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ABSTRACT Technology advancements have led to the use of millions of IoT devices. However, IoT devices
are being exploited as an entry point due to security flaws by resource constraints. IoT malware is being
discovered in a variety of types. The purpose of this study is to investigate whether IoT malware can be
detected from benign and whether various malware family types can be classified. We propose fixed-length
and low-dimensional features using opcode category information on ML models. The binary IoT dataset for
this study is converted into opcode to create features. The opcodes are categorized into 6 or 11 according
to their functionality. Features are created using a sequence of opcode categories and the entropy values
of opcode categories. These features can be visualized by using a 2D image in order to observe patterns.
We evaluate our proposed features on various ML models (5-NN, SVM, Decision Tree, and Random Forest)
and MLP with various performance metrics, such as Accuracy, Precision, Recall, F1-score, MCC, AUC-
ROC, and AUC-PR. The performance results for malware detection and classification have an accuracy
over 98.0%. The experiments have demonstrated that the features we’ve proposed are effective and robust
for identifying different types of IoT malware and benign.

INDEX TERMS IoT malware, machine learning, opcode category, sequence mining, visualization.

I. INTRODUCTION
IoT (Internet of Things) is the network of physical objects in
which various objects use sensors to collect and share data
via the Internet [1]. As IoT technology advances, the num-
ber of devices connected to the Internet increases. Accord-
ing to Statista [2], the number of IoT devices in 2022 is
estimated to be 13.1 billion. In the meantime, IoT devices
have become highly attractive targets for malware attacks
due to their common vulnerabilities, such as easily guessed
passwords, insufficient update security, and insecure network
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services. [3], [4], [5], [6], [7], [8]. As a result, hackers are
using IoT devices as attack entry points.

It is challenging to develop a secure IoT device because
of its inherent properties. IoT devices struggle to adhere to
stringent security standards due to their limited resources
and lack of a mechanism that automatically installs security
patches [9]. There are many heterogeneous device archi-
tectures and network protocols [10]. The heterogeneity of
IoT platforms makes it more difficult to detect IoT malware
because various opcodes have equal functionality but differ-
ent naming conventions [11]. As a result, the IoT industry
falls behind the integrated design and implementation of
security protocols. These weaknesses in IoT design increase
the attack potential and lead to security leaks. These security
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FIGURE 1. System workflow of the proposed approach.

flaws are exploited by hackers for illegal activities. Examples
of major cybersecurity issues include host and network intru-
sions, malware attacks, botnets, rootkits, ransomware, and
DDoS [12], [13], [14]. Therefore, a systematic approach to
preventing these security exploits is required.

Building a secure defense system requires an in-depth
knowledge of the operations and activities of malware. Key
malware analysis should consider the factors that determine
howmalware works and how an attack affects a system. Such
malware analysis is performed either statically or dynami-
cally. Static analysis utilizes text-based structural relation-
ship without executing it. The detection method is relation-
ship analysis between low-level information, such as byte
sequences [15], [16], n-gram [17], [18], [19], [20], [21],
CFG (Control Flow Graph) [22], and system calls [23]. This
approach is efficient and has a high detection rate with a
low false positive rate. Static analysis traces all possible
paths, so overall structural information within the malware is
available. However, unknown malware designed to obfuscate
code tends to go undetected. In dynamic analysis, malware
is detected by analyzing the scan of infected files in a virtual
machine. Although dynamic analysis is capable of detecting
new and unknown malware, it is time-consuming and has a
limitation of detecting only a few paths based on previously
infected files [24].

Machine learning techniques have recently been exten-
sively applied in malware detection due to their more robust
and promising performance. Anti-malware vendors have
increased the performance of malware analysis by employ-
ing machine learning technologies [36]. Furthermore, hard-
ware improvements are also enhancing the performance of
machine learning algorithms in malware analysis. A suffi-
cient dataset and a fixed-length feature are required to utilize
machine learning for IoT malware analysis. Each malware
must be mapped to a fixed length vector that can encode its
intrinsic structure or behavior. Nevertheless, it is challenging
to provide the feature with a fixed-length because the size of
each file is variable.

