B ).

(c) Carbon savings range and percentage of
clients redirected to California.

Figure 7: If all renewables are under PPA, the ⇠�A4B of CAISO becomes higher than ISO-NE’s. Thus, shifting loads to California
while not considering PPAs can incur up to 17.2% discrepancy in carbon savings reported by consumers without PPAs.

Figure 8: Scheduling jobs without considering PPAs raises
discrepancies in carbon savings. In Germany, this leads to 2.9%
more emissions compared to a carbon-unaware job scheduler.

window and job schedule as above only achieves a carbon saving
of 10.3% in California — a 24.5% discrepancy.

In Germany, location-based optimization and evaluation reduce
emissions by 13.7% for the same job and �exibility window. How-
ever, considering PPAs during evaluation (OPT;1_EVAL<1 ) results
in up to 2.5% emission increase for the same schedule. Although
the 16.2% discrepancy observed here is less than that in California,
the situation in Germany is worse as it potentially results in more
emissions than a carbon-unaware baseline due to this discrepancy.
Figure 8 shows the results for California and Germany.

We see the reason for this �ip in Germany in Figure 9. ⇠�;1 gets
lower as the �exibility window increases to ±8 hours, while the
average ⇠�A4B at the hours within the �exibility window when the
job is scheduled is higher than the⇠�A4B at 1 a.m. Thus, for temporal
load shifting optimizations, if⇠�;1 and⇠�A4B follow opposite trends,
a consumer without PPAs would report reduced emissions while,
in reality, the emissions may increase.

Since we have grid data from 123 regions, we analyze the dis-
crepancy between location- and market-based evaluations in more
detail by applying Wiesner et al.’s [41] location-based optimizing

Figure 9: ⇠�;1 and ⇠�A4B show opposite trends as the flexibility
window increases, causing increased emissions in Germany
when PPAs are not considered.

algorithm on over 100 regions using Electricity Maps’ [9] data for
2022. Some regions are excluded either due to data inconsistencies
or because those regions are powered entirely by renewables. We
keep the job start times �xed at 1 a.m. but increase the �exibility
window to ±12 hours so that jobs can be scheduled any time within
24 hours. Figure 10 is a CDF plot of the discrepancies, showing an
average discrepancy of 13.7% and a maximum potential discrepancy
of 50.8%. Generally, regions with higher di�erences between ⇠�A4B
and ⇠�;1 show more discrepancies. Note that some regions do not
show any discrepancy because there is no electricity generated
from solar or wind in those regions (hence, ⇠�A4B = ⇠�;1 ).

4.3 Resource Autoscaling
Hanafy et al. have developed CarbonScaler [18], a system that al-
locates more resources to cloud applications during low-carbon
periods to reduce their carbon footprint. They use carbon intensity
forecasts obtained from ElectricityMaps [9]. Since PPAs are not con-
sidered, they follow location-based optimization and show similar
discrepancies as in Sections 4.1 and 4.2. To show that discrepancy,
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Figure 10: CDF plot showing that the discrepancies due to
carbon-aware temporal shi�ing can be up to 50.8% when ana-
lyzed over Electricity Maps’ [9] 2022 data.

Figure 11: Discrepancies in carbon savings arising due to PPA-
unaware autoscaling, shown for �ve cloud regions.

we obtained the CarbonScaler code and simulated a 24-hour ML
job (training ResNet18 [19] model). The job is interruptible and
�exible but has to be completed within 24 hours. We simulated this
experiment for �ve AWS cloud regions around the world. For each
cloud region, we simulated starting at di�erent hours throughout
2022 and reported the average carbon savings over a baseline that
always uses one resource instance. In our experiments, we set the
maximum resource instances available to CarbonScaler to eight.
That is, during low-carbon periods, at most eight instances can run
simultaneously to speed up the job execution.

