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Abstract—Collocation of measurements from active and pas-
sive satellite sensors refers to the combination of data from two
sensors that observe the same geographic area at nearly the
same time but with differing spatial resolutions and viewing
angles. This collocated data, often known as on-track data,
comes with precise product labels from the active sensor but
comprises only the pixels located directly on the path of an
active satellite’s orbit. As a result, its spatial coverage is quite
limited, especially when compared to the vast quantities of off-
track data. Handling the abundant and information-dense off-
track data is crucial for training machine learning models that
can effectively integrate the unique features of this data along
with on-track data. However, the sheer volume of off-track
data presents significant challenges for these models. To address
the challenges of large amounts of unlabeled off-track data
in remote sensing applications, we introduce a self-supervised
representation learning model with VAE and domain adaptation
methods to learn a domain invariant classifier for the on-track
and off-track data. The model’s performance is enhanced by
pre-training off-track data with VAE generative model using off-
track data, to learn a good representation that can be transferred
to the down-streaming domain adaptation and classification
tasks. The classifier is built on these representations to classify
different cloud types in passive sensing data, with the goal of
achieving higher accuracy in cloud property retrieval. Extensive
quantitative and qualitative evaluation demonstrate our method
achieves higher accuracy in cloud property retrieval for off-track
remote sensing data.

Index Terms—representation learning, domain adaptation,
multiple satellite data, remote sensing

I. INTRODUCTION

Constantly covering about two-thirds of Earth’s surface,
clouds have a critical role in our climate system, with funda-
mental influence on the energy, water, and biological cycles.
Satellite-based remote sensing plays a crucial role in observing
clouds at a global scale. Numerous satellite sensors have
been developed to observe and retrieve cloud properties. They
can be largely divided into two groups: active sensors such

as CALIPSO and CloudSat, and passive sensors such as
MODIS, VIIRS, and ABI. The advantages of active sensors
include their capability of resolving the vertical location of
the cloud layer and better performance during nighttime and
polar regions. On the other hand, passive sensors have a much
better spatial sampling rate.

The remote sensing data now grows at an astronomical
pace as satellite instruments become more and more powerful,
which poses serious challenges to the computational efficiency
of physically-based retrieval algorithms. Take the geostation-
ary satellite for example. Until a few years ago, the operational
Geostationary Operational Environmental Satellite (GOES)
multispectral imager only had a handful of spectral bands and
provided a “full-disk” scan of Earth only every 3 hours. The
Advanced Baseline Imager (ABI) on the latest GOES-R series
(GOES-16+) can provide full-disk scans every 15 minutes in
16 spectral bands with better spatial resolutions. This increased
capability leads to a great increase in data, which poses a
serious challenge for the physically-based retrieval algorithms.
What makes the problem even more challenging is the fact
that remote sensing data has also become more heterogeneous.
The great success of the A-Train satellite constellation [1] has
clearly demonstrated that coordinated and collocated obser-
vations from sensors with complementary capabilities, e.g.,
the combination of passive MODIS and active CALIPSO-
CloudSat, can provide a more comprehensive perspective and
richer information of clouds that cannot be achieved from
the individual instruments alone. However, it is challenging
to combine and fuse heterogeneous observations in physically
based algorithms because different types of observations often
involve dramatically different physics.

Domain adaptation has been thoroughly studied in com-
puter vision [2] [3] and natural language processing (NLP)
applications [4] [5]. Recently, the deep learning paradigm has
become popular in domain adaptation due to its ability to
learn rich, flexible, non-linear domain-invariant representations979-8-3503-2445-7/23/$31.00 ©2023 IEEE



Fig. 1. An example plot of the one-day daytime VIIRS (global coverage) and
CALIOP (green lines) orbit tracks (February 8, 2022). Credits: NASA

[6], [7]. However, few of these approaches have been adapted
for remote sensing applications. Moreover, domain adaptation
techniques using deep neural networks have been mainly used
to solve the distribution drifting problem in homogeneous
domains [8]. The data in the homogeneous domains usually
share similar feature spaces and have the same dimension-
alities. Nevertheless, real-world applications often deal with
heterogeneous domains that come from completely different
feature spaces and different dimensionalities. In our remote
sensing application, the two remote sensor datasets collected
by active and passive sensors respectively are heterogeneous.
In particular, CALIOP actively collects 25 bands of sensing
data, it has better sensitivity to aerosol types and cloud phases,
and the data are fully labeled with 6 cloud types. VIIRS uses
a spectroradiometer sensor to passively collect 20 bands of
sensing data with no label or inaccurate labels.