This paper deals with IoTmalware detection and classifica-
tion using opcode categories. The binary IoT malware is con-
verted to a series of opcodes. Each opcode is converted into an
opcode category classified according to its functionality. Fea-
tures are created from the category by using frequent n-grams,

maximal subpatterns, and entropy values. Most supervised
learning algorithms are applicable for the designed feature
with a fixed length. Figure 1 illustrates how the system works
with malware detection and classification using our proposed
features. The main contributions are described below:

• A novel feature design is proposed for analyzing mal-
ware in IoT devices by utilizing opcode category infor-
mation. This approach simplifiesmalware featureswhile
maintaining their comparability for IoT malware analy-
sis. The features derived from opcode categories can be
applied to various types of IoT device architectures.

• The features obtained from the mapping process are
representedwith a fixed length, regardless of the original
size of the malware files in IoT devices. These features
capture the inherent characteristics of the malware.

• The proposed features can be represented as 2D images,
which allows for the identification of common patterns
and variations among different families of IoT malware.
The visualization of the features also allows for easy
interpretation of the prediction results of the models.

• The experimental results show that the proposed features
have exceptional generalization abilities for detecting
and classifying IoT malware, as evidenced by various
performance metrics.

This paper is organized as follows. Section II discusses
related work on IoT malware detection and classification.
Section III analyzes various characteristics in the IoT mal-
ware dataset collected for these experiments. Section IV
addresses IoT features and extraction methods for malware
detection and classification and visualizes features. Section V
describes the experimental procedures and evaluates each
feature and machine learning models used for identifying
IoT malware, and it compares the results with other studies.
Finally, Section VI concludes this work with a summary.

II. RELATED WORK
Static analysis and dynamic analysis are methods for extract-
ing features from executable files. We introduce a feature
extraction method through static analysis in this study. Static
analysis is a study that extracts various information from exe-
cutable files, uses it to learn models, and detects and classifies
malicious code. There are various features for static analysis.
Many researchers employed binary and opcode based on
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TABLE 1. Comparison of the studied malware analysis.

n-gram as a feature. Tien et al. [25] used opcodes as features
by dividing them into 12 types according to their description
files and different ISAs (Instruction Set Architecture) since
the IoT malicious samples were designed for different ISAs.
Moon et al. [37] designed opcode sequences by categorizing
opcode functionality.McLaughlin et al. [17] used gram-based
CNN structure features to detect Android malware via MLP
(Multi-Layer Perceptron). Darabian et al. [18] used opcode
category sequences as malware features by applying MFP
(Maximal Frequent Patterns). Yuxin and Siyi [19] disas-
sembled Windows Portable Executable (PE) files to make
opcodes and used opcode n-gram features. Dovom et al. [20]
used a sequence of opcodes and reduced the dimensionality
by selecting a part of opcodes based on information gain.
Kang et al. [21] used n-gram opcode features to identify and
categorize Android malware. They used 10-gram opcodes
and found about 37M unique opcodes in their dataset of
2,520 malware samples. Jung et al. [15] used byte sequence
structures, converted them into a 4-gram length sequence, and
inserted into a hash function to form a 256 × 256 size hash
map. Su et al. [38] designed 2D gray-scale image features
from malware in terms of file size and byte sequence.

Entropy information is also an important component in the
development of a feature. Lyda and Hamrock [31] used bin-
tropy employing a binary-file entropy to calculate the amount
of statistical variation types in a data stream. Sorokin [32]
extracted the structural entropy from the byte sequence
of the executable, used wavelet analysis to find the seg-
ment in the structural entropy, and compared the similarities
by calculating the edit distance between executable files.
Paik et al. [34] extracted structural entropy by calculating
the structural entropy for each block for each byte. CFG
(Control Flow Graph) is also one of the popular methods
used to create a feature. Nguyen et al. [22] deployed IoT
botnet detection using a printable string information (PSI)
graph as a key feature. Abusnaina et al. [39] analyzed the
robustness of CFG-based features to detect IoT malware.
The characteristics of malware are also discovered using a
variety of system information, such as file information along
with section headers, symbolic sections, and program headers
from ELF files [40].

Many studies use dynamic analysis using system informa-
tion. Jeon et al. [23] proposed a dynamic analysis for IoT
malware detection by using the following features: memory,
network, VFS (virtual file system), process, and system calls.
Rey et al. [41] used network traffic packets of IoT devices
affected by malware as features. Researchers investigate the
relationship or correlation between IoT malware since IoT
malware reuses common functions. As a result, it is able
to reconstruct family lineage, and trace evolution [37], [42],
[43]. These studies contribute to the creation of features
and improve the effectiveness of malware detection. Table 1
shows the comparison of the studied malware analysis using
major items, such as the number of files within each dataset,
along with the sources, features, and models that were used.

III. IoT MALWARE DATASET
A. DATASET ANALYSIS
Malwares provided a malware dataset that operates in the
32-bit ARM CPU framework [35]. IoT malware fami-
lies were classified according to Kaspersky classification
criteria.1 Table 2 shows our dataset for this study. The
total data size is 24,611, which includes 2,592 benign and
22,019 malware with 5 different types.

TABLE 2. IoT malware and benign dataset.

IoT devices utilize a lightweight operating system (OS)
that can function with less power, memory, and resources due
to hardware limitations [44]. The majority of IoT devices use
various processors, such as ARM, MIPS, SPARC, etc [45].
An execution file using dynamic links may only be executed

1https://securelist.com/ddos-attacks-in-q2-2021/103424/
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on a system in which a library required for the execution
exists. Executable files that use static linking are more likely
to be executed regardless of whether the necessary library is
installed in the system since the library is built into the exe-
cutable. The number of IoT malware compiled through static
linking is higher than the number of IoT malware compiled
through dynamic linking [42], [45]. These analytical results
appear to be a tactic to increase portability in order to raise
the infection rate of IoT devices. Radare22 was used to
check the linking method and whether the symbols could be
stripped. Table 3 shows linking methods and whether or not it
is a ‘‘stripped’’. The majority of IoT malware was compiled
using a static linking, rather than a dynamic linking. Dofloo
only used static linking. Most of the families, except Mirai,
had a high rate of ‘‘unstripped’’.
Objdump3 and Radare2 disassemble opcode sequences

from IoT binary files. When objdump reads a file, identifies
the machine instructions encoded in the file, and converts
them into opcode. All opcodes for each file are used for mal-
ware detection. Tables 4 and 5 show the file size (in KB) and
opcode sequences of the IoT malware dataset. The size of the
collected malware is different, so the opcode sequence shows
differences. These differences are also observed among mal-
ware samples belonging to the same family, which makes
it challenging to identify distinctive features for machine
learning-based analysis. Dofloo typically has a larger file
size than other families. Thus, the length of the opcode
sequence extracted from the file is generally longer than
in other families. Nyadrop has the smallest file size and
opcode length among the malware dataset. Gafgyt and
Tsunami have a similar average size of files and average
length of opcode sequences, but Gafgyt has smaller stan-
dard deviation values for file and opcode sequence length
than Tsunami. The smallest file size in Mirai is 1.04 KB,
and the smallest opcode sequence length is 164. The smallest
file size in Tsunami is 12.42 KB and the smallest opcode
sequence is 64, which is sometimes smaller than Mirai.

B. PACKING ANALYSIS
Packing is one of the most sophisticated obfuscation tech-
niques by malware authors using UPX (Ultimate Packer for
eXecutables).4 It is required to determine whether the exe-
cutable file is encrypted or obfuscated in order to extract an
opcode sequence. This can be determined by calculating the
average entropy of byte sequences in the section area of the
binary. Encryption or obfuscation algorithms typically have a
high average entropy because they mix part or all of the exist-
ing byte sequences to appear random. On the other hand, such
executable files have structural properties within randomness
because they need to be decrypted or non-obfuscated [31].
To disable the standardUPX unpacking tool, malware authors
can modify the magic number and UPX strings and insert

2https://rada.re/n/
3https://man7.org/linux/man-pages/man1/objdump.1.html
4https://upx.github.io/

junk bytes. The corrupted file blocks static malware analysis
and also delays manual reverse engineering [46], [47].

We use the Detect-It-Easy (DIE)5 and Nauz File
Detector (NFD)6 tools to identify which packer was used.
If we are unable to identify which packer was used, we mark
it as ‘‘Unknown’’. The majority of IoT malware is packed
using UPX packers, and Dofloo used UPX to pack all
of the files as seen in Table 6. Figure 2 shows the header
of the ELF file, which is packed with UPX. The l_info
and p_info structures, which are required for the UPX
loader, are at the end of the program header table. The
UPX header of 36 bytes is located at the end of the file.
The l_info structure has information for the loader. The
p_info structure has p_filesizet with file size infor-
mation and p_blocksize with block size information.
The UPX header has a magic number of byte sequence 0 ×

55505821 which is ‘‘UPX!’’ in ASCII, the UPX packer ver-
sion, format, file size, compression method, and compression
level.

FIGURE 2. An example of valid ELF file using UPX.

We found a number of modified files that cannot be
unpacked during our static analysis. Figure 3 shows a typical
example of an invalid ELF file using UPX. The ‘‘UPX!’’
magic number of l_magic in the l_info structure is mod-
ified to 59525399 and p_filesize and p_blocksize
of the p_info structure are modified to 00000000. How-
ever, unpacking with UPX can be performed by restoring the
p_filesize and p_blocksize of the p_info struc-
ture of the UPX Header’s u_file_size and changing the
magic number to 55505821.

IV. RESEARCH APPROACH
This study will address the following malware detection and
classification problems.

5https://github.com/horsicq/Detect-It-Easy
6https://github.com/horsicq/Nauz-File-Detector
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TABLE 3. Analysis of IoT malware linking methods.

TABLE 4. File size comparison of IoT malware families (KB).

TABLE 5. Opcode length comparison of IoT Malware families.

• Malware detection is a binary classification. This study
detects if a file is IoT malware or IoT benign. For this
experiment, different IoT malware families are consid-
ered to be one label.

• Malware classification is a multi-classification. This
study classifies 6 groups, including five malware fam-
ilies and one benign.

Let X be the dataset of malware and benign opcode
sequences. Then, X consists of malware dataset Xmal
and Xben.

X = Xmal ∪ Xben
= {(si, t)|i = 1, . . . ,N and t ∈ {benign,malware}},

where N = |Xmal | + |Xben|, si =< op1, op2, . . . , opin > is
the ith opcode sequence and in is the length of si. Computing
frequent subsequences from Xmal , maximal subpatterns are

TABLE 6. IoT malware packing analysis.

FIGURE 3. An example of invalid ELF file with manipulated UPX magic
number.

discovered. MXmal is composed of maximal subpatterns that
are decided from a text sequence mining tool. By applying
MG-FSM [48], maximum subpatterns with the predefined
minimum support rate minsup or higher are extracted to con-
struct MXmal .

MXmal = {(mspj, supj)|j = 1, . . . ,M and supj ≥ minsup},

(1)

where mspj is an opcode subpattern, M is the number of
unique maximal subpatterns, and supj is the frequency rate
in Xmal . The opcode subpattern of mspj is represented as
mspj =< opj1 , . . . , opjk > and jk is the length of mspj.

Three types of malware features are derived from opcode
category sequences: opcode category sequence (OCS),
entropy histogram of opcode categories (EHOC), and maxi-
mal sequential pattern (MSP). Figure 4 illustrates the detailed
process for extracting opcode category sequences.

