

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

carbon intensities) the grid uses in each region changes over
time due to changes in both demand and weather. Recent
work has developed carbon-aware policies for i) temporal
workload shifting by suspending jobs when grid energy’s
carbon-intensity exceeds a configurable threshold subject
to deadline constraints [34] and ii) spatial workload shifting
by routing web requests to regions with excess solar energy
subject to latency constraints [19]. This work has shown
significant potential for reducing carbon emissions in and
across regions with widely variable carbon-intensity.
Unfortunately, prior work on temporal shifting does not

apply to either applications that must execute continuously
or in most high-carbon regions, as these regions have few
variations in carbon-intensity, while spatial shifting for state-
ful workloads often incurs prohibitive overheads. To address
the problem, this paper presents Carbon Containers, a
simple system-level facility that regulates the carbon emis-
sions of individual applications in response to variations in
both their workload’s intensity and their energy’s carbon-
intensity. Carbon Containers extend the notion of Power
Containers [30], a previously proposed OS facility for fine-
grained power and energy management in servers, and com-
bines it with resource deflation and migration techniques
[28, 29] to regulate an application’s carbon emissions.
Specifically, Carbon Containers enable applications to

specify a configurable maximum carbon emissions rate (in
g·CO2e/hr), and then transparently enforce this rate via a
combination of vertical scaling, container migration, and
suspend/resume, while maximizing either performance or
energy-efficiency. That is, instead of either suspending jobs
(or migrating them to a lower-carbon region) when carbon-
intensity increases, Carbon Containers deflates their re-
source allocation by vertically scaling them down to ensure
they do not exceed their maximum rate. If vertical scaling
is either insufficient or too inefficient, Carbon Containers

enforce the target carbon emissions by automatically migrat-
ing to a server with a lower energy and carbon footprint, i.e.,
a smaller server. Carbon Containers only suspend them-
selves when energy’s carbon-intensity is so high that vertical
scaling and migration cannot satisfy the carbon target.
Importantly, beyond setting the target carbon emissions

rate, Carbon Containers’ operation is entirely transparent
to applications, unlike recent work on virtualizing the en-
ergy system, which exposes carbon-intensity dynamics to
applications andmakes them responsible for optimizing their
own carbon-efficiency [32]. Our hypothesis is that Carbon
Containers provides a general and flexible tool for transpar-
ently managing application carbon emissions in response to
variations in workload- and carbon-intensity. In evaluating
our hypothesis, we make the following contributions.
Carbon- andWorkload-IntensityDataAnalysis. We ana-
lyze grid carbon-intensity and cloudworkloads in production

traces to understand how they vary. We show that, while
grid carbon-intensity typically has few variations (on the
order of hours-to-days), job resource usage, and thus energy
consumption, in production workloads varies widely (on the
order of minutes-to-hours). We also show that high-carbon
regions, where managing carbon is most important, have few
variations in carbon-intensity. Our analysis motivates that
adapting applications to changes in their workload-intensity
is just as, if not more, important as adapting to changes in
energy’s carbon-intensity in managing carbon emissions.
Carbon Containers Design. We present the design
of Carbon Containers, which builds on Power Contain-
ers [30] by transparently enforcing a configurable maximum
carbon emissions rate for applications via a combination
of vertical scaling, migration, and suspend/resume. We de-
velop two enforcement policies forCarbonContainers that
prioritize energy-efficiency or performance. The former min-
imizes an application’s energy consumption while minimally
throttling it, while the latter always operates close to the
carbon emissions target regardless of its energy-efficiency.
Implementation and Evaluation. We implement a Linux
Carbon Containers (LXCC) prototype by extending Linux
Containers (LXC), and evaluate it on CloudLab and in sim-
ulation using production job and carbon-intensity traces.
We compare LXCC with a recent approach that controls car-
bon emissions by suspending/resuming applications during
high/low carbon periods [34], and show that Carbon Con-

tainers are significantly more carbon-efficient in enabling
higher performance for only a small increase in emissions.
We have publicly released Carbon Containers under a
permissive open-source license.1

2 MOTIVATION AND BACKGROUND

In this section, we motivate Carbon Containers by an-
alyzing real-world data on grid energy’s carbon-intensity
(§2.1), cloud datacenters’ workload-intensity (§2.2), and their
impact on both energy- and carbon-efficiency (§2.3).

2.1 Grid Energy’s Carbon-Intensity

As mentioned in §1, grid energy’s average carbon-intensity
in g·CO2e/kWh varies over time based on the changing mix
of generators (with different carbon-intensities) it uses to
satisfy a variable demand. In addition, different regions have
widely different carbon-intensity characteristics in terms
of both their average magnitude and variance. For exam-
ple, Figure 1 shows both the average carbon-intensity (top)
and Coefficient of Variation (CoV) (bottom) for 27 regions
worldwide. This data comes from electricityMap [3], a car-
bon information service that estimates per-region carbon
emissions based on public data about the type and output
of generators used in each region over time. ElectricityMap

1https://github.com/carbonfirst/CarbonContainers

✶�

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

�✁✂✄☎✆✝✞ ✟✠✡☛☞✌✍✎✏✑ ✒✓✔✕✖✗✘✙✚✛ ✜✢✣✤✥✦✧★ ✩✪

✫✬✭ ✮✯✰✱✲ ✳✴✵

✶

✷

✸✹

✺✻

✼✽

✾✿

❀❁

❂❃

❄
❅
❆❇
❈
❉
❊❋
●
❍
■
❏
❑
▲
▼
◆❖
P

◗❘❙

❚❯❱❲

❳❨❩❬

❭❪❫❴

❵❛❜❝

Figure 3: Percentage of VMs from a random 1000 VM in

the Azure trace with different ranges of CoV.

with any memory and disk state. The migration overhead is
high, and the carbon-intensity across different regions rarely
intersects. As Figure 2 illustrates, low-carbon regions tend
to always have lower carbon-intensity than high-carbon re-
gions. Thus, even if we ignore migration overhead, there are
few times when moving from one region to another substan-
tially lowers carbon emissions.

2.2 Datacenters’ Workload-Intensity

We also analyzed jobs’ workload-intensity from a produc-
tion job trace. In this case, we analyze a public trace released
by Azure that provides the minimum, maximum, and aver-
age CPU utilization and memory allocation for ∼2.7 million
production virtual machines (VMs) every 5 minutes over 30
days. The Azure trace has a size of 235GB and contains ∼1.9
billion readings [2]. There are two primary takeaways from
our trace analysis that motivate our work.

High Workload Variations. Most importantly, VM CPU uti-
lization exhibits potentially wide variations on the order of
minutes to hours. While a few VMs exhibit constant resource
usage, most exhibit some variance. For example, Figure 3
shows that, from a random sample of 1000 VMs in the Azure
trace, only 8% have a CoV below 0.25. In this case, we com-
pute the CoV over 5-minute intervals, rather than the 1-hour
intervals in the carbon-intensity data. Thus, even the low
CoVs suggest more variation than the carbon-intensity traces.
In addition, 30% of VMs have CoV greater than 1 which indi-
cates extremely high variance (i.e., where standard deviation
exceeds the mean), and over 50% of VMs have CoV greater
than 0.4. Overall, the variations in workload-intensity are
much larger than those in energy’s carbon-intensity.

Low Resource Utilization. The second important takeaway
from our workload-intensity analysis is that average CPU
utilization across VMs is typically low with more than 43%
of the VMs having less than 10% utilization. In general, low
utilization is highly energy-inefficient. Since servers are not
energy-proportional [7], their most efficient operating point
is at 100% utilization, as this amortizes their baseload power
across the most amount of computation. Baseload power

is non-trivial and can be as high as 50% of a server’s peak
power. As a result, migrating jobs across servers as their
utilization changes can have a substantial effect on their
energy-efficiency, and thus also their carbon-efficiency.

2.3 Impact on Carbon-Efficiency

Our analysis above motivates our design for Carbon Con-

tainers, which regulates an application’s carbon emissions
in response to variations in both carbon- and workload-
intensity using a combination of vertical scaling, migration,
and suspend/resume. As we show, Carbon Containers pri-
marily adapt to changes in an application’s workload-intensity,
as it varies much more than carbon-intensity.

Importantly, when an application’s workload-intensity
changes on a server, so does its energy-efficiency and thus
carbon-efficiency, as carbon emissions are simply the prod-
uct of an application’s energy consumption and its energy’s
carbon-intensity. Specifically, when workload-intensity de-
creases, energy-efficiency also decreases since servers are not
energy-proportional. At some point, migrating to a smaller
server, i.e., with fewer cores and less memory, can increase
energy-efficiency and thus carbon-efficiency, since it reduces
baseload power and amortizes it over the same computation.
As we discuss, Carbon Containers’ enforcement policy
leverages this insight to satisfy its carbon target, while mini-
mally throttling resources and maximizing energy-efficiency.

As summarized below, Carbon Containers address mul-
tiple problemswith existing techniques for leveraging tempo-
ral and spatial variations in energy’s carbon-intensity using
suspend/resume scheduling and wide-area migration.
Ineffective in high carbon regions. Suspend/resume sched-

uling policies that suspend jobs when carbon emissions are
high and resume themwhen low are only effective in regions
where energy’s carbon-intensity varies widely [34]. That
is, these techniques are only effective if energy’s carbon-
intensity is periodically low. Yet, as we show in §2.1, en-
ergy’s carbon-intensity does not vary widely in many re-
gions, largely due to a low penetration of intermittent solar
and wind energy sources, which cause most of the variations.
As a result, the regions with high carbon emissions (by a wide
margin), where managing carbon emissions is the most criti-
cal, tend also to be the ones where suspend/resume sched-
uling policies are the least effective. In contrast, Carbon
Containers can enforce an arbitrary carbon emissions rate
regardless of the variations in grid energy’s carbon-intensity,
and thus can be effective even in high-carbon regions with
few variations. As mentioned above, Carbon Containers

mostly adapt to frequent and significant changes in a job’s
workload-intensity rather than energy’s carbon-intensity.

High performance penalty. Even in regions where carbon-
intensity varies widely, it typically follows a diurnal pattern
with significant changes occurring on the order of hours.

❞❡

Carbon Containers SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

is set to 0%, a server’s baseload power may cause it to ex-
ceed its carbon target. In addition, vertically scaling down
a container’s quota decreases its energy-efficiency, since it
amortizes the server’s baseload power over less computation.
Container migration. Container migration addresses both
drawbacks of vertical scaling. In essence, migrating a con-
tainer to smaller and larger servers effectively extends LXCC’s
dynamic power range. In general, smaller servers, e.g., with
fewer cores and memory, also have a proportionately lower
baseload power, and thus are more energy-efficient; they can
also be just as performant as larger servers for workloads
that cannot fully utilize a larger server. As discussed in §3.2,
LXCCmigrates to larger servers, if the carbon emissions allow,
to prevent throttling a container, and migrates to smaller
servers to enforce the carbon target once it becomes more
energy-efficient than further vertical scaling down. LXCC in-
cludes a configurable table of servers available for migration,
e.g., as provided by cloud platforms, where each container
locally determines where to migrate based on its own policy.

As we discuss in §4, LXC supports both checkpoint/restore
and live migration [12], although there are some restrictions
on the container configuration. Live migration is transparent
and incurs little downtime, while a checkpoint/restore migra-
tion requires pausing the container, transferring its memory
state to the destination server, and then restoring it. While
both approaches can maintain active TCP connections as
long as the downtime is less than the TCP timeout, a check-
point/restore migration incurs a performance overhead as
the application cannot execute during the migration.
Suspend/Resume. LXCC can also suspend a container, which
idles its server and drops its marginal power usage to 0.
However, since servers always consume baseload power, sus-
pending containers is infinitely energy-inefficient, as they
perform no useful work but still consume substantial energy.
LXCC’s enforcement policy only suspends a container when
it cannot operate below the carbon target by migrating to the
smallest (most energy-efficient) server and vertically scal-
ing it down to minimize the baseload power that is wasted
when suspended. The baseload power of the smallest server
dictates a lower bound on LXCC’s power usage. Thus, there
are scenarios where it is impossible for LXCC to enforce its
carbon target if the carbon-intensity increases too much.

3.2 Carbon Enforcement Policy

Given a target carbon emissions rate for a container, LXCC
transparently executes an enforcement policy that combines
the mechanisms above to ensure the container does not ex-
ceed its rate. LXCC’s enforcement policy has two variants.
The default policy ensures a container does not exceed the
target carbon emissions rate, minimizing energy consump-
tion without throttling the container, i.e., by never operating
at 100% utilization. We call this policy the energy-efficiency

policy, since it prioritizes energy-efficiency. In contrast, users
may also configure an alternative performance policy, which
ensures that a container’s emissions rate always remains
within some threshold of the target rate. Thus, under the
performance policy, a container may run on a large, power-
intensive server at low usage, as long as it remains below its
carbon target, which is highly inefficient. The performance
policy is useful for providing a container reserve capacity to
handle any sudden load bursts with low latency.

In effect, the energy-efficiency policy variant enforces the
target carbon rate, while also minimizing overall carbon
emissions, while the performance policy variant operates at
or near the target. Both policy variants minimize throttling
the container subject to the target carbon rate, i.e., they only
throttle when necessary to enforce the carbon target. Below,
we first discuss general aspects of both enforcement policy
variants, and then discuss their specific differences.
3.2.1 General Enforcement Policy. Both policy variants con-
tinuously compare the current carbon emissions %& (#) of a
container on its current server & to its carbon target%!"#$%! . If
%& (#) comes within some configurable threshold ' , LXCC trig-
gers an enforcement mechanism. As described above, %& (#)

is a function of a container’s resource utilization (and thus
power usage) and energy’s carbon-intensity. The value of '
is configurable and presents a tradeoff. If the value is near 0,
i.e., actions are only enforced when at the target, then the
container i) may periodically exceed %!"#$%! since enforce-
ment actions have some delay, and ii) may cause thrashing
that triggers unnecessary enforcement actions, i.e., migra-
tions. As '’s value increases, the policy diverges more from
the strict target, but lessens the overhead due to thrashing.
The first enforcement mechanism is to vertically scale a

container down until% (#) is not within the threshold, as ver-
tical scaling has lower overhead than migration. In parallel,
the policy also estimates, based on the power model of the
next smallest server (, the carbon emissions rate % ' (#). As
the policy vertically scales down a container, if the carbon
emissions rate % ' (#) on the next smallest server ever drops
below %& (() and the smaller server throttles the application
less than vertically scaling down the larger server, the policy
triggers a migration of the container to the smaller server.
To illustrate the decision of when to migrate versus con-

tinue vertically scaling, consider the following example with
a “big” server that has 2× the resource capacity of a “small”
server, where we assume the big server has a baseload power
of 100W and peak power of 200W, while the small server has
a baseload power of 50W and peak power of 100W. If the
big server is throttled by 50%, i.e., capped at 50% utilization,
it would consume 150W, but have the same performance
capacity as a small non-throttled server consuming 100W.
At this point, assuming the container is fully using its 50%
allocation on the big server, the policy would migrate to

