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Abstract—Differential privacy, the current gold standard for
data anonymization and protection, is commonly known to cause
degraded utility, and exacerbate unfairness, for different demo-
graphic groups when it is used to train a private machine learning
model. However, in contrast with this long-held perception, recent
work has shown that local differential privacy, a variant of
differential privacy where users perturb their data on their
device before it is aggregated, can surprisingly lead to improved
fairness measures without significantly affecting the utility of the
underlying machine learning model. Motivated by this previous
work, in this paper we further show that applying randomized
response, a popular local differential privacy method, does not
incur disparate impact on the private model’s accuracy for
different demographic groups. Specifically, through conducting
thorough empirical analysis in which we perform randomized
response on the labels, the features, or on both the features and
labels across multiple data modalities and model architectures,
we empirically show that the absolute difference in utility loss
for different demographic groups is negligible.

Index Terms—randomized response, local differential privacy,
fairness, machine learning

I. INTRODUC T I ON

Differential privacy (DP) [1] is currently the gold standard
for data anonymization and protection. Due to its formal
privacy guarantees, DP is commonly utilized by companies
such as Google [2], Apple [3], and Microsoft [4] to collect
privatized statistics from their end users. In addition to being
used in privacy preserving data collection, there has been
considerable research on using DP in the training of private
machine learning models [5]. DP can be introduced at any
stage of the training pipeline, from data collection to model
output, and it provides assurance to data contributors that the
probability of their data being leaked is bound by a privacy
parameter ϵ. One important research question is to determine
whether enforcing DP incurs accuracy disparity between dif-
ferent demographic subgroups. In other words, does making
a machine learning model DP cause the accuracy of different
demographic subgroups to change in a non-uniform manner?

Why accuracy parity? While making sure that machine
learning models perform equally well on different demo-
graphics is important for mitigating allocation harms like not
awarding jobs to qualified applicants on the basis of gender,
or representative harms such as Amazon labeling LGBT+ lit-
erature as ‘adult content’ and removing it from sales rankings

[6], it is equally important to ensure that applying privacy
preserving mechanisms like randomized response or output
perturbation does not cause disparate impact on the accuracy
of different demographic subgroups where some subgroups
experience a greater change in accuracy than others. In doing
so, we prevent reinforcing the social idea that minority groups
inherently do not deserve the same privacy affordances that
majority groups experience (e.g., monitoring of American
Muslims by the New York City Police Department [7] and
using machine learning to determine someone’s sexuality [8]).

When global DP (a variant of DP in which user data is
collected unperturbed and noise is added during training of the
model or on the output of the query) is used in the training of
a machine learning model, it is common that DP-stochastic
gradient descent (DP-SGD) [9] is utilized. However, while
DP-SGD has shown success in training DP machine learning
models, it has recently been shown that using DP-SGD causes
the accuracy of the model to drop more for underrepresented
subgroups [10]. Since the publication of [10], several works
have been published showing that applying DP methods such
as DP-SGD, or post-processing differentially private data [11],
when learning a machine learning model can be detrimental
to fairness from the accuracy parity perspective [12].

Yet, there has been no study on if local DP (LDP) – a
variant of DP which eliminates the requirement of a trusted
aggregation server – causes accuracy disparity. In this work,
we aim to answer this question and analyze to what extent that
accuracy (dis)parity occurs when randomized response (RR),
a popular LDP method, is applied. While other advanced LDP
methods based on RR, such as Optimal Linear Hashing [13]
and RAPPOR [2], have been proposed we leave the analysis
of accuracy (dis)parity experienced when these methods are
applied to our future work. Further, in our setting we consider a
privatized model to be fair if the minority group and the
majority group experience similar changes in accuracy (i.e.,
experience accuracy parity) from the original model. We note
that in our setting it does not matter if the original accuracies of
the two subgroups differ. As long as they experience the same
effect on accuracy after applying RR, then the process of
applying R R  does not result in disparate impact.