Collocation of measurements from active (e.g., CALIOP)
and passive satellite (e.g., VIIRS) sensors involves pairing
measurements from two sensors that observe the same location
quasi-simultaneously but with different spatial resolutions and
at different angles. The collocated data, widely recognized
as on-track data, only consists of the pixels on an active
satellite orbiting track, thus having very limited spatial cover-
age compared to large amounts of off-track data. Typically,
on-track data are labeled with accurate product type from
the active sensor, while off-track data are unlabeled or have
inaccurate labels from the passive sensor product. Given the
vast amount and valuable information present in off-track data,
it’s crucial to develop a machine learning model that can
integrate the unique features of this data along with on-track
data. However, the sheer volume of off-track data presents
difficulties in training machine learning models effectively, as
this data is often unlabeled and includes considerable noise.
Figure 1 shows a coverage difference using a full-day data
collection using NASA Earth Data World View website. VIIRS
has nearly full coverage of the Earth while CALIOP only
covers the green line area which is much smaller than the
coverage of VIIRS.

To tackle the issue of handling vast volumes of unlabeled
off-track data in remote sensing, we present DRLO, a self-
supervised deep representation learning model tailored for
large-scale off-track satellite remote sensing data. This model

combines Variational Autoencoders (VAEs) with domain adap-
tation techniques to develop a domain invariant classifier
that efficiently processes both on-track and off-track data.
The effectiveness of the model is significantly enhanced by
initially pre-training the VAE generative model on off-track
data. This pre-training step enables the model to learn a robust
representation, which is then applied to domain adaptation
and classification tasks. Our comprehensive quantitative and
qualitative assessments show that our approach outperforms
existing methods in retrieving cloud properties from off-track
remote sensing data.

II. RELATED WORK

Over the past few decades, a variety of aerosol and cloud
remote sensing algorithms have been developed based on the
physical principles and the radiative transfer of light scattering
and absorption within aerosol and cloud fields [9]. These
physically-based algorithms are widely used in aerosol and
cloud property products for weather and climate studies [10],
[11], [12], [13]. Traditionally, many of these algorithms use
a lookup table (LUT) approach, in that one must prescribe
aerosol and surface properties. The challenge is to ensure the
algorithm has the means to select the appropriate model.

Although highly successful, it is challenging to improve
these physically-based algorithms. For example, according to
[14], there is no absolute separation between “aerosol” and
“cloud”. Most, if not all retrieval techniques rely on manually
setting thresholds for scene identification, and a test in one
region (e.g., tropical ocean) may not work well in another
region (e.g., polar land), which necessitates many such “tests”,
and painstakingly tuned thresholds. When more than 3 or 4
tests must be combined in a non-sequential way, it is beyond
the human ability to interpret. Even with all the effort, dust and
cloud scenes are not separated correctly. In addition, even if
two sensors are “nearly” the same (e.g., MODIS and VIIRS),
spectral bands, resolution, calibration, etc., may be different
enough that a threshold applied for one sensor may need
revision for another. Thus, physically-based algorithms are
expensive.

Machine learning (ML) and artificial intelligence (AI) tech-
niques may overcome the challenges faced by physical-based
algorithms. Since ML algorithms are written to autonomously
find information (e.g., patterns of spectral, spatial, and/or time
series data), they can learn hidden signatures of different types
of objects. [15] introduced two Random Forest (RF) machine
learning models for cloud mask and cloud thermodynamic
phase detection using spectral observations from VIIRS data.
[16] developed a deterministic self-organizing map (SOM)
approach and applied it to satellite data based cloud type clas-
sification. Deep learning [17] is also a promising technique,
already having revolutionized many fields such as computer
vision [18], natural language processing [19], and is increas-
ingly being used in remote sensing applications [20]. Those
approaches can learn representations of multiple variables in
a single domain but not multiple domains.
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Fig. 2. Framework of DRLO, a deep representation learning model with off-track pre-training and domain adaptation fine-tuning. The model first pre-trains
VAE on large scale unlabeled off-track data, it then loads the pre-trained weights and parameters into the VAE-based domain adaptation for on-track source
and target domains to build a domain invariant classifier.

Domain adaptation has been widely used in computer vision
[2], [3] and natural language processing (NLP) applications
[4], [5]. Recently, the deep learning paradigm has become
popular in domain adaptation [7], [6], [8] due to its ability
to learn rich, flexible, non-linear domain-invariant representa-
tions. To the best of our knowledge, those domain adaptation
methods can mainly solve the distribution drift problems for
homogeneous data collected in different environments and can
not be directly adapted to heterogeneous domains such as the
active sensor and passive satellite data in remote sensing.

A previous study [21] proposed domain adaptation based
cloud type detection methods (DAMA and DAMA-WL) using
active and passive satellite data. It develops a deterministic
classifier on pixel-level classification but lacks the capacity
to capture the spatial correlation among the pixels that are
generated by the orbiting satellites and have a strong spatial
relationship. [22] further advanced the domain adaptation tech-
niques in multi-satellite remote sensing data by proposing a
new Variational Autoencoder (VAE) based domain adaptation
method which can capture the spatial correlation and have
better generalizability. However, those approaches can only
work with on-track collocated data from the paired remote
sensors datasets, and they can not directly train a model

utilizing the large-scale off-track unlabeled data, which would
have a large distribution drift from the on-track data.

III. DEEP REPRESENTATION LEARNING WITH VAE AND
DOMAIN ADAPTATION METHODS

The passive sensor and active sensor datasets raise more
challenges as the two datasets are highly dimensional, globally
covered, and heterogeneous. Since off-track data carry rich
information and are dominant in the passive remote sensor, it is
important to design a model that can incorporate the off-track
data in the representation learning, in order to develop a cloud
property retrieval method in multi-satellite remote sensing
data. Moreover, distribution drift also happens from on-track
to off-track data, as some off-track data are very far away
from the active sensor’s orbiting track, and the environments
or surface types change depending on the distance of the off-
track data to the on-track data.

To tackle the challenge of distribution drift from on-track
to off-track data, we design a deep representation learning
framework with VAE and domain adaptation methods that can
incorporate off-track feature representation learning to develop
a domain invariant classifier for off-track remote sensor data,
as shown in Figure 2.



In the training phase, there are three branches of inputs
that take source domain data features (CALIOP), target do-
main data features (off-track VIIRS), and target domain data
features (on-track VIIRS). As shown in Figure 2, our model
introduces a heterogeneous domain mapping to transform the
feature space of the target domain into the feature space
of the source domain and uses a feature extraction layer to
train the shared representative features between source and
target domain. After the domain mapping stage, we pre-train
a VAE encoder-decoder using off-track target domain data
(red block in Figure 2), and that trained variational encoder
is shared with on-track VAE for the target domain (yellow
block in Figure 2). It then goes through the VAE-based domain
adaptation framework between the on-track source domain
(green block) and the on-track target domain (yellow block),
in particular, a maximum mean discrepancy (MMD) based
domain alignment is applied to the latent spaces generated
from source and target domain encoders. By incorporating the
domain alignment loss and classification loss in training the
domain adaptation network, we find the network can maximize
the classification accuracy on the target domain by training this
end-to-end deep domain adaptation neural network.

In the testing phase, only target domain data is sent into
the deep neural network by going through the deep domain
mapping layer and VAE-based feature extraction encoder,
which has already captured the hidden representations from
both on-track and off-track target data from the training phase.
The trained classifier can then be applied to classify the output
of the feature extraction layer as the domain invariant feature
representation has been generated from the flow.

A. Heterogeneous Deep Domain Mapping

Similar to [21], [22], we utilize a deep neural network to
perform the deep domain mapping (DDM) between the source
and target domain, to adjust for the dissimilarity between the
source and target domain by learning a transformation that
aligns the target feature space with the source feature space.
The goal is to map the VIIRS dataset (target domain) to the
CALIOP dataset (source domain) in order to preserve the
discriminating power of CALIOP data and transfer it to a
downstream machine learning model. This approach ensures
that the number of features in both domains is equal and that
they are in the same feature space.

For the on-track collocated source and target domain data,
the input of the DDM network is the on-track target domain
data and the output of the network is the transformed target do-
main data in the source domain feature space. The source and
target domain data in this study are collocated remote sensing
data that have the same longitude and latitude coordinates, thus
a mean squared error (MSE) loss function is utilized to calcu-
late the error of the DDM network. Specifically, given source
domain training examples Ds = {xi}, x ∈ Rds

s , i = 1, ..., ns

and unlabeled target data set Dt = {ui}, u ∈ Rdt
t , i =

1, ..., nt, with ds ̸= dt, Rds
s ̸= Rdt

t , and ns = nt. The
DDM model is trained to convert the target domain into the

feature space of the source domain by minimizing the L2 loss
function:

L2 =
1

nt

nt∑
i=1

(DDM(ui)− xi)
2 (1)

B. Pre-training VAE for off-track target domain

We first apply the trained DDM from on-track domains
to transform off-track target domain data into the feature
space of the source domain. Then we perform self-supervised
learning by using a variational auto encoder (VAE) to learn
a latent space that captures the hidden structures from the
off-track target domain data. The off-track target domain
VAE is composed of an encoder for feature extraction, a
latent feature vector, and a decoder for data reconstruction,
respectively. The encoder’s purpose is to take input data and
create a representation of it in a latent feature space using a
parameterized model. The goal is to optimize the parameters
of the neural network in order to maximize the variational
lower bound by minimizing the KL divergence between the
estimated latent vector and the true latent vector, represented
as Lkl, and maximizing the expectation of the data points
reconstructed from the latent vector, represented as Lr. We
can rewrite the final VAE loss we need to optimize as:

Lvae = Lkl + Lr

The learned parameters of the encoder will be shared with
encoders used in the domain adaptation module for the on-
track data.

C. Domain Adaptation on On-track Source and Target Do-
mains

Domain adaptation module for on-track source and target
domains consists of four components, i.e., (1) VAE for on-
track source domain, (2) VAE for on-track target domain, and
(3) domain alignment (4) classifier on the source domain and
target domain, respectively.

1) VAE fine tuning: We propose a new method to enhance
feature representation learning by transferring the knowledge
from large-scale off-track data to on-track data. The structure
and relationship among the off-track data can be learned
via self-supervised VAE and transferred to on-track data by
exploiting the idea of transfer learning. To implement the
transfer learning based feature representation learning, we use
a pre-training and fine-tuning approach. First, the encoder
layer of the VAE is pre-trained on off-track target domain data
as introduced in Section III-B, and then the pre-trained model
with updated parameters is used as an input into our model
to give the model some ’knowledge’ of training. In particular,
transfer learning with the help of off-track target domain data
is performed for the external learning of backbone structure
and mapping. The weights and parameters of encoders are
optimized during pre-training, and the outputs of pre-training
are used as starting parameters to train on a similar network
that requires on-track target domain data.



Our VAE-based domain adaptation model utilizes two net-
works: one for the source domain (CALIOP) and another for
the target domain (VIIRS). The model optimizes VAE losses
for both networks:

Ls
vae = Ls

kl + Ls
r and Lt

vae = Lt
kl + Lt

r (2)

2) Domain alignment: The use of VAE can uncover hidden
features in input data, but it can be difficult to extract domain-
invariant features due to a significant difference between the
source and target domains. To address this issue, we propose
a domain alignment module that reduces the discrepancy
between the source and target domains and improves the ro-
bustness of the classifier in the target domain. Specifically, we
add a feature adaptation layer to the VAE for both the source
and target domains and use the maximum mean discrepancy
(MMD) [23], [22] as a metric for measuring the difference
between the domains. In particular, it maps the features of
both domains to a common reproducing kernel Hilbert space
(RKHS) so that the distance between distributions can be
represented as the distance between their kernel embeddings.