Figure 11 shows the results. When evaluating using location-
based method (OPT;1_EVAL;1 ), we obtained an average savings of
29.2% across the �ve regions over the baseline that do not scale up
resources. However, assuming all electricity is under PPA, evaluat-
ing using the market-based method (OPT;1_EVAL<1 ) shows that
the same scaling schedule obtains a reduced savings of 9.9% across
those regions. The average discrepancy across the regions is 19.2%,
with a maximum potential discrepancy of 32.2% in California. Addi-
tionally, in Texas, New South Wales (NSW), and Germany, carbon
emissions may possibly increase if CarbonScaler allocates resources
without considering PPAs. Note that the average discrepancy would
have been higher if we did not include Ontario, which has very
little solar and wind energy and hence is una�ected even though
PPAs are not considered.

Figure 12: CarbonScaler [18] following ⇠�;1 allocates more in-
stances during high⇠�A4B , resulting in reduced carbon savings
and sometimes increased carbon emissions.

Figure 13: CDF plot showing that the discrepancies due to
carbon-aware resource autoscaling can be up to 55.1% when
analyzed over Electricity Maps’ [9] 2022 data.

We now focus on California to explain the reason behind such
overestimation (Figure 12). We take a particular day where location-
based evaluation reports carbon savings, but market-based eval-
uation shows increased emissions compared to the baseline. On
this day, following ⇠�;1 and not considering PPAs, CarbonScaler
allocates more resources when the ⇠�;1 is lower. However, ⇠�A4B is
much higher at those hours, resulting in increased emissions.

Similar to Section 4.2, we then apply CarbonScaler to over 100 re-
gions to get a comprehensive idea about the discrepancies between
location- and market-based evaluations. Figure 13 shows the CDF
plot of the discrepancies. We see an average of 11.9%, with the max-
imum discrepancy being 55.1%. Again, regions with no solar and
wind show no discrepancy, while regions with higher di�erences
between ⇠�A4B and ⇠�;1 generally show more discrepancies.

4.4 Key Takeaways
(1) Not accounting for PPAs while trying to optimize for carbon

emission reductions raises discrepancies in the reported carbon
savings. Our analysis shows possible overestimation of up to
55.1% for consumers without PPAs when carbon optimizations
and evaluations do not consider PPAs.

(2) In some cases, this overestimation can also hide that not consid-
ering PPAs may possibly increase carbon emissions under the
market-based method, giving consumers a false impression of
carbon savings. For example, 3 out of 5 AWS regions analyzed
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Figure 14: Carbon savings are less for a consumer without
PPA when using market-based a�ribution than when using
location-based a�ribution. The savings also decrease with an
increasing PPA %.

in Section 4.3 showed an increase in carbon emissions, while
location-based evaluation still showed carbon savings.

(3) Since ⇠�A4B di�ers from ⇠�;1 both spatially and temporally, the
discrepancies vary across regions and with time. Even for re-
gions and times with small discrepancies, the magnitude of
added carbon emissions due to these overestimations may still
possibly be signi�cant, especially for large-scale consumers.

(4) The overestimation may be less for consumers whose demands
are partially met by PPAs since the discrepancy will only be for
the fraction of demandmet using the residual gridmix. However,
a detailed analysis is required to quantify the overestimation in
such cases, which is left as future work.

5 CARBON-SAVINGS WITH MARKET-BASED
ATTRIBUTION

Today, most grids have a portion of electricity contracted out via
PPAs, and so the carbon savings will be less than reported via
the location-based method. In this section, we highlight what will
happen if carbon reduction techniques both optimize and evaluate
using market-based method (OPT<1_EVAL<1 ) and calculate their
carbon savings. Again, we only show this from the viewpoint of
consumers without any investments (i.e., ⇠�A4B = ⇠�<1 ). In the
extreme case of no PPAs, the optimization decisions and carbon
savings will be exactly the same as OPT;1_EVAL;1 since location-
based and market-based methods will estimate the same carbon
intensity if no PPAs exist. However, that is not the case in reality;
some electricity is under PPA in most grids. Since we do not have
information about the exact percentage of electricity under PPA in
a region, we show our analysis over a range of percentages.

5.1 Spatial Load Shifting
Since ⇠�A4B is always more than ⇠�;1 , the carbon savings from spa-
tially shifting workloads to greener regions under the market-based
method are less than that obtained under the location-based method
for consumers without PPAs. These savings reduce even further as
the PPA percentage increases (refer Figure 14). While the location-
based method (OPT;1_EVAL;1 ) can reduce carbon emissions by up
to 15.4%, the maximum carbon savings is 6.7% with 50% PPA. If all
renewables are under PPA, the maximum carbon reduction on the

Figure 15: Fewer clients are redirected to Californiawhenusing
the market-based method, as ⇠�A4B increases with PPA %.

Figure 16: Temporal variations in carbon intensity decrease
as the residual grid electricity gets more brown.

day is only 2.2%, which is 13.2% less carbon savings compared to
OPT;1_EVAL;1 . In scenarios like these, moving client requests to
greener regions may not be bene�cial enough if such movement
has high overheads.

We also observe that the carbon savings are obtained during
di�erent hours of the day when di�erent attribution methods are
considered. While the location-based optimization is more intuitive
and shows savings during the day when solar energy is available,
the market-based optimization achieves savings towards dawn and
evening as more renewables are purchased. This is because the
load balancer cannot redirect more clients to California during the
day if solar is under PPA, and hence, must send those clients to
other locations. Consequently, we see di�erent decisions taken by
the carbon-aware load balancer under the market-based method.
For example, Figure 15 shows that at 100% PPA, approximately
50% fewer clients are redirected to California during the day when
compared to the location-based method as in that case ⇠�A4B of
CAISO is much higher than ⇠�;1 . Since the optimizer accounts
for PPAs, there is no discrepancy during evaluation, and carbon
emissions are never higher than the baseline, unlike in Figure 7c.

5.2 Temporal Load Shifting
Temporal variations of carbon intensity decrease with an increas-
ing PPA percentage since the source mix consists mostly of non-
renewable sources, which are non-volatile. Figure 16 shows this
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Figure 17: Carbon savings due to temporal shi�ing of flexible
jobs decrease with an increase in the PPA %.

e�ect in California. Consequently, for consumers without PPAs,
carbon savings due to the temporal shifting of �exible workloads de-
crease with an increasing PPA percentage under the market-based
method, as shown in Figure 17. If all renewables are under PPA,
the carbon-aware job scheduling algorithm used in Section 4.2
can achieve only 10.8% (resp., 2.9%) with a ±8-hour �exibility
window in California (resp., Germany). Thus, using market-based
method (OPT<1_EVAL<1 ) may potentially yield up to 24% (resp.,
10.8%) less carbon savings compared to the location-based method
(OPT;1_EVAL;1 ).

Note that in Germany, although the savings decrease, emissions
are never more than a carbon-unaware scheduler, unlike in Sec-
tion 4.2. This is because the scheduler now both optimizes and
evaluates using the market-based method (OPT<1_EVAL<1 ). Thus,
there are no discrepancies, and the consumers know the exact
amount of emission reductions.

Although there are no discrepancies, since the carbon savings in
di�erent regions may be negligible when most of the renewables
are under PPA, it may not be bene�cial to shift �exible workloads
temporally if such shifting has a high overhead. In that case, ei-
ther executing the job as soon as it arrives or other optimization
techniques like spatial shifting may be more bene�cial.

5.3 Resource Autoscaling
Finally, we show the e�ects of PPA on carbon-aware autoscaling
for consumers without PPAs. Like Sections 5.1 and 5.2, the carbon
savings decrease as the PPA percentage increases. When all re-
newables are under PPA, market-based method (OPT<1_EVAL<1 )
may yield up to 28.2% less carbon savings than the location-based
method (OPT;1_EVAL;1 ) across the regions (refer Table 1). The
only exception is Ontario, where both location- and market-based
method achieve similar savings as⇠�A4B is very close to⇠�;1 due to
very little solar and wind.

Since CarbonScaler now follows ⇠�A4B to allocate resources, re-
sources are scaled at di�erent times than the location-based method
(OPT;1_EVAL;1 ), as shown in Figure 18. In the location-based
method, CarbonScaler allocates more resources to cloud applica-
tions during hours 6–10 and 20–23 due to a dip in ⇠�;1 . However,

Region
Location-
based Market-based

25% 50% 75% 100%
Texas 11.3 9.2 6.8 3.9 0.8

New South
Wales 18.2 14.2 9.6 5.2 3.5

Germany 24.7 20.7 15.6 9.4 1.0
California 35.7 31.0 25.2 16.8 7.5
Ontario 55.9 55.7 55.7 55.5 55.3

Table 1:Carbon savings due to autoscaling decrease as residual
grid electricity gets more brown with an increasing PPA %.

Figure 18: CarbonScaler chooses di�erent times to scale up
resources when accounting for PPAs compared to the location-
based method.

assuming all renewables are contracted out, ⇠�A4B dips only during
hours 19-23. Hence, when CarbonScaler accounts for PPAs while
optimizing, it allocates more resources only during those hours.

Importantly, because of the above behaviour change, even though
the carbon savings are reduced, CarbonScaler never increases emis-
sions compared to a baseline that does not do autoscaling. For
example, even with 100% PPA, CarbonScaler achieves 3.5% carbon
savings in New South Wales (NSW), unlike in Section 4.3.

5.4 Key Takeaways
(1) For consumers without PPAs, carbon savings under the market-

based method are usually lower than the location-based method.
Our analysis shows that the market-based method may poten-
tially yield up to 28.2% less carbon savings than the location-
based method in the regions we have considered. For consumers
with PPAs, the savings may be higher since a portion of their
demand is met using purchased low-carbon power, and that
portion will have zero emissions. However, more analysis is
required to quantify the savings in such cases.

(2) Carbon optimization decisions are di�erent for the market-
based method than the location-based method. The decisions
using a market-based method may also not always be as in-
tuitive as shifting demand to low-carbon regions or periods.
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Since ⇠�A4B of a region can signi�cantly vary from ⇠�;1 , opti-
mizers may opt to shift demand away from seemingly green
regions which have high ⇠�A4B due to PPAs. For example, in
Section 5.1, the carbon-aware load balancer redirected fewer
clients to California during the day as California had high⇠�A4B .

(3) For consumers without PPAs, since the carbon savings may be
negligible compared to carbon-unaware baselines, optimizing
for carbon may not always be bene�cial if the overhead of such
optimization is high. For example, if there are minimal temporal
variations, executing a job as soon as it arrives may be better
than waiting for a low-carbon period.

(4) The carbon optimization technique that holds for a location-
based method may not be best suited when using the market-
based method. Taking the above case of minimal temporal vari-
ations, shifting the job to a low-carbon region may be better.
However, such analysis is kept as future work.

6 RELATEDWORK
As the amount of PPAs and RECs increases, a few recent works
highlight the need for accurate green energy attribution and car-
bon intensity calculation, and show the risks of inaccurate carbon
accounting. Holzapfel et al. [20] show how using location-based
and market-based accounting in parallel can lead to discrepancies
and overestimation of carbon savings, and o�ers potential solutions
against that. Google [16] also mentions discrepancies due to a lack
of residual electricity data when they account for their carbon emis-
sions. Bjorn et al. [5] discuss how inaccurate use of RECs and PPAs
provides a sense of in�ated emission reduction estimates. While
these works only mention discrepancies, we quantify that using
current carbon optimization systems.