✷�

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

the smaller server as it provides the same performance for
less energy. Note that if LXCC requests to provision a server
from the list for migration, and it is not available, then LXCC

removes the server and re-evaluates the policy.
At some point, if both a container’s workload- and carbon-

intensity increase too much, the policy will migrate the appli-
cation to the smallest server such that further migrations are
impossible, and the container is fully throttled due to vertical
scaling. At this point, the policy suspends the container until
carbon-intensity decreases to a point where the container
can be vertically scaled up and is not throttled.
In addition to scaling containers down when %& (#) ap-

proaches %!"#$%! , the policy may also scale containers up
if their resource utilization increases, and they are below
%!"#$%! . Similar to above, in this case, the policy vertically
scales containers up until they reach %!"#$%! or they have
access to the server’s entire resource capacity. If a container
is fully utilizing a server’s resource capacity, and it is still
below%!"#$%! , then the server is throttled, and the policy will
migrate the container to the next largest server (as long as
doing so would not exceed %!"#$%!).
3.2.2 Energy-efficiency Variant. The energy-efficiency pol-
icy variant extends the general policy above by simply mi-
grating containers to smaller servers if they are not fully
utilizing their current server. In this case, the migration deci-
sion is essentially the same as the one above, but is triggered
instead based on a lack of server utilization rather than forced
vertical scaling due to being near %!"#$%! . That is, in the ex-
ample above, if a container is only utilizing the big server
50% or less, rather than being vertically scaled down to 50%,
the decision is the same: migrating to the smaller server will
be more energy-efficient and carbon-efficient, and doing so
will not throttle the container. Thus, the energy-efficiency
variant will migrate the container down in this case. Notably,
the energy-efficiency variant still ensures that containers
are never throttled if they are below %!"#$%! . That is, the pol-
icy does not simply maximize energy-efficiency, as doing so
would require always executing a container on the smallest
most energy-efficient server regardless of throttling.
3.2.3 Performance Variant. Unlike the energy-efficiency
variant above, the performance policy variant does not mi-
grate containers to smaller servers when they are below
%!"#$%! and are not fully utilizing their current server. In-
stead, the performance policy attempts to vertically scale up
and migrate containers to larger servers to be within ' of
the carbon target regardless of a container’s utilization. As
a result, the performance policy is less energy-efficient, as
it may run an idle container on a large server & if energy’s
carbon-intensity is low, as long as the container’s carbon
emissions rate %& (#) remains below %!"#$%! . Thus, the per-
formance variant uses its excess carbon to maintain reserve
capacity to handle unexpected bursts in resource usage. Since

� ✁✂ ✄☎ ✆✝ ✞✟ ✠✡☛

☞✌✍✎✏✑✒✓ ✔✕✖✗✘✙✚✛✜✢✣ ✤✥✦

✧

★✩

✪✫

✬✭

✮✯✰

✱✲✳

✴✵✶

✷
✸
✹
✺
✻
✼✽
✾

✿❀❁

❂❃❄❅❆❇

❈❉❊❋

●❍■❏❑▲▼ ◆❖ P◗ ❘❙❚
❯❱❲

❳❨❩

❬❭❪

❫❴❵

❛❜❝

Figure 6: Measured power usage relative to resource uti-

lization levels. CPU usage is set at 100% to isolate the

effect of memory, network, and disk from CPU.

many jobs have a low average usage interspersed with large
bursts of utilization, the performance variant tends to incur
less migrations and overhead from migrating containers to
smaller servers after a burst of resource and power usage.

4 IMPLEMENTATION

We implemented aCarbonContainers prototype in python
3.7+ using a microservice approach consisting of a collection
of coordinating services that run as background daemon
processes and communicate via gRPCs. Our implementa-
tion uses Linux Containers (LXC 3.0.3) [22] and CRIU v3.7
(Checkpoint/Restore in Userspace) [6] for migration. CRIU
supports container checkpoint/restore (or stop-and-copy)
and live migration, although the implementations are highly
sensitive to the container configuration and its set of running
processes. For our experiments, we configured containers
such that these mechanisms would work. In particular, our
containers include a stock 64-bit Ubuntu Xenial image. Our
prototype includes i) a front-end command-line tool for cre-
ating, configuring, and destroying Carbon Containers, ii)
a monitoring service for resource, power, and carbon usage,
and iii) a policy module that receives data from the monitor-
ing service and triggers enforcement mechanisms based on
the policy in §3.2. We discuss each service’s implementation
below, and then present prototype microbenchmarks.

LXCC services. LXCC uses a configuration file that includes
information on the available server types, their power mod-
els, API keys for cloud platforms and carbon information
services, and ssh keys for accessing other servers. Our pro-
totype uses a simple power model that includes a server’s
baseload and peak power such that power usage increases
linearly from the baseload to the peak power based on server
utilization. These simple models were highly accurate when
calibrated to our servers. In particular, Figure 6 shows the
power usage of our local server (a Dell PowerEdge R430), as
a function of the resource utilization of its CPU, memory,
disk, and network resources. Here, we used the stress-ng

❞❡

Carbon Containers SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

� ✁ ✂ ✄ ☎ ✆ ✝

✞✟✠✡☛☞ ✌✍✎✏ ✑✒✓✔

✕

✖✗

✘✙

✚✛

✜✢

✣✤

✥✦

✧★

✩
✪✫
✬
✭✮
✯
✰
✱
✲
✳
✴
✵

✶✷✸✹✺✻✼

✽✾✿❀❁❂

❃❄❅❆❇❈❉❊

❋●❍■❏❑▲▼◆❖

P◗❘❙❚❯❱❲❳ ❨❩❬❭❪❫❴❵❛❜❝❞❡❢

❣❤✐❥❦❧♠♥♦ ♣qrst✉✈✇①②③④

Figure 7: The time required to suspend/resume, com-

press/decompress, and migrate LXCC containers as a

function of memory footprint.
workload emulator to utilize each resource in isolation at
a specific percentage. Since utilizing any resource also in-
creases CPU utilization, for all resources except CPU, we
conducted the experiments with the CPU at 100% utilization.

Figure 6 demonstrates both that i) the memory, disk, and
network have little dynamic power range, since there is little
difference in power at 100% utilization for any resource (see
inset) and ii) the relationship between CPU utilization and
power consumption is roughly linear. We experimented with
other power models, including fitting a cubic polynomial
and training machine learning models using performance
counters, but found that these models were not significantly
more accurate than a simple linear model. In general, the
relationship between resource usage and power is server-
specific, and depends on the dynamic ranges of a server’s
components. As a result, the simple linear power model
above may not apply to other servers. However, Carbon
Containers is agnostic to the precise power model, and
can support arbitrarily complex power models that are a
function of any values available to the monitoring service,
which include a wide range of performance counters.

We intend our prototype to operate on cloud platforms,
where it requests new servers dynamically, whenmigrating a
container to a smaller or larger server. In this case, the policy
module issues a request to a cloud API to provision a server
before migrating to it. We assume these cloud servers boot
an image with the LXCC services running, and are accessible
via the same ssh keys. Here, we assume a one-to-one ratio
between Carbon Containers and cloud servers (which
may run as VMs). In addition, LXCC can also operate from a
static set of servers; our experiments on CloudLab use this
approach, since CloudLab does not provide a programmatic
API for dynamically provisioning servers.

Command-line tool. The lxcc command-line program
wraps the normal lxc tool and provides minimal additional
functionality. The lxcc tool enables users to view current
information on a container’s resource, power, and carbon
usage by fetching data from the monitoring service. The tool
also enables users to create, configure, and destroy Carbon

Containers. When creating a container, the tool registers
the container with the monitoring and policy modules. The
tool also enables configuring containers by setting their tar-
get carbon rate %!"#$%! , ' threshold, and policy variant (i.e.,
energy-efficiency versus performance policy).

Monitoring module. The monitoring module tracks en-
ergy’s carbon-intensity via electrictyMap’s API. The module
maps processes to specific containers and tracks their re-
source utilization. The service uses this utilization as input
to the power models above to track estimated power usage
and carbon emissions rate, both on the current server and
the other available server types. The monitoring module in-
cludes an API that enables other services to query its data.
The monitoring module also writes resource usage, power,
and carbon data to disk for historical analysis.

Policy module. The policy module polls the monitoring
service for each container’s carbon emissions rate and re-
source usage every interval, e.g., 5 minutes by default, and
implements the enforcement policy from §3.2. Our prototype
implements vertical scaling using Linux cgroups, by control-
ling the number of cores a container can use. As mentioned
above, our prototype uses CRIU for migration. When per-
forming a stop-and-copy migration, the policy module check-
points the container, compresses its filesystem, configuration,
and checkpoint files, and transfers them to the destination
server. The policy module at the destination service receives
the archive, decompresses it, relocates the container filesys-
tem and configuration to LXC’s directory (/var/lib/lxc),
and restores the container from the CRIU snapshot.

4.1 Microbenchmarks

We next benchmark the performance of various sub-tasks
that Carbon Containers perform.
Migration overhead. Figure 7 shows the time required to
suspend/resume, compress/decompress, and migrate LXCC
containers as their memory footprint increases on a Cloud-
Lab server (d430) with 32 CPU cores and 62 GB of memory. In
this case, the migration is from a d430 server to a d820 server.
The results are the average of 10 experiments, where the
error bars represent the standard deviation. We separate the
time to suspend/resume and compress/decompress, and also
show the migration time with both compressed and uncom-
pressed memory images. Of course, the migration overhead
depends on the size of a container’s memory and disk state.
Here, we migrate a container’s memory-resident working
set, which varies, along with a small root disk.
Our results offer two key insights. First, the time to mi-

grate the uncompressed image is the dominant time, and
roughly equal to compressing, migrating, and decompress-
ing the image. The time to migrate the compressed image is

⑤⑥

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

�✁ ✂✄ ☎✆

✝✞✟✠✡ ☛☞✌

✍

✎✏

✑✒

✓✔

✕✖

✗✘

✙✚

✛
✜✢
✣✤
✥
✦
✧★
✩
✪
✫✬
✭

✮✯✰✱✲✳✴✵ ✶✷✸ ✹✺✻✼✽✾

✿❀❁❂❃❄❅❆ ❇❈❉ ❊❋●❍■❏

❑▲▼◆❖P◗❘ ❙❚❯ ❱❲❳❨❩❬

❭❪❫❴❵❛❜

Figure 8: Effect of migrating to a server of a different
size on resource utilization.

negligible given the high compression ratio. Notably, this mi-
gration time is significantly less than the time needed to sus-
pend/resume. Second, the time for all operations is roughly
linear with memory size, although with different slopes. Sus-
pend/resume and compress/decompress scale more grace-
fully, i.e., have smaller slopes, than migrating an uncom-
pressed image. Nevertheless, the experiments also show that
even for relatively high memory footprints, e.g., 7GB, the mi-
gration time for a stop-and-copy migration is still less than
2 minutes. Of course, a live migration incurs no downtime,
although it does incur some energy cost from requiring two
servers to operate at the same time.

Server performance comparison. Our prototype uses a
simple power model that assumes server performance and
power usage scales linearly with resource capacity. Figure 8
validates this assumption for a compute-intensive job that
operates at 40% utilization on our baseline server with 32
cores. We migrate the workload to servers with 40 and 64
cores, and verify that the utilization changes proportionately,
as expected. Figure 8 shows the actual utilization on each
server, and the expected utilization based on the core ratio.

Workload emulator. Finally, we use a workload emulator
(stress-ng) to replay utilization traces on servers. We run
a microbenchmark to verify that stress-ng can maintain a
configurable utilization. Figure 9 shows the result of using
stress-ng on a 64-core server above at 40% utilization. The
graph shows that stress-ng maintains a utilization within
<1% of the target 40% utilization. Here, we monitor CPU
every 5 seconds and report a moving average over 1 minute.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Carbon Con-

tainers. We first present experiments that demonstrate the
ability of our Carbon Containers prototype, LXCC, to en-
force an arbitrary carbon emissions target. We then evaluate
Carbon Containers’ enforcement policy in simulation at
large-scale across a wide range of workload characteristics
and carbon-intensity scenarios, and compare them with a
recent suspend/resume scheduling approach [34].

❝ ❞❡❢ ❣❤✐ ❥❦❧ ♠♥♦ ♣qr st✉

✈✇①② ③④⑤⑥⑦⑧⑨⑩❶

❷

❸❹

❺❻

❼❽

❾❿

➀➁

➂
➃➄
➅➆
➇
➈
➉➊
➋
➌
➍➎
➏

➐➑➒➓➔→ ➣↔↕➙➛➜➝
➞➟➠➡➢➤

➥➦➧ ➨➩➫ ➭➯➲ ➳➵➸
➺➻➼➽

➾➚➪➶

➹➘➴➷

Figure 9: Efficacy of our prototype in replaying workload

traces. While the instantaneous utilization varies, the

moving average is within < 1% of the target usage.

5.1 Evaluation Setup

Below, we describe our Carbon Containers evaluation
setup, various baselines, and specific evaluation metrics.

5.1.1 Traces. We use two types of traces in our evaluation:
resource usage traces from production cloud workloads and
carbon-intensity traces for different geographical regions
in the world. For resource usage, we use a Microsoft Azure
trace [2, 14] that provides the minimum, maximum, and av-
erage CPU and memory usage information for ∼2.7 million
VMs every 5 minutes over a 30-day period. We sample 1000
VMs at random for our large-scale analysis in simulation. For
carbon-intensity information, we use the average carbon-
intensity information from electricityMaps [3]. The traces
provide hourly carbon-intensity values for all the regions in
the world. Since our enforcement policy performs differently
based on the variance in carbon-intensity, we select repre-
sentative regions that have high (Netherlands) and medium
(California) variations in their carbon-intensity, as discussed
in §2 and shown in Figure 2. Ultimately,CarbonContainers

benefits depend on both applications’ pattern of workload
demands and carbon-intensity. If neither workload demand
nor carbon-intensity vary, there is little room for reducing
carbon emissions without degrading performance.

5.1.2 Baselines. We compare Carbon Containers with
three baselines: carbon-agnostic, suspend/resume, and Car-

bon Containers with vertical scaling without migration.
For the carbon-agnostic approach, we assume a job runs

on a baseline server without any vertical scaling or migra-
tion. For suspend/resume scheduling, we assume a job also
runs on a baseline server without any vertical scaling or
migration. In this case, the scheduler suspends a job when its
rate of carbon emissions falls below the target carbon rate,
and resumes it once it rises above. Finally, we also implement
a variant of Carbon Containers that uses vertical scaling
and suspend/resume but does not migrate containers. That is,
this policy will attempt to satisfy the carbon target by verti-
cally scaling down, but if it cannot it suspends the container
rather than migrating. This is essentially a resource-aware

➬➮

Carbon Containers SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

� ✁ ✂✄ ☎✆ ✝✞ ✟✠ ✡☛ ☞✌ ✍✎ ✏✑
✒✓✔

✕✖✗

✘✙✚

✛✜✢

✣
✤
✥✦
✧
★
✩
✪
✫✬
✭✮
✯
✰
✱
✲
✳
✴✵

✶✷
✸
✹
✺
✻✼
✽
✾✿
❀
❁❂
❃❄ ❅❆❇❈❉❊❋●❍

■❏❑▲▼◆ ❖P◗❘❙❚❯❱❲ ❳❨❩❬❭❪❫❴❵❛❜

❝❞❡❢❣❤ ✐❥❦❧♠♥♦♣

qrst✉✈

✇ ① ②③ ④⑤ ⑥⑦ ⑧⑨ ⑩❶ ❷❸ ❹❺ ❻❼
❽

❾❿

➀➁

➂➃

➄➅

➆➇➈

➉
➊➋
➌➍
➎
➏
➐➑
➒
➓
➔→
➣

↔ ↕ ➙➛ ➜➝ ➞➟ ➠➡ ➢➤ ➥➦ ➧➨ ➩➫

➭➯➲➳ ➵➸➺➻➼➽➾➚➪

➶

➹

➘

➴

➷

➬➮

➱
✃
❐❒
❮
❰Ï
Ð

Figure 10: Illustration of our Carbon Containers pro-

totype. Since this trace is less than an hour duration,

the carbon intensity is steady at 300.91 gCO2/kWh.

version of suspend/resume scheduling. When simulating
Carbon Containers, we assume jobs start on the same base-
line server as above, but can migrate to one of five servers
in the same family that are 4×, 2×, 0.5×, and 0.25× the re-
source capacity. We model these capacities after a family of
general-purpose servers on a public cloud platform, specif-
ically Amazon Web Services. We assume the baseload and
peak power of these servers is in proportion to their resource
capacity, and that our baseline server has a baseload power
of 100W and peak power of 200Wwith power usage between
the base and peak scaling proportionate to utilization.

5.1.3 Metrics. We focus our evaluation on quantifying the
average carbon emissions rate (in g·CO2e/hour) and the per-
centage an application is throttled, which represents its per-
formance degradation. The throttling percentage is normal-
ized relative to our baseline server, such that 10% throttling
on average represents a job that would have utilized a server
with 110% of the capacity of our baseline server. The goal is
to have both low average carbon emissions rate (at or below
the target) and a low throttling percentage.

5.2 Prototype Evaluation

We first evaluate our Carbon Containers prototype to
demonstrate its salient features. Figure 10 shows a time-
series of our prototype running a job with variable workload-
intensity over a nearly hour-long period. We use our stress-
ng workload emulator to replay the job within Carbon Con-

tainers. The top graph shows the target carbon rate, as well
as the average carbon emissions for our Carbon Container

ÑÒÓ ÔÕÖ ×ØÙ ÚÛÜ ÝÞß àáâ ãäå æçè éêë

ìíîïðñ òóôõö÷øùú ûüýþÿ� ✁✂✄☎✆ ✝ ✞ ✟✠✡☛☞✌✍

✎

✏

✑

✒

✓

✔
✕
✖
✗✘
✙
✚
✛
✜
✢✣
✤
✥✦
✧
★
✩
✪
✫✬

✭✮
✯
✰
✱
✲
✳
✴
✵✶
✷
✸✹
✺

✻✼✽✾✿❀ ❁❂❃❄❅❆❇❈❉

❊❋●❍■❏❑▲ ▼◆❖P◗❘❙

❚❯❱❲❳❨❩ ❬❭❪❫❴❵

Figure 11: Average carbon emissions rate for Carbon

Containers and other baseline approaches in a region

with highly variable carbon-intensity.

❛ ❜ ❝ ❞ ❡ ❢ ❣ ❤ ✐

❥❦❧♠♥♦ ♣qrst✉✈✇① ②③④⑤⑥⑦ ⑧⑨⑩❶❷ ❸ ❹ ❺❻❼❽❾❿➀

➁

➂➃

➄➅

➆➇

➈➉

➊➋➌

➍
➎
➏
➐➑
➒
➓
➔
→
➣↔
↕➙
➛➜
➝➞
➟

➠➡➢➤➥➦ ➧➨➩➫➭➯➲➳➵➸

➺➻➼➽➾➚➪➶ ➹➘➴➷➬➮➱

✃❐❒❮❰ÏÐ ÑÒÓÔÕÖ

Figure 12: Average thro"ling for Carbon Containers

and other baseline approaches in a region with highly

variable carbon-intensity (companion to Figure 11)

and for a carbon-agnostic policy. For this example, we use
the energy-efficiency policy for Carbon Containers.
The top graph shows that Carbon Containers starts

above the target but then recognizes this and migrates to
a smaller server to get below the target. In contrast, the
carbon-agnostic approach remains above the target for the
entire period. The middle graph shows the utilization of
the container, which increases at the beginning of the trace
but then decreases in the middle and then increases again
at the end; both the Carbon Container and the carbon-
agnostic approach yield the same utilization, as they replay
the same trace. The bottom graph then shows the number
of cores utilized by the container. At the start, the Carbon
Container attempts to vertically scale down the container
to reduce the carbon emissions before determining it must
migrate to a smaller server to get emissions below the target.
Here, the destination machine is a pc3000 server (2 CPU
cores), while the original server was a d710 (8 CPU cores).
This is annotated in each graph, and the results can be seen in
the top graph as a significant reduction in the average carbon
emissions rate. The prototype graph above demonstrates the
basic functions of our Carbon Containers prototype.

×Ø

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

�✁✂ ✄☎✆ ✝✞✟ ✠✡☛ ☞✌✍ ✎✏✑ ✒✓✔ ✕✖✗ ✘✙✚

✛✜✢✣✤✥ ✦✧★✩✪✫✬✭✮ ✯✰✱✲✳✴ ✵✶✷✸✹ ✺ ✻ ✼✽✾✿❀❁❂

❃

❄

❅

❆

❇

❈

❉

❊
❋
●
❍■
❏
❑
▲
▼
◆❖
P
◗❘
❙
❚
❯
❱
❲❳

❨❩
❬
❭
❪
❫
❴
❵
❛❜
❝
❞❡
❢

❣❤✐❥❦❧ ♠♥♦♣qrst✉

✈✇①②③④⑤⑥ ⑦⑧⑨⑩❶❷❸

❹❺❻❼❽❾❿ ➀➁➂➃➄➅

Figure 13: Average carbon emissions rate for Carbon

Containers and other baseline approaches in a region

with medium variable carbon-intensity.

➆ ➇ ➈ ➉ ➊ ➋ ➌ ➍ ➎

➏➐➑➒➓➔ →➣↔↕➙➛➜➝➞ ➟➠➡➢➤➥ ➦➧➨➩➫ ➭ ➯ ➲➳➵➸➺➻➼

➽

➾➚

➪➶

➹➘

➴➷

➬➮➱

✃
❐
❒
❮❰
Ï
Ð
Ñ
Ò
ÓÔ
ÕÖ
×Ø
ÙÚ
Û

ÜÝÞßàá âãäåæçèéêë

ìíîïðñòó ôõö÷øùú

ûüýþÿ�✁ ✂✄☎✆✝✞

Figure 14: Average thro"ling for Carbon Containers

and other baseline approaches in a region with medium

variable carbon-intensity (companion to Figure 13).

5.3 Large-scale Evaluation

We next perform a larger-scale evaluation over more jobs and
more regions. Note that our simulation experiments include
the overhead from migration from our testbed. Thus, we ex-
pect individual Carbon Containers performance to follow
our experiments. In a production datacenter, performance
may improve due to higher-capacity networking infrastruc-
ture. In these experiments, we select a random sample of 1000
jobs from the Azure trace, and simulate their performance
with Carbon Containers. We report averages across the
jobs, as well as standard deviation using error bars.
Figure 11 shows the average carbon emissions rate of

each approach at varying target carbon rates for our region
with highly variable carbon-intensity, alongside the carbon
emissions under a carbon-agnostic policy. We can see that
Carbon Containers manages to maintain a carbon emis-
sions rate below the given target, even for small targets. That
said, the other policies also operate below the carbon target.

However, the carbon rate for the suspend-resume policy is
misleading for low target values. Carbon savings alone fails
to capture the advantage that migration and vertical scaling
have over the other policies, especially suspend-resume. In
particular, when a job is suspended, no forward progress
is being made, and as such the suspend-resume approach

✟✠✡ ☛☞✌ ✍✎✏ ✑✒✓ ✔✕✖ ✗✘✙ ✚✛✜ ✢✣✤ ✥✦✧

★✩✪✫✬✭ ✮✯✰✱✲✳✴✵✶ ✷✸✹✺✻✼ ✽✾✿❀❁ ❂ ❃ ❄❅❆❇❈❉❊

❋

●

❍

■

❏

❑

▲
▼
◆
❖P
◗
❘
❙
❚
❯❱
❲
❳❨
❩
❬
❭
❪
❫❴

❵❛
❜
❝
❞
❡
❢
❣
❤✐
❥
❦❧
♠

♥♦♣qrs t✉✈✇①②③

④⑤⑥⑦⑧⑨ ⑩❶❷❸❹❺❻❼❽ ❾❿➀➁➂➃➄➅➆➇➈

➉➊➋➌➍➎ ➏➐➑➒➓➔→➣↔ ↕➙➛➜➝➞➟➠➡➢➤➥

Figure 15: Average carbon emissions rate for the energy-

efficiency and performance policy variants in a region

with highly variable carbon-intensity.

➦➧➨ ➩➫➭ ➯➲➳ ➵➸➺ ➻➼➽ ➾➚➪ ➶➹➘ ➴➷➬ ➮➱✃

❐❒❮❰ÏÐ ÑÒÓÔÕÖ×ØÙ ÚÛÜÝÞß àáâãä å æ çèéêëìí

î

ï

ð

ñ

ò

ó

ô

õ

ö

÷
ø
ù
úû
ü
ý
þ
ÿ
�✁
✂
✄☎
✆
✝
✞
✟
✠✡

☛☞
✌
✍
✎
✏
✑
✒
✓✔
✕
✖✗
✘

✙✚✛✜✢✣ ✤✥✦✧★✩✪

✫✬✭✮✯✰ ✱✲✳✴✵✶✷✸✹ ✺✻✼✽✾✿❀❁❂❃❄

❅❆❇❈❉❊ ❋●❍■❏❑▲▼◆ ❖P◗❘❙❚❯❱❲❳❨❩

Figure 16: Average carbon emissions rate for the energy-

efficiency and performance policy variants in a region

with medium variability carbon-intensity.

substantially increases the time needed to finish a job. In this
figure, many of the low carbon targets result in small emis-
sions averages because the suspend-resume policy spends
significant amounts of time not running. Vertical scaling
reduces this penalty by throttling resources before forcing
a full stop. This throttling also has an impact on the perfor-
mance, based on the magnitude of resource reduction and
the time spent at reduced resource levels. Suspension can be
re-contextualized in terms of throttling by defining a suspen-
sion as a period of 100% magnitude throttling. In this case,
such vertical scaling naturally has a bound on the potential
savings at 100% resource reduction.

Figure 12 then compares the performance throttling expe-
rienced by the jobs while operating under the given policies
for the same experiment as Figure 11. The suspend-resume
approach naturally experiences the highest degree of throt-
tling, as its only mechanism for avoiding exceeding a carbon
threshold is to completely stop until the carbon-intensity
decreases. Vertical scaling experiences less throttling due to
the reasons stated above, while Carbon Containers experi-
ences the least amount of throttling by a significant margin.
Due to Carbon Containers’ migration policy, its effective
energy scaling range becomes much larger than using ver-
tical scaling in isolation. By moving to smaller servers, the
jobs can effectively reduce their minimum baseload energy

❬❭

Carbon Containers SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

requirements. Due to this flexibility, Carbon Containers

rarely needs to fully suspend execution at any point. Migra-
tion is also highly effective because applications in cloud
traces have high variances, as shown in Figure 3. Thus, mi-
grating to a smaller more energy-efficient server during a
low-intensity period yields significant benefits.

Figures 13 and 14 show the same analysis for a region with
medium variations. A similar pattern emerges as in our first
region: for many of the lower end targets, suspend-resume
fails as it waits indefinitely for a carbon-intensity reduction
that never comes. Carbon Containers themselves have a
lower carbon bound that they cannot completely satisfy, but
this limit is defined by the size of the smallest available server
instead of a limit inherent to the region. In this case, for low-
end targets, Carbon Containerswith migration experience
some overhead that increases its carbon emissions relative
to vertical scaling (although still operating below the target
carbon emissions rate), but this comes with a substantial
decrease in throttling.