To consider the many ways that R R  is applied in practice,
we choose to study the effect of applying R R  in three main
settings: 1) applying RR-based ϵ-LDP to the labels while
leaving the features unperturbed, 2) applying RR-based ϵ-LDP
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to the features while leaving the labels unperturbed, and 3)
applying RR-based ϵ-LDP to both the features and the labels.
We note that we only ever apply R R  to the training data, while
the testing data remains unperturbed as we are most concerned
with protecting the privacy of the data used to train the
machine learning model. Our empirical evaluations, performed
across both image and tabular data modalities, several different
model architectures, and a wide range of ϵ values, show that
applying RR-based ϵ-LDP to the features, labels, or both the
features and labels has no disparate impact on model accuracy.

The rest of this work is as follows. In Section II, we
introduce key related works and discuss how our work is
different from them. In Section III, we give an overview of RR-

based ϵ-LDP and in Section I V  we explain the reconstruction
methods used (inclusive of why reconstruction methods are
used at all). Section V  details our experimental setting and
provides an analysis of our results of applying RR-based ϵ-
LDP on the labels, the features, and on both the features and
labels to show that R R  has no disparate impact on model
accuracy. Finally, in Section V I  we offer our concluding
remarks.

I I . R E L AT E D  WO R K

Analyzing the effect of DP on the fairness of a machine
learning model (and vice versa) has received increasing at-
tention by the research community over the past few years.
[14] analyzed the privacy risks of group fairness metrics like
equalized odds through the lens of membership inference
attacks and show that the information leakage of fair mod-els
increases significantly on the unprivileged subgroups. As
opposed to analyzing the privacy leakage of fairness metrics,
[15]–[18] study how to achieve both privacy and fairness
simultaneously and propose methods to ensure that fairness
does not come at the cost of privacy. Different from the above
works that define fairness as the learned model achieving
uniform utility among all demographic groups, our paper’s
focus is on the difference in accuracy changes experience by
different demographic groups when RR-based LDP is applied
to train a private machine learning model. In the following
paragraphs, we discuss related works along this direction.

In the decision making setting, [19] focuses on decision
making tasks (e.g., how to assign voting rights benefits to
minority language communities) and shows that under strict
privacy constraints, or in decisions involving small popula-
tions, adding noise in order to achieve global DP can cause
significant inequities in treatment to arise. They further iden-
tify multiple causes of these outcome disparities. The decision
task is generally defined as a computational formula that can
be decomposed into units connected by basic mathematical
(e.g., + , − , × , ÷ )  and logical (e.g., AND/OR) operators and
in [20] the authors examined how these various operations
affect the accuracy of complex DP computations.

In DP preserving machine learning, [10] was the first to
show that DP-SGD has disparate impact as the accuracy of a
model trained using DP-SGD decreases more on underrepre-
sented and complex classes and subgroups when compared to

the original, non-private, model. This work motivated others,
such as [12] and [21], who both shed light on why using DP
mechanisms leads to disparate impact. But while [12] focused
on DP empirical risk minimization through output perturbation
and DP-SGD, analyzing the data and model properties that
are responsible for causing the disparate impact, [21] studied
the conditions in which privacy and fairness have aligned or
contrasting goals in both decision and learning tasks. Several
research works further study mitigation techniques to remove
disparate impact caused by DP-SGD [22], [23].

Despite analyzing the interface of DP and fairness being
a popular research field, to our knowledge, there has been
no study about accuracy (dis)parity in the LDP setting. [24]
studied to train a Naive Bayes classifier over LDP data by
estimating probabilities needed by the Naive Bayes classifier
using the perturbed data. However, it did not show whether
unfairness could incur in the trained classifier. [25] studied
how to train a gradient boosting decision tree over LDP
data (perturbed by R R  and other mechanisms) and showed
that using LDP can lead to slightly improved group fairness
metrics in learning problems without significantly affecting
the performance of machine learning models. While they
considered fairness in terms of statistical fairness metrics
like equal opportunity difference (EOD) and overall accuracy
difference (OAD), our work instead focuses on the study of
disparate impact on model accuracy due to RR. Moreover, we
show that the accuracy of a model trained using private data
via RR, no matter if randomization is performed on the labels,
the features, or the features and labels, does not decrease
differently for different demographic groups. On the contrary,
[25] only focuses on the setting of feature perturbation.

