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Abstract

Designing e↵ective load coordination mechanisms that consider the preferences of aggre-
gators, end-users, and network operators is critical for the successful implementation of
demand response (DR) programs. This paper proposes an incentive-based method for
coordinating a group of controllable devices that is practical, does not require complex,
high-order models of the entire system, respects end-users’ privacy and quality of service
(QoS), and can readily incorporate network conditions to ensure grid reliability. The
method works based on sending grid access requests from controllable devices to an ag-
gregator and receiving acceptance or rejection responses. An opt-out possibility is also
defined for devices that allows them to exit the program for satisfying the QoS constraints
of end-users. The proposed method includes algorithms in both end-user level for con-
trollable devices operation and the aggregator level for managing the grid access requests.
These algorithms are fast and with low computational burden which makes them suitable
for the designed framework, reduces the implementation cost and increases the chance
of scalability. The method is illustrated with a realistic test system consisting of a set
of controllable heat pumps used in pool heating systems and uncontrollable loads placed
in a distribution feeder and supplied by a distribution substation transformer. Simula-
tion results highlight the role of the proposed method in flattening the load curve, peak
shaving, satisfying the QoS constraints of end-users, and keeping the transformer loading
below its rated power. For the studied system, the proposed method can decrease the
electricity costs up to 17% compared to conventional methods.

Keywords: Demand dispatch, Demand-side flexibility, Incentive-based coordination,
Load control, Grid access requests, Heat pump.

1. Introduction

In recent years, demand response (DR) techniques have been widely recognized for
enabling the active participation of demand side resources in grid balancing and opera-
tions. DR consists in adapting demand profiles to grid needs, by increasing, reducing,
or shifting the amount of energy consumed [1]. Although the concept of shedding large
industrial loads for supporting the operation of the power grid is not a new one, mod-
ern DR involves customers of all sectors and promotes more dynamic participation in
grid operations. While supply-side resources, like traditional power plants, are relatively
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few in number and characterized by high power capacities, demand-side resources show
opposite features: large numbers and low capacities [2]. As a consequence, aggregation
and coordination mechanisms are needed to achieve a significant load modulation and to
deliver value to ancillary service markets [3]. Moreover, it is worth underlining that such
mechanisms have to be capable of unlocking demand-side flexibility without compromising
end-users’ comfort and privacy and cost-e↵ective in both deployment and implementation,
at scale.

Over the past decades, several works have focused on the coordination of demand-side
resources. Coordination mechanisms can be classified into three main groups: “central-
ized”, “decentralized”, and “distributed”1.

In centralized coordination, a central coordinator, with complete information and full
controllability over all/individual devices in a population, drive the behavior of the pop-
ulation by broadcasting control signals in a top-down fashion. The control signals are
usually derived from the solution of a centralized optimization problem (e.g., an opti-
mal scheduling problem) and broadcast through a communication infrastructure between
the central coordinator and the individual devices. In power grids, direct load control
(DLC) has been one of the early methods to implement centralized methodologies, such
as interruptible load schemes encouraging end users to shed their load during critical
peak hours. Such mechanisms have been in place for large industrial and commercial
customers for more than 50 years [5], and have received increased attention for their po-
tential applications in the residential sector in recent years [6]. It is worth underlining
that the centralized methods’ requirements of complete information and full controllabil-
ity may pose challenges in terms of scalability and cyber-security [7]. Indeed, the larger
the population, the higher the computational burden. Moreover, it has been shown that
centralized control may cause unwanted load synchronization and oscillatory e↵ects: e.g.,
the rebound e↵ect following a load curtailment event can result in a load peak higher
than the one which originated the need for the demand-response event [6].

Conversely, in decentralized models, each load is equipped with a local controller
which operates according to local sensing and control objectives. This avoids the need
for complex computation and communication that characterizes a centralized control ar-
chitecture [8]. Decentralized methods are also more resilient to cyber-attack and commu-
nication failures [9]. However, the capability of decentralized control approaches may be
limited compared with more centralized approaches. This is due to the limited system-
level information that the local controllers have [7].

Distributed coordination combines elements from centralized and decentralized ap-
proaches by having a centralized agent coordinate a population of loads, where each load
is equipped with local sensing and control capabilities. In general, the centralized agent
uses incentives such as price to interact with loads and a↵ect their control strategy. Ar-
royo et al. [10] proposed a distributed control architecture to steer flexibility of buildings
and track a reference load profile. In the proposed framework, an upper-level agent re-
ceives grid flexibility requests, then, virtual price signals are used to promote the desired

1It is worth underlining that the definition of decentralized and distributed is not unified in the lit-
erature. Hereinafter, we refer to the definition adopted from the optimization community [4], where
distributed mechanisms enable a small amount of central coordination activity, while decentralized mech-
anisms rely on neighbor-to-neighbor communication only.
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load variation while leaving buildings the freedom to decide their own control approach.
Gupta et al. [11] introduced a method for coordinating incentive-based demand response
and batteries for providing frequency regulation service in low inertia isolated grids. A
price elasticity model was used to calculate incentives that should be sent to the loads
for utilizing the required demand response. An incentive-based coordination mechanism
for integrated electricity and heat systems was introduced by Zheng et al [12]. In this
approach, price incentives are o↵ered to district heating companies to encourage pipeline
energy storage utilization and flexibility provision from district heating networks. The
problem was formulated as a bi-level model. Yu et al. [13] proposed a price-based approach
for utilizing the flexibility of industrial and residential customers in the intraday market.
The problem was formulated as a Stackelberg game and the existence and uniqueness
of the Stackelberg Equilibrium were investigated. Zhong et al. [14] proposed a coupon
incentive-based demand response approach in which consumers receive a flat rate price for
electricity consumption and a coupon price for modifying their baseline. These coupons
are used as incentives that encourage consumers to reduce their consumption when whole-
sale electricity market prices spikes. The consumers are allowed to update their response
to these coupons several times until the operating interval Junker et al. [15] proposed
a dynamic flexibility model termed “Flexibility Function”, which predicts demand as a
function of prices. The Flexibility Function could be any dynamic model. In [15], a finite
impulse response model is suggested, while in [16], a grey-box model based on stochastic
di↵erential equations is used. Once the Flexibility Function is estimated, it can be used
to generate the price signals that should be used to indirectly control the demand to
achieve some specific control objective. In [17] a centralized controller is used to coordi-
nate a pool of thermostatically controlled loads (TCLs) to manage frequency and energy
imbalance in power systems. A Markov chain model was used to describe the dynamic
of the thermostatically Controlled Load (TCL) population, and a proportional controller
was used to broadcast control signals (i.e. the fraction of TCLs to be switched on/o↵)
to the TCL population to track a reference power consumption profile. Despite the good
tracking performances (power tracking error ranging between 0.26 and 9.3%), the pro-
posed control approach requires an observable model, which is not always available [18].
A similar distributed approach based on mean-field theory to control deferrable loads to
deliver ancillary grid services was proposed by Meyn et al. [18, 19] and by Mathieu et
al. [17].

In contrast to the above-mentioned works, in which a central load coordinator broad-
casts the control signal to the population of loads (in a top-down fashion), bottom-up
demand management schemes build on methods used to manage data packets in com-
munication networks and have been widely investigated in [20–25]. Zhang and Bail-
lieul [20, 21] proposed a bottom-up approach in which each load stochastically requests
an energy packet from the coordinator based on the load’s local state variables. The pro-
posed approach, referred to as “packetized direct load control”, assumed exact knowledge
of the number of packetized loads at any given time, that one could queue up requests
for synchronous allocation. In parallel with [20, 21], Frolik and Hines [26] proposed a
random access approach for managing the charging of Plug-in Electric Vehicles (PEVs)
that simultaneously avoids overloads and provides equal access to the charging resources.

Separately, Almassalkhi et al. developed Packetized Energy Management (PEM) in
[20] that improves upon the above-mentioned assumptions. Under PEM, the load makes
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requests under a generalized need for energy device state that has been applied for EVs,
TCLs, and batteries. The PEM coordinator then either grants or denies each stochastic
grid access request based on the tracking error for a power reference signal that is rep-
resentative of grid and/or market conditions. That is, PEM represents a privacy-aware,
asynchronous, and stochastic, bottom-up control scheme for many di↵erent switching
loads, [22] [23]. QoS constraints were also considered. In [24], the macro-model method-
ology of the PEM system presented in [22] is further extended to model and analyze
fleets of deferrable loads, such as electric vehicles (EVs). The PEM approach has also
been extended to provide grid services. In [25] a methodology is proposed to estimate
and provide fast frequency response (FFR) services via decentralized control of active
packet interruptions. In [27] a generalization of PEM is presented which gives grid-aware
load dispatch capability to the approach by incorporating a new grid constraint manage-
ment algorithm. The method is capable of providing grid voltage regulation and tracking
reference (e.g., AGC signals) services while guaranteeing QoS for end-users.

Despite the benefits of the PEM solutions discussed above, i.e. low computational
complexity, low hardware installation cost, scalability, ensuring service quality, and pre-
serving end-users’ privacy, none of the prior PEM control architectures are capable of
accounting for external incentives, such as electricity prices or CO2 emissions. Moreover,
except for an EV-specific context with a dynamically-rated transformer and predictive
control of packet requests by the PEM coordinator in [28], a PEM coordinator generally
relies on real-time data streams when making accept/deny decisions for incoming packet
requests and does not employ look-ahead predictions. Furthermore, a device operating
under PEM (i.e., a “packetized” load) has always relied on measurements of the current
energy state or need for energy in deciding packet request probabilities and opt-out transi-
tions and has not incorporated any look-ahead capability at the device layer. This means
that devices under PEM have hitherto been unable to incorporate time-varying QoS re-
quirements (e.g., predicted changes in occupancy) in the device-level control logic. To
fill these gaps, this manuscript presents a bottom-up methodology inspired by PEM for
coordinating grid access requests that incorporates incentives-based grid access requests
(IBGARs) and accounts for both system-wide grid conditions and local QoS. The specific
contributions of this manuscript are:

• a novel incentive-based coordination mechanism that extends prior literature (PEM
method) on grid access requests;

• a look-ahead capability for taking into account known, but time-varying future
changes in local QoS requirements in determining local device actions;

• adapting the device-level PEM algorithm to swimming pool heating systems with
time-varying boundary conditions supplied by heat pumps.

• incorporation of system-wide constraints, such as a transformer capacity limit, to
mitigate overloading;

The remainder of this paper is structured as follows. Section 2 introduces the theo-
retical framework of the proposed control architecture, together with the mathematical
models and algorithms used in the paper. Next, Section 3 introduces the case study and
presents the simulation results. Finally, Section 4 summarizes the main findings of the
work and provides future research directions.
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2. Incentive-based Grid Access Requests (IBGAR) framework

The required framework for implementation of the IBGAR method is illustrated in
Figure 1. The main focus of this work is on developing novel algorithms for the packe-
tized energy controller in the device layer and the flexibility management system in the
coordinator layer. Detailed descriptions of the IBGAR scheme at device and coordinator
levels are presented in Sections 2.1 and 2.2, respectively.

Flexibility 
management  

system

Device levelTSO or DSO level 

Device 
controller 

d 

Coordinator level

Grid ancillary
services Access request

Response

Dispatch signal

Available flexibility

System  state Controllable
device d

Observed
load state

Control
signal

Grid

Incentive

Market price,
Energy scheduleOffer

Electricity market

Figure 1: IBGAR framework. The orange-filled blocks represent the focus of this manuscript.

2.1. IBGAR implementation at the device level

As shown in Fig. 1, at the device level, each device controller d receives the load status
information from controllable device d and the external incentive from the aggregator.
Then, the device controller decides whether to send or not send a grid access request
to the aggregator considering the operation cost and constraints. Finally, the received
response from the aggregator is applied to the device through the control signal. To
ensure the quality of service, an opt-out possibility is considered that enables the device
controller to exit the energy schedule temporarily and satisfy the comfort constraints of
residents or operational limitations of devices.

Figure 2 gives an overview on how the device controller decides about sending access
requests. To make the decision, a stochastic request rate (SRR) function and a function
that links the external incentive to an access request mechanism (ARM) are needed. The
output of the ARM is a random number between 0 and 1. If this random number is less
than the value of the SRR function at the measured state variable, the grid access request
will be sent to the aggregator. This leads to a computationally lightweight algorithm that
does not require powerful and expensive hardware for installation and a complex model
of the system, can be easily applied to di↵erent devices, and is real-time responsive to
external incentives.

If the normalized value of the state variable is negative or greater than one, the
algorithm will opt out of the program or not send a grid access request (depending on
the device) such that the state variable returns to the range of zero and one as soon as
possible.
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Figure 2: Overview of the decision making mechanism in the device controller.

The definition of state variable is di↵erent for each type of controllable device. For
instance, for a battery, the state variable is the state of charge (SOC), and for a TCL,
the temperature represents the state variable of the load.

The method is designed in such a way that it works with normalized values of state
variable and external incentives. This makes the approach generic for di↵erent applica-
tions.

The key important points for successful implementation of the method are designing
the SRR function and defining the link between external incentive and the ARM which
are discussed in the next subsections.

2.1.1. SRR function modeling

In IBGAR, our focus is on one specific state variable of the system x
⇤
d
of the controllable

device and the decision making is performed based on the status of this state variable.
As mentioned before, the SRR function works with normalized state variable x

⇤
d
. Using

the state variable in the normalized form makes the method independent from the type
of the state variable e.g., temperature, state of charge, etc., and scales it between zero
and one which makes the method generic for any application.

Normalized value of the state variable x
⇤
d
in time interval k i.e., xn

d
[k] for device d is

calculated as below:

x
n

d
[k] =

x
⇤
d
[k]� x

min

d

xmax

d
� xmin

d

, (1)

where x
min

d
and x

max

d
are the lower and upper bounds of the state variable at device

d, respectively. The SRR function represents the probability of sending a grid access
request at di↵erent values of the normalized state variable. Depending on the device and
the control action, the SRR function should be monotonically increasing or decreasing.
For a battery and charging (discharging) action, when the SOC is low the probability
of sending a request is high (low) and decreases (increases) as the SOC of the battery
increases, hence the SRR function with be monotonically increasing (decreasing). For
a TCL and for heating (cooling) action, if the temperature is low, the probability of
sending a grid access request will be high (low) and by increasing the temperature, this
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probability will decrease (increase), which leads to a monotonically increasing (decreasing)
SRR function.

The following mathematical equation is used to formulate SRR function:

P (xn

d
[k]) = 1� e

�µ(xn
d [k])�t

, (2)

where µ(xn

d
[k]) is the rate parameter. If the SRR function should be monotonically

increasing, µ(xn

d
[k]) can be formulated as below:

µ(xn

d
[k]) =

8
><

>:

0 x
n

d
[k]  0

mR(
x
n
d [k]

1�x
n
d [k]

)(
1�x

set
d

x
set
d

) x
n

d
[k] 2 (0, 1)

1 x
n

d
[k] � 1

. (3)

Otherwise, µ(xn

d
[k]) can be formulated as following:

µ(xn

d
[k]) =

8
><

>:

0 x
n

d
[k] � 1

mR(
1�x

n
d [k]

x
n
d [k]

)(
x
set
d

1�x
set
d
) x

n

d
[k] 2 (0, 1)

1 x
n

d
[k]  0

, (4)

where x
set

d
is the normalized desirable set point of the state variable. If a device does

not have a set point for the state variable such as batteries, we should have x
set

d
= 0.5.

mR is a design parameter that can be used to manage the variation of state variable
around the set point and consequently manage the energy consumption of the scheme.
This feature will be discussed in detail in Section 3. Three realizations of equation (2) for
a decreasing SRR function are depicted in Figure 3.
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Figure 3: Illustrating the e↵ect of mR and xset
d

on the probability of sending access request for
decreasing access request rates.

As shown in Figure 3, the probability of sending an access request increases by increas-
ing the value of mR which means more requests for energy packets and consequently more
energy consumption. For the same values of mR, the probability of sending an access
request at the set point temperature is the same at di↵erent values of the set point.

2.1.2. Incorporating external incentives into the ARM

We start with normalizing the external incentives. The normalization is done such
that it can deal with both dynamic and flat incentives. So, the following formulation is
proposed to normalize the incentives:
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⇢z[k] =
⇢[k]

1
2(⇢

max + ⇢min)
� 1, (5)

⇢
n[k] =

8
><

>:

⇢z [k]
⇢min
z

⇢z[k] < 0
⇢z [k]
⇢max
z

⇢z[k] > 0

0 ⇢z[k] = 0

, (6)

where ⇢[k] is the incentive in time interval k. ⇢
max and ⇢

min are the maximum and
minimum values of the incentive in the time series, respectively. ⇢max

z
and ⇢

min

z
represent

the maximum and minimum of ⇢z[k].
Using (5) and (6), for dynamic tari↵s, we have �1  ⇢

n[k]  1, and for fixed tari↵s
⇢
n[k] = 0.
One of the main di↵erences between distributed coordination mechanisms (and more

specifically, PEM) and the proposed IBGAR approach is incorporating external incentives
in the decision making process. In PEM, the ARM works based on generating a random
number R 2 [0, 1] using the uniform distribution. In IBGAR, it is suggested that the
uniform distribution is replaced with another distribution whose characteristics change
as the external incentive changes. It is worth mentioning that the incentives are sent
to motivate the end-users to reduce their consumption. So, assigning greater values for
incentives (e.g. higher electricity prices) means more interest in reducing the energy
consumption. Therefore, the characteristics of the distribution should be changed in
such a way that when the incentive is high (low), there will be a higher probability for
generating random numbers close to one (zero) and consequently, not sending (sending)
an access request (see Figure 2). To this end, use of Beta distribution is suggested for
generating the random numbers. Beta distribution is formulated as below:

f(w) =

(
w

↵�1(1�w)��1

B(↵,�) 0  w  1

0 otherwise
, where B(↵, �) =

Z 1

0

v
↵�1(1� v)��1

dv. (7)

The first advantage of using Beta distribution is that the random numbers generated
by this distribution are always in the range of [0, 1] which makes them perfect for the
IBGAR method (see Figure 2). Moreover, we can easily control the skewness of the
distribution by changing one or both parameters ↵ and �.

Considering the explanations above, in low (high) incentives, the distribution should
be right-skewed (left-skewed). So, to depend the skewness to the incentive, it is suggested
that the � is kept as � = �

0 and represent the ↵ as a function of normalized incentives
as shown in Figure 4. When the incentive is low, i.e., the normalized incentive is close to
-1, the assigned value for ↵ should be much less than �

0. This increases the probability
of generating random numbers close to 0, and sending access requests to the aggregator.
When the normalized incentive is equal to 0, we should have ↵ = �

0 which gives a
symmetric distribution for generating the random number. In this case, the probability
of sending an access request would be 50%. In high incentives, i.e., normalized incentives
close to 1, the assigned value for ↵ is much greater than �

0. This yields the generation of
random numbers close to 1, which means low probability of sending access requests.
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Di↵erent functions can be used to describe the relation between ↵ and normalized
incentives, i.e., ↵ = f(⇢n[k]). The main feature of these functions is to be monotonically
increasing by increasing the normalized incentive as depicted in Figure 4. In general, use
of an exponential function as ↵ = ae

b⇢
n[k] is suggested, where parameters a � 0 and b � 0

can be determined by choosing suitable values for ↵ in normalized incentives -1, and 1,
and noting that f(0) = �

0.
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Figure 4: Illustrating the e↵ects of ↵ on skewness of the beta distribution and the relation
between normalized incentive and ↵.

The process outlined above can be applied for all ranges of incentives including negative
external incentives (e.g., negative prices as incentives). However, to add another lever to
profit from negative incentives, it is suggested that parameter �

0 be replaced with �
neg

where �neg � �
0 for generating the random numbers in time intervals where the external

incentive is negative. This will lead to generating random numbers very close to zero,
and consequently, sending grid access requests for almost all values of the state variable
inside the operational boundaries.

It is worth mentioning that according to (5) and (6), for flat incentive tari↵s, we
have ⇢

n[k] = 0 8k 2 K and as shown in Figure 4, a symmetric distribution will be used
to generate random numbers for all time intervals. So, IBGAR becomes independent
of incentives and turns into PEM. This is not a disadvantage to IBGAR because when
a flat incentive is assigned, the incentive would be the same in all time intervals and
consequently, will be removed from the decision-making process. The important point for
keeping IBGAR e�cient for flat incentive tari↵s is that the amount of energy consumption
in this method should not be more than energy consumption in the existing conventional
control strategies. To solve this issue, the design parameter mR introduced in (3) should
be adjusted properly to reach a suitable energy consumption level for flat incentive tari↵s.

2.1.3. Adding look-ahead capability to the method

As noted, look-ahead capability allows the device controller to include future variations
in the boundary conditions of the state variable in the decision making. To add this feature
to the method, it is suggested that the algorithm checks the changes in the boundary
conditions in the next time intervals continuously, and to follow the below steps:

1. Recognize the next change in the boundary conditions and the time remaining to it
(�tc),

2. Calculate the minimum time (tmin) required to meet the new boundary condition,
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3. Compare tmin with �tc. If tmin < �tc no change in the IBGAR method will be
needed. If tmin � �tc, the opt out control should be used to temporarily exit
the plan and control the device such that the lower/upper bound constraints are
satisfied. An example of these two situations for the case where the lower bound
changes in the next time intervals is illustrated in Figure 5.

Lower bound of the state variable Real time measurement of the state variable

Estimation of the state variable variation in next time intervals when the device is ON

(a) (b)

Figure 5: Illustration of two di↵erent situations for tmin and �tc, a) tmin < �tc in which IBGAR
can be followed b) tmin � �tc in which opt out occurs.

It should be noted that it is not necessary to follow these steps in all cases where the
boundary condition changes. Figure 6 illustrates all possible situations for changes in the
boundary condition, the value of the state variable, and its possible realizations in the
next hours. In cases (a) and (b), changes in the boundary conditions lead to increasing
the feasible operating range. So it is not necessary to apply look-ahead capability. In
cases (c) and (d) the feasible operating range reduces but the state variable is still inside
the range of the next boundary conditions. So we can still postpone taking preventive
actions. In cases (e) and (f), the feasible operating range reduces and if proper actions
are not taken, the next boundary conditions may not be satisfied. So, the look-ahead
capability should be applied only for cases (e) and (f).

Calculating tmin for each device and operation mode is di↵erent. For instance, for
a battery, if the lower bound of SOC will increase in next time intervals, i.e. case (e)
in Figure 6, then to obtain tmin we should assume charging the battery with maximum
charging rate in the next time intervals and find the minimum time to meet the new lower
bound as tmin. For a heating system, in case (e) the device should be ON and in case
(f) the device should be OFF in the next time intervals and then dynamic model and
experimental results should be used to find the minimum time to meet the new boundary

Upper bound Lower bound Real-time value of state variable

(a) (b)

Possible realizations in future

tt t(e) (f) t(d) t(c) t

Figure 6: Di↵erent situations for the state variable and changes in the boundary condition:
a,b,c,d) the look-ahead capability is not used, e,f) applying look-ahead capability.
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  Calculate:

using (3)
using (7) and (8)

using (4)-(6)

Do not send grid access request Opt out from the scheme

Import: Device state, External penalty
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feature?
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action or opt out to
satisfy boundary

condition 

Send grid access request

Yes

Yes

No

IBGAR main block Look-ahead
capability

Decide on
taking no action

or opt out

Figure 7: Block diagram of the proposed IBGAR at the device level.

condition as tmin. Detailed explanations about calculating tmin for the studied case will
be presented in Section 3.

It is important to highlight that to include the look-ahead capability in this method,
the rise time (or ramp-up/down times) need to be identified. In a practical implementa-
tion of IBGAR, this can be achieved with simple system identification or data analysis
procedures on the physical assets without the need for precise mathematical models. Of
course, for the simulation herein, we only need the thermodynamic model to estimate
these parameters, but otherwise do not depend on exact models.

2.1.4. IBGAR algorithm at the device level

A block diagram of the proposed IBGAR algorithm for the device controller is pre-
sented in Figure 7. In the first step, the algorithm checks if applying look-ahead capability
is required, i.e., the changes in the boundary condition and the value of the state variable
are similar to cases (e) and (f) in Figure 6 or not. If yes, tmin and �tC are calculated (see
section 2.1.3) and compared. As long as the state variable can satisfy the next boundary
conditions, i.e., tmin < �tC , no specific action is needed and we can continue with IB-
GAR main block, otherwise, considering the type of the device, one of the two actions a)
opt-out and turning the device ON or b) not sending an access request and turning the
device OFF should be taken. For instance, for a Heating (Cooling) device, if the lower
bound is changing, the device should be ON (OFF) and if the upper bound is changing,
the device should be OFF (ON) in the next time intervals.

In the next step, the algorithm checks if the normalized value of the state variable is
between zero and one, i.e., inside the operation boundaries. If yes, two parameters P and
R will be generated and compared. Parameter P represents the SRR function and depends
on the state variable. Parameter R is a random number generated by Beta distribution
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while parameters of the distribution are controlled by the normalized incentive. If R  P ,
then the grid access request will be sent to the aggregator, otherwise, not. If the state
variable is out of the normal operation range, the algorithm decides on the opt-out from
the program and turning the device ON or taking no action and turning the device OFF
considering the type of the device, such that the state variable returns to the inside of
the operating range as soon as possible.

2.2. IBGAR method implementation at the coordinator level

As shown in Figure 1, the IBGAR method benefits from the possibility of bilateral
data communication between devices and a coordinator (e.g., an aggregator) to provide
flexibility services for the grid. At the coordinator level, the coordinator broadcasts the
incentives, i.e., electricity price, CO2 emission, etc., to devices. Then, each device decides
about sending or not sending the access request to the coordinator. The coordinator
receives access requests from devices and signals from the distribution system operator
(DSO) or transmission system operator (TSO), and responds to the access requests using
flexibility management system such that the error between the requested dispatch signal
and its realization in the grid minimizes. A closed loop block diagram of the coordinator
operation is depicted in Figure 8.

Grid

Uncontrollable
loads

Dispatch
signal +

_

Aggregator
(Flexibility

management
system)

Load 1

Load M

+ +

Access request/Opt-out

Response

External penalty

Updating dispatch
 signal

Total load

Figure 8: Closed loop block diagram of the aggregator operation for providing services at the
distribution grid level.

One of the key elements in the e↵ectiveness of the IBGAR scheme is designing the
flexibility management system. Access request signals are sent in an asynchronous way,
meaning that the access request signals of devices are received at di↵erent times. To send
the responses back to devices, the flexibility management system waits for a time period
�t (where �t < �t), collects all the access requests received during this time interval and
determines the “Yes” or “No” notification for each device based on the real-time error
between actual aggregated output and the dispatch signal. Di↵erent approaches can be
used to determine which access requests should be accepted among all requests received
during the time interval �t. The first idea is to accept the requests sequentially. In this
approach, the requests are prioritized based on the time received by the aggregator. This
approach is simple but is not fair because if the �t is the same for some devices, they
will always be prioritized in a same way and some devices will always have higher priority
over other devices. Another idea is to prioritize the requests based on the history of their
requests in the last time intervals. In this approach, the devices with fewer requests in
the last time intervals have higher priority to be supplied. This method is fair but more
complicated than the first approach and more importantly due to recording the historical

12



data, does not respect privacy. The third idea is to assign priorities randomly. This
approach is fair, easy to implement, and respects privacy of end-users. Therefore, the
third approach is used to prioritize the requests at each time interval �t.

It is worth noting that the actual implementation of PEM (as the basis of this work)
shows that the communication delays for sending grid access requests are less than one
second which is much smaller than the simulation time-steps �t and �t and does not
a↵ect the simulation results significantly [29].

3. Case study and numerical results

Among di↵erent controllable devices, heat pumps that are used to supply swimming
pools are found to be ideal flexibility resources in many studies due to the high thermal
storage capacity of the pools [30] [31] [32]. In Denmark, the NOVASOL company manages
more than 900 summerhouses with indoor swimming pools that are mostly heated by heat
pumps [32]. Moreover, the incorporation of other controllable devices such as batteries
and EVs into the PEM method has already been investigated [22],[33]. So, we focus on
a test system with swimming pool heating systems (SPHSs) supplied by heat pumps as
controllable loads and some uncontrollable loads as the case study. In order to show how
the method works at the aggregator level, it is assumed that the loads in the area are
supplied through a transformer with limited rated active power. The aggregator receives
the flexibility request signal from a DSO to use flexibility such that the transformer does
not get overloaded. Other services such as frequency control or voltage regulations can
also be provided by the aggregator, however, the approach in the aggregator and device
levels would be the same.

Figure 9 provides a schematic representation of a heat pump and swimming pool set-
up. In [34] a gray-box model is proposed to model the dynamics of this SPHS. Parameters
of this gray-box model are used as the basis to describe the dynamics of the studied SPHSs
in this work. In order to obtain data for large number of SPHSs, it is suggested that some
realistic scenarios are generated for each parameter, taking into account the calculated
values in [34], and then use di↵erent combinations of these scenarios as input data for each
SPHS. Table 1 represents related scenarios for each parameter. Using these scenarios, 35
sets of data are generated to represent 35 SPHSs for the studied system.

SP1.pdf

Figure 9: Schematic representation of heat pump and swimming pool set-up.

Table 1: Scenarios used for generating SPHSs parameters

Md(kg) md(kg) ṁd(kg/h) P
n

d
(kW )

30000 {2100, 3900} {4350, 5900} {7, 5, 3}
40000 {2800, 5200} {5900, 7900} {9, 6, 4}
50000 {3500, 6500} {7900, 9800} {11, 8, 5}
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Parameters Md(kg), md(kg) and ṁd(kg/h) are the mass of water in the pool and
heat exchanger and the flow rate for outlet water from the heat exchanger, respectively.
P

n

d
(kW ) is the rated power of the heat pump. Since the studied cases are indoor pools,

it is assumed that the ambient temperature does not change significantly during the day
and varies between 17�C and 20�C. The heat transfer coe�cient of the pool, h(kW/K),
is assumed to be the same for all SPHSs and equal to 0.5 kW/K.

Electricity price is considered as the external incentive. Both dynamic and flat price
tari↵s are investigated. Elspot market prices for the DK1 grid region (west Denmark)
in January 2022 plus a fixed tari↵ are chosen as dynamic electricity price inputs [35].
Flat tari↵ price is assumed to be equal to the average dynamic prices. The load of the
DK1 grid region in January 2022 is scaled to obtain the data for aggregated electricity
consumption by uncontrollable loads in the studied test system.

At each pool, the water temperature should follow a set-point. A dead-band (upper
and lower bounds) is defined around the set-point that limits the temperature variations
around the set-point. Without loss of generality, it is assumed that the upper bound is
constant but the lower bound can change over time as the set-point changes by users. It
is assumed that changes to the boundary conditions occur at known times (e.g., based on
scheduled occupancy). �t and �t are assumed to be 20 min and 100 sec, respectively.

3.1. SPHS modeling for updating the state variable in simulations

As mentioned, IBGAR method implementation only requires available device-level
measurements and does not require a mathematical model of any device. However, to
simulate the impacts of the IBGAR methods on these measurements, we use a thermo-
dynamic model of the SPHS. The thermodynamic model of the SPHS d is formulated by
the two following equations:

mdcp
dT

s

d
(t)

dt
= ṁdcp(T

p

d
(t)� T

s

d
(t)) + Q̇

th

d
(t), (8)

Mdcp
dT

p

d
(t)

dt
= ṁdcp(T

s

d
(t)� T

p

d
(t)) + h(T a

d
(t)� T

p

d
(t)). (9)

Equation (8) gives the power balance in the heat exchanger. T
s

d
(oC) and T

p

d
(oC) are

the supply and pool water temperatures, respectively. T
p

d
is chosen as the state variable

for IBGAR algorithm for SPHS d. cp(kj/kgK) is the specific heat capacity of water.
Q̇

th

d
(kW ) is the thermal power received from the heat pump and can be obtained as

below:

Q̇
th

d
(t) = P

n

d
⇥ ud(t)⇥ COPd(t), (10)

where ud is a binary control input that refers to the ON/OFF status of heat pump d. The
coe�cient of performance (COP) gives the relationship between the power that is drawn
out of the heat pump and the power that is supplied to the heat pump as

COPd(t) =
T

h

d
(t) + 273

T h

d
(t)� T a

d
(t)

⌘
H

d
, (11)
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where T
h

d
(oC) is the condenser temperature, T a

d
(oC) is the ambient temperature above

the pool, and ⌘
H

d
is the second-law e�ciency and assumed to be equal to 0.4.

Equation (9) gives the power balance of the pool. Discrete-time model of equations
(8) and (9) are used to obtain an estimation of water temperature variation such that
ud(t) := ud[k] for t 2 [k�t, (k + 1)�t], as below:

T
s

d
[k + 1] = (1� ṁd�t

md

)T s

d
[k] +

ṁd�t

md

T
p

d
[k] +

P
n

d
�t

mdcp
COPd[k]ud[k], (12)

T
p

d
[k + 1] =

ṁd�t

Md

T
s

d
[k] + (1� ṁd�t

Md

� h�t

MdcP
)T p

d
[k] +

h�t

Mdcp
T

a

d
[k]. (13)

Equations (12) and (13) are used to update the water temperature of the pool after
each time interval in the simulations. In a hardware implementation, online samples of
temperature measurements can be used to update the temperatures at the end of each
time interval.

3.2. Designing the parameters a and b in f(⇢n[k]) and mR

As mentioned in Subsection 2.1.2, variable ↵ in the beta distribution is determined as
a function of normalized price i.e., ↵ = f(⇢n[k]) = ae

b⇢
n[k]. To obtain parameters a and

b, first, values of function f for ⇢n[k] = �1, 0, 1 are determined, and then a curve fitting
tool such as cftool in MATLAB is used to estimate a and b.

For ⇢n[k] = 0, as discussed in Section 2.1.2, we should have f(0) = �
0 to have sym-

metric probability distribution for generating random numbers when the tari↵ is flat or
equal to the average price of the day. It is assumed that f(⇢n[k] = �1) = 1 which pro-
vides enough right skewness for the Beta distribution when prices are very low. We also
take f(⇢n[k] = 1) = (�0)2. This provides enough non-linearity in the function f and
consequently enough left skewness in the Beta distribution that significantly reduces the
rate of sending grid access requests at high prices. So, the three sets of data points will
be as (�1, 1), (0, �0) and (1, (�0)2), which highlights the key role of �0 in designing the
parameters a and b. To find a suitable value for �, we need to run the simulations for
its di↵erent values and evaluate the results. However, to run the simulations, we should
also determine the design parameter mR in (3) and (4). Since both � and mR a↵ect the
outputs, simulations are performed for di↵erent values of both parameters and then, by
analyzing the results and using cost and comfort-related metrics, suitable values of these
parameters will be found.

Electricity cost reduction compared to conventional methods is used as the cost-related
metric. Most existing SPHSs work with the conventional binary ON/OFF method. In
this method, the SPHS is controlled to follow a set-point temperature T

set

d
within the

lower (Tmin

d
[k]) and upper (Tmax

d
[k]) bounds of water temperature which can be expressed

mathematically as follows:

um[k] =

8
><

>:

1 T
p

d
[k] < T

min

d
[k],

0 T
p

d
[k] > T

max

d
[k]

um[k � 1] Otherwise

. (14)
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Percentage of mean normalized temperature deviation (MNTD) from set-points for all
pools are defined as the metrics related to users’ comfort. MNTD is formulated as below:

MNTD =
1

NK

NX

d=1

KX

k=1

T
p

d
[k]� T

set

d
[k]

Tmax

d
[k]� Tmin

d
[k]

, (15)

The percentage of variations in the electricity cost of SPHSs compared to the conven-
tional ON/OFF method and variations in the MNTD compared to the set-point temper-
atures for di↵erent values of � and mR and for both dynamic and flat price tari↵s are
presented in Figure 10.

Figure 10: Impacts of � and mR on a) electricity cost and b) MNTD for dynamic tari↵s and c)
electricity cost and d) MNTD for flat tari↵s.

As shown in Figure 10a, for dynamic tari↵s, by increasing �0, electricity cost decreases.
This happens due to the inverse relationship between � and the variance of the Beta
distribution. For small values of �, the variance of the distribution is high, which increases
the possibility of generating undesirable random numbers and consequently increasing the
cost. For �0 � 6, the impact of � on cost is not significant and the cost is almost constant.
Increasing mR increases both cost and MNTD due to its direct relationship with the rate
of grid access requests (see Figure 3). So, overall, from the cost-e↵ectiveness perspective,
we should have �0 � 6, however, if we wanted to keep the mean temperature close to the
set points we should choose pairs of �0 � 6 and mR that lead to MNTDs close to zero.
Some examples of these values are highlighted in 10b in red. Among these points, the
ones with lower mR values are more preferable due to their impacts on decreasing the
cost. So, for dynamic tari↵s, it is suggested to have mR = 0.7 and �

0 � 8. Following the
same procedure for flat tari↵s, we should have mR = 1.3 and �

0 � 8.
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Figure 10 also shows that the operation cost and temperature variation in the studied
system are more a↵ected by parameter mR than �

0.
It is worth mentioning that considering di↵erent values for �0 andmR, the temperature

will always be inside the dead-band (between the lower and upper bound). Choosing
di↵erent values for these parameters helps us to manage the temperature variations inside
the dead-band such that it fluctuates around the set-point or close to the lower and upper
bounds. Water temperature variation of an arbitrary pool in the studied system for three
di↵erent values of �0 and mR are presented in Figure 11. The look-ahead capability which
will be discussed in Section 3.3 is also included in the simulations.
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Figure 11: Water temperature variations in three di↵erent cases for a) dynamic tari↵s and b)
flat tari↵s.

As shown in Figure 11a, for dynamic price tari↵s, when mR = 0.1, the water temper-
ature is lower than other cases and is usually close to the lower bound, specially when
the lower bound increases. In the case that mR = 0.7 and �

0 = 10, the temperature tries
to follow the set-point considering the electricity price. When �

0 = 2 and mR = 0.7, in
comparison to the case that �0 = 10 and mR = 0.7, the temperature is usually lower, but
the electricity cost is about 7% higher. As discussed before in this section, this is due
to high variance of the beta distribution when �

0 is small and consequently generating
undesirable random numbers.

For flat price tari↵, similarly, the temperature is the lowest when mR = 0.1. However,
when mR = 1.3 and �

0 = 10 the method is more successful in following the set-point than
the case with dynamic tari↵s. This happens because for flat price tari↵s, the method
is not dependent on price and only tries to follow the set-point. It can also be seen in
Figure 11b that when �

0 = 2 and mR = 1.3 the method is not successful in following
the set-point and the temperature is usually more than the temperature of the case that
�
0 = 10 and mR = 1.3.
In the rest of the paper, we have �

0 = 10 and mR = 0.7 for dynamic tari↵s and
�
0 = 10 and mR = 1.3 for flat tari↵s. This results in 13% and 5% reduction in electricity

cost by using the IBGAR method with dynamic and flat tari↵s, respectively.

3.3. Look-ahead capability feature modeling

As discussed at the beginning of this section, it is assumed that only the lower bound of
temperature changes over the time. In this case, we can consider the look-ahead capability
as a part of the “preheating process”. As mentioned in Section 2.1.3, to incorporate this
process, we need to compute the parameter tmin that represents the minimum time for
increasing the temperature up to the next lower bound. For an SPHS, this parameter can
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be calculated by solving the di↵erential equations (8) and (9). Solving these equations
gives T p

d
(t) as below:

T
p

d
(t) = Ad +Bde

⌧
1
d t + Cde

⌧
2
d t. (16)

Parameters Ad, Bd, Cd, ⌧ 1d , and ⌧
2
d
are defined in Appendix A. Obtaining a closed-

form expression for tmin from (16) is non-trivial. However, considering (A.1) and (A.2) in
Appendix A and SPHSs data presented at the beginning of Section 3 and Table 1, it can
be seen that the term ṁdh

0

Mdmd
is very small which leads to ⌧

2
d
⌧ ⌧

1
d
. So, we can simplify the

equation as below:

T
p

d
(t) ⇡ Ad + Cde

⌧
2
d t. (17)

Figure 12a compares the variations in the pool water temperature using (16) and (17)
for an arbitrary SPHS. It can be seen that applying the simplification causes error only
in the first hour and then the error is zero. Since the goal of using look-ahead capability
is to estimate the temperature in the next few hours, this error will not a↵ect the results.
Now, using (17), tmin can be easily estimated as following:
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Figure 12: Impacts of a) simplifying Eq. (16) on temperature variation modeling, and b)
applying look-ahead capability to the model.

tmin ⇡
ln(

T
min,2
d �Ad

Cd
)

⌧ 2
d

, (18)

where Tmin,2
d

is the next lower bound for the pool temperature. Figure 12b illustrates
the impacts of including the preheating process on the reaction in changing the lower
bound temperature for an SPHP. As shown in Figure 12b, taking into account the look-
ahead capability prevents the temperature from falling below the lower bound in all
situations.

3.4. Implementing the IBGAR method without including the transformer limitations

In this section, the impacts of the proposed method on responding to dynamic and
flat tari↵s are studied. To investigate the responsiveness of the method to dynamic prices,
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Figure 13: Comparing the power consumption of the SPHSs and electricity price.

consumed power by SPHSs and prices are depicted in Figure 13. It can clearly be seen
that using the IBGAR method electricity consumption is shifted mostly to low electricity
price hours, which confirms the price responsiveness of the method.

Power consumption of the set of all controllable and uncontrollable loads for both
traditional and the IBGARmethods with dynamic and flat tari↵s is presented in Figure 14.
As shown in Figure 14a, using the proposed IBGAR method with dynamic tari↵s reduces
the maximum load and the gap between maximum and minimum power consumption by
about 7% and 24%, respectively. More importantly, the peak demand is shifted to o↵-
peak hours that is useful for peak flattening policies. On the other hand, as illustrated in
Figure 14b, using flat tari↵s reduces the maximum load and the gap between maximum
and minimum power consumption by about 3.8% and 20%, respectively, however, in this
case, the peak demand occurs during the mid-peak hours.

3.5. Implementing the IBGAR method including the transformer limitations

Figure 15 illustrates the impacts of considering transformer limitations on the ag-
gregator’s response to grid access requests and consequently total load. The number of
rejected requests when the price tari↵ is flat is much more than the case with dynamic
tari↵ because of higher electricity consumption of the IBGAR method with flat tari↵s.
In case of using a dynamic tari↵, rejected requests mostly belong to o↵-peak hours and
then mid-peak hours. This happens because in on-peak hours, there are the least access
requests and hence, the number of rejected requests is very low. In o↵-peak hours, the
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Figure 14: Impacts of the proposed method on reducing the peak demand and the gap between
maximum and minimum load for a) dynamic tari↵s and b) flat tari↵s.
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number of requests is very high which in some cases may cause rejecting some grid access
requests. During the mid-peak hours, the available capacity is less than o↵-peak hours
and the number of access requests is more than on-peak hours, which leads to rejection
of some of the requests. Using flat tari↵s, all rejected requests occur in mid-peak and
on-peak hours because power consumption of controllable devices does not decrease at
these hours and their aggregation with high demand of uncontrollable loads in mid-peak
and on-peak hours leads to violating the transformer rate power.

As illustrated in Figure 15, there are some time intervals, e.g., hour 137 for dynamic
tari↵s and 128, 130, and 132 for flat tari↵s, where the aggregator cannot keep the total
load below the rated active power of the transformer. This is due to the opt-out possibility
defined for devices to satisfy their boundary conditions.

Remark: Clearly, there is a trade-o↵ between guaranteeing comfort (QoS) at the de-
vice level and guaranteeing grid constraints/reliability. That is, if we enforce the grid
constraint (and remove opt-outs), then we cannot guarantee QoS. Thus, there is a fun-
damental limitation with any coordination scheme to either preserve grid limits or QoS.
Herein, we have prioritized device QoS since small, short-duration power overloads (as
illustrated herein) do not significantly impact transformer operations or winding insula-
tion [36]. In addition, by actively managing device QoS via IBGAR, we exactly avoid
large demand spikes that could result from coincident opt-outs and cause larger power
overloads.
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Figure 15: Power consumption of the loads and number of rejected grid access requests by the
aggregator taking into account the transformer limitations for a) dynamic price tari↵s and b)
flat price tari↵s.

3.6. Impacts of negative electricity prices on the results

Negative prices can happen during the o↵-peak hours when electricity consumption is
low due to technical limitations of power generators or excess output power of renewable
resources. To study the impacts of negative prices on the results, simulations are repeated
for two cases, 1) normal daily prices, 2) assigning negative prices for some hours of a day.
Transformer limitations are not taken into account and the focus is only on the role of
negative prices in energy consumption and water temperature variations. Simulations are
performed for two days and it is assumed that negative prices are applied during the first
five hours of the second day (hours 24 to 29). Total consumed power of the test system
is presented for both cases in Figure 16.
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Figure 16: Impacts of including negative prices on the total power consumption of the test
system.

It can be seen that by applying negative prices, at first, the power consumption of
the test system increases as expected, and then decreases from hour 27 (3:00 a.m. of
the second day) due to the water temperatures of some swimming pools reaching their
maximum values. After hour 29, the power consumption decreases significantly, because
the water temperature of the pools is high and hence, there will be less need for energy
consumption in the next hours (rebound e↵ect).

Water temperature variations in three arbitrary pools are presented in Figure 17. In
Figure 17.a, the heat pump is ON during the negative price hours, reaches the upper limit
at the end of the negative price hours period and then it will be OFF for the rest of the
day. In Figure 17.b, the heat pump is ON in the first four hours, then it reaches to the
maximum temperature and will be OFF for some time intervals, and finally turns ON
again before the negative price hours period ends to benefit from negative prices. The
heat pump in Figure 17.c has a slow dynamic and while the heat pump is ON during the
negative price hours period, the temperature does not reach the maximum value. After
the the negative price hours period, since the normalized prices in case 2 are greater than
normalized prices in case 1 (due to including negative prices in (5) and (6)), fewer grid
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Figure 17: Impacts of including negative prices on the temperature variations in swimming pools
a) 1, b) 7, and c) 15.
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access requests will be sent, and hence, the temperature will be lower than the temperature
in case 1. However, the operational constraints are still satisfied.

4. Conclusion

In this work, a coordination method for procuring the flexibility of controllable de-
vices is proposed. The method works based on sending incentive-based randomized grid
access requests from controllable devices to an aggregator and receiving “Yes” or “No”
notifications. Grid access requests are generated through a stochastic process in which
price-dependent random numbers are evaluated by a stochastic rate request function to
decide about sending or not sending the grid access request. The devices are also allowed
to opt out of the program temporarily and keep the device ON to satisfy their operational
constraints.

The main features of the proposed method are bottom-up structure for providing
flexibility that ensures customers’ quality of service, respecting the privacy of end-users,
low computational complexity which leads to less need for powerful hardware and thus
cheaper installation costs, and being model-free in many applications that increases the
chance of its large-scale implementation.

The simulation results show that the method is suitably price responsive and compared
to conventional methods, it can decrease the electricity costs up to 17% and 11% for dy-
namic and flat price tari↵s, respectively. The method is also capable of dealing with time
varying boundary conditions, however, due to look-ahead implementations, this element
requires a (simplified) model of the devices’ responses. The e↵ectiveness of the method
in dealing with negative prices is also investigated. At the system level, the proposed
method is useful for peak shaving and load curve flattening. Simulation results highlights
the e↵ectiveness of the proposed method in providing energy and grid ancillary services
by aggregators while respecting the operational constraints of the devices.

Future directions of this work could include combining the method with other incentive-
based approaches (e.g., flexibility functions), enhancing the grid-awareness capabilities of
the method, incorporating more detailed operational models of heat pumps to account
for part-load operations and e�ciency, and extending the method to other controllable
devices.
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Appendix A. Defining the parameters of equations (16)

To calculate parameters Ad, Bd, Cd, ⌧ 1d , and ⌧
2
d
in (16), the di↵erential equations (8)

and (9) should be solved. To do this, first, the equivalent Laplace transform of these
equations are written. Then, by solving these two equations, we can find T

p

d
(s) as a

function of ud(s), T a

d
(s), and initial conditions T

p

d
(0) and T

s

d
(0). Afterwards, by finding
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the inverse Laplace transform of the T
p

d
(s), T p

d
(t) can be found as (16). Following the

steps above, parameters ⌧1, ⌧2 Ad, Bd, and Cd, are obtained as below:

⌧
1
d
= �(Mdṁd +md(ṁd + h

0))

2Mdmd

�

s

(
Mdṁd +md(ṁd + h0)

2Mdmd

)2 � ṁdh
0

Mdmd

, (A.1)
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2
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2Mdmd
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, (A.2)
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s

d
(0))⌧ 1

d
+MdmdT

p

d
(0)(⌧ 1

d
)2

Mdmd⌧
1
d
(⌧ 1

d
� ⌧ 2

d
)

,

(A.4)
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where h
0 = h

cp
.

Appendix A.0.1. Controllable device modeling

To have a simulation-based study, a discrete-time model is needed to estimate the
variation of the state variable at each time interval. Moreover, in case the system has
time-varying boundary conditions, a simple model of the system will be useful for includ-
ing the look-ahead capability in the method. However, in general, the IBGAR method
implementation does not depend on a mathematical model of the entire system and the
decisions can be made based on the real time measurements of the studied case and the
external incentive. Even for implementing the look-ahead capability, we can replace the
mathematical model of the system with some preheating tests performed before executing
the method.

The di↵erential equations of state variables for controllable device d can be formulated
as below:

dXd(t)

dt
= AdXd(t) + BdUd(t) (A.6)

where X
a⇥1
d

and U
b⇥1
d

are the vectors of state variables and inputs, and A
a⇥a

d
and

B
a⇥b

d
are state and input matrices, respectively. a and b refer to the number of state

variables and inputs, respectively. An approximate discrete-time representation of (A.6)
in t 2 [k�t, (k + 1)�t] is obtained as below:

Xd[k + 1] = (I + Ad�t)Xd[k] + BdUd[k]�t (A.7)

where I
a⇥a is an identity matrix. Using (A.7), we can update the state variables at

the end of each time interval.
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