5.3.1 Energy-Efficiency vs Performance Policy Variants. In
§3, we describe two variations of our carbon enforcement
policy: an energy-efficiency and performance variant. As
mentioned, we anticipate that aggressively optimizing for
energy-efficiency may not be suitable for all use cases, as
some applications and users may not be looking to minimize
their carbon emissions, but rather maximize their perfor-
mance while satisfying a carbon rate limit. Such applications
would desire a policy that more aggressively scales up to
larger servers to avoid throttling time and be better prepared
to handle large bursts of demand. The performance policy
variant aims to accommodate these use cases. As such, we
evaluate the two implementations of our policy against each
other, and against a carbon-agnostic policy.
Specifically, Figures 15 and 16 compare the carbon emis-

sions of each policy for our high carbon and medium carbon
variation region. These figures demonstrate how these differ-
ent policies manage carbon emissions. As the carbon target
increases, the performance policy variant is able to spend
more time running on larger machines, resulting in more
carbon emissions but also higher performance. Figure 17
then captures the difference in performance potential where
the x-axis is again the carbon target, while the y-axis is the
percentage of time spent on different size servers. In particu-
lar, the figure shows that the performance policy spends a
much larger fraction of time executing Carbon Containers

on larger, less energy-efficient servers. However, note that
both policy variants still satisfy the carbon target.

6 RELATED WORK

Carbon Containers is related to a range of prior work
on power, resource, and carbon management on cloud plat-
forms, which we discuss below. Most importantly, Carbon

� ✁ ✂ ✄ ☎ ✆ ✝ ✞

✟✠✡☛☞✌ ✍✎✏✑✒✓✔✕✖ ✗✘✙✚✛✜ ✢✣✤✥✦ ✧ ★ ✩✪✫✬✭✮✯

✰

✱✲

✳✴

✵✶

✷✸

✹✺✻

✼
✽
✾✿
❀
❁
❂
❃❄
❅
❆❇
❈

❉❊❋●❍
■❏❑▲▼

◆❖P◗
❘❙❚❯

❱❲
❳❨

❩❬
❭❪

❫❴
❵❛

❜❝❞❡❢❣❤✐❥
❦❧♠♥♦♣qrst

Figure 17: Percentage of time spent on different size
servers by the performance and energy-efficiency policies

in a high carbon variation region.

Containers differs from much of this prior work in that it
focuses on providing a mechanism for enforcing a carbon
target without dictating how it might be used. We envision
that Carbon Containers could be used in a wide variety
of higher-level systems, such as carbon-aware cluster sched-
ulers for batch/service jobs, serverless functions, etc.

Power management. Carbon Containers are directly in-
spired by prior work on Power Containers [30]. Indeed, Car-
bon Containers essentially extend Power Containers by
enforcing a target carbon rate that includes not only power
consumption but also energy’s carbon-intensity. We also de-
signed Carbon Containers with cloud platforms in mind
by enabling them to self-migrate between different types
of servers as their utilization (and thus energy-efficiency)
changes. Carbon Containers sets power caps by placing
quotas on resource usage, which is a common technique used
by many prior systems [20, 21, 27]. However, prior work gen-
erally caps power to prevent server clusters from exceeding
the power delivery infrastructure’s maximum power rating.
In our case, Carbon Containers cap power to prevent ex-
ceeding a target carbon emissions rate.

Resource management. There has also been a variety of
work that uses containers to adjust resource usage on cloud
platforms, often in response to price changes. For example,
HotSpot migrates containers to different servers in response
to changes in spot prices [29]. However, HotSpot focuses on
maximizing an application’s cost-efficiency, i.e., cost per unit
of resource utilized, and not regulating carbon emissions. As
a result, unlike Carbon Containers, HotSpot will throttle
containers if it is more cost-efficient to do so, and also does
not employ vertical scaling since it is never cost-efficient
to purchase resources and not use them. Similarly, Carbon
Containers is also related to prior approaches to resource
deflation [16, 28] that vertically scale resources in response
to cloud platforms reclaiming resources for high-priority
tasks. Carbon Containers also “inflate” and “deflate” the
resources allocated to a container but in response to changes
in carbon emissions rather than scheduling decisions.

✉✈

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

Carbon management. There is substantial recent work
on managing carbon emissions in cloud datacenters due to
climate change [11, 15, 17, 18, 24–26, 32, 34].
Some of this work has focused on embodied carbon [17,

18], which represents the carbon emissions from producing
and using computing infrastructure. While Carbon Con-

tainers focuses on regulating operational carbon — from
powering servers — its carbon metrics could be extended
to include a server’s amortized embodied carbon based on
its expected lifetime and utilization. In this case, amortized
embodied carbon would increase as utilization decreases,
since the server’s total embodied carbon would be amortized
over less computation. While including amortized embodied
carbon in our metric would be trivial and not significantly
change Carbon Containers’ design or function, we explic-
itly did not include it because of multiple concerns: specif-
ically, over whether server lifetime and embodied carbon
can be accurately measured, and whether embodied carbon
should be entirely attributed to cloud applications. That is,
since a cloud application’s embodied carbon represents the
manufacturer’s operational carbon, current carbon account-
ing frameworks “double count” embodied carbon. As a result,
based on current carbon accounting frameworks, such as
the GHG protocol [5], combining embodied and operational
carbon into a single metric may be misleading [9, 10].

There has also been much recent work that has focused
on optimizing operational carbon. Much of this work ad-
vocates selecting datacenters that operate in regions with
low-carbon energy [11, 15, 24–26]. However, our analysis in
§2 shows that there are few such regions. Many workloads
also cannot operate in these regions due to capacity limi-
tations and latency constraints. In addition, our analysis in
§2 shows that dynamically migrating jobs to lower carbon
regions is not beneficial due to both high migration over-
head and a lack of opportunity, as regions’ carbon-intensity
rarely inverts. We also compare Carbon Containers with
recent suspend/resume scheduling policies, such as Wait
AWhile [34]. While suspend/resume scheduling is effective
in reducing relative carbon emissions, it is only effective in
regions with widely variable carbon-intensity, which only
occurs when carbon-intensity is already low on average. This
approach is not effective in regulating carbon emissions in re-
gions with high carbon-intensity, where it is most important,
as they tend to have fewer carbon-intensity variations.

Finally, Carbon Containers differs from recent work
that proposes ecovisors [8, 32], which virtualize the energy
system and exposes visibility and control of it to applica-
tions. Ecovisors burden applications with managing their
own carbon emissions, and require application-specific mod-
ifications. In contrast, beyond setting the target carbon emis-
sions rate, Carbon Containers operate at the system-level,

are entirely transparent to the application, and thus require
no application-specific modifications. That said, ecovisors
have the flexibility to support Carbon Containers, and
we plan to implement Carbon Containers on the ecovisor
interface as future work. Carbon Containers represent one
possible abstraction that ecovisors could support to make
carbon management more transparent to applications.

7 CONCLUSION

In this paper, we present the design and implementation
of Carbon Containers, a system-level facility for manag-
ing application-level carbon emissions.CarbonContainers

enable applications to specify amaximum target carbon emis-
sions rate, and then transparently enforce this rate via a com-
bination of vertical scaling, migration, and suspend/resume
while maximizing either a container’s energy-efficiency or
performance. We motivated the need for Carbon Contain-

ers by analyzing both energy’s carbon-intensity and produc-
tion workload characteristics and presented the design of
Carbon Containers’ key mechanisms along with several
policies. We evaluated Carbon Containers using a proto-
type and in simulation using real workload traces. Our results
show that Carbon Containers are more effective than exist-
ing suspend/resume policies, i.e., they substantially increase
performance while maintaining similar carbon emissions.
Importantly, our approach is effective over a wide range
of operating regimes, including geographic regions where
carbon-intensity is high or variance is low. As future work,
we plan to implement a range of higher-level policies using
Carbon Containers to demonstrate its efficacy for different
types of compute and data-intensive applications.

Acknowledgements. This research is supported by NSF
grants 2213636, 2136199, 2106299, 2102963, 2105494, 2021693,
2020888, 2045641, as well as VMware.

REFERENCES
[1] OpenAI Blog, AI and Compute. https://openai.com/blog/ai-and-

compute/, March 16th 2018.

[2] Azure Public Dataset. https://github.com/Azure/AzurePublicDataset,

Accessed October 2020.

[3] Electricity Map. https://www.electricitymap.org/map, Accessed March

2022.

[4] Google Data Centers Efficiency. google.com/about/datacenters/

efficiency/, Accessed March 2022.

[5] Greenhouse Gas Protocol. https://ghgprotocol.org/, Accessed March

2022.

[6] Checkpoint/Restore in Userspace (CRIU). https://criu.org/Main_Page,

Accessed June 2023.

[7] Luiz Andre Barroso and Urs Hölzle. The Case for Energy-Proportional

Computing. Computer, 40(12):33–37, December 2007.

[8] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin,

Prashant Shenoy, Ramesh Sitaraman, Abel Souza, and AdamWierman.

Enabling Sustainable Clouds: The Case for Virtualizing the Energy

System. In SoCC, November 2021.

✸�

Carbon Containers SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

[9] Noman Bashir, David Irwin, and Prashant Shenoy. On the Promise

and Pitfalls of Optimizing Embodied Carbon. In Proceedings of the 2nd

Workshop on Sustainable Computer Systems (HotCarbon), 2023.

[10] Noman Bashir, David Irwin, Prashant Shenoy, and Abel Souza. Sus-

tainable Computing – Without the Hot Air. In Proceedings of the First

Workshop on Sustainable Computer Systems Design and Implementation

(HotCarbon), 2022.

[11] A. Chien. Driving the Cloud to True Zero Carbon. CACM, 64(2),

February 2021.

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen†,

Eric Jul†, Christian Limpach, Ian Pratt, and Andrew Warfield. Live

Migration of Virtual Machines. In NSDI, April 2005.

[13] Maxime Colmant, Pascal Felber, Romain Rouvoy, and Lionel Seinturier.

WattsKit: Software-Defined Power Monitoring of Distributed Systems.

In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGRID), April 2017.

[14] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus

Fontoura, and Ricardo Bianchini. Resource Central: Understanding and

Predicting Workloads for Improved Resource Management in Large

Cloud Platforms. In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, page 153–167, New York, NY, USA, 2017.

ACM.

[15] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark,

Roy Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A.

Smith, Nicole DeCario, and Will Buchanan. Measuring the carbon

intensity of ai in cloud instances. In 2022 ACM Conference on Fairness,

Accountability, and Transparency, FAccT ’22, 2022.

[16] Alex Fuerst, Ahmed Ali-Eldin, Prashant Shenoy, and Prateek Sharma.

Cloud-scale VM-deflation for Running Interactive Applications on

Transient Servers. In ACM Symposium on High-Performance Parallel

and Distributed Computing (HPDC), Stockholm, Sweden, June 2020.

[17] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S.

Lee, David Brooks, and Carole-Jean Wu. ACT: Designing Sustainable

Computer Systems with an Architectural Carbon Modeling Tool. In

ISCA, June 2022.

[18] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee,

Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Chasing Carbon:

The Elusive Environmental Footprint of Computing. In 2021 IEEE

International Symposium on High-Performance Computer Architecture

(HPCA). IEEE, 2021.

[19] Vani Gupta, Prashant Shenoy, and Ramesh Sitaraman. Combining

Renewable Solar and Open Air Cooling for Internet-scale Distributed

Networks. In e-Energy, June 2019.

[20] V. Kontorinis, L. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis,

D. Tullsen, and T. Rosing. Managing Distributed UPS Energy for

Effective Power Capping in Data Centers. In ISCA, June 2012.

[21] Shaohong Li, Xi Wang, Faria Kalim, Xiao Zhang, Sangeetha Abdu

Jyothi, Karan Grover, Vasileios Kontorinis, Nina Narodytska, Owolabi

Legunsen, Sreekumar Kodakara, et al. Thunderbolt: Throughput-

Optimized, Quality-of-Service-Aware Power Capping at Scale. In

USENIX Symposium on Operating System Design and Implementation

(OSDI), November 2020.

[22] Canonical Ltd. Linux Containers. https://linuxcontainers.org/.

[23] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan

Koomey. Recalibrating Global Data Center Energy-use Estimates.

Science, 367(6481):984–986, February 2020.

[24] David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang,

Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and

Jeff Dean. The Carbon Footprint of Machine Learning Training Will

Plateau, Then Shrink. Technical report, Google Inc., April 2022.

[25] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel

Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.
Carbon Emissions and Large Neural Network Training. Technical

report, arXiv, April 2021.

[26] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel

Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.

Carbon Emissions and Large Neural Network Training, 2021.

[27] Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li,

Darren De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy,

Christopher Malone, Jimmy Clidaras, et al. Data Center Power Over-

subscription with a Medium Voltage Power Plane and Priority-Aware

Capping. InACM Symposium on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), March 2020.

[28] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. Resource

deflation: A new approach for transient resource reclamation. In

Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–17,

2019.

[29] Supreeth Shastri and David Irwin. HotSpot: Automated VM Hopping

in Cloud Spot Markets. In ACM Symposium on Cloud Computing

(SoCC), Santa Clara, California, September 2017.

[30] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and

Zhuan Chen. Power Containers: An OS Facility for Fine-grained Power

and Energy Management on Multicore Servers. In ACM Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), March 2013.

[31] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero,Weijia Song, Robert

van Renesse, and Hakim Weatherspoon. Follow the Sun through the

Clouds: Application Migration for Geographically Shifting Workloads.

In ACM Symposium on Cloud Computing (SoCC), Santa Clara, Califor-

nia, October 2016.

[32] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang,

David Irwin, and Prashant Shenoy. Ecovisor: A Virtual Energy System

for Carbon-Efficient Applications. In ASPLOS, March 2023.

[33] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and

Policy Considerations for Modern Deep Learning Research. In AAAI

Conference on Artificial Intelligence (AAAI), February 2020.

[34] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska,

and Lauritz Thamsen. Let’s Wait Awhile: How Temporal Workload

Shifting Can Reduce Carbon Emissions in the Cloud. In Proceedings of

the 22nd International Middleware Conference (Middleware), December

2021.

[35] TimothyWood, K.K. Ramakrishnan, Prashant Shenoy, and Jacobus Van

der Merwe. CloudNet: Dynamic Pooling of Cloud Resources by Live

WAN Migration of Virtual Machines. In International Conference on

Virtual Execution Environments (VEE), Newport Beach, CA, March

2011.

✸�

