

Journals ▼

Books

Publishing Support

9 Login **→**

PAPER

Monolithic light concentration by core—shell TiO₂ nanostructures templated by monodisperse polymer colloidal monolayers

Rachel Cherry^{3,1}, Joseph Joel Muhanga^{3,1}, Hamed Mehrabi², Samuel K Conlin¹ and

Robert H Coridan^{1,2}

Published 12 June 2023 • © 2023 IOP Publishing Ltd

Nanotechnology, Volume 34, Number 34

Citation Rachel Cherry et al 2023 Nanotechnology 34 345601

DOI 10.1088/1361-6528/acd787

rcoridan@uark.edu

² Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701, United States of America

³ Equal contributors.

I'm looking for a specific article

Robert H Coridan (D) https://orcid.org/0000-0003-1916-4446 want to submit my research for publication.

- 1. Received 25 January 2023
- 2. Revised 15 April 2023
- 3. Accepted 21 May 2023
- 4. Published 12 June 2023

Check for updates

General interest

A link was shared with me

I came here by accident

Method: Single-anonymous

Revisions: 1

Screened for originality? Yes

Other (please scroll to the box below)

Buy this article in print

Next

¹ Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, X United States of America

Journal RSS

Sign up for new issue notifications

Abstract

Nanostructured dielectric overlayers can be used to increase light absorption in nanometer-thin films used for various optoelectronic applications. Here, the self-assembly of a close-packed monolayer of polystyrene nanospheres is used to template a core–shell polystyrene-TiO₂ light-concentrating monolithic structure. This is enabled by the growth of TiO₂ at temperatures below the polystyrene glass-transition temperature via atomic layer deposition. The result is a monolithic, tailorable nanostructured overlayer fabricated by simple chemical methods. The design of this monolith can be tailored to generate significant absorption increases in thin film light absorbers. Finite-difference, time domain simulations are used to explore the design polystyrene-TiO₂ core—shell monoliths that maximize light absorption in a 40 nm GaAs-on-Si substrate as a model for a photoconductive antenna THz emitter. An optimized core—shell monolith structure generated a greater than 60-fold increase of light absorption at a single wavelength in the GaAs layer of the simulated model device.

Export citation and abstract BibTeX RIS

◆ Previous article in issue

Next article in issue ▶

Why are you visiting IOP Science today?

I'm looking for a specific article

I want to submit my research for publication.

I came here by accident

Access this article

General interest

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

A link was shared with me

Other (please scroll to the box below)

Login

Access through your institution

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy CCC RightFind

Purchase this article from our trusted document delivery partners.

Rent from

This article is available from DeepDyve.

Why are you visiting IOP Science today?

I'm looking for a specific article

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutionalneelbearthpearedinatene access to the current volume, plus a 10-year back file (where available).

General interest

You may also like

A link was shared with me

JOURNAL ARTICLES

Biocarbon Monoliths as Supercapacitor Electrodes: Influence of Wibel Alestrosof of Pribit Pribit Electrodes

Status update on the design and construction of the Activ IOPSCIENCE Remote Handling Systems

Synthesis of a New Class of Porous Carbon Materials from Polyacrylonitrile and Their Battery Applications

Melt blown polypropylene nanofiber template for homogenous pore channels monoliths

Development of Ion Conductive Monolithic Polymers

A haemocompatible and scalable nanoporous adsorbent monolith synthesised using a novel lignin binder route to augment the adsorption of poorly removed uraemic toxins in haemodialysis

Why are you visiting IOP Science today?

I'm looking for a specific article

I want to submit my research for publication.

I came here by accident

General interest

A link was shared with me

Other (please scroll to the box below)

Why are you visiting IOP Science today?

I'm looking for a specific article

I want to submit my research for publication.

IOPSCIENCE

IOP PUBLISHING

I came here by accidenting SUPPORT

Journals

Copyright 2024 IOP

General interest Authors

Books

Publishing

A link was Revieelweits me

Terms and Conditions

0 (0 :

IOP Conference Series

Disclaimer

Conference Organisers Other (please scroll to the box below)

About IOPscience

Privacy and Cooki IOPSCIENCE

Contact Us

Developing countries access

IOP Publishing open access policy

Accessibility

This site uses cookies. By continuing to use this site you agree to our use of cookies.

Why are you visiting IOP Science today?

I'm looking for a specific article

I want to submit my research for publication.

I came here by accident

General interest

A link was shared with me

Other (please scroll to the box below)