I I I . P R E L I M I N A RY

DP was originally proposed to privatize information about
individuals in the context of databases [5], although it has
grown to be used in a myriad of settings such as machine and
deep learning. In the global DP setting, noise is often added to
the output of a query made on a non-privatized dataset. Since
the type of noise that is added is known a priori, statistical
queries can still be computed by filtering out the noise without
violating any of the users’ individual privacy [26].

However, global DP requires each user to have trust that
the central server is non-malicious. LDP [27] was proposed
to overcome the limitation of requiring each user to trust a
centralized authority. In LDP, each user perturbs their own
data before transmitting them to the (untrusted) server, which
can then compute statistical queries over the randomized client
data [26]. More formally, ϵ-LDP is defined as follows:

Definition 1 (ϵ-LDP [27]): A  randomized mechanism M
satisfies ϵ-local differential privacy if and only if for any pair
of input values r, r ′  in the domain of M ,  and for any possible
output o in the range of M :

P[M(r )  =  o] ≤  eϵ · P[M(r ′ )  =  o]

Definition 1 states that the probability of outputting o on
record r  is at most eϵ times the probability of outputting o

5461
Authorized licensed use limited to: University of Arkansas. Downloaded on February 16,2024 at 23:40:49 UTC from IEEE Xplore. Restrictions apply.



C−1+e C−1+e

1 m       y

1 m y

1 y

1 m        y 1 m       y

1 m       y

1 m y

u y

˜

˜
n

n

˜
s s s =1

ψ
˜

n

X

on record r′. Here, ϵ captures the privacy loss of the system.
When ϵ =  0, perfect privacy is achieved (e0 = 1). On the
other hand, when ϵ =  ∞, there are no privacy guarantees on
the system. The choice of ϵ is a crucial decision in practice
as the increase in privacy risks is proportional to eϵ [5], [26].
Randomized Response. The main motivation behind LDP is

a surveying technique termed randomized response (RR) [28].
Proposed by Warner in 1965 [28], R R  allows more accurate
statistics to be collected about sensitive topics such as sexual
orientation or drug use. To define RR,  let u be a private
variable that can take one value from C =  {1,2,.. .,C}. R R
is defined as a C  ×  C  distortion matrix P =  (puv)C× C  where
puv = P[v|u]  C denotes the probability that the output of the
R R  process is v  C when the real attribute value is u  C [29].

When u =  v, puv = eϵ        
ϵ and when u =  v, puv = 1      

ϵ .
We note that each variable (feature or label) being perturbed
has its own (possibly non-distinct) distortion matrix Pi. In
Section IV,  we show how the gathered randomized variables
can be reconstructed to form an unbiased representation of
the original, non-randomized, population data. Additionally,
while numerous LDP protocols have been derived from R R
such as RAPPOR [2], Optimal  Local Hashing [13], [30], and
Thresholding with Histogram Encoding [13], in this work we
choose to analyze R R  only due to space constraints and leave
analysis over other methods to future work. We hypothesize,
however, that methods derived from R R  should exhibit results
similar to those shown in Section V.

I V. METHODOLOGY

While performing R R  alone protects the privacy of users
data, when the randomized data is used directly to answer
queries or train a machine learning model, accuracy issues
can arise as the training distribution could be different from
the testing. For this reason, reconstruction is usually applied to
the collected randomized data. If the distortion matrices for
each private variable is known, then the true population
distribution can be estimated from the noisy collected data.
Let z   =  {z1,.. .,zn} be the collection of randomized data
with zs =  (xs,ys) and x   =   {x1,.. .,xm}. In other words,
each record zs is made up of m features and one label y and
it is possible for any combination of the features and label to
have been randomized. Let each feature xu have du mutually
exclusive and exhaustive possible values while the label y can
have dy mutually exclusive and exhaustive values. Further,  let
iu = 1,.. .,du denote the index of each feature xu’s
categories and let iy = 1,.. .,dy denote the index of the label
y’s possible categories. For each feature xu and label y, assume
the distortion matrix Pu or Py is known. In cases where a feature
(or label) is not randomized, the distortion matrix Pu (Py) is
simply the du × du (dy × dy) identity matrix.
Let πi  ,...,i     , i       denote the true proportion corresponding to

