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Abstract— Power flow computations are fundamental to many
power system studies. Obtaining a converged power flow case is
not a trivial task especially in large power grids due to the non-
linear nature of the power flow equations. One key challenge is
that the widely used Newton based power flow methods are
sensitive to the initial voltage magnitude and angle estimates, and
a bad initial estimate would lead to non-convergence. This paper
addresses this challenge by developing a random-forest (RF)
machine learning model to provide better initial voltage
magnitude and angle estimates towards achieving power flow
convergence. This method was implemented on a real ERCOT
6102 bus system under various operating conditions. By providing
better Newton-Raphson initialization, the RF model precipitated
the solution of 2,106 cases out of 3,899 non-converging dispatches.
These cases could not be solved from flat start or by initialization
with the voltage solution of a reference case. Results obtained from
the RF initializer performed better when compared with DC
power flow initialization, Linear regression, and Decision Trees.

Keywords—Machine Learning, Newton Raphson, Power flow
convergence, Power flow initialization, Random Forest.

[. INTRODUCTION

Power flow, sometimes called load flow, involves the
computation of the bus voltages magnitudes and angles and it
gives insight into the steady-state condition of the power system
at a particular operating condition. Power flow solutions serve
as a base in performing other power system studies such as
transient and voltage stability studies. Ideally, a power flow case
must be solvable under steady state before any dynamic study
can be performed. Grid operators and planners regularly perform
several power flow studies under various loading and generation
dispatch to ensure reliable grid operation. From the power flow
results, transmission planners can have a better understanding of
line overloads, losses, and voltage violations in their network

[1].

Several iterative and non-iterative methods currently exist
for solving the non-linear power flow equations [2]. In practice
however, the Newton-Raphson method and its variants stand out
as the widely used solution method in industry because of its
quadratic convergence property [1], [3]. Although the Newton-
Raphson method is quite robust for solving power flow, it takes
up significant computation time especially for large power grids
with thousands of buses. Linear approximation methods like the
DC power flow (DCPF) have been used to achieve faster
solutions. DCPF requires several assumptions and may not
converge to the true solutions as it does not consider critical
parameters such as bus voltage magnitude, reactive power, and
losses. Based on the limitations of DCPF, achieving a solved AC
power flow (ACPF) case remains a high priority for
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transmission planners. Getting a converged ACPF can be
particularly difficult, especially in large power grids. In some
cases, the ACPF problem is unsolvable especially at high
loading conditions [4]. Three major challenges exist in obtaining
a converged/solved ACPF case for large power grids.

Firstly, the loading condition and generation dispatch affect
the solvability of a power flow case. Loads are generally
modelled as PQ buses with constant active and reactive power.
There exists a maximum loading for each bus above which there
would be no solution [4]. This can be further analyzed using the
PV curves which determine the maximum power that can be
transferred [5]. Loading a bus above this limit (which is the nose
of the PV curve) would cause the voltage to drop drastically,
which would further affect the convergence of the power flow
case. The active power dispatch of all generators is specified in
a power flow case except that of the slack generator which
typically handles any mismatch between the load (including
losses) and generation. Convergence problems would exist in
cases where the extra power supplied or absorbed by the slack
bus is excessively greater than the slack generator limits [4]. So,
the non-slack generators need to be adequately dispatched to
prevent unnecessary stress on the slack generator. The next
major challenge is due to reactive power support. Reactive
power does not travel far over long distances due to the
inherently high X/R ratio in long transmission lines, thus
reactive power support, if needed, must be provided locally. A
power flow case may fail to converge if several buses have
insufficient reactive power support. Several algorithms have
been developed in [2], [4], [6], [7] to achieve power flow
convergence through reactive power planning.

The third major challenge is the choice of initial voltage
magnitude and angle guess when solving ACPF using Newton
based methods. Previous research has shown that Newton-
Raphson is very sensitive to initial conditions [8], [9]. Ref. [10]
have shown that Newton-Raphson method would not converge
to any solution if the initial guesses were outside the region of
attraction to the solution. This shows that even a well dispatched
ACPF case may not converge due to the choice of the initial
voltage magnitude and angles. The ACPF convergence region
or region of attraction are rather complex and fractal in nature.
The convergence region also varies with loading conditions and
large number of iterations are needed when the initial guesses
are far from the convergence region [1]. Ref. [9] developed an
analytical iterative method to determine initial guesses to
achieve power flow convergence. The iterative method starts
with an initial guess and the Jacobian matrix after the first
iteration is used to calculate a convergence operator p. This
convergence operator is related to the non-singularity of the
Jacobian matrix. If the convergence operator is greater than 0.5
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then an affine matrix is calculated to update the initial guess.
Else, an attempt is made to solve the power flow case. This
iterative method was applied to small power flow cases up to
118 buses. The technique has not been applied to large scale
power grids under varying operating conditions. In practice,
power system planners tend to initialize the voltage magnitude
and angles using flat start, DCPF solutions, a reference case, or
other solved cases; power flow tools developed in [2], [6], [7]
used this approach. Machine learning offers a good approach to
initialize Newton-Raphson power flow as it can map a dispatch
case to the voltage solutions and once sufficiently trained, it
requires little computational time to predict its solution.