VAE’s encoder layers Es and Et are applied to source
domain data and target domain data, respectively, resulting in
hidden features represented as E(Xs) and E(Xt). The domain
alignment loss that needs to be optimized is defined as:

Lmmd = MMD(Es(Xs), Et(Xt)) (3)

3) Weakly supervised classifiers with focal loss: In our
remote sensing application, the classifier is predicting three
cloud properties, which are Clear Sky, Liquid Cloud, and Ice
Cloud. The labels for the source domain (CALIOP) data are
considered accurate and serve as the ground truth due to the
active remote sensing method used. However, the labels for the
target domain (VIIRS) data are generated by a physical-based
retrieval algorithm and are therefore less accurate, referred
to as ”weak labels”. These labels contain only three cloud
types (Clear Sky, Liquid Cloud, Ice Cloud) and are only 86%
accurate when compared to the ground truth (CALIOP) labels.
In addition, the cloud types studied in our remote sensing
application are also imbalanced.

To encourage the classifier to learn about the difficulty
of classifying samples and confront the challenge of class
imbalance, we introduce a weighted focal loss to down-weight
the loss for well-classified examples and up-weight the loss
for misclassified examples, as well as add the weight of class
imbalance. This is achieved by introducing a modulating factor
(referred to as γ) in the cross-entropy loss, which makes
the loss function more focused on the hard examples. The
weighted focal loss is defined as:

FL(pt) = w ∗ −(1− pt)
γ ∗ log(pt)

Where, pt = p if true class, otherwise 1 − p and p is the
predicted probability of the true class. w is the rescaling weight
given to each class.

TABLE I
ACCURACY AND AUC ON PREDICTING THE CLOUD TYPES ON OFF-TRACK
CATS (TARGET) DATASET. TRAINING DATA ARE COLLOCATED CALIOP

AND VIIRS SATELLITE DATA, AND TESTING DATA ARE CATS SATELLITE
DATA.

Accuracy Metric AUC Metric
Models 2015 2016 2017 2015 2016 2017
1) Module 1 0.544 0.556 0.546 0.763 0.782 0.779
2) Module 2 0.703 0.719 0.722 0.845 0.853 0.851
3) DANN 0.418 0.432 0.423 0.667 0.688 0.678
4) DSAN 0.495 0.501 0.515 0.724 0.727 0.733
5) DAMA-WL 0.644 0.661 0.654 0.820 0.832 0.829
6) VDAM 0.652 0.671 0.674 0.822 0.835 0.831
7) DRLO 0.714 0.730 0.730 0.847 0.854 0.853

Our model utilizes the latent feature vectors obtained from
the VAEs to construct a source classifier Cs and a target
classifier Ct by adding fully connected feature layers and
ReLU activation functions to the encoders of the source and
target domains, respectively. The weighted focal loss FLs

c is
used for source labels and the weighted focal loss FLt

c for
target labels. Additionally, the fully connected feature layers
for the source and target domains share the same weights,
resulting in a classifier that is invariant to the domain.

IV. EXPERIMENTS AND EVALUATIONS

We conduct experiments on real-world remote sensing
datasets to compare the performance of our proposed model
with state-of-the-art ML models.

A. Dataset

1) Training data: Our experiments are performed using
remote satellite sensing datasets from CALIOP active sensor
(source) and VIIRS passive sensor (target). The source domain
data from CALIOP includes 25 attributes, collected by the
CALIOP active spaceborne Lidar sensor. The target domain
data from VIIRS includes 20 attributes, collected by the VIIRS
passive spectroradiometer sensor. The details of attributes can
be found in [24].

The ground truth labels for the source domain are obtained
from the aerosol-free pixels of CALIOP, which are divided
into three categories: Clear Sky, Pure Liquid Cloud, and Pure
Ice Cloud. The weak labels for the target domain are obtained
from the aerosol-free pixels of the VIIRS Cloud Top and
Optical Properties Product [25]. It should be noted that 86%
of the VIIRS data points are found to match the labels of the
corresponding CALIOP data points.

Our training datasets consists of off-track target domain (VI-
IRS) dataset and on-track collocated source domain (CALIOP)
and target domain (VIIRS) datasets. The Off-track VIIRS
dataset has 600k samples randomly selected from the year
2016 VIIRS data. On-track collocated dataset is collocated for
January 2016 of CALIOP and VIIRS datasets with 1,197,536
data points.