FIGURE 4. Feature extraction steps.
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OCS: The opcode sequence si is converted into an opcode
category sequence by utilizing the opcode category from
MSP. These categories are distinguished by the opcode that
make up all instances of MXmal in MSP. Table 7 and 8
illustrate the classification of 6 and 11 categories based on
opcode function types. The opcode functions within these six
categories are further divided into 11 categories. The opcode
sequence si maps to the category sequence s(C)i according to
the described category. This mapping process simplifies the
opcode sequence of malware.

The OCS feature of s(C)i is constructed with a sliding
window of size 256 and stride size 128. The frequency of n-
grams appearing in each sliding window is accumulated and
can be visualized as a 2D feature for n = 2. Both x-axis
and y-axis of the 2D training feature are opcode categories.
The category change of 2-gram reflects the structural change
between category pairs through sliding window sequences.
For n = 2 and K sliding windows, the OCS feature F(s(C)i ) is
computed as follows.

F(s(C)i ) = [fjl]τ×τ

=
1

256K

[
K∑
k=1

freqk (< cj, cl >)

]
τ×τ

freqk (< cj, cl >) is the frequency of 2-gram from cj to cl
within sliding window k . When choosing 6 categories and
n = 2, the dimension of OCS feature vector is 36, named
OCSn=2,c=6. In the case of 11 categories, it is expressed as
OCSn=2,c=11.

EHOC: EHOC features are constructed from opcode cate-
gory sequences in a way similar to OCS. The entropy his-
togram map [49] is introduced to design feature vectors from
opcode sequences. The entropy histogram Ei is computed
from s(C)i within a sliding window of size 256 and stride
size 128. If s(C)i has K windows, then Ei =< w1, . . . ,wK >

where wk =< e(k)1 , . . . , e(k)τ > and e(k)j is the entropy value
of the jth opcode category frequency within the k th sliding
window. The Shannon entropy is applied to compute e(k)j . Let
hj be the frequency rate of the jth category.

e(k)j = −hj log2 hj − (1 − hj) log2(1 − hj) (2)

Here, τ is 6 or 11, indicating the number of opcode categories
(Table 8). EHOC feature F(s(C)i ) = [fℓj]L×τ of s(C)i becomes
a 2Dmatrix. The column represents opcode category indexes,
and the row indicates L discretized values. For a small con-
stant δ, F(s(C)i ) is calculated from all windows of Ej and
ℓ = 1, 2, . . . ,L.

F(s(C)i ) = [fℓj]L×τ (3)

=
1
K

[
K∑
k=1

1[loc(e(k)j ) = (ℓ, j)]e(k)j

]
L×τ

(4)

If (ℓ − 1)δ < e(k)j ≤ ℓδ, loc(e(k)j ) returns (ℓ, j). 1[x]
is 1 if x is true or 0 otherwise. The dimension of EHOC

depends on the number of a discretized level L and opcode
categories, and if L is 11 opcode categories, the number of
EHOC feature dimensions is 121, which can be expressed as
EHOCl=11,c=11.
MSP: This feature is extended from Darabian et al. [18].

Every maximal subpattern is further represented by opcode
function categories. All maximal subpatterns show a tran-
sition between one or two function categories. When only
considering changes in two or fewer categories, the func-
tion category change from category i to j is defined as ci−j.
Assume there are τ function categories and C is a set of
function types: C = {ci−j|i, j = 1, . . . , τ }. The category ci−j
is a set of specific operations such as arithmetic operations,
branch operations, function calls, etc. For i = j, ci−j maximal
subpattern is composed of operations by a single opcode
category. Otherwise, ci−j (i ̸= j) becomes a categorical
transition from ci−i to cj−j in a maximal subpattern. Every
mspj is substituted with function categories: (cj−k , supj−k ).
An opcode sequence is translated into a sequence of function
categories. The opcode sequence of si turns into its category
sequence s(C)i =< cj1−k1 , . . . , cjτ −kτ >. The feature vector
of s(C)i is F(s(C)i ).

F(s(C)i ) = [fj−k ]j,k=1,...,τ

=
1

|Xmal |
[
freq(cj−k ) × supj−k

]
j,k=1,...,τ

freq(cj−k ) is the number of occurring cj−k in s
(C)
i . The number

of F(s(C)i ) is τ 2 which is much smaller in malware features
such as byte sequence, opcode sequence, image feature, etc.