To the knowledge of the authors in this paper, no attempt has
been successfully made to use machine learning to achieve
ACPF convergence in large scale power grids by accurately
predicting the initial conditions. Although machine/deep
learning has been regularly used to predict power flow
solutions[11]-[17], no attempt has been made to solve
previously unsolved power flow cases by predicting adequate
initial bus voltage magnitude and angles. Perhaps the closest
attempt was by researchers in [13] where previously solved
ACPF test cases were initialized to achieve faster solution time.
In [13], it was assumed that all dispatch cases that form the
training and testing dataset converged, cases that failed to
converge were not used.

This paper aims to address the third major power flow
convergence issue highlighted earlier. Here we introduce a new
way to achieve ACPF convergence in large power grids by
estimating the initial voltage magnitude and angles using
Random Forest machine learning algorithm. Previously non-
converging power flow cases were solved by providing better
initial voltage magnitude and angle estimates within the
convergence region. The machine learning initializer was
applied to a real ERCOT 6102 bus power flow case under
various operating conditions. The simulation was performed
using Python and PSS/E.

II. OVERVIEW OF AC POWER FLOW FORMULATION

The power flow problem is formulated as non-linear
algebraic equations that maps the bus active and reactive power
injection to the voltage phasor as shown in (1) and (2) [7].

N
P = V% ) Vie(GucosOy + Bysin®y) (1)
k=1

N
Q"™ =V« Z Vie(Gisin®y, — Byxcos6y)  (2)

k=1

Where P;"™ and Q;'™ are the net active and reactive power
injection. Gy, and By, are real and imaginary parts of the
admittance matrix element Y;,. ©;, represent the bus voltage
angle difference between bus i and k. V; and Vj are the bus
voltage magnitude at bus i and k while N is the total number of
buses. For the ERCOT case N = 6102. Although there is no
guarantee that the machine learning algorithm would learn the
actual power flow equations in (1) and (2), the machine learning
performs satisfactorily in providing key mappings between the
active and reactive powers and the bus voltage solutions.

III. DATASET GENERATION

In this paper, the dataset was generated using the generator
and load dispatch obtained from the U.S Energy Information
Administration (EIA) [18]. The data contains the hourly
generation and loadings in ERCOT for the year 2022 and the
first hour of 2023, so a total of 8761 hourly data. To generate
the actual power flow case, a solved reference ERCOT case is
required. The active power of the generators P, and loads
Py,qq in the reference PSS/E case are then varied as specified in
the EIA data. The conventional (hydro, gas, thermal), nuclear
and renewable (solar, wind) generators in the PSSE reference
case are scaled uniformly based on the EIA data for each
generator resource category. The active power of the loads in
the PSS/E case are scaled uniformly with the reactive power
maintained at a constant P/Q ratio. At this stage 8761 power
flow cases were generated corresponding to various loading
conditions. The minimum load in the dispatch is 31.9 GW while
the peak load is 79.8 GW. After modifying the reference case
to create the dispatch, full Newton-Raphson power flow
initialized with the reference case was applied to solve all cases
as shown in Fig. 1. 4,862 power flow cases successfully
converged while 3,899 power flow cases did not converge. The
4,862 solved cases would form the training and validation case.
The 3,899 unsolved (non-converged) cases formed the testing
case.

Reference ERCOT EIA Generation and
PSS/E Case Load for ERCOT

l l

Generate 8761 ERCOT Power flow
Dispatch Cases

I

Solve with Newton-Raphson, Using
Reference Case Initial Voltage Magnitude
and Angle

Does the
Case
Converge

Store Converged case as
training and validation data

Store Original dispatch case
as testing case

Fig. 1 Generation of 8761 Hourly Dispatch Power Flow Cases

IV. PROPOSED FRAMEWORK AND MODEL SETUP

Random Forest (RF) is a widely used machine learning
algorithm in power system applications. One of its key
advantages is that it avoids overfitting and takes advantage of an
ensemble of trees for improved accuracy. A RF regressor was
trained to learn the mapping between the power injections and
power flow solutions (voltage magnitude and angle). The input
data are Pgen,i..Ngen > Pload,i...Nloacl and Qload,i...Nloacl , where
Pyen,i.ngen is the active power of the generator at bus i to the
last generator at bus Nge, likewise, Poqq. nioaa  and
Qoad.i..Nioqa are the active and reactive power load at bus i to
the last load at bus N;,4-
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Fig. 2 Proposed Framework for Machine Learning Initializer

The outputs are the bus voltage magnitude, bus angles, star
bus voltages and star bus angles. Large scale grids regularly
have three-winding transformers which are modelled in
commercial software’s like PSS/E and PowerWorld as three
separate two-winding transformers connected to a fictitious star
point [19], [20]. This star point or star bus has a calculated
voltage magnitude and angle and is crucial for the effectiveness
of the machine learning initializer.

Model Training Output
Random Forest 6102 Bus Voltage
Model 1 Magnitude
Random Forest 6102 Bus Angle
Model 2
Random Forest 134 Star Bus
Model 3 Voltage Magnitude
Random Forest 134 Star Bus
Model 4 Angle

Fig. 3 Model Training Setup

Input Data containing bus
Pgen, Pload and Qload

Min Max
Normalization

The 4,862 solved cases were split into training and validation
based on a 90/10 split. The main preprocessing done is the min-
max normalization of the input data. Also, the bus/star bus
angles were converted to radian to avoid large negative angles
during training. The ERCOT power flow model has 6102 buses
and 134-star buses (corresponding to 134 three-winding
transformers). Fig. 3 shows the setup for training the RF model.
Four RF models were trained for each output categories namely
bus voltage magnitude, bus angle, star bus voltage magnitude
and star bus angle. The same hyperparameters were used for all
4 RF models. Fig. 2 shows the entire machine learning initializer
framework. After the models have been sufficiently trained to
learn the mappings between the bus power injections and the
voltage/angle solutions, the trained model was then applied to
the previously 3,899 non-converging cases. The RF model then
predicts the solutions of the bus/star bus voltage magnitude and
angle. This solution was then used as the initial values of the

3,899 unsolved cases. This is based on the concept that although
there is no guarantee that the machine learning model would
predict the exact voltage magnitude and angle solution, the
values would be close to the actual solution and therefore within
the convergence region. Full Newton-Raphson power flow is
then applied to this newly initialized power flow case.

V. RESULTS

A. Random Forest Initializer Results

This section looks at the performance of the RF models.
Table I shows the accuracy of the RF model based on the Root
Mean Square Error (RMSE). The RMSE is a suitable accuracy
metric when dealing with a regression problem. RMSE is
computed using (3), where n is the total data points, Y; is the
true value while ¥; is the predicted value.

RMSE = \/% * NP, (Y = ¥)? (3)

From Table I, RF provides a very small root mean square error
although with significant training time. But once sufficiently
trained the model takes only a few seconds to predict.

Regardless of the accuracy of the algorithm, the main task is
to investigate the ability of the algorithm to assist in Newton-
Raphson convergence. The RF models are applied to the 3,899
non-converging cases for which we do not know the actual
solutions, and the predicted voltage magnitudes and angles
were then used to initialize their respective power flow cases.
2,106 power flow dispatch cases successfully converged due to
the better initialization provided by the RF models. This shows
that the RF initializer was able to assist the Newton-Raphson
solution method in converging 54% of the previous 3,899 non-
converging cases. The remaining 1,793 cases would need to be
further investigated, because even though the problem of
initialization was addressed in this work, non-convergence
could be due to several other problems. Although the power
flow cases successfully converged there exist certain voltage
violations. From Table II a typical converged testing case has
about 315 buses with voltage magnitude below 0.9pu or above
1.1pu. These voltage violations were reduced by adding
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switched shunts using the automated process described in [6].
After adding the switched shunts, the average number of
voltage violations (<0.9pu or >1.1pu) dropped from 315 to
about 9 buses per converged testing power flow case.

TABLE L PERFOMANCE OF RANDOM FOREST
RMSE on Validation .. .
Random Forest Model Data Training Time
Bus Voltage
Magnitude 0.01629 15.16 Hours
Bus Voltage Angle 0.0138 14.15 Hours
Star Bus Voltage 0.0086 23.89 Minutes
Magnitude
Star Bus Voltage 0.01024 23.06 Minutes
Angle
TABLE II. SOLVED CASES WITH VOLTAGE VIOLATING LIMITS
Average No. of Average No. of
Voltage Magnitude Violating Buses per Violating Buses per
Ranges (p.u) Converged Testing Converged Testing
Case (Without Extra Case (With Automated
Voltage Support) Voltage Support)
<090 or > 1.1 315 ?
<0.85 or >1.12 192 1
<0.80 or >1.2 144 0

B. Comparison with Other Initialization Methods

The results obtained from RF were compared with other
analytical and machine learning methods. Table III compares
the performance of RF with other machine learning methods in
terms of RMSE. The RF models provided better accuracy with
the least RMSE, while linear regression had the worst RMSE.

