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them to periods or regions, respectively, with low carbon inten-

sity [5]. However, unlike computing, building loads have signifi-

cantly less temporal flexibility and almost no spatial flexibility. For

example, a toaster oven may only be delayed by a few minutes,

and washing machine loads cannot be shifted to another region.

Nevertheless, new types of building loads, such as EV charging

at home, network-connected thermostats and water heaters, and

home battery storage, offer greater temporal flexibility.

A key question is determining how much flexibility exists for

these controllable and programmable loads and how much carbon

emissions can be reduced by using carbon-aware time shifting

or modulation of these flexible loads. Existing DR approaches for

buildings have not been applied to reduce carbon emissions, and

thus the efficacy of applying similar carbon reduction approaches

from computing to building loads is unclear. Thus, there is a need for

new analyses that quantify the degree of flexibility in buildings and

the potential for reducing carbon emissions that can be achieved

by time-shifting and modulating flexible loads.

In conducting our analysis, we make the following contributions.

• We formulate an optimization problem that, assuming accurate

future knowledge of energy demand and carbon intensity, quan-

tifies the potential to reduce carbon emissions by modulating the

demand for flexible loads in buildings.

• We conduct a large-scale, upper-bound analysis of carbon saving

potential using real-world demand traces from 1000+ buildings in

a small city in the Northeast United States and carbon-intensity

data from 3 different geographical regions. Our results demon-

strate that we can reduce carbon emissions by 26.93% on average

and by 54.90% at maximum.

• We analyze the impact of demand modulation on the electric load

at the home–level. We find that the peak load can increase by up

to 60% after carbon-aware modulation.

2 BACKGROUND
In this section, we present background on flexible loads in buildings

and the carbon-intensity signal of the electric grid.

2.1 Flexible Building Loads

A typical building contains dozens of electric loads that can be

broadly classified into two categories: interactive loads and back-

ground loads [4]. Interactive loads include lights, kitchen appliances,

entertainment appliances, and miscellaneous devices like vacuums.

Such loads do not offer any flexibility, as modulation of their de-

mand impacts their efficacy. Contrarily, background loads, such as

heating, ventilation, and cooling (HVAC) systems, permit bounded

flexibility to modulate their demand. Additional background loads,

such as electric vehicles (EVs) and battery storage, have also become

available in recent years. While the number of background loads is

small, they often contribute a large fraction of the overall energy

consumption. Prior work has shown that, for a representative home,

background loads may only comprise 7.5% of all loads, so they can

consume as much as 59% of a home’s total energy [4].

Importantly, the ubiquity of low-cost Internet of Things (IoT)

devices means that background loads can increasingly be controlled

remotely and programmatically. This allows for the use of such

flexible loads in demand response programs for grid optimizations

and utility- or consumer-driven energy or carbon-saving initiatives.

This paper focuses on threemajor flexible background loads: electric

vehicles (EVs), battery storage, and HVAC systems.

2.1.1 Electric vehicle (EV) charging at home. The adoption

of EVs has increased recently due to increasing gas prices, carbon

emissions concerns, and their higher performance. EV charging can

be divided into three categories: Levels 1, 2, and 3. Level 1 charging

is the slowest and uses a standard 120V household outlet. Level 2

can be charged at 240V but requires installing dedicated charging

equipment. Finally, Level 3 or “supercharging” charges at a high

voltage of 400-800V and uses direct current, which is usually not

available in residential locations. Therefore, residential EV charging

is generally either Level 1 or Level 2 and typically happens at night.

We analyze the EV charging pattern from a community of 1,006

homes. The charging usually occurs from 6 PM to 8 AM when

the homeowners are home. We use insights from this dataset to

configure the demand patterns of EVs in our analysis.

2.1.2 Ba!ery storage. The residential battery energy storage

market has been growing due to the declining cost of batteries [24],

especially at places where solar net-metering incentives are non-

existent or limited [3]. Batteries are often used for price arbi-

trage [20], peak shaving [9, 18], or storing excess solar energy

for nighttime use. This paper uses battery storage as one of the

three loads for explicit and direct decarbonization of buildings.

2.1.3 HVAC.. HVAC accounts for 12% of the home energy con-

sumption in the United States [12]. The energy consumption of an

HVAC system is a function of its setpoint temperature, the ambient

outdoor temperature, and a building’s insulation. An HVAC system

saves energy by deviating from the setpoint or pre-heating/cooling

a building when energy’s low carbon intensity. This paper only

focuses on the first approach toward emission reduction.

2.2 Grid Carbon Intensity

Grid electricity comes from various energy sources with different

carbon emissions. The carbon intensity of the grid’s electricity

is measured in two ways: average carbon intensity and marginal

carbon intensity. Average carbon intensity indicates the CO2 emit-

ted per unit of electricity consumed, spread across total emissions

and energy demand. Marginal carbon intensity measures the CO2

emissions for the next unit of energy consumed. Both values are

expressed in g·CO2eq/kWh. We currently use average carbon in-

tensity and plan to consider marginal emissions in our future work.

Figure 1 shows the average carbon-intensity of the three regions

that we use in our analysis. As shown, the carbon intensity of the

different regions varies significantly depending on their energy mix.

Ontario has a low carbon-intensity with high variability due to its

reliance on renewable energy sources. Both Delhi and Quebec have

almost constant carbon intensity, but have high and low carbon

emissions due to their reliance on coal and nuclear, respectively.

3 DECARBONIZATION PROBLEM

In this section, we present our problem statement, the different mod-

els used in our problem formulation, and the optimization problem

we define to determine an upper-bound on decarbonization.
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