the categorical combination of m variables and one label y
(x1i ,.. .,xmi     ,yi ) in the original, non-randomized, data.
Here, x1i      denotes the i1th category of feature x1 and yi
denotes the iyth category of label y. Let π be a vector
with the elements πi1,. . . , im,iy       listed in order (e.g., π =

{π1,...,1,1,.. .,πd ,...,d     ,d }). Similarly, we denote λi  ,...,i     , i
as the expected proportion of categorical combinations in
the randomized data and λ is a vector with the elements
λi  ,...,i     , i       listed in order. For a concrete example, consider
a dataset where each record contains two features and one
label. E.g.,  x  = {race, gender} and y  {1,2}  where race 
{Black, White,  Asian} and gender  {male, female}. Here,
d1 = 3 and d2 = 2 while dy = 2. In this example the vector
π  =   {π11 1, π11 2, π12 1, π12 2, π21 1, π21 2, π22 1, π22 2, π31 1, π31 2, π32 1, π32 2}

lists all proportions of categorical combinations of the race
and gender features with the label. Note, π312 denotes the
proportion of records that are Asian males with a label of 2.
Letting P =  P1 ·· ·Pm Py we can obtain an unbiased

representation of π as:

π̂  =  P−1λ =  (P−1  · · ·  P−1  P−1)λ (1)

where  stands for the Kronecker product and P−1 (P−1)
denotes the inverse of the distortion matrix Pu (Py).
This reconstruction method works well for tabular datasets

that contain few features with limited categories. However,
when the feature space is large (e.g., images), reconstruction
can be computationally expensive, or even computationally
infeasible, to compute. For this reason, other techniques to
correct noisy data have been proposed. In this work,  we
focus on a correction method called forward loss correction
proposed in [31] to correct for noisy labels and leave other
methods to correct for noisy data in general as future work.
Forward Loss Correction. F L C  [31] is an approach to train

machine learning models robust to class-dependent label noise
(not necessarily noise crafted by RR). In [31], the authors note
that a model trained on noisy label data without using a loss
correction method would result in the model being tailored to
predict noisy labels instead of the true labels. To perform FLC,
the authors correct the model predictions using a probability
matrix that defines the noisy data distribution (in our case, P)
before calculating the loss between the model prediction and
the noisy labels ỹ  Y. F L C   is defined as:

LFL C(Z ,  θ) =  
1 X  

ℓ(PT f( xs; θ), ỹs) (2)
s = 1

where Z   =   {z̃     =   (xs,ỹ ) }n and ℓ is a proper com-

posite loss1 [32] such as cross-entropy or square loss. Here,
f (x;θ)  =  P(y |  x). In other words, the output of f   is the
predicted probability of the class being y when the input is x.
We can rewrite Eq. 2 to explicitly show that ℓ is a proper
composite loss:

LFL C(Z ,  θ) =  
1     n     

ℓ(PT ψ−1(f ( xs; θ)), ỹs) (3)
s = 1

Here, ψ is the link function associated with a particular proper
loss. For example, softmax is the inverse link function for
cross-entropy. When F L C  is applied while minimizing a proper

1A proper loss is a loss function that both predicts the binary classification
label as well as provides an estimate of the probability that an example will
have positive label. Proper losses are called proper composite losses when a
link function is used to map the output of the predictor to the interval [0,1] in
order for the output to be interpreted as a probability [32].
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composite loss function, [31] notes that the minimizer of the
corrected loss under the noisy distribution is the same as the
minimizer of the original  loss under the clean distribution:

TA B L E   I
ACCURA C Y  PER   D EMOGR APHI C   SUBG ROUP WIT HOUT  R ANDOMIZ E D

R E SPONSE

θ =  arg min LFL C(Z ,  θ) =  arg min Lψ(Z ,  θ) (4)
Income

Male Female

Employment

White       Non-White

In other words, the learned model  will make correct predic-
tions on future non-randomized test data. For brevity, we refer
readers to [31] for an in-depth discussion of FLC. We note that
in Section V  we use F L C  when image data is being tested and
the reconstruction method of Eq. 1 in all other cases.