TABLE IIL ACCURACY COMPARISON WITH DIFFERENT MACHINE
LEARNING ALGORITHMS
Model
e RMSE RMSE RMSE Linear
Random .. .
Decision Trees Regression
Forest

Bus Voltage
Magnitude 0.01629 0.0206 0.41630
Model
Bus Voltage
Angle Model 0.0138 0.1943 0.24158
Star Bus Voltage
Magnitude 0.0086 0.01064 0.23179
Star Bus Voltage | 1024 0.01178 0.05744
Angle

Although the RF model had the best accuracy in terms of
RMSE it required significant training time as it is an ensemble
of many regression trees as shown in Table IV. Linear
Regression (LR) on the other hand takes very little training time
but offers poor accuracy. The Decision Tree (DT) had a
relatively shorter training time when compared with RF, but its
accuracy was not as good. Table V compares the convergences
performance between the RF initializer and other initialization

techniques. In practice, power system planners regularly
initialize power flow cases using DCPF or flat start on rare
occasions. In this work, none of the 3,899 unsolved power flow
cases converged with flat start. It is difficult to achieve
convergence from flat start for power flow cases with thousands
of buses, although for small systems with a few hundred of
buses, flat starting may be useful. However, initializing with
DCPF which provides voltage angle estimates helped solve
about 758 cases which represent about 19.44% of the 3,899 test
cases. The process for initializing with DCPF is similar to that
of the other machine learning methods. First the 3,899 cases
were solved with DCPF with the voltage magnitude assumed as
1 p.u since DCPF only solves for the voltage angles. The voltage
magnitude (1pu) and calculated angles are then used to initialize
all 3,899 unsolved cases and a full Newton-Raphson ACPF was
then applied.

TABLE IV. TRAINING COMPARISON WITH DIFFERENT MACHINE
LEARNING ALGORITHMS
Model Training Time Training Time Trai;j::fi"ime
Random Forest | Decision Trees .
Regression
Bus Voltage .
Magnitude 15.16 Hours 1.6 Hours 2.267 Minutes
Bus Voltage 14.15 Hours 1.5 Hours 2.59 Minutes
Angle
Star Bus
Voltage 23.89 Minutes | 5.048 Minutes | 24.21 Seconds
Magnitude
Star Bus . .
Voltage Angle 23.06 Minutes 4.908 Minutes 23.19 Seconds
TABLE V. CONVERGENCE PERFORMANCE COMPARISON
RF DT DCPF LR
Par 1 Initializer Initializer Initializer Initializer
Total (Initial Non- | 5 ¢ 3,899 3,899 3,899
Converged Power
Cases Cases Cases Cases
Flow Cases)
Power Flow Cases | 5 14 1,783 758 246
Converged by
SN Cases Cases Cases Cases
Initialization
Percentage (%) of
Cases Solved by 54.01% 45.73% 19.44% 6.31%
Initialization
Remaining Non-
Converged Power 1,793 2,116 3,141 3,653
Flow Dispatch Cases Cases Cases Cases
Cases

From Table I1I and Table V, it can be observed that the lower
the RMSE of the machine learning method, the higher the
number of cases to converge. Amongst the machine learning
methods, the RF algorithm had the least RMSE and best
convergence rate, followed by DT and finally LR. The LR
model performed poorly as it could not capture the relevant
non-linear mappings. But even at that it solved about 246 cases.
Fig. 4, shows overlapping and unique cases solved by different
initialization methods. RF and DT had the most overlap due to
the similarity in their algorithms. From Fig. 4a and Fig.4c, it
can be observed that 1413 dispatch cases were solved by both
RF and DT initialization methods.
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Fig. 4 Overlap in Power Flow Cases Solved by different Initialization Methods

Although both Linear Regression and DC power flow are linear
initialization techniques, there is very little overlap in the cases
solved by both methods as seen in Fig. 4b. Just 58 cases are
solved by both LR and DCPF, even though LR solved a total of
246 cases and DCPF initialization solved 758 cases. The key
inference from all this is that the initialization method used has
an impact on what particular power flow case would be solved.

VI. CONCLUSION AND FUTURE WORK

In this paper, machine learning was used to predict the initial
voltage/angle guesses to initialize Newton-Raphson power
flow. The developed Random Forest initializer successfully
converged 2,106 power flow cases which did not converge
originally due to bad initialization. The RF initializer performed
better when compared with popular analytical methods like
DCPF initialization which is used in industry. After achieving
a converged/solved power flow case, power system planners
regularly analyze these cases for (voltage and thermal)
violations and then propose adequate measures to solve these
violations. In future, the capabilities of physics based deep-
learning initializers need to be further investigated and
compared with already established machine learning methods.
In addition to this, retraining the model with more data and
varying topology configurations could provide further insights
and improve the success rate of the model.
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