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Abstract— Power flow computations are fundamental to many 

power system studies. Obtaining a converged power flow case is 

not a trivial task especially in large power grids due to the non-

linear nature of the power flow equations. One key challenge is 

that the widely used Newton based power flow methods are 

sensitive to the initial voltage magnitude and angle estimates, and 

a bad initial estimate would lead to non-convergence. This paper 

addresses this challenge by developing a random-forest (RF) 

machine learning model to provide better initial voltage 

magnitude and angle estimates towards achieving power flow 

convergence. This method was implemented on a real ERCOT 

6102 bus system under various operating conditions. By providing 

better Newton-Raphson initialization, the RF model precipitated 

the solution of 2,106 cases out of 3,899 non-converging dispatches. 

These cases could not be solved from flat start or by initialization 

with the voltage solution of a reference case. Results obtained from 

the RF initializer performed better when compared with DC 

power flow initialization, Linear regression, and Decision Trees.   

Keywords—Machine Learning, Newton Raphson, Power flow 

convergence, Power flow initialization, Random Forest.  

I. INTRODUCTION  

Power flow, sometimes called load flow, involves the 
computation of the bus voltages magnitudes and angles and it 
gives insight into the steady-state condition of the power system 
at a particular operating condition. Power flow solutions serve 
as a base in performing other power system studies such as 
transient and voltage stability studies. Ideally, a power flow case 
must be solvable under steady state before any dynamic study 
can be performed. Grid operators and planners regularly perform 
several power flow studies under various loading and generation 
dispatch to ensure reliable grid operation. From the power flow 
results, transmission planners can have a better understanding of 
line overloads, losses, and voltage violations in their network 
[1].  

Several iterative and non-iterative methods currently exist 
for solving the non-linear power flow equations [2]. In practice 
however, the Newton-Raphson method and its variants stand out 
as the widely used solution method in industry because of its 
quadratic convergence property [1], [3]. Although the Newton-
Raphson method is quite robust for solving power flow, it takes 
up significant computation time especially for large power grids 
with thousands of buses. Linear approximation methods like the 
DC power flow (DCPF) have been used to achieve faster 
solutions. DCPF requires several assumptions and may not 
converge to the true solutions as it does not consider critical 
parameters such as bus voltage magnitude, reactive power, and 
losses. Based on the limitations of DCPF, achieving a solved AC 
power flow (ACPF) case remains a high priority for 

transmission planners. Getting a converged ACPF can be 
particularly difficult, especially in large power grids. In some 
cases, the ACPF problem is unsolvable especially at high 
loading conditions [4]. Three major challenges exist in obtaining 
a converged/solved ACPF case for large power grids.  

Firstly, the loading condition and generation dispatch affect 
the solvability of a power flow case. Loads are generally 
modelled as PQ buses with constant active and reactive power. 
There exists a maximum loading for each bus above which there 
would be no solution [4]. This can be further analyzed using the 
PV curves which determine the maximum power that can be 
transferred [5]. Loading a bus above this limit (which is the nose 
of the PV curve) would cause the voltage to drop drastically, 
which would further affect the convergence of the power flow 
case. The active power dispatch of all generators is specified in 
a power flow case except that of the slack generator which 
typically handles any mismatch between the load (including 
losses) and generation. Convergence problems would exist in 
cases where the extra power supplied or absorbed by the slack 
bus is excessively greater than the slack generator limits [4]. So, 
the non-slack generators need to be adequately dispatched to 
prevent unnecessary stress on the slack generator. The next 
major challenge is due to reactive power support. Reactive 
power does not travel far over long distances due to the 
inherently high X/R ratio in long transmission lines, thus 
reactive power support, if needed, must be provided locally. A 
power flow case may fail to converge if several buses have 
insufficient reactive power support. Several algorithms have 
been developed in [2], [4], [6], [7] to achieve power flow 
convergence through reactive power planning. 

 The third major challenge is the choice of initial voltage 
magnitude and angle guess when solving ACPF using Newton 
based methods. Previous research has shown that Newton-
Raphson is very sensitive to initial conditions [8], [9]. Ref. [10] 
have shown that Newton-Raphson method would not converge 
to any solution if the initial guesses were outside the region of 
attraction to the solution. This shows that even a well dispatched 
ACPF case may not converge due to the choice of the initial 
voltage magnitude and angles. The ACPF convergence region 
or region of attraction are rather complex and fractal in nature. 
The convergence region also varies with loading conditions and 
large number of iterations are needed when the initial guesses 
are far from the convergence region [1]. Ref. [9] developed an 
analytical iterative method to determine initial guesses to 
achieve power flow convergence. The iterative method starts 
with an initial guess and the Jacobian matrix after the first 
iteration is used to calculate a convergence operator ρ. This 
convergence operator is related to the non-singularity of the 
Jacobian matrix. If the convergence operator is greater than 0.5 
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then an affine matrix is calculated to update the initial guess. 
Else, an attempt is made to solve the power flow case. This 
iterative method was applied to small power flow cases up to 
118 buses. The technique has not been applied to large scale 
power grids under varying operating conditions. In practice, 
power system planners tend to initialize the voltage magnitude 
and angles using flat start, DCPF solutions, a reference case, or 
other solved cases; power flow tools developed in [2], [6], [7] 
used this approach. Machine learning offers a good approach to 
initialize Newton-Raphson power flow as it can map a dispatch 
case to the voltage solutions and once sufficiently trained, it 
requires little computational time to predict its solution. 

 To the knowledge of the authors in this paper, no attempt has 
been successfully made to use machine learning to achieve 
ACPF convergence in large scale power grids by accurately 
predicting the initial conditions. Although machine/deep 
learning has been regularly used to predict power flow 
solutions[11]–[17], no attempt has been made to solve 
previously unsolved power flow cases by predicting adequate 
initial bus voltage magnitude and angles. Perhaps the closest 
attempt was by researchers in [13] where previously solved 
ACPF test cases were initialized to achieve faster solution time. 
In [13], it was assumed that all dispatch cases that form the 
training and testing dataset converged, cases that failed to 
converge were not used. 

 This paper aims to address the third major power flow 
convergence issue highlighted earlier. Here we introduce a new 
way to achieve ACPF convergence in large power grids by 
estimating the initial voltage magnitude and angles using 
Random Forest machine learning algorithm. Previously non-
converging power flow cases were solved by providing better 
initial voltage magnitude and angle estimates within the 
convergence region. The machine learning initializer was 
applied to a real ERCOT 6102 bus power flow case under 
various operating conditions. The simulation was performed 
using Python and PSS/E. 

II. OVERVIEW OF AC POWER FLOW FORMULATION 

The power flow problem is formulated as non-linear 
algebraic equations that maps the bus active and reactive power 
injection to the voltage phasor as shown in (1) and (2) [7]. 

����� = �� ∗��	(��	�
�Ѳ�	 + ��	���Ѳ�	)     (1)
�

	��
 

�� ��� = �� ∗��	(��	���Ѳ�	 − ��	�
�Ѳ�	)     (2)
�

	��
 

Where �� ��� and �� ��� are the net active and reactive power 
injection. ��	  and ��	  are real and imaginary parts of the 
admittance matrix element ��	 . Ѳ�	   represent the bus voltage 
angle difference between bus �  and � . ��   and �	 are the bus 
voltage magnitude at bus � and � while � is the total number of 
buses. For the ERCOT case �  = 6102. Although there is no 
guarantee that the machine learning algorithm would learn the 
actual power flow equations in (1) and (2), the machine learning 
performs satisfactorily in providing key mappings between the 
active and reactive powers and the bus voltage solutions. 

III. DATASET GENERATION 

     In this paper, the dataset was generated using the generator 
and load dispatch obtained from the U.S Energy Information 
Administration (EIA) [18]. The data contains the hourly 
generation and loadings in ERCOT for the year 2022 and the 
first hour of 2023, so a total of 8761 hourly data. To generate 
the actual power flow case, a solved reference ERCOT case is 

required. The active power of the generators � !�  and loads 

�"#$%  in the reference PSS/E case are then varied as specified in 
the EIA data. The conventional (hydro, gas, thermal), nuclear 
and renewable (solar, wind) generators in the PSSE reference 
case are scaled uniformly based on the EIA data for each 
generator resource category. The active power of the loads in 
the PSS/E case are scaled uniformly with the reactive power 
maintained at a constant P/Q ratio. At this stage 8761 power 
flow cases were generated corresponding to various loading 
conditions. The minimum load in the dispatch is 31.9 GW while 
the peak load is 79.8 GW. After modifying the reference case 
to create the dispatch, full Newton-Raphson power flow 
initialized with the reference case was applied to solve all cases 
as shown in Fig. 1. 4,862 power flow cases successfully 
converged while 3,899 power flow cases did not converge. The 
4,862 solved cases would form the training and validation case. 
The 3,899 unsolved (non-converged) cases formed the testing 
case.   

 

Fig. 1 Generation of 8761 Hourly Dispatch Power Flow Cases 

IV. PROPOSED FRAMEWORK AND MODEL SETUP 

Random Forest (RF) is a widely used machine learning 
algorithm in power system applications. One of its key 
advantages is that it avoids overfitting and takes advantage of an 
ensemble of trees for improved accuracy. A RF regressor was 
trained to learn the mapping between the power injections and 
power flow solutions (voltage magnitude and angle). The input 
data are � !�,�..� !�  , �"#$%,�…�"#$%  and �"#$%,�…�"#$% , where 

� !�,�..� !� is the active power of the generator at bus � to the 

last generator at bus � !�  likewise, �"#$%,�…�"#$%   and 

�"#$%,�…�"#$% are the active and reactive power load at bus � to 

the last load at bus �"#$%. 
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Fig. 2 Proposed Framework for Machine Learning Initializer 
 

The outputs are the bus voltage magnitude, bus angles, star 
bus voltages and star bus angles. Large scale grids regularly 
have three-winding transformers which are modelled in 
commercial software’s like PSS/E and PowerWorld as three 
separate two-winding transformers connected to a fictitious star 
point [19], [20]. This star point or star bus has a calculated 
voltage magnitude and angle and is crucial for the effectiveness 
of the machine learning initializer.  

 

Fig. 3 Model Training Setup 

The 4,862 solved cases were split into training and validation 
based on a 90/10 split. The main preprocessing done is the min-
max normalization of the input data. Also, the bus/star bus 
angles were converted to radian to avoid large negative angles 
during training. The ERCOT power flow model has 6102 buses 
and 134-star buses (corresponding to 134 three-winding 
transformers). Fig. 3 shows the setup for training the RF model. 
Four RF models were trained for each output categories namely 
bus voltage magnitude, bus angle, star bus voltage magnitude 
and star bus angle. The same hyperparameters were used for all 
4 RF models. Fig. 2 shows the entire machine learning initializer 
framework. After the models have been sufficiently trained to 
learn the mappings between the bus power injections and the 
voltage/angle solutions, the trained model was then applied to 
the previously 3,899 non-converging cases. The RF model then 
predicts the solutions of the bus/star bus voltage magnitude and 
angle. This solution was then used as the initial values of the 

3,899 unsolved cases. This is based on the concept that although 
there is no guarantee that the machine learning model would 
predict the exact voltage magnitude and angle solution, the 
values would be close to the actual solution and therefore within 
the convergence region. Full Newton-Raphson power flow is 
then applied to this newly initialized power flow case. 

V. RESULTS 

A. Random Forest Initializer Results 

This section looks at the performance of the RF models. 
Table I shows the accuracy of the RF model based on the Root 
Mean Square Error (RMSE). The RMSE is a suitable accuracy 
metric when dealing with a regression problem. RMSE is 

computed using (3), where n is the total data points, �� is the 

true value while �)� is the predicted value. 