2) Testing data: The CATS is a lidar remote-sensing instru-
ment that measures atmospheric components from the Interna-
tional Space Station (ISS), which has a non-sun-synchronous
orbit [26], [27]. Launched on January 10th, 2015, CATS



provides more than 2-year’s continuous observations of clouds
and aerosols. Similar to CALIPSO, backscattered signals in the
1064nm channel are used to identify many types of clouds and
aerosols and derive vertical structures along the ISS orbit [27].

In this study, we collocate testing data from VIIRS and
CATS for the entire CATS operation period (March 2015 – Oc-
tober 2017). Level-1 observations from VIIRS at native 750-m
resolution in 16 VIIRS M-bands [28] and vertically resolved
cloud-aerosol types from CATS Level-2 Layer product at 5-
km resolution [27] are collected. Since the two instruments
have different platforms and orbit types, observations outside
a 15-minute window and a 5-km distance are discarded. In
total, 420k, 740k, and 605k pixels are collected to evaluate our
models on the 2015, 2016, and 2017 datasets, respectively.

For model testing purposes, we create pixel labels using
collocated CATS Level-2 Layer products. Similar to the labels
used for model training, we also use clear sky, pure liquid
cloud, and pure ice cloud to represent all kinds of pixel types.
In particular, clear means no cloud, liquid (ice) means only
liquid (ice)-phase clouds are found in the whole column. It
is important to emphasize that, as CALIPSO has dual 532
and 1064nm channels which offer better aerosol detection
capabilities [29], the generated labels from CALIPSO and
CATS may have some differences.

3) Evaluation metrics: The first evaluation metric we use
to compare all the models is accuracy, which is defined as:

Accuracy =
Total number of correct predictions

Total number of data points
(4)

We also leverage receiver operating characteristic (ROC)
curves to assess and compare the efficacy of various models. A
ROC curve graphically illustrates the relationship between the
true positive rate (TPR), commonly known as sensitivity, and
the false positive rate (FPR), referred to as 1-specificity, across
different classification score thresholds. By integrating the
curve (TPR values) with respect to the FPR values from zero
to one, we calculate the area under the ROC curve (AUC). This
AUC metric serves as a comprehensive performance indicator,
encapsulating the model’s effectiveness across all conceivable
thresholds. The AUC values fall within the range of [0, 1],
with larger AUC values indicating superior performance.

B. Quantitative Evaluation
For domain adaptation model comparisons, we conducted

experiments on five models that use both source and target
data variables (features). These comparison models include: 1)
Module 1: The proposed model without domain mapping, it re-
moves the domain mapping module from the proposed model,
2) Module 2: The proposed model without focal loss, using tra-
ditional cross-entropy loss, 3) DANN [30]: domain-adversarial
training of neural networks, 4)DSAN [31]: Deep Subdomain
Adaptation Network, 5) DAMA-WL [21], 6) VDAM [22], 7)
DRLO (Our method). Comparing our proposed model with
these baseline and state-of-the-art domain adaptation models
can help us understand the importance of each module in
our model as well as performance improvement to other deep
domain adaptation methods.

(a) ROC-AUC on evaluating CATS 2015

    Clear sky
Liquid cloud
     Ice cloud

(b) ROC-AUC on evaluating CATS 2016

    Clear sky
Liquid cloud
     Ice cloud

(c) ROC-AUC on evaluating CATS 2017

    Clear sky
Liquid cloud
     Ice cloud

Fig. 3. ROC-AUC performance on evaluating CATS 2015, CATS 2016, and
CATS 2017 dataset, respectively.



(a) Cloud Fraction vs. Sensor Zenith Angle

(b) Liquid Cloud Fraction vs. Sensor Zenith Angle

Fig. 4. Cloud fraction and liquid cloud fraction of DRLO’s prediction versus
sensor zenith angle. The more level the bar is, the more accurate the forecast
is, as it tells the independence of the prediction to the sensor’s zenith angle.

As shown in Table I, our proposed model outperforms
the other domain adaptation baselines significantly. Firstly,
our method improves the accuracy by 33% and AUC 9%
on average of all the predictions over three years when
compared to the model without the DDM module. The low
accuracy (around 54%) in predicting without domain mapping
illustrates the difficulties in representing heterogeneous data
and the challenges of directly using existing domain adaptation
methods in such domains. Our proposed deep domain mapping
method can bridge the gap between heterogeneous source and
target domains and extract a domain-invariant representation
by combining it with a domain adaptation technique.

Secondly, we see the weighted focal loss improves our
method’s accuracy by about 1.1% for all three years used in
the evaluation. Thirdly, DANN [30] and DSAN [31], the state-
of-the-art domain adaptation techniques, only achieve about
42% and 50% accuracy, respectively, about 40% lower than
our DRLO method. This demonstrates that existing domain
adaptation techniques, which are primarily designed to ad-
dress distribution shifts in homogeneous domains, would have
inferior performance when applied to heterogeneous domains.
Finally, we also observe the proposed model outperforms the
other domain adaptation method DAMA-WL model developed

for satellite remote sensing data in [21] and [22], showing
around 7% and 6% accuracy improvement for all three testing
datasets.

We further illustrate the classification performance for each
cloud label using ROC-AUC on evaluating CATS 2015, 2016,
and 2017 datasets as shown in Figure 3, in which the clear
sky classification has superior performance over liquid and ice
clouds. Moreover, similar ROC-AUC performance on datasets
of different years also demonstrates that DRLO is stable and
robust enough to classify cloud types over long periods by
training previous years’ data.

C. Qualitative Evaluation

We conduct extensive climatology evaluations of the pro-
posed approach for satellite remote sensing cloud properties.
We collaborate with climatology domain experts in our team
to conduct scientific evaluation and compare the proposed
datasets to be generated with physically-based algorithms and
current EOSDIS level-2 products through multiple aspects
including statistics, climatology, ground observation, and ad-
hoc case studies. We compare the climatology of a variety of
cloud bulk properties, such as cloud fraction and cloud phase
(Liquid/Ice cloud fraction) for the VIIRS off-track data.

Figure 4 shows the cloud and liquid cloud fraction of our
model’s prediction versus the sensor zenith angle. A good
prediction model that captures the inherent characteristic of
the data should be independent of the sensor’s zenith angle.
As the bar is very flat across the zenith angles in Figure 4 on
both cloud fraction and liquid cloud fraction, it tells that our
model’s prediction is independent of the sensor’s zenith angle
and captures good representations of data.

We also conduct a qualitative evaluation with the help of our
NASA collaborators from climate science to compare DRLO
and DAMA-WL on visualizing the prediction on a granule of
VIIRS data, as shown in Figure 5. The clear sky is shown
in blue, the ice cloud is shown in red, and the liquid cloud is
shown in green. Compared to DAMA-WL, DRLO’s prediction
is more balanced, by revealing some more ice clouds (red) and
clear sky pixels (blue), due to better representation learned
from our pre-training/fine-tuning technique and the weighted
focal loss used in dealing with the imbalanced data. Moreover,
in the regions that are dominant with clear sky (blue), the
proposed method is able to identify some ice clouds, which
the DAMA-WL method fails to detect.

V. CONCLUSION

This paper introduces a novel representation learning
method using pre-training/fine-tuning VAE and domain adap-
tation to predict cloud types for off-track remote sensing data.
The method pre-trains a VAE-based generative model using
large scale off-track data to capture structures of unlabeled
data. It then uses a fine-tuning strategy to load the pre-trained
VAE model to a domain adaptation network to learn domain-
invariant representations from multiple satellite remote sensing
data. The method then uses these representations to classify
different cloud types in passive sensing data, with the goal



(a) VIIRS visible band granule visualtion

(b) DAMA-WL cloud type prediction

(c) DRLO’s prediction

Fig. 5. Granule visualization comparison between DAMA-WL and DRLO
on VIIRS cloud type prediction: clear sky (blue), ice cloud(red), and liquid
cloud (green).

of achieving higher accuracy in cloud property retrieval. Ex-
tensive quantitative and qualitative evaluations show that this
method outperforms other state-of-the-art machine learning
methods. We also want to highlight our work’s impact as better
cloud retrieval from the proposed model could help understand
climate change.
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