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Abstract—The shift between the training and testing distribu-
tions is commonly due to sample selection bias, a type of bias
caused by non-random sampling of examples to be included in
the training set. Although there are many approaches proposed to
learn a classifier under sample selection bias, few address the case
where a subset of labels in the training set are missing-not-at-
random (MNAR) as a result of the selection process. In statistics,
Greene’s method formulates this type of sample selection with
logistic regression as the prediction model. However, we find
that simply integrating this method into a robust classification
framework is not effective for this bias setting. In this paper, we
propose BiasCorr, an algorithm that improves on Greene’s
method by modifying the original training set in order for a
classifier to learn under MNAR sample selection bias. We provide
theoretical guarantee for the improvement of BiasCorr over
Greene’s method by analyzing its bias. Experimental results on
real-world datasets demonstrate that BiasCorr produces robust
classifiers and can be extended to outperform state-of-the-art
classifiers that have been proposed to train under sample selection
bias.

Index Terms—Robust classifier, missing-not-at-random, sample
selection bias

I . INTRODUC T I ON

Dataset shift [16] describes the phenomenon in which the
training and testing sets come from different distributions.
One scenario that can cause dataset shift is sample selection
bias, where an example is non-uniformly chosen from the
population to be part of the training process. This type of bias
can ultimately cause a set of training examples to be partially
observed, where any of the covariates or label of an example
is missing, or even completely unobserved. As a result, the
performance of classifiers that are trained using a dataset
subject to sample selection bias will be degraded. Most works
have proposed solutions to problems dealing with missing-at-
random (MAR) bias [3], [13], [23], where the selection of
samples is assumed to be independent from the label given
the observed variables in the training set. However, these
proposed solutions cannot properly account for the missing-
not-at-random (MNAR) setting, where the selection of samples
is assumed to not be independent from the label given the
observed variables in the training set.

In this paper, we focus on MNAR sample selection bias on
the label. One classic method proposed to account for MNAR

sample selection bias on the label is the Nobel Prize winning
Heckman’s two-step method [9]. Heckman’s method models
the prediction and selection of samples as linear equations,
where their relationship lies in the correlation between the
noise terms. The method constructs an unbiased model by
first estimating inverse Mills ratio (IMR) using the selection
features and then incorporating it as a new noise term in the
prediction equation. Due to its short computation time and
effectiveness on bias correction, Heckman’s method has been
a popular choice for solving linear regression under MNAR
sample selection bias. However, applying Heckman’s method
in the classification context is difficult. This is because the
assumptions made for the use of the IMR may not be present
in classifiers, causing them to perform inconsistently [18].

The joint likelihood approach [15] addresses this challenge
by fitting the selection and prediction simultaneously using
full information maximum likelihood (FIML) estimators. In
this work, we specifically examine the task of estimating
this likelihood using Greene’s method [8]. As a general
framework for non-linear regression models under MNAR
sample selection bias, Greene’s method was one of the first
methods to approximate the joint likelihood in order to reduce
computational complexity. We find that although the method
provides a first-order optimization process to produce an
optimal solution, the minimization of its loss function over
the biased training set does not take samples with missing
labels into account. Thus, Greene’s formulation alone cannot
be used as an objective function when attempting to learn a
classifier robust to MNAR sample selection bias.

A. Problem Definition

Formally, let X  be the feature space and Y  be the binary tar-
get attribute. We first consider the training set D t r  =  ft i gn

of n samples that are originally sampled from the population
to be modeled yet biased under MNAR sample selection bias.
Each sample ti is defined as:

(
(xi ; yi ; si  =  1)     1  i   m

i (x i ; s i  =  0) m +  1  i   n

where the binary variable si     indicates whether or not yi is
observed for a training sample. Let D s  denote the set
containing the first m training samples where each sample is
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fully observed and D u  be the set that contains the remaining
n      m training samples with unobserved labels.