                  *+,- = .�
� ∗ ∑ (�� − �)�)0����                      (3) 

From Table I, RF provides a very small root mean square error 
although with significant training time. But once sufficiently 
trained the model takes only a few seconds to predict.  
     Regardless of the accuracy of the algorithm, the main task is 
to investigate the ability of the algorithm to assist in Newton-
Raphson convergence. The RF models are applied to the 3,899 
non-converging cases for which we do not know the actual 
solutions, and the predicted voltage magnitudes and angles 
were then used to initialize their respective power flow cases. 
2,106 power flow dispatch cases successfully converged due to 
the better initialization provided by the RF models. This shows 
that the RF initializer was able to assist the Newton-Raphson 
solution method in converging 54% of the previous 3,899 non-
converging cases. The remaining 1,793 cases would need to be 
further investigated, because even though the problem of 
initialization was addressed in this work, non-convergence 
could be due to several other problems. Although the power 
flow cases successfully converged there exist certain voltage 
violations. From Table II a typical converged testing case has 
about 315 buses with voltage magnitude below 0.9pu or above 
1.1pu. These voltage violations were reduced by adding 
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switched shunts using the automated process described in [6]. 
After adding the switched shunts, the average number of 
voltage violations (<0.9pu or >1.1pu) dropped from 315 to 
about 9 buses per converged testing power flow case.  

TABLE I.  PERFOMANCE OF  RANDOM FOREST 

 

Random Forest Model 
RMSE on Validation 

Data 
Training Time 

Bus Voltage 
Magnitude 

0.01629 15.16 Hours 

Bus Voltage Angle  0.0138 14.15 Hours 

Star Bus Voltage 
Magnitude 

0.0086 23.89 Minutes 

Star Bus Voltage 
Angle 

0.01024 23.06 Minutes 

TABLE II.  SOLVED CASES WITH VOLTAGE VIOLATING LIMITS 

 
Voltage Magnitude 

Ranges (p.u) 

Average No. of 

Violating Buses per 

Converged Testing 

Case (Without Extra 

Voltage Support)  

Average No. of 

Violating Buses per 

Converged Testing 

Case (With Automated 

Voltage Support) 

<0.90 or  > 1.1 

315 9 

<0.85 or  >1.12 
 
192 

 
1 

<0.80 or  > 1.2 
 
144 

 
0 

B. Comparison with Other Initialization Methods 

The results obtained from RF were compared with other 
analytical and machine learning methods. Table III compares 
the performance of RF with other machine learning methods in 
terms of RMSE. The RF models provided better accuracy with 
the least RMSE, while linear regression had the worst RMSE.  

TABLE III.  ACCURACY COMPARISON WITH DIFFERENT MACHINE 

LEARNING ALGORITHMS 

Model RMSE 

Random 

Forest 

RMSE 

Decision Trees 

RMSE Linear 

Regression 

Bus Voltage 
Magnitude 
Model 

0.01629 0.0206 0.41630 

Bus Voltage 
Angle Model 

0.0138 0.1943 0.24158 

Star Bus Voltage 
Magnitude 

0.0086 0.01064 0.23179 

Star Bus Voltage 
Angle 

0.01024 0.01178 0.05744 

  

 Although the RF model had the best accuracy in terms of 
RMSE it required significant training time as it is an ensemble 
of many regression trees as shown in Table IV. Linear 
Regression (LR) on the other hand takes very little training time 
but offers poor accuracy. The Decision Tree (DT) had a 
relatively shorter training time when compared with RF, but its 
accuracy was not as good. Table V compares the convergences 
performance between the RF initializer and other initialization 

techniques. In practice, power system planners regularly 
initialize power flow cases using DCPF or flat start on rare 
occasions. In this work, none of the 3,899 unsolved power flow 
cases converged with flat start.  It is difficult to achieve 
convergence from flat start for power flow cases with thousands 
of buses, although for small systems with a few hundred of 
buses, flat starting may be useful. However, initializing with 
DCPF which provides voltage angle estimates helped solve 
about 758 cases which represent about 19.44% of the 3,899 test 
cases. The process for initializing with DCPF is similar to that 
of the other machine learning methods. First the 3,899 cases 
were solved with DCPF with the voltage magnitude assumed as 
1 p.u since DCPF only solves for the voltage angles. The voltage 
magnitude (1pu) and calculated angles are then used to initialize 
all 3,899 unsolved cases and a full Newton-Raphson ACPF was 
then applied. 

TABLE IV.  TRAINING  COMPARISON WITH DIFFERENT MACHINE 

LEARNING ALGORITHMS 

Model 
Training Time 

Random Forest 

Training Time 

Decision Trees 

Training Time 

Linear 

Regression 

Bus Voltage 
Magnitude 

15.16 Hours 1.6 Hours 2.267 Minutes 

Bus Voltage 
Angle 

14.15 Hours 1.5 Hours 2.59 Minutes 

Star Bus 
Voltage 
Magnitude 

23.89 Minutes 5.048 Minutes 24.21 Seconds 

Star Bus 
Voltage Angle 

23.06 Minutes 4.908 Minutes 23.19 Seconds 

TABLE V.  CONVERGENCE PERFORMANCE COMPARISON 

 
Parameter 

RF 

Initializer 

DT 

Initializer 

DCPF 

Initializer 

LR 

Initializer 

Total (Initial Non-
Converged Power 
Flow Cases) 

3,899 
Cases 

3,899 
Cases 

3,899 
Cases 

3,899 
Cases 

Power Flow Cases 
Converged by 
Initialization 

2,106 
Cases 

1,783 
Cases 

758 
Cases 

246 
Cases 

Percentage (%) of 
Cases Solved by 
Initialization 

54.01% 45.73% 19.44% 6.31% 

Remaining Non-
Converged Power 
Flow Dispatch 
Cases 

1,793 
Cases 

2,116 
Cases 

3,141 
Cases 

3,653 
Cases 

 

     From Table III and Table V, it can be observed that the lower 
the RMSE of the machine learning method, the higher the 
number of cases to converge. Amongst the machine learning 
methods, the RF algorithm had the least RMSE and best 
convergence rate, followed by DT and finally LR. The LR 
model performed poorly as it could not capture the relevant 
non-linear mappings. But even at that it solved about 246 cases. 
Fig. 4, shows overlapping and unique cases solved by different 
initialization methods. RF and DT had the most overlap due to 
the similarity in their algorithms. From Fig. 4a and Fig.4c, it 
can be observed that 1413 dispatch cases were solved by both 
RF and DT initialization methods. 
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(a)    (b)   (c)    

Fig. 4 Overlap in Power Flow Cases Solved by different Initialization Methods 

 
Although both Linear Regression and DC power flow are linear 
initialization techniques, there is very little overlap in the cases 
solved by both methods as seen in Fig. 4b. Just 58 cases are 
solved by both LR and DCPF, even though LR solved a total of 
246 cases and DCPF initialization solved 758 cases. The key 
inference from all this is that the initialization method used has 
an impact on what particular power flow case would be solved. 

VI. CONCLUSION AND FUTURE WORK 

    In this paper, machine learning was used to predict the initial 
voltage/angle guesses to initialize Newton-Raphson power 
flow. The developed Random Forest initializer successfully 
converged 2,106 power flow cases which did not converge 
originally due to bad initialization. The RF initializer performed 
better when compared with popular analytical methods like 
DCPF initialization which is used in industry. After achieving 
a converged/solved power flow case, power system planners 
regularly analyze these cases for (voltage and thermal) 
violations and then propose adequate measures to solve these 
violations. In future, the capabilities of physics based deep-
learning initializers need to be further investigated and 
compared with already established machine learning methods. 
In addition to this, retraining the model with more data and 
varying topology configurations could provide further insights 
and improve the success rate of the model. 
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