Brander et al. [6] and Electricity Maps [28] highlight the pitfalls
of market-based accounting and recommend using the location-
based accounting method. We do not recommend any speci�c
method in our paper. Instead, we show the di�erent amounts of
carbon reductions obtained under the two methods.

There have also been numerousworks on trying to reduce carbon
emissions using carbon-aware spatial shifting, temporal shifting,
or autoscaling [7, 15, 18, 22, 25, 33, 41]. However, they only report
emission reductions achieved under the location-based method.
Our work shows that such reports can often overestimate carbon
reductions due to the concurrent application of di�erent attribution
methods. We also show that when accounting for PPAs under the
market-based method, the optimizers behave di�erently and the
carbon reductions are much lower than reported.

7 DISCUSSIONS AND FUTUREWORK
If everyone follows only location- or market-based method, there is
no discrepancy [20]. However, given the increasing trend of buying
PPAs and the push towards 24/7 carbon-free energy [16, 31], the
market-based method is more likely to be followed in practice.

For the market-based method, information about the amount of
electricity under PPA is crucial to calculate the residual grid mix and
consequently estimate ⇠�A4B and ⇠�<1 . However, PPA agreements
are usually neither visible to the electric grid nor easily accessible to
the common public. Some commercial services track the amount of
electricity under PPA [3, 32], but such information is only available

at a cost. Publicly accessible data about the residual grid mix is
currently only available annually and lags for a few years [2, 17].
Thus, if we are to move towards decarbonization without any dis-
crepancies, there is an urgent need for data about the amount of
electricity under PPA in each regional electricity grid and the corre-
sponding residual grid mix at an hourly scale. Recently, Electricity
Maps [9] and FlexiDAO [13] have released a methodology for cal-
culating hourly residual carbon intensity [14]. While this is a step
in the right direction, the data will still be available after a lag of
12–18 months [14]. We need more e�orts from both the buyers
and sellers of PPAs to make such data available in real time and
increase the visibility of the electrical grids and electricity markets
to researchers and practitioners of carbon-aware computing.

If residual grid mix data is available in real time, the current
consumption-based carbon intensity estimation algorithms [1, 4, 8,
21, 23, 24, 34–36] can be modi�ed to incorporate PPAs and estimate
⇠�A4B in real time. In that scenario, current online optimization
algorithms will work without any modi�cations and report the true
carbon reductions without any discrepancies, provided everyone
follows⇠�<1 to evaluate their respective carbon footprint. However,
as mentioned, ensuring the availability of such data is not in our
control. Thus, in the absence of such data, developing newer online
algorithms that can work with partial carbon intensity information
and are robust to uncertainties and inaccuracies in carbon intensity
estimates is crucial. In the future, we also need algorithms that
consider both location- and market-based carbon intensity — that
is, incorporate information about both the PPAs and the grid carbon
intensity — while making decisions, to reduce carbon emissions
without any discrepancy.

8 CONCLUSIONS
Many organizations have set ambitious targets to reduce carbon
emissions as a part of their sustainability goals. Consumers rely
on third-party services to modulate their electricity usage based
on carbon intensity estimates and reduce their carbon footprint.
Many consumers also use PPAs to o�set their “brown” energy con-
sumption. However, there are two carbon-free energy attribution
methods in practice today and no consensus on which method to
follow, resulting in a concurrent application of both estimates.

In this paper, we show that such concurrent applications can
cause discrepancies in the carbon savings reported by the current
carbon reduction techniques. Our analysis across three state-of-the-
art carbon reduction techniques shows a possible overestimation of
up to 55.1% in the carbon reductions reported by the consumers. In
some cases, such overestimation can even hide increased emissions.
We �nd that carbon reduction techniques behave di�erently under
the market-based method than under the location-based method.
Carbon reduction under the market-based method can also yield
up to 28.2% less carbon reductions than those claimed using the
location-based method for consumers without PPAs.
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