We consider the following definition to formally describe
the MNAR sample selection bias scenario on Dt r :

Definition 1 (MNAR Sample Selection):
Missing-not-at-random occurs for a sample ti      if si       is
not independent of yi given x i ,  i.e. P (si jx i ; yi )  =  P (si jx i ) .
This means that si  may depend on x i  and yi . For Greene’s
method, the selection mechanism is expressed in terms of
a set of selection features to model the missingness of yi

for a training sample. These selection features are observed
for all training samples. Thus the following assumptions are
additionally made in this work:
(i) Given a set of selection features x ( s )   x i ,  P (si jx i ; yi )  is

approximated by computing P (s i jx ).
(ii) The set of selection features includes every prediction

feature, i.e. x ( s )   x ( p ) .
Problem Statement. Given a set of prediction features x ( p )   x i ,
we seek to train a binary classifier h(x(p) ; ) with param-eters
that learns to minimize a loss function over the biased training
set Dt r .

B. Contributions

We summarize the core contributions of our work as fol-
lows. First, we propose BiasCorr to address training a robust
classifier where some labels in the training set are MNAR due
to sample selection bias. BiasCorr extends Greene’s method to
improve the performance of the robust classifier by assigning a
soft selection value and pseudolabel to each unlabeled training
sample. Second, using the soft selection value, we derive a
condition based on the proportion of unlabeled samples in
the training data to theoretically guarantee that BiasCorr is
less biased than Greene’s method whenever the condition is
satisfied. Third, we extend BiasCorr to train a robust classifier
given a training set of labeled samples that come from a biased
source distribution and a testing set of unlabeled samples
that come from an unbiased target distribution. Fourth, we
provide empirical results on real-world datasets to confirm
that BiasCorr trains classifiers that are robust against MNAR
sample selection bias and can be extended to outperform state-
of-the-art classifiers trained under sample selection bias.

I I . R E L AT E D  WO R K

Heckman’s method and its variants have been widely used
for different applications to handle MNAR sample selection
bias (see a comprehensive survey [21]). Despite its popularity,
Heckman’s method has some key limitations when applied
to non-linear regression models. First, for non-linear models,
this noise term of the prediction equation does not contain
the IMR [18]. Second, the IMR may be incorrectly specified
given the collinearity between the coefficients of the selection
and prediction equations [17]. In the area of fair machine
learning, [5] formulated a fair regression model under the
assumption that a subset of training outcomes are MNAR.
The model adopts Heckman’s method as part of its framework

to account for sample selection bias. Unlike these approaches,
where the dependent variable is assumed to be continuous, our
approach handles sample selection bias where the dependent
variable is categorical. As closed-form solutions do not exist
for likelihood equations maximized for logistic regression
models, we depend on iterative optimization techniques in
order to learn a classifier under MNAR sample selection bias.

Most research works in the area of learning under sample
selection bias fall in the category of MAR bias. Approaches
proposed in these works often incorporate ideas of importance
weighting [2], [23] and minimax estimation [10], [13]. These
approaches generally assume a labeled training set of biased
samples and an unlabeled testing set of unbiased samples [2].
As we address MNAR bias, we differ from these assumptions.
In our study, we assume that the testing set cannot be accessed
during training and that the training set contains a mixture of
labeled and unlabeled examples given that the labels are non-
randomly selected.

Our problem setting is related to other machine learn-ing
tasks. In recommender learning, [22] proposed the joint
learning of imputation and prediction models to estimate
the performance of rating prediction given MNAR ratings.
While the approach in [22] also uses a separate propensity
estimation model to predict label observation, it considers
matrix factorization as the prediction model, which is not
for binary classification on tabular data. In semi-supervised
learning [20], where a training sample is treated differently
based on whether the sample has a label or not, [11] employed
class-aware propensity score and imputation strategies using
pseudolabels to develop a semi-supervised learning model that
is doubly robust against MNAR data. This approach computes
the probability of label missingness for a training sample in
terms of a class prior. On the other hand, our approach does
not require a class prior to compute the probability of label
missingness for a training sample.

I I I . G R E E N E ’ S METHOD R E V I S I T E D

A. Sample Selection Model
For any ( x  ; y )  2  X   Y ,  the selection equation of the ith

sample is z     =  x ( s )  +  u(s) , where  is the set of regression
coefficients for selection, x ( s )  is the set of features for sample
selection, and u(s)   N (0; 1) is the noise term for the selection
equation. The selection value of the ith sample si is defined
as: (

si =
0 zi  0

(2)

The prediction equation f (y i jx( p ) ; i )  of the ith sample is
based on logistic regression with

f (y i  =  1jx ( p ) ; i )  =  
1 +  exp(x(  

+
+  i )

(3)

where  is the set of regression coefficients for prediction, x ( p )  is
the set of features for prediction, and i  is the noise term for the
prediction equation, with  as the standard deviation of
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the term and   N (0; 1) as a random variable. We express  as
u(p) , where u(p)  N (0; 2). In our work, we let h(x(p) ; ) =
f (y =  1jx(p) ;  ).

The noise terms u(s)  and u(p) are assumed to be bivariate
normal, i.e. u(s)  =   + 1      2v , where  is the correlation
coefficient between u(s)  and u(p) and vi      N (0; 1) is a
random variable independent to i .

B. Loss Function
From the above sample selection model, the loss function

n

L  =   log f (y i ; s i j x ( p ) ; x ( s ) ) (4)
i = 1

over D is then derived. The joint density function
f (yi ; s i jx ( p ) ; x ( s ) )  is expressed as

f (y i ; s i j x ( p ) ; x ( s ) )  =
1  

f (y i ; s i j x ( p ) ; x ( s ) ; i )   f ( i )d i         (5)
     1

Both yi and si are independent when conditioned on i . Thus,

f (y i ; s i  =  1jx ( p ) ; x ( s ) ; i )  =  f (y i jx ( p ) ; i )P (s i  =  1jx ( s ) ; i )  (6)

For si =  0, where yi is missing,

f (y i ; s i  =  0jx ( p ) ; x ( s ) ; i )  =  P ( s i  =  0jx ( s ) ; i ) (7)

Because u(s)  and u(p) are bivariate normal, we have

P (s i jx ( s ) ; i )  =  (2s i    1)
x ( s )  +  i  

!

(8)

where ()  is the standard normal cumulative distribution
function. Since i   N (0; 1), f ( i )  is ( i ),  where ()  is the standard
normal density function. Thus, Eq. (5) is rewritten as

f (y i ; s i j x ( p ) ; x ( s ) )  =
1  

[(1   s i )  +  s i f (y i jx ( p ) ; i ) ]   P ( s i j x ( s ) ; i )   ( i )d i         
(9)

     1

using Eq. (6), Eq. (7), and Eq. (8). Thus the negative log-
likelihood function L  over n training data samples is

L  =       
1 

i = 1  

log 
Z

     1
[ ( 1    s i )  +  s i f (y i jx ( p ) ; i ) ]

(10)

P (s i jx ( s ) ; i ) ( i )d i

L  needs to be minimized with respect to ; ; ; and . Given that the
computation of Eq. (10) is intractable, the simulation approach
from [19] is used to minimize an approximate form of L ,
denoted

L  =       
1

l i (11)
i = 1

where

l i  =  log 
1 X

[ ( 1    s i )  +  s i f (y i jx ( p ) ; i r ) ]   P ( s i j x ( s ) ; i r )  (12)
r = 1

This approach involves taking R  random draws i r  from the
standard normal population for each ti . As long as R  is greater
than n, then asymptotically L  =  L .  A  proof of this claim is
provided in [7].

C. Optimization
Iterative first-order optimization techniques such as stochas-

tic gradient descent can be used to solve Eq. (11) and obtain
an estimate  for the classifier h. We note that the gradient
of Eq. (12) with respect to  for the ith training sample is
expressed as

r l i  =  
1 1 X

s i   P ( s i j x ( s ) ; i r )   f (y i jx ( p ) ; i r )
i r = 1 (13)

 x ( p )   
@ f (yi jx(p) ; i r )

We also apply the first-order optimization techniques to com-
pute the other estimated parameters in Eq. (11), namely , ^, and
.̂

I V. RO B U S T C L A S S I FI C AT I O N UNDER MNA R S A M P L E
S E L E C T I O N B I A S

Despite Greene’s method incorporating a sample selection
model towards fitting logistic regression, the task of training a
robust classifier h over D t r  under MNAR sample selection bias
cannot be accomplished using this method. We specifically
note a key issue in the optimization process. For any sample
in the training set such that si =  0, the value of Eq. (13) is 0,
meaning that r l i  would account for only samples such that yi

is observed. Thus, using a first-order optimization technique
to solve Eq. (11) does not result in an iterative solution  such
that the classifier h(x(p) ; ) is robust against MNAR sample
selection bias on the label.

However, learning a robust classifier under MNAR sample
selection bias can still be achieved by making improvements
to Greene’s method. First, we can refine the selection value of
each sample in D u  to have a soft value in order to include
information regarding the losses of samples in D u      when
optimizing the classifier. While making the refinement, we still
assume that each sample in D s  is assigned si =  1. Second,
we can impute the missing labels in D u  with pseudolabels to
further improve Greene’s method.

A. BiasCorr
To ensure that we learn classifiers that are robust to MNAR

sample selection bias, we introduce BiasCorr, a framework that
addresses the challenge of training a classifier using Greene’s
method. In BiasCorr, we ensure that the losses of samples with
missing labels are included in the optimization process. Using
this framework, we train h(x(p) ; ) to minimize L0 , which is
an enhanced version of Eq. (11), over a modified training set
D0 . We make these modifications while conforming to the
original MNAR conditions on the label. Figure 1 gives an
illustration of the process to obtain D0 .

Using the same assumptions as Greene’s method on the
training set Dt r ,  BiasCorr assigns both an estimated soft
selection value s and a pseudolabel y~ to each sample in Du ,
resulting in h training to minimize the equation

n R

L 0  =   log [(1 s i ) + s i f (y i j x ( p ) ; i r ) ] P ( s i j x ( s ) ; i r )
i = 1 r = 1

(14)
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Fig. 1. Process of producing D t r  using BiasCorr. The boxes outlined in red indicate the parts of D t r  used to train gs and gy .

Algorithm 1 BiasCorr(gs; gy )
Input: Original training set
D t r  =  f(x i ; y i ; s i  =  1)gi =1  [  f (x i ; s i  =  0)g i = m + 1 ,  gs, gy

Output: Estimated classifier parameters

1: D s f(x i ; y i ; s i  =  1)gm

2: D u f (x i ; s i  =  0 )g i = m + 1
3:

4: Train classifier g (x ( s ) ; )  on D      to predict s 5:

Train classifier gy (x(p) ; ) on D s  to predict yi
6: for t 2  D  do
7: p(s) g (x ( s ) ; )
8: y~ 1[gy (x(p) ; ) >  0:5]
9: end for

10: s      1     n p(s )

11: for i  2  fm +  1; : : : ; ng do
12: D0 D0 [  f(xi ; y 0 =  y~ ; s0 =  s)g
13: end for
14: D0 D  [  D0

15: Train h(x(p) ; ) to minimize L0 using D0
r and obtain  16:

return

over D t r  =  D s  [  Du ,  where

0               1     ti 2  D s

s     ti 2  D u

and (

yi =
y~ ti 2  D u

(16)

To estimate the soft selection value s, we start by computing
the probability p(s)  of predicting si =  1 for all samples in
D  . This is based on our observation that the value of P (s =
1jx( s ) ; i )  is not always equal to 0 for a tuple in Du ,  where the
ground truth selection value is s =  0. In our framework, we
train a separate binary classifier gs (x ( s ) ; )  on D t r  to predict

s and obtain p(s)  based on predictions using D  . We then get a
fixed soft selection value by taking the average value of p(s)  for
all samples in Du .

The pseudocode for BiasCorr is provided in Algorithm 1. In
line 4, we first train gs on D t r  to predict the original ground-
truth selection value s . In line 5, we train another binary
classifier gy (x(p) ; ) with parameters  on D s  to predict the
ground-truth label y . To add samples to D0 , in line 7, we
evaluate gs and obtain the probability p(s)  for each sample in
Du .  In line 8, we use the prediction from the evaluation of gy
on each sample in D  to obtain a pseudolabel y~ . In line 10,
we compute the average s of p(s)  of each sample in Du .  In line 12,
we add each tuple (xi ; y~ ; s) to D0 , where each x i  is taken from
D  . In line 15, using D0      we obtain  after minimizing Eq. (14)
such that h(x(p) ; ) is robust against non-random sample
selection bias on the label.

The computational complexity of Algorithm 1 trivially
depends on the complexity of training gs, gy , and h to
convergence. Similar to the training of h using Eq. (11), the
complexity of training h by minimizing Eq. (14) is O(T n),
where T is the number of iterations for training h.

We further note that the types of models used to train gs
and gy are listed as inputs to Algorithm 1. In our work,
we experiment with training gs using the probit and logistic
regression models. Compared to logistic regression models,
which are based on the sigmoid function, probit models use
the normal cumulative distribution function to model binary
classification. For gy , we consider logistic regression and
multi-layer perceptron.

B. Bias Analysis Regarding Loss Function

In this section, we analyze the bias of the loss function
estimator for both Greene’s method and BiasCorr. We compare
the two biases and show that our BiasCorr algorithm further
reduces the bias for classification performance estimation
given that the ratio of the unlabeled training set is larger than a
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threshold. We first define the optimized negative log-likelihood
loss function where the training data D t r  is fully observed:

n

L  =       
jDt r j  

i 2 D t r  

log P (y i jx i )  =       
n 

i = 1  

log f (y i j x ( p ) )      (17)

where f (y i jx ( p ) )  takes the form of logistic regression. The
bias of an arbitrary loss function estimator L  is defined as:

Bias(L) =  L       E D t r  [L] (18)

Given jDtr j =  n and jDs j =  m, we further define
the missingness ratio of the unlabeled training samples as
=  jDu j=jDtr j =  1   m . We also denote p(si ) as the
ground truth selection probability for each tuple t based
on its selection features x ( s )      and the expectation of the
estimated selection model P (s jx ( s ) ;  )  and prediction model
f (y jx(p) ;  )  over R  random draws on the error terms as
p̂ (si ) and f (y i jx ( p ) )  respectively. We next formally derive the
bias of the loss function estimators from Greene’s method and
BiasCorr in the following two lemmas:

Lemma 1 (Bias of Greene’s method estimator): Given the es-
timated selection model p̂ (si ) and outcome model f (y i jx(p) ),
the bias of the loss function estimator for Greene’s method
shown in Eq. (11) is:

Bias(L) =  
n 

i = 1  

log 
p̂ (si ) +  p(s i ) p̂ (s

j

)(f (y i jx( p ) )    1)
     (19)

Lemma 2 (Bias of BiasCorr estimator): Given the definitions
of s0; s; and y0 in Section IV-A, the bias of the BiasCorr loss
function estimator shown in Eq. (14) is:

n ( p )

Bias(L0 ) =  
n         

log 
p̂(s0 ) +  (p(s )  +  s)p̂ (s0 )(f (y 0 jx(p) )   1)

(20)

Note that both Bias(L) and Bias(L0) are non-zero even if the
estimated selection and outcome models are accurate, that is,
p̂ (si ) =  p(si ) and f (y i jx( p ) )  =  f (yi jx(p ) ).  According to the
design of the log-likelihood loss function in Eq. (10), Greene’s
method estimates the likelihood function f (y ; s jx ( p ) ; x ( s ) )
by computing f (y i jx ( p ) )   p̂ (si ) for samples in D s  and p̂ (si ) for
samples in Du .  Due to the fundamental difference between
selection and prediction models, it is very challenging to
derive an unbiased estimator for the loss function based on
Greene’s method. However, by applying the modification from
BiasCorr, we are able to further reduce the bias for the
loss function estimator on classification tasks based on an
assumption on the ratio . We list our main theorem that
compares the biases of the two methods as follows:

Theorem 1: Given a training dataset with labeled and
unlabeled tuples D t r  =  D s  [  Du ,  suppose f (y i jx( p ) )  takes
the form of logistic regression, and there is no bias caused by
the estimated selection model for both Greene’s method and
BiasCorr. If the ratio of the unlabeled training data  is larger
than 1=(2      s), we have

Bias(L0) <  Bias(L)

TA B L E  I
D AT A S E T  AT T R I B U T E S  A N D S TAT I S T I C S .  P R E D I C T I O N F E AT U R E S  A R E  IN

I T A L I C  F O N T W H I L E  S E L E C T I O N  F E AT U R E S  A R E  IN E I T H E R  I T A L I C  O R
R E G U L A R  FONT. TA R G E T  AT T R I B U T E  I S  B O L D E D  F O R E A C H  D AT A S E T .

Dataset       Attrbutes j D t r j  Adult
Age, Target, Education-Num,, Cap Gain, 45,222       0.7476
Hrs per week, Country Canada, Rel Not-in-fam,
Occ Adm-clerical, Occ Sales, Rel Husband,
Occ Craft-repair, Rel Unmarried, Rel Other-rel,
Occ Armed-Forces, Rel Own-child,
Occ Other-service, Occ Protect-serv, Cap Loss,
Occ Prof-spec, Occ Tech, Rel Wife,
Occ Exec-manager, Occ Farm-fish, Marital Status,
Occ Mach-op-inspct, Occ Priv-serv,
Occ Handlers-cleaners, Occ Transp, Workclass

German       status checking, duration, credit history, credit amt, 1,000 0.2314
savings acct, telephone, liable, other plans,
last employment, age, status and sex, foreign worker,
last residence, property, existing credits, good customer

Drug Age, Gender, Education, Country, Cscore, Impulsive, 1,885 0.6520
Ethnicity, Nscore, Escore, Oscore, Ascore, SS, Benzos

To obtain the result in Theorem 1 we consider the difference
between the two biases and analyze the terms after subtracting
Bias(L) by Bias(L0). We first decompose the difference and
derive the inequality as follows:

Bias(L)   Bias(L0 )

s      1   s   
1 

n      

2p(s i ) +
 1 

n      

f (y i jx ( p ) ) (2p(s i )  +  s)
 
|

{ z i = 1 } |     i = 1 {z }
term 1 term 2

(21)

According to Eq. (21), we find that if terms 1 and 2 are
positive, the BiasCorr estimator is guaranteed to achieve lower
bias than the estimator for Greene’s method. Both f (y i jx ( p ) )
and p(si ) lie in (0; 1) for each tuple ti , so term 2 is positive
after summation and averaging over all ti . Our theoretical
analysis shows that to guarantee the positivity of term 1, the
proportion of the unlabeled training data  needs to be larger
than 1=(2      s). Notice that the condition   1=(2      s) does not
necessarily imply Bias(L0) is larger than Bias(L). We still need
to compare the magnitude of term 1 and term 2, and the value
of term 2 heavily depends on the estimated selection and
outcome models.

Proof details of Lemma 1, Lemma 2 and Theorem 1 can be
found in the Appendix in [14].

C. Extending BiasCorr to BiasCorr

Most algorithms that have been proposed to learn clas-
sification under sample selection bias are trained under the
assumption that the training set D s  =  f (x i ; y i )g m contains
labeled samples that come from a biased source distribution.
Additionally, they assume that there exists a set D N       =
f x i g N of testing samples drawn from an unbiased target
distribution. We propose an extension of BiasCorr, BiasCorr,
for this setting. We do so by augmenting the original set of
labeled training samples using the set of unlabeled samples
from the target distribution. Specifically, given D s  and D N  ,
we construct an augmented training set Da u g  =  D s  [ D u  of n
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TA B L E  II
P E R F O R M A N C E O F B A S E L I N E S  C O M PA R E D T O B I A S C O R R .  H I G H E S T  T E S T  A C C U R A C I E S  A M ON G S S B I A S ,  G R E E N E ’ S  M E T H O D , IPS, D O U B LY RO B U S T,

A N D T H E  F O U R B I A S C O R R  S E T T I N G S  A R E  IN B O L D .

Methods

NoBias
SSBias

Greene’s method [8]
IPS [12]

Doubly Robust [1]
BiasCