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their data centers’ energy-efficiency to reduce their operational costs—by driving down their power
usage effectiveness (PUE) close to the optimal value of 1. As a result, optimizations, such as server
consolidation, open-air cooling, and power infrastructure improvements, have yielded significant
energy-efficiency gains. However, energy-efficiency improvements alone are insufficient to satisfy
cloud data centers’ aggressive sustainability goals, since even energy-efficient data centers may
generate significant carbon emissions from their energy use. This has led to a new emphasis on
carbon-efficient operations that directly target reducing data centers’ overall carbon emissions [14].
Carbon efficiency can be achieved through supply-side or demand-side methods. Supply-side

methods include power purchase agreements (PPAs) from renewable generation sources, such
as solar, wind, and hydro, which indirectly offset a cloud data center’s carbon emissions. Such
optimizations yield net-zero operation [28, 48, 51] over a long period, such as a year, but offsets
by themselves do not eliminate the instantaneous direct emissions at all times [10]. Consequently,
supply-side optimizations must be combined with demand-side methods to reduce a cloud data
center’s instantaneous direct carbon emissions. Demand-side optimizations exploit the fact that
the carbon intensity of grid-supplied electricity varies both temporally and geographically. A
common demand-side optimization is time shifting delay-tolerant workloads to periods with the
“greenest” electricity supply. Although not all cloud workloads are delay tolerant, many types of
batch workloads exhibit significant temporal, performance, and even geographic flexibility.
One approach for leveraging the temporal flexibility above is to use suspend-resume mecha-

nisms [2, 19, 59, 73], where a scheduler suspends a job when electricity’s carbon intensity rises (e.g.,
above some threshold) and resumes it when it drops (e.g., below the threshold). For example, Google
recently adopted carbon-aware time-shifting in its Carbon-Intelligent Computing System [59].
While suspend-resume temporal shifting policies can reduce the carbon emissions of delay-tolerant
workloads [73], they suffer from two drawbacks. First, the carbon intensity of grid-supplied elec-
tricity changes slowly, and there may be long periods (e.g., many hours) of high carbon periods
where jobs remain suspended and make no progress. Such suspensions cause substantial delays in
completion time, with 7-10× increases in completion times in some cases [65]. Second, when batch
jobs have limited temporal flexibility and thus cannot be significantly shifted, the effectiveness of
these methods is significantly reduced.
To overcome these drawbacks, we present CarbonScaler, a new approach that exploits the

resource elasticity of cloud workloads to dynamically vary the amount of resources allocated to
applications in response to fluctuations in the carbon cost1 of their energy supply. Our “carbon
scaling” approach is analogous to cloud autoscaling, where the number of servers allocated to a cloud
application varies dynamically over time [6]. However, while cloud autoscalers generally respond to
variations in applications’ workload demand, often for request-based services, our “carbon scaling”
approach responds to the carbon dynamics of electricity. In essence, carbon scaling scales up the
servers allocated to an application when the carbon cost is low and gracefully scales them down
when the cost increases. In contrast to the static allocation of suspend-resume approaches, carbon
scaling enables faster progress during low carbon periods, which can potentially eliminate delays
in job completion times while also reducing carbon emissions.
Designing cloud carbon scaler requires addressing two key design challenges: how much to

scale each application up or down and when. Since different applications exhibit different scaling
characteristics with respect to the number of allocated servers, a carbon scaler must take this scaling
behavior into account when determining how much to scale up each application during low carbon
periods. For example, an embarrassingly parallel job can opportunistically scale up significantly

1We use the terms carbon intensity and carbon cost of electricity interchangeably.
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2.2 Carbon Intensity of Electricity

To reduce Scope 2 emissions, cloud data centers must track the carbon cost of their electricity supply
and modulate their electricity consumption over time. The carbon cost of electricity depends on the
source of generation. For example, a unit of energy generated by a coal plant will have a high carbon
cost (i.e., emissions in terms of gCO2eq/kWh), while energy generated from a hydroelectric plant
will have no emissions. The electricity the grid supplies is produced by a mix of generation sources,
and the resulting carbon cost is a weighted average of the corresponding sources. Importantly,
the generation mix varies from one region to another—based on the local power plants in each
region—and also varies over time since the generation mix changes based on demand, the relative
cost of generation, and intermittent generation from renewable sources.
Figure 1 depicts how the carbon cost differs by country/region and how it exhibits diurnal

variations daily. In this case, Ontario tends to have a low but variable carbon cost because its
energy mix consists of a large fraction of carbon-free nuclear and hydroelectric energy combined
with some coal plants, which results in non-zero carbon intensity, and solar, which causes the
diurnal fluctuations. California is similar but has a higher fraction of solar, which results in larger
fluctuations, but also a higher fraction of coal plants, which elevates the average carbon intensity.
The Netherlands also shows diurnal variation but with a higher average as it relies more on fossil-
based electricity generation. By contrast, the carbon intensity of electricity in Iceland is nearly zero
and flat due to its unique abundance of carbon-free geothermal energy.

2.3 Carbon-aware Cloud Scheduling

Many cloud workloads have both temporal flexibility and resource elasticity, which enables ex-
ploiting the temporal and spatial variations in energy’s carbon intensity, as demonstrated in recent
work [19, 29, 59, 68, 73]. To facilitate such efforts, commercial services, such as electricityMap [45]
and WattTime [71], have emerged that aggregate data from grids in different parts of the world
and expose grid energy’s current and forecasted carbon intensity to cloud providers and users in
real-time. Researchers, in turn, are exploiting this data to design carbon-aware schedulers that
dynamically shift workloads across time and space to reduce emissions.

Asmentioned above, temporal shifting involvesmoving delay-tolerant batchworkloads to periods
of low carbon intensity. In Figure 1, for instance, rather than running a batch job continuously in a
carbon-agnostic manner, suspend-resume approaches execute the job in the “valleys”, where the
carbon cost is low, and suspend the job during peak periods. This technique has been explored in
recent work [19, 59, 68, 73]. Threshold-based suspend-resume scheduling policies suspend jobs
whenever the carbon cost rises above a certain threshold, while deadline-based methods choose
the ! lowest carbon cost periods between the arrival time and the deadline to execute the job.
Importantly, a key drawback of suspend-resume methods, whether threshold-based or deadline-
based, is that the carbon savings depend on the amount of time the user is willing to wait for their
job to complete—a higher delay tolerance yields higher savings, but also a longer completion times.

Geographic or spatial shifting, in contrast, migrates jobs or workloads to regions with the greenest
electricity grid [19, 52, 76, 77]. However, batch jobs often cannot exploit geographic shifting due
to data privacy regulations, such as GDPR, that impose regional restrictions. Even when possible,
spatially shifting jobs can incur high migration costs if it requires moving substantial state or data
associated with the job. Since CarbonScaler focuses on batch jobs, spatial shifting is outside the
scope of this paper. We discuss related work in spatial shifting in Section 7.
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carbon intensity of grid-supplied electricity changes slowly, and thus, there may be arbitrarily long
intervals (e.g., many hours) of high carbon periods where jobs remain suspended and make no
progress. Such suspensions delay completion times, with a 7-10× increase in completion times
in some cases [65]. Second, when batch jobs have limited temporal flexibility and cannot be
significantly shifted, the effectiveness of these methods is significantly reduced.

To overcome the drawbacks above, our paper presents CarbonScaler, a new approach that exploits
the resource elasticity of cloud workloads to dynamically vary the amount of resources allocated to
applications in response to fluctuations in the carbon cost of their energy supply. CarbonScaler’s
key insight is that the scale which yields the minimum carbon consumption, not only depends on

the application characteristics but also the variations in carbon intensity across geographical regions,

application start times within a given region, and the runtime of an application following a specific

start time. Importantly, current approaches for selecting an application’s scale factor do not apply
directly to this context, necessitating a new approach. Specifically, analytic performance models of
an application, such as those used in cloud auto-scaling approaches, only account for application
performance characteristics and do not consider the impact of time-varying carbon intensity on the
scale factor. Similarly, the state-of-the-art approach for leveraging workload elasticity demonstrates
that this scale factor varies across applications [65] but does not provide an algorithm for choosing
this scale factor or show how carbon intensity variations should be considered when doing so.
To demonstrate the impact of application characteristics and temporal variations in carbon

intensity on the scale factor, we consider an oracle approach for choosing the best static scale factor
for a 24hr job on a per-region, per start time, and per-timeslot for ML (ResNet 18). Figure 3(a) shows
that the best static scale factor for a given application varies significantly, from 1× to 8×, across
geographical regions, as different regions exhibit different variations in carbon intensity. Figure 3(b)
presents the distribution of best static scale factors across all the possible start times for various
regions for one of them. We observe that there is no single static scale that works for a given region
due to the differences in their carbon intensity profiles. In addition, the static scale must also be
adapted depending on when an application executes. Finally, as shown in Figure 3(c), the best static
scale factor can even vary during application execution time, where the lowest carbon consumption
is achieved by running the application with five different scaling factors. Further, neither application
performance models, which are inherently carbon-oblivious, nor state-of-the-art carbon-aware
techniques, such as Ecovisor [65] or Wait Awhile[73], can realize this oracle approach.
The dynamicity of choosing the best static scale factor motivates the design of CarbonScaler,

which adapts the operating scale factor for each application depending on where and when it
executes. CarbonScaler avoids computing the best static scale factor across application runs in
an exhaustive brute-force manner and instead computes a carbon-aware schedule using a greedy
approach. We next formulate the problem and present our dynamic scaling algorithm.

3.2 Problem Formulation

Similar to cloud autoscalers that scale each application independently, a carbon scaler operates
independently on each cloud application that wishes to optimize its carbon emissions. When a
new batch application arrives at time # , it specifies (i) the minimum number of servers,$, that it
needs to run, where$ ≥ 1, and (ii) the maximum number of servers% that can be allocated to it,
% ≥ $. The carbon scaler can then vary the servers allocated to the application between$ and% .
Suppose that & is the estimated job length when executing on the baseline allocation of$ servers.3

By default, we assume that the desired job completion time is ' = # + & , which means that jobs

3The job length ! can be estimated using profiling and modeling [57, 63] or using prior execution history. For example, [72]

reports that 65% of batch jobs see repeated execution at least five times within a two-month period.
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should complete “on time” with no delays. Although ' must be at least # + & for all jobs, some delay
tolerant jobs have significant temporal flexibility and can optionally specify a longer completion
time ' such that '># + & . The value ' − (# + &) represents the slack available when executing the
job. This slack captures the willingness of users to wait in order to increase their carbon savings.
The default case of ' = # + & assumes on-time completion and zero slack.

The completion time ' specifies the temporal flexibility (delay tolerance) available to the job,
while the maximum server allocation% specifies the resource elasticity of the job. The parameters'
and% can be specified differently to obtain a range of carbon scaling behaviors. For example, when
' = # + & , the application has no temporal flexibility and cannot be subjected to suspend-resume
mechanisms. In this case, the job can only exploit resource elasticity by scaling up to% workers
during low carbon periods and must be completed on time with no delays. In contrast, when
% = $, the job has no resource flexibility, and the carbon scaler is limited to performing only
suspend-resume optimizations with a static number of servers,$, while also ensuring it completes
the job by the specified completion time ' . Of course, when ' > # + & and % > $, a carbon
scaler has the most flexibility and can exploit both resource elasticity and temporal shifting via
suspend-resume. Our goal is to design a carbon scaler that minimizes a job’s carbon emissions
subject to the available resource elasticity and temporal flexibility.

3.3 Basic Design

When a new batch job arrives, our system, which we refer to as CarbonScaler, computes an initial

schedule for executing the job through completion. The execution schedule specifies how many
servers to allocate to the batch job over time and when to dynamically change the allocation in
response to variations in carbon cost. This initial schedule is based on a forecast of future carbon
cost, as well as the expected progress of the job over time based on its resource allocation. As the
job executes, CarbonScaler adjusts its schedule periodically if it encounters forecast errors or
deviations in the job’s expected progress — to ensure completion by the specified completion time' .
Observed deviations can occur due to profiling errors, from network and locality interference [36],
or resource procurement denials. We discuss these issues further in §5.7.
CarbonScaler assumes that carbon cost forecasts are available; commercial services [43, 71]

provide such forecasts for up to four days with high accuracy in most locations. Since the application
specifies its temporal flexibility (in terms of completion time ' ) and its resource elasticity (in terms
of the varying server allocation from$ to%), CarbonScaler’s schedule responds to fluctuations
in forecasted carbon cost by scaling down or completely suspending the job when the carbon cost
is high and opportunistically scaling up when the carbon cost is low.

Different clustered batch applications will have different scaling behaviors, as shown in Figure 2,
which should be considered when scaling an application’s server capacity between the specified
range of $ to % . As noted in Figure 2, applications’ throughput either increases sub-linearly
or increases somewhat linearly initially and then shows diminishing returns with an additional
increase in server capacity. This behavior is a direct consequence of Amdahl’s law [3], which
states that the speedup of a parallel application is limited by the amount of sequential code within
it — adding server capacity only speeds up the parallel component of the application. Software
bottlenecks, such as synchronization overheads, also limit the ability to scale up.
CarbonScaler considers this scaling behavior in terms of a marginal capacity curve, shown in

Figure 4, which captures the incremental increase in application capacity (i.e., throughput) for
each unit increase in server capacity. The ideal case of linear scaling translates to a flat marginal
capacity curve where each additional server results in a unit increase in (normalized) application
capacity (see Figure 4(a)). Most applications will have a diminishing marginal capacity curve, where
marginal capacity decreases monotonically with an increase in the server capacity (see Figure 4(b)).
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Fig. 4. Example marginal capacity curves.

The marginal capacity curve and the carbon intensity curve can then be used to scale the
application up or down in a carbon-efficient manner. To do so, the marginal capacity curve is
normalized by the forecasted carbon cost in each time step to compute the marginal capacity per

unit carbon — the marginal work done per unit carbon. CarbonScaler then adds server capacity
to the time slots that maximize the work done per unit of carbon. By doing so, CarbonScaler
allocates more server resources when the carbon cost is low since more marginal work can be done at a

lower carbon cost. CarbonScaler will incrementally add servers to various time slots until sufficient
server capacity has been added to complete the job within the desired completion time ' , thereby
yielding a carbon-efficient execution schedule that optimizes the carbon emissions.
In practice, each application can have multiple marginal capacity curves, each representing a

different phase of its execution. For example, a MapReduce job can have different scaling behaviors
and marginal capacity curves for its map and reduce phases. For ease of exposition, our discussion
below assumes a single marginal capacity curve per application. However, our approach generalizes
to multiple marginal capacity curves by considering the appropriate scaling curve in each time slot
that corresponds to the current phase of the application’s execution.

3.4 Carbon Scaling Algorithm

CarbonScaler relies on the knowledge of application scalability profile, carbon intensity forecast,
and other job constraints to decide when to i) horizontally scale resources up or down or ii) suspend
execution to ensure minimum carbon consumption. As noted earlier, when a new job arrives at
time # , it specifies a desired completion time (i.e., a “deadline”) of time ' . We also assume that
the marginal capacity curve of the application is obtained by profiling the application offline (see
Section 4.1) and is known at arrival time. Finally, the algorithm takes the carbon cost forecast ( ,
which we assume to be correct. We analyze the impact of inaccurate forecasts in Section 5.7.

We assume that the interval [#,' ] is discretized into smaller fixed-length intervals (e.g., 15
minutes or an hour), and the number of servers allocated to the job can be changed at the start of
each interval. Suppose that there are ! time intervals between [#,' ], ! ≥ 1. Let (1, (2, ..., (" denote
the forecasted carbon cost in each interval ), ) ∈ [#,' ]. Suppose that the marginal capacity curve is
denoted by%*#,%*#+1, ...,%*$ , where%* % is the marginal capacity increase after allocating the
+-th servers, + ∈ [$,%]. Since the estimated job length is & when executing with minimum server
capacity$, the total work the job needs to perform is, = & ·%*# . Our algorithm must compute a
schedule where the aggregate server capacity allocated to the job over [#,' ] can perform this work
before the completion time ' , minimizing carbon emissions.

The aforementioned carbon scaling problem is amarginal allocation problem of discrete resources,
which is known to yield an optimal solution in many cases [22]. Our greedy Carbon Scaling

Algorithm, detailed in Algorithm 1, builds on the algorithm and theoretical results in [22]. We
provide the requirements and the optimality proof of our greedy Carbon Scaling Algorithm

in appendix A. The Algorithm, first computes the marginal capacity per unit carbon in each time
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time slots 1, 2, and 3 is (1 = 10 ("low"), (2 = 100 ("high"), and (3 = 20 ("medium"), respectively. First,
assume that the job has ideal scaling behavior and a flat marginal capacity curve of%*1 = 1 and
%*2 = 1. The algorithm simply allocates two servers to the job in slot 1, since it has the lowest
carbon cost and the highest marginal capacity per unit carbon. As shown in Figure 5(b), such a job
runs with two servers and terminates at the end of slot 1.

Next, assume a job with a diminishing marginal capacity curve, given by%*1 = 1 and%*2 = 0.7.
Figure 5(d) shows the marginal capacity per unit cost table (%* %/(- ) for all three slots. The greedy
algorithm allocates the first server to slot 1, since it has the highest marginal capacity per unit
cost of 0.1. In the next iteration, the greedy algorithm allocates a second server to slot 1 as it still
has the highest marginal capacity per unit cost (%*2/(1 = 0.07). Although two servers have been
allocated, the total work done by these two servers is only 1.7 (%*1 +%*2), which cannot complete
the job of length 2 (, = 2). The algorithm then allocates another server to slot 3, which has the
next highest marginal capacity per unit cost (%*1/(3 = 0.05). This yields a schedule where the job
is given 2 servers in slot 1, zero in slot 2, and one server in slot 3. The job only runs for one-third
of slot 3 before it completes. The example also illustrates a tradeoff where CarbonScaler reduces
the emissions compared to carbon-agnostic execution (from 110 to 40 carbon units) but increases
cloud costs by 15% due to the need for a third server. The tradeoff between carbon saving and cost
overheads is fundamental to carbon-aware computing, as demonstrated by prior work [29].
Periodic Schedule Recomputation. Once the algorithm computes an initial schedule,
CarbonScaler can begin execution of the job by auto-scaling it up or down, or suspending it,
in each time slot as per the schedule. CarbonScaler continuously monitors the work done (“job
progress”) and the emissions of the job over the course of its execution. Recall that the initial sched-
ule is computed based on a forecasted carbon cost and an estimated marginal capacity curve derived
from profiling, both of which may have errors in their estimates. Similar to weather forecasts,
carbon forecasts can have errors, especially over the period of multiple days [43, 44]. Similarly, the
marginal capacity curves may not be exact since production environments may differ somewhat
from the profiling environment [36, 57, 63]. These errors can cause deviations in the expected work
done or the expected carbon emissions as estimated by the initial schedule.
To be robust to carbon prediction or profile estimation errors, CarbonScaler compares the

expected work and carbon emissions to the estimates in the schedule at the end of each time
interval. If the deviations exceed a threshold, it recomputes the schedule for the remainder of the
job’s execution from the current time # ′ to the completion time ' . When doing so, CarbonScaler
can use an updated carbon forecast if available, since such forecasts are often updated every
few hours, similar to weather forecasts. Thus, if the progress deviates from the plan (e.g., due to
profiling errors), CarbonScaler will recompute the schedule to ensure the highest carbon savings.
Since some batch jobs can execute for days [70], such schedule adjustments provide robustness to
prediction errors and ensure timely job completion while minimizing carbon emissions.
Run Time Complexity. In Algorithm 1, the time complexity of computing the marginal capacity
per unit carbon (steps: 3-5) is O(!.%), list sorting is O(!% log!%), and computing the schedule is
- (!%) (steps: 8-11). The total complexity is O(!% + !% log!%) ≈ O(!% log!%).

4 CARBONSCALER IMPLEMENTATION

This section describes CarbonScaler’s implementation, which optimizes the carbon emissions
of distributed batch cloud workloads. Our system comprises three main components: (1) Carbon
Profiler, which uses offline profiling to estimate marginal capacity (%*) curves and energy
usage of jobs, (2) Carbon AutoScaler is our cloud-based carbon scaling system implemented in
Kubernetes [41], and (3) Carbon Advisor, which simulates the execution of the jobs to estimate

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 57. Publication date: December 2023.





57:12 Walid A. Hanafy et al.

Name Implementation Epochs BatchSize Power (W)

5 -Body Simulation (10,000) MPI 138000 NA CPU (60)

5 -Body Simulation (100,000) MPI 1500 NA CPU (60)

Resnet18 (Tiny ImageNet) Pytorch 173 256 CPU+GPU (210)

EfficientNetB1 (ImageNet) Pytorch 45 96 CPU+GPU (210)

VGG16 (ImageNet) Pytorch 31 96 CPU+GPU (210)

Table 1. Details of elastic workloads in evaluation. Epochs represent the number of epochs needed for a 24hr job.

power monitoring can include other resources such as storage and network. Carbon AutoScaler

monitors application-level metrics such as progress and throughput via application-level interfaces.
Finally, Carbon AutoScaler registers a reconcile callback function, which is called when

the carbon intensity changes and when applications report their progress. This enables Carbon
AutoScaler to detect divergence in progress, throughput, or carbon intensity. CarbonScaler then
recomputes the schedule as explained in §3.4.

4.3 Carbon Advisor

Carbon Advisor enables pre-deployment analysis of the carbon scaling algorithm in an environ-
ment that simulates the operation of Carbon AutoScaler. Carbon Advisor takes, as input, a
carbon trace, job start time, deadline, job length, and CarbonScaler-specific parameters, such as
range of server allocations [$,%] and marginal capacity curve. The fidelity of Carbon Advisor

depends on the accuracy of the marginal capacity profile for the application. In Section 5, we
demonstrate the high fidelity of Carbon Advisor in estimating the carbon savings from different
carbon-aware scaling policies. The Carbon Advisor simulates the running of the job and reports
savings for carbon-aware scaling policies. Additionally, the Carbon Advisor enables simulating
various kinds of errors to ensure the robustness of the predictions, as described in Section 5.7. The
simple plug-and-play nature of the tool allows application developers to perform what-if scenarios
and explore a wide range of parameters before actual deployment. For example, users can explore
the benefits of extending their waiting time and its impact on carbon savings. Carbon Advisor also
enables key high-level analysis by default, such as computing the distribution of carbon savings
across different start times of the year. Finally, to facilitate initial exploration, we plan to provide
carbon traces and marginal capacity curves used in the paper alongside the tool.

5 EXPERIMENTAL EVALUATION

This section evaluates the performance of CarbonScaler using our prototype implementation,
described in Section 4. We augment the prototype evaluation results with additional large-scale
analysis that leverages Carbon Advisor.

5.1 Experimental Setup

Workload. Table 1 describes the elastic workloads we use for evaluating CarbonScaler and their
specifications. The workloads span both CPU- and GPU-intensive applications such as the " -body
problem [1] implemented using MPI [24] and machine learning models, including ResNet [31],
EfficientNet [69], and VGG [69] implemented using Pytorch [55]. The table shows the base configu-
rations and power measurements for jobs that need 24hrs to finish. The chosen workloads have a
wide-range of scaling characteristics (shown in Figure 2), configurations, and energy requirements.
Infrastructure. We deployed CarbonScaler in two different settings to demonstrate its adaptabil-
ity to the underlying infrastructure. For CPU-intensive workloads, we used a local computing cluster
consisting of 8 servers, each equipped with a 16-core Xeon CPU E5-2620, connected through a
10G network. For GPU-intensive workloads, we deployed CarbonScaler on Amazon Web Services
(AWS) using 8 p2.xlarge instances, each equipped with NVIDIA K80 GPU.
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Fig. 16. Monetary cost overhead of CarbonScaler over carbon-agnostic execution for different scenarios.

However, larger batch jobs execute on larger clusters, with larger$ and% . For example, certain HPC
and ML training applications run on tens or even hundreds of servers in the cloud [18, 35] and can
only be executed on a large number of servers$ ≫ 1. To evaluate the efficacy of CarbonScaler for
large clusters, we extrapolated the marginal capacity curve for the current " -body(" = 100.) job.
Then, we use Carbon Advisor to estimate how carbon savings change when running progressively
bigger jobs on increasing cluster sizes while keeping the job length unchanged at 24hrs.
Figure 15(a) compares the carbon consumption across cluster sizes. The figure shows that,

although the savings percentages diminish with larger cluster sizes as they are less dynamic, the
absolute carbon savings increase. Figure 15(b) depicts the relation between policies aside from
the size-dependent carbon consumption. As shown, CarbonScaler can obtain 30–42% additional
savings than carbon-agnostic, and suspend-resume achieves the same savings of 17% over
carbon-agnostic policy across all cluster sizes. The suspend-resume achieves this static saving
since it suspends the job in the same high carbon periods regardless of the cluster size. Lastly, the
figure shows that the savings difference between CarbonScaler and suspend-resume reduces as
the cluster size increases since the marginal capacity curve shows diminishing gains for larger
cluster sizes.

Key Takeaway. CarbonScaler exploits temporal flexibility to outperform suspend-resume policy across

regions with different carbon costs and over different job lengths, completion times, and cluster sizes.

5.5 Monetary Cost Overhead

As discussed in Section 3.4, for the workloads with diminishing marginal capacity curves,
CarbonScaler can potentially incur extra cloud costs quantified as the additional cloud compute-
hours needed compared to the carbon-agnostic policy. In Figure 16, we present the effect of
workload scalability, extended completion time, and degree of flexibility on the added cost of
CarbonScaler. Figure 16(a) shows that the highly scalable workloads such as " -body (" = 100)
and ML (ResNet18) that yield the highest savings under CarbonScaler cost only 5-10% higher than
a carbon-agnostic policy. The less scalable workloads incur higher costs for the same carbon
savings. It is worth noting that the static-scale would also incur similar overheads as the cost
depends on the scaling properties of the workload [29]. For ML (ResNet18) workload, Figure 13
demonstrates that as the job completion time increases, the added cost increases up to 7% and
then plateaus with a further increase in completion time. This is because, at higher job completion
times, there are more low-carbon slots available where CarbonScaler can scale higher. Importantly,
across both scenarios, the added cost never increases beyond 18%. Finally, in figure 16 (c), we lever-
age Carbon Advisor to highlight the tradeoff between carbon savings and cost overheads across
different degrees of flexibility for ML (ResNet18). The figure shows that there exists a flexibility
degree that yields the highest carbon savings of almost 9% per each % of added cost.
Key Takeaway. The cloud cost overhead of CarbonScaler is small but depends on the scalability

properties of the workloads (the higher the scalability, the lower the cost overhead). Furthermore, there

may be a sweet spot across various dimensions that yields the highest savings per unit of added cost.
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will respond is outside the scope of this paper. For acquisition denials, we demonstrate that
CarbonScaler is robust to such denials (see Figure 22).

Datacenter Energy Optimizations. CarbonScaler is an application-centric approach to reducing
the carbon footprint of executing workloads in the cloud, which can be used by organizations
that are setting ambitious goals for reducing the carbon footprint of their operations [12, 33, 67].
While cloud customers’ behavior impacts the cloud datacenter operation, the pay-as-you-go model
hides that from the customer. Internally, cloud operators can deploy several optimizations, such
as forecasting demand and putting servers into a deep sleep or turning them off completely,
offering resources at a discounted price, and procuring location-specific renewable energy. Many
cloud operators are already experimenting with such optimizations. Examples include variable
capacity computing at Google [59, 75], spot VMs offered by AWS [20], and 24/7 renewable energy
procurements by all the major cloud providers [21, 28]. Considering the impact of such operator-side
optimizations is outside the scope of a customer-oriented approach like CarbonScaler.
Holistic Emissions Reduction. A datacenter’s carbon emissions arise from manufacturing
hardware like servers (embodied emissions) and operating these resources (operational emissions).
While both emission types are important, they require distinct optimizations [9]. For instance,
cutting embodied emissions involves extending device lifespan and choosing low operational carbon
suppliers [2, 42]. How cloud operators and customers leverage such techniques for optimizing
embodied carbon is outside the scope of this paper. Instead, in this paper, we focus on reducing
operational carbon emissions by modulating how and when we execute our workloads.

7 RELATED WORK

Batch Scheduler. HPC schedulers have focused on achieving high utilization and performance
efficiency. Traditional batch schedulers such as Slurm [74] and Torque [66] focus on fixed-sized
clusters and employedmultiple policies to optimize turnaround [16], utilization [60], and energy[27].
Recent schedulers such as Borg, Kubernetes, and Mesos [32, 41] have utilized the elasticity of
cloud resources while considering the monetary cost. In both cases, sustainability concerns have
influenced operational and scheduling decisions, leading to optimization objectives such as reducing
carbon consumption. In the rest of this section, we discuss recent research on carbon-aware
scheduling.

Energy Accounting. Reporting carbon consumption depends on a cluster’s ability to account for
an individual tenant’s energy consumption. CarbonScaler currently focuses on CPU and GPU
resources as they are 1) highly correlated with total energy consumption [39], 2) software tools
such as (RAPL) [17] and nvidia-smi [53], are available on modern processors and GPUs. However,
our accounting methods can be generalized to other server resources as shown in [11, 15, 23, 39].
Such accounting techniques are vital for holistic carbon optimization since cloud service providers
such as Microsoft [50], and AWS [49] are starting to offer basic carbon management capabilities.

Temporal Shifting. Temporal shifting by delaying execution of batch jobs from high carbon
slots to lower carbon slots has been explored in [19, 59, 73]. The Let’s wait-a-while [73] approach
uses temporal shifting to reduce the carbon footprint of batch workloads using threshold and
deadline-based methods and by exploiting overnight or weekend hours to extract savings. In
[19], the authors highlight the implications of scheduling AI workloads in different settings and
suggest temporal shifting to minimize the carbon footprint. Finally, in [59], the authors employ a
virtual limit on resources when carbon cost is high to force the scheduler to shift workloads to
lower carbon periods. As noted in §1, a limitation of temporal shifting approaches is that they
delay job completion times and may also require users to specify deadlines for jobs. In contrast,
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CarbonScaler employs resource elasticity to scale and complete jobs in a timely manner and can
additionally exploit temporal flexibility whenever available.

Spatial Shifting. Prior work has studied spatial shifting to select the region with the lowest carbon
footprint to execute newly arriving jobs. The authors of [2, 19, 68, 76] explore the spatial selection
to achieve lower carbon cost. The authors of [2] explore data center and power upgrade plans
to allow more carbon-efficient execution, while [19, 68] explore cloud data center regions and
potential carbon savings. Lastly, [76] exploits migration to avoid energy curtailment. While we
study the benefits of using different geographic regions to run carbon scaling jobs in §5.6, a full
analysis of combining spatial shifting with carbon scaling is outside the scope of this paper.

8 CONCLUSION

Many compute-intensive cloud workloads, such as ML training and scientific computations, have
inherent resource elasticity and temporal flexibility that can be leveraged to optimize carbon
emission reductions. To exploit this opportunity, we propose CarbonScaler that judiciously scales
up or down an application, based on its scalability behavior and carbon cost, to minimize its carbon
emissions.We implement CarbonScaler as a cloud-based autoscaler implemented using Kubernetes
and a simulation-based advisory tool to facilitate pre-deployment analysis. We demonstrate the
efficacy of CarbonScaler in reducing carbon emissions for various workloads, job configurations,
and cloud regions. We demonstrated that using real-world machine learning training and MPI
jobs on a commercial cloud platform, CarbonScaler can yield i) 51% carbon savings over carbon-
agnostic execution, ii) 37% over a suspend-resume policy, and iii) 8% over the best static scaling
policy. In the future, we plan to extend CarbonScaler into a cluster-wide scheduler to address the
challenges of resource heterogeneity, resource pressure, priorities, and power management.
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A CARBONSCALER OPTIMALITY

The carbon scaling problem addressed by CarbonScaler is a marginal resource allocation problem,
where greedily selecting the local optimum (maximum marginal capacity per unit carbon), as in
Algorithm 1, yields the global optimum solution [22]. Consequently, the optimality of the Carbon
Scaling Algorithm follows from the theoretical results of [22] and is shown below.

Theorem 1. Consider a distributed batch job with a known monotonically decreasing marginal

capacity curve, s.t.%*# > %*#+1 > .. > %*$ . The job needs to finish work, , within ! time slots

with known carbon costs (1, (2, ..., (" , respectively. Greedily selecting the slot ) and scaling the job to +

servers with the highest marginal capacity per unit carbon%* %/(-
5, in each step, results in the lowest

(optimal) amount of carbon consumption.

Proof. We prove Theorem 1 by contradiction. Let 1 be an optimal solution schedule that finishes
work, and has a carbon cost*+ . The schedule 1 is constructed by allocating time slots and number
of servers, until, is completed. The tuple (), +) denotes the )-th time slot and the +-th server
allocated to the job.%* % is the marginal work done when allocating the +-th server, and (- is the
carbon cost used per server at time slot ) , where we assume perfect knowledge of both. The total
carbon cost is *+ =

∑

-∈" (- × 1 [)], where 1 [)] is the used number of servers at time slot ) .
The tuple (., &) denotes the .-th time slot and the &-th server, with marginal capacity per unit

carbon of%*!/(7 . Assume that there exists a time slot ) and a number of servers + , where%*!/(7 >

%* %/(- , s.t., (), +) ∈ 1 and (., &) ∉ 1 . We denote 1
′

as a new schedule, where we only switch the
)-th time slot and +-th server with .-th time slot and the &-th server, which has the higher marginal
capacity per unit carbon. To ensure that the schedule 1

′

finishes work, , the amount of work%* %

must be incorporated into the new schedule. We denote (- and 2 , as the old carbon and new carbon
costs to perform work%* % , respectively. 2 is computed based on the relationship between & and + ,
where:

2 =

{

(7 ·
$& !

$&#
, if & ≤ + .

(7 + (
$& !−$&#

$& !
) · (- , otherwise (& > +).

(1)

In the first case (& ≤ +),%*! ≥ %* % and job will use part or all of the time slot . . In the second case
(& > +),%*! < %* % . We perform%*! work in time slot . , and run the overflow work,%* % −%*! ,

in time slot ) , utilizing
$& !−$&#

$& !
of time slot ) and all of time slot . .

Next, to show that (- > 2 and (*+ > *+
′ ), we consider both cases. In the first case, since

%*!/(7 > %* %/(- , then:

(- > (7 ·
%* %

%*!

(2)

(- > 2 (3)

In the second case, since $&#

)$
>

$& !

)"
, then:

(7 <

%*!

%* %

· (- (4)

5We assume that switching cost (scaling up or down) between time slots is negligible.
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By substituting (7 in case 2:

%*!

%* %

· (- + (
%* % −%*!

%* %

) · (- > 2 (5)

%*! · (- +%* % · (- −%*! · (-

%* %

> 2 (6)

(- > 2 (7)

Therefore, carbon consumption of 1
′

, denoted as*+
′ = *+ − (- +2 is less than carbon cost of 1 (*+ ),

since (- > 2 . Hence, 1 is not optimal, a contradiction. !
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