LR

NB

LGBM

ResNet-18

.722 .726

.722 .727

.723 .727

UTKFace

White       Non-White

.719 .734

.585 .626

.590 .622

.599 .630

CI-MNIST

Red Blue

.779 .670

V. EXPER IMENTAT ION

In this section,  we empirically validate our claim that
applying R R  to the labels, the features, or the features and
labels has no disparate impact on the accuracy of the resulting
privatized model. We test several different ϵ values, specifically
ϵ =   {0.001,.01,.1,.25,.5,1,2,5}, and we run each image
(tabular) experiment 5 (100) times, reporting the average
results. We provide the code used in our experimentation at
https://tinyurl.com/3jhwd5cc.

A. Datasets

We use the UTKFace [33], CI-MNIST [34], and two
datasets from the Folktables repository [35] (ACSIncome
and ACSEmployment) in our experimentation. The UTKFace
dataset consists of 23,705 face images with annotations of
age, gender, and ethnicity. In experiments using the UTKFace
dataset, we choose gender as the label and ethnicity as
the sensitive attribute. The CI-MNIST dataset is a variant
of MNIST  where the authors introduced different types of
correlations between dataset features and eligibility criterion.
For an input image x ,  the label y  {0,1} indicates eligibility or
ineligibility, respectively, given that x   is even or odd. The
dataset defines the background colors as the protected or
sensitive attributes where blue denotes the underprivileged
group and red denotes the privileged group. In this work, we
let 40% of the 50,000 images have a blue background (20%
of the even images and 60% of the odd) while 60% of the
images have red backgrounds (80% of even, 40% of odd).
The two Folktables datasets ACSIncome (Income) and
ACSEmployment (Employment) are based on the 1-year
American Community Survey Public Use Microdata Sample
(ACS PUMS) from California in 2018. Income is a replace-
ment for the Adult dataset and the task is to predict whether an
individual’s income is above $50,000 after filtering the AC S
PUMS data sample to only include records of those over the
age of 16, who worked at least 1 hour per week, and have an
income of at least $100. After cleaning, the income dataset
has 189,954 data points and we considered gender as the
sensitive feature. The main task of Employment is to predict
whether an individual  is employed, after the AC S  PUMS data
sample is filtered to only include records of people between
the ages of 16 and 90. After cleaning, the employment dataset
has 112,569 data points and we consider race as the sensitive
feature. For all datasets, we used a train/test split of 80/20. We
note that we only apply R R  on the training dataset (either on

VGG-16             .770              .781              .849              .794

DenseNet-169        .768              .768              .862              .761

the labels, features, or features and labels) while the testing
set is left unperturbed and that we only consider binary labels
(and features on tabular data). For brevity,  we leave details of
the exact pre-processing and cleaning steps performed on the
datasets to our GitHub repository.

B. Architecture

We test several architectures to see if the model type has an
effect on the degree of accuracy disparity that occurs between
demographic groups when R R   is applied. Specifically,  we
use ResNet-18,  VGG-16, and DenseNet-169 for images and
logistic regression (LR), Naive Bayes (NB), and LightGBM
(LGBM) for tabular data. We employ the scikit-learn Python
package and for simplicity, all hyperparameters and settings
were set to the default scikit-learn values and each image
model  was trained for 100 epochs. Future experimentation
could consider the effect of hyperparameters on accuracy
disparity when R R  is applied. Table I lists the average accuracy
for each dataset using each model type.

C. Metrics

In this work,  we aim to understand the accuracy disparity
between different demographic groups when LDP via R R   is
applied. Specifically,  we use the absolute difference between
the original accuracy (Acc ) and the accuracy of the model
under R R  (Accrr):

∆ac c  = | A c cor i g  − A c crr| (5)

where  denotes the demographic group being considered.
For example, ∆f denotes the change in accuracy of the
female subgroup when R R   is applied. We calculate ∆ for
each demographic subgroup being considered (e.g., female and
male) and compare the values to analyze the overall accuracy
disparity. Specifically,  we define accuracy disparity as:

D i sp =  |∆ac c  − ∆ac c| (6)

where A,B are the two demographic groups being compared
(e.g., A: male,  B: female or A: white,  B: non-white). While
not a perfect measure for determining disparate impact,  we
choose to use the 80% rule from US discrimination law as
our cut-off (i.e.,  D isp ≤ 0.20) for determining if disparate
impact has occurred on the accuracy or not.
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TA B L E   II
CHANGE   IN A C CURA C Y  WHEN R ANDOMIZ E D   R E SPONSE ϵ-LDP IS  PER FORMED ON T H E   L A B E L S. BLUE: .12 >  |∆ac c  − ∆ac c| ≥ .05.

ϵ

.001 .01 .1 .25 .5 1 2 5

Dataset

UTKFace

CI-MNIST

ACSIncome

ACSEmployment

Model ∆ac c           ∆ac c

ResNet-18            .208 .228

VGG-16              .181          .203

DenseNet-169         .254          .254

ResNet-18            .645          .540

VGG-16              .723          .657

DenseNet-169         .741          .627

LR                    .216          .214

NB                  .219          .217

LGBM               .216          .226

LR                    .088          .123

NB                  .094          .118

LGBM .100 .130

∆ac c           ∆ac c

.202          .214

.165          .185

.238          .253

.640 .543

.671 .592

.730 .637

.170 .151

.162 .146

.178 .203

.088 .118

.093 .114

.100 .128

∆ac c           ∆ac c           ∆ac c

.172          .183          .127

.161          .171          .107

.187          .187          .112

.627 .513 .566

.274 .299 .129

.709 .620 .629

.049 .065 .038

.048 .063 .050

.066 .072 .056

.042 .075 .024

.044 .078 .029

.083 .105 .061

∆ac c           ∆ac c

.122          .057

.113          .043

.108          .045

.489 .396

.163 .077

.539 .362

.075 .035

.071 .056

.065 .057

.059 .022

.067 .025

.076 .045

∆ac c           ∆ac c           ∆ac c

.058          .015          .021

.046          .010          .010

.040          .014          .006

.359 .092 .084

.103 .033 .047

.329 .055 .051

.079 .035 .079

.080 .058 .080

.070 .059 .079

.053 .018 .050

.065 .023 .065

.062 .035 .062

∆ac c           ∆ac c           ∆ac c           ∆ac c

.005          .005          .009          .003

.002          .004          .004          .001

.007          .004          .009          .003

.018 .012 .016 .025

.011 .013         .0004 .001

.006 .005 .007 .012

.035 .080 .035 .058

.059 .081 .058 .080

.063 .081 .064 .080

.018 .047 .018 .046

.023 .066 .023 .065

.029 .059 .032 .058

D. Applying RR on the Labels

First, we examine the setting where R R  ϵ-LDP is performed
on the labels only while the features of the training dataset
are left un-perturbed. We note that we perform reconstruction
on the noisy data using Eq. 1 on the two tabular datasets
and by using F L C  on the two image datasets. The results
are shown in Table II. Here, the results listed in blue mean

0.12 >   |∆A             − ∆B | ≥ 0.05. In other words, the dif-
ference between the two demographic groups’ changes in
accuracy is above 0.05 but below 0.12. All other results have

|∆A     −∆B | <  0.05. We find that when R R  is performed on
the labels only, no absolute difference is above 0.12. Further,
most of the experimental results fall below 0.05 meaning
that little disparity occurred between the two demographics’
changes in accuracy, and according to the 80% rule, disparate
impact did not occur. In fact, the only time the accuracy
disparity was above 0.05 was when the labels of the CI-
MNIST dataset were perturbed with small ϵ values (ϵ ≤ 0.25).
This higher accuracy disparity on the CI-MNIST dataset is not
surprising. The CI-MNIST dataset has a total of 10 classes,
and the distribution of the minority class to the majority class is
non-uniform over all 10 classes. As ϵ → 0, the model
simulates random guessing and since the red class started with
higher accuracy, there was a bigger difference between the
random guessing accuracy (10%) and the starting accuracy.
Overall,  it is clear that performing R R  ϵ-LDP on the labels
does not cause disparate impact on the privatized model’s
accuracy for different demographic groups.

E. Applying RR on the Features

In this section,  we test the effect of applying R R  ϵ-LDP
with reconstruction by Eq. 1 on the features of the training
data while leaving the labels unperturbed. Note, in this section
as well as the following we only perform experimentation on
the tabular datasets. We select three features to perturb on
each of the tabular datasets: age, sex, and race. We note that
each feature is perturbed with ϵ-LDP making the total privacy
budget 3ϵ. The results are shown on the top row of Fig. 1.
For the Income dataset, the highest difference in accuracy

(a) Income (b) Employment

(c) Income (d) Employment

Fig. 1. Change in accuracy when randomized response ϵ-LDP is performed on
the features (top) or features and labels (bottom). LR: logistic regression, NB:
Naive Bayes,  LGBM: LightGBM. From left to right: income (F: female, M:
male) and employment (W: white, NW: non-white).

occurred when ϵ =  0.01 on the logistic regression model. In
this setting D isp =  0.056, which is still fairly minimal and
falls well below threshold suggested by the 80% rule. The
next highest D isp value, 0.044, also occurred on the logistic
regression model  when ϵ ≥ 1. On the other two models, the
highest D isp was 0.028 and, overall, the smallest D isp value
was 0.005 which occurred at ϵ =  0.1 on the LGBM model.
The Employment dataset had slightly higher overall  D isp
values. The highest D isp value was 0.064 at ϵ =  0.5 on the
Naive Bayes model. The lowest D isp values was 0.016 at ϵ =
1 on the LGBM model. In general, neither the model used, or
the value of ϵ, had large effect on the disparity experienced
between the change in accuracy of the two demographic
groups and we conclude that performing R R  ϵ-LDP on the
features only does not have disparate impact on
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the privatized model’s accuracy.

F. Applying RR on the Labels and Features
In this section, we combine the settings of the previous

two experiments and test the effect of applying R R  ϵ-LDP
with reconstruction by Eq. 1 on the features and the labels of
the training data. The same three features as denoted in
Section V-E are used and again, RR-based ϵ-LDP is applied
independently on each feature as well as the label making
the total privacy budget 4ϵ. We display the results of this
experiment on the bottom row of Fig. 1. For the Income
dataset, the highest D isp value was 0.044 and occurred when
ϵ ≥  1 on the logistic regression model. Additionally, the
smallest D isp value, which was 0, also occurred on the logistic
regression model at ϵ =  0.5. The Employment dataset, as
in the previous experiment, again experienced higher D isp
values. Specifically, the highest D isp value was 0.084 at
ϵ =  0.5 on the logistic regression model and the smallest
Disp value was 0.028 at ϵ =  0.25 on the LGBM model. In
general, these values are still well below the 0.2 threshold,
and we conclude that performing R R  on both the features
and labels does not cause disparate impact on the privatized
model’s accuracy for different demographic groups.

V I . CO N C L U S I O N

In this work, we empirically showed that performing ran-
domized response does not cause disparate impact on the dif-
ferentially private model’s accuracy for different demographic
subgroups. Specifically, for both tabular and image datasets,
several different model architectures, and a variety of ϵ values,
we showed that the absolute difference in utility loss for
different demographic groups is negligible when randomized
response is applied to the labels, the features, or the features
and labels. In future work, we will explore the accuracy dispar-
ity experienced between different subgroups when advanced
local differential privacy techniques are applied.
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