Amaximal subpattern is extractedwith aminimum support
of 50% and τ = 6. In the case of a 1-step transition MSP,
there are a total of 36. Table 9 shows MSP and support rate
explored by MG-FSM, where supMSP is the total number
of MSP occurrences in the dataset, normalized to a scale
from 0 to 1.

The proposed features can be visualized to identify key
patterns when analyzing malware. Figure 5 shows the visu-
alization of OCSn=2,c=11 and EHOCl=11,c=11 features. Each
of the figures is an 11 × 11 2D image where the value
of each feature vector was scaled between 0 and 1. Benign
and malware are observed to be distinct. In addition, similar
patterns are observed commonly throughout the malware
family as a whole. The patterns on Gafgyt and Tsunami
are comparable because they share a significant amount of
code [37], [42].

V. EXPERIMENT
A. EXPERIMENTAL SETTING
Table 11 shows a detailed list of the IoT malware dataset
for this experiment. For the malware detection experiment,
all the data is used. On the other hand, for the malware
classification experiment, we randomly select 3,000 datasets
from each Mirai and Gafgyt randomly due to the high
ratio of Mirai and Gafgyt for imbalanced data. As such,
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TABLE 7. Opcode categories based on functionality.

TABLE 8. Opcode list in functional categories.

TABLE 9. Examples of MSP and support rate.

a total number of 11,826 malware classification experiments
are conducted on 2,592 benign and 9,234 malware.

The following machine learning algorithms are utilized in
the experiments: 5-NN, SVM, Decision Tree, Random Forest
(RF), and MLP. To evaluate ML algorithms, each 5-fold CV
runs 10 times, averaging the results. As performance metrics,
accuracy (ACC), true positive rate (TPR), false positive rate
(FPR), AUC-ROC, AUC-PR, F1-score (F1), and Matthews
Correlation Coefficient (MCC) [50], precision (PRE), recall
(REC) are chosen [47]. Table 10 presents a confusion matrix
that indicates four different types of outcomes due to actual
and predicted classifications.

TABLE 10. Confusion matrix.

MCC is chosen to evaluate imbalanced datasets and pro-
vide a balanced measure of performance since our dataset
is imbalanced due to the nature of the data, which contains
2,592 benign and 9,234 malware. MCC is a more beneficial
and honest metric for binary classification problems than
accuracy or F1-score. MCC produces high metrics only when
the predictions are accurate in all four categories of the con-
fusion matrix. F1-score does not take into account how many
true negatives are predicted, whileMCC can bemore accurate
when evaluating imbalanced problems that require attention
to negative data. Therefore, if a prediction model shows good
performance in both F1-score and MCC, it can be considered
a strong model for prediction. MCC is calculated using (5),
and values range from−1 to+1, where+1 indicates a perfect
prediction, −1 indicates a wrong prediction, and 0 indicates
a random prediction.

VOLUME 11, 2023 18861



H. Lee et al.: Robust IoT Malware Detection and Classification Using Opcode Category Features

FIGURE 5. Feature visualization.

ACC is the proportion of correctly classified samples (both
positive and negative) in a dataset. TPR, also known as sen-
sitivity or recall, is the proportion of positive samples that
are correctly classified as positive. FPR is the proportion of
negative samples that are incorrectly classified as positive.
AUC-ROC (Area Under the Receiver Operating Characteris-
tic curve) is a metric for binary classification that represents
the ability of a model to distinguish between positive and
negative classes. It is calculated by plotting the true posi-
tive rate (y-axis) against the false positive rate (x-axis) at
different classification thresholds. AUC-PR (Area Under the
Precision-Recall curve) is a metric for binary classification

that represents the trade-off between precision and recall for
different classification thresholds. It is calculated by plotting
the precision (y-axis) against the recall (x-axis). F1 is a mea-
sure of a model’s accuracy that considers both the precision
and recall of the model. It is calculated as the harmonic mean
of precision and recall. PRE is the proportion of samples clas-
sified as positive that is actually positive. REC, also known as
sensitivity or true positive rate, is the proportion of positive
samples that are correctly classified as positive.

MCC =
TN × TP− FN × FP

√
(TP+ FP)(TP+ FN )

×
1

√
(TN + FP)(TN + FN )

(5)

Each experiment uses five features as follows.
• OCSn=2,c=6: OCS is 2-gram feature generated from
6 opcode category.

• OCSn=2,c=11: OCS is 2-gram feature generated from
11 opcode category.

• EHOCl=6,c=6: EHOC is a feature generated from
6 opcode category using 6 levels.

• EHOCl=11,c=11: EHOC is a feature generated from
11 opcode category using 11 levels.

• MSP:MSP feature was proposed by Darabian et al. [18].
This feature is used to compare with the four features
listed above.

B. MALWARE DETECTION
The experimental results for malware detection are shown in
Table 13. The parameters for the Support Vector Machine
(SVM) are set to a value of c=1000 and use Radial Basis
Function (RBF) kernels with a gamma value of ‘‘scale’’. The
decision tree algorithm uses the Gini impurity as the split
criterion, has a maximum depth of 10, and aminimum sample
size of 2. The Random Forest (RF) model uses 100 decision
trees with the same parameters as a single decision tree. The
MLP architecture is 64×12×2 for the first hidden layer and
is optimized using the Adam algorithm with a learning rate of
0.001. The activation function for the hidden layers is ReLU
and for the output layer is softmax.

In general, ML models perform well. The performance of
RF stands out among them. Since the dataset is imbalanced,
ACC and MCC are mainly analyzed. MSP has 99.5% ACC
and 98.5% MCC in RF. OCSn=2,c=6 has 99.5% ACC and
98.6%MCC in RF. OCSn=2,c=11 has 99.8% ACC and 99.3%
MCC in RF, which is the highest performance. EHOCl=6,c=6
has 99.0% ACC and 97.1% MCC in RF. EHOCl=11,c=11 has
99.6% ACC and 98.9% MCC in RF. 11 categories perform
somewhat better than 6 categories in each feature. In addi-
tion, OCSn=2,c=11 and EHOCl=11,c=11 perform slightly bet-
ter than MSP.

Figure 6 shows ROC analysis for the results of binary
classification, which plots TPR against FPR. TPR is the
proportion of observations that were correctly predicted to be
positive out of all positive observations, which is calculated
using (6). Similarly, FPR is the proportion of observations
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TABLE 11. Experimental dataset.

TABLE 12. Dimension for feature vectors.

FIGURE 6. ROC analysis with OCSn=2,c=11.

that are incorrectly predicted to be positive out of all negative
observations, which is calculated using (7). In RF, the ROC
value is 100.0% which indicates the best performance in
binary classification.

TPR =
TP

TP+ FN
(6)

FPR =
FP

TN + FP
(7)

C. MALWARE CLASSIFICATION
The experimental results for malware classification, which is
a multi-classification with 6 different types, including 5 mal-
ware families and 1 benign, are shown in Table 13. In the
classification experiment, the parameters for the chosen algo-
rithm are similar across models. However, the classification
task involves predicting 6 classes. The architecture of the
Multi-Layer Perceptron (MLP) for this task is 64×12×6 for
the first hidden layer. The performance of multi-classification
is slightly less than that of binary classification by a tiny

margin of roughly 1%. Similar to malware detection, the per-
formance of RF is the best among the MLmodels. The exper-
imental results are analyzed, focusing on ACC and MCC.
MSP has 98.5% ACC and 97.9% MCC in RF. OCSn=2,c=6
has 98.1% ACC and 97.4% MCC in RF. OCSn=2,c=11 has
98.6% ACC and 98.1%MCC in RF, which is the highest per-
formance. EHOCl=6,c=6 has 97.6% ACC and 96.7% MCC
in RF. EHOCl=11,c=11 has 98.1% ACC and 97.4% MCC in
RF. As with experiments in malware detection, 11 categories
perform slightly better than 6 categories in each feature. MSP
performs similarly to other models.

FIGURE 7. PR-AUC analysis with OCSn=2,c=11.

Figure 7 shows PR-AUC analysis, which is a reliable indi-
cator of performance for imbalanced classification problems.
PR-AUC combines precision and recall in a single visualiza-
tion, which is calculated using (8) and (9). The higher the
curve on the y-axis, the better the performance. The scores in
most of the models are higher than 99%, which indicates that
the models employing our proposed features perform quite
well.

PRE =
TP

TP+ FP
(8)

REC =
TP

TP+ FN
(9)

D. COMPARISON WITH OTHER STUDIES
The results of the proposed method were compared with
similar studies, such as opcode feature [25], 2D image of
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TABLE 13. Experimental results for malware detection with percentage (%).

TABLE 14. Experimental results for malware classification with percentage (%).

executable file [51], behavior-based feature [23], CFG fea-
ture [52], etc. We selected to use a MLP model as the com-
parison models employed a Convolutional Neural Network
(CNN) as the deep learning algorithm. The use ofMLP allows

for an efficient analysis of the low-dimensional features cre-
ated in this work, without the need for a CNN. Table 15
shows comparison factors including model, feature type,
dataset composition, number of malware families, accuracy,
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TABLE 15. Analysis of comparison with other studies.

and F1-score. Alasmary et al. [52] and our proposed method
include both malware detection and family classification
analysis, and other studies have reported detection analysis
only. Thus, two numbers in Accuracy and F1-score are binary
classifications for malware detection andmulti-classification.
Jeon et al. [23] configured features by extracting information
such as files, networks, and system calls through debugging.
Asam et al. [51] performedCNNmodel analysis by extracting
2D image features of executable files. Alasmary et al. [52]
suggested CFG features from opcodes and performed various
model analysis, but the CNN model had excellent perfor-
mance.

The proposed method represents IoT malware with
fixed-length and low-dimensional features, and most stan-
dard supervised learning can be applied. Our experiments
performed malware classification using the largest number
of families and sufficient amounts of data. The experimental
results demonstrated that our fixed-length features provide
inherent structural characteristics for variable lengths of IoT
malware files. In addition, the proposed features using opcode
categories are expressed by fewer elements compared to the
opcode sequence, resulting in the advantage of reduced train-
ing time due to the low dimension.

This comparison has a limitation in that the datasets used
are not the same. Our model has similar performance to
other models in terms of accuracy and F1-score. Although
CNN models are known for being computationally intensive,
they usually have good performance. Our model’s advantage
is less computationally demand because of low-dimensional
features (36 and 121 features as shown in Table 12). However,
we do not compare the time complexity of our model to other
models as the datasets used in the comparison are different
and we lack information about the time complexity of other
models.

VI. CONCLUSION
This study presented an effective and robust approach for
IoT malware detection and classification. The proposed fea-
tures were created using opcode categories based on opcode
functionality. The features were simplistic, fixed-length, and
low-dimensional despite the variable length of IoT malware.
We analyzed IoT malware dataset using various methods,
such as file information and file structure when packing.
We addressed in detail how to create features using opcode

categories that can represent the characteristics of IoT mal-
ware. The features were visualized, so common patterns
and differences were observed. We thoroughly evaluated the
effectiveness and robustness of our proposed features using
a large dataset of IoT malware, various performance met-
rics, and ML models, including tree-based ensemble models
and MLP.

Our research has made a significant contribution to the
field of malware detection with the development of a robust
method for creating fixed and low-dimensional features from
malware of varying file sizes. This technique is used to repre-
sent the characteristics of malware in a compact, fixed-length
format. It allows for accurate representation of malware char-
acteristics for efficient detection and analysis. This is a crucial
step towards better protecting individuals and organizations
from cyber threats and is expected to have a major impact on
the field of malware analysis research. Our method is reliable
and has the potential to greatly advance the current state of
the art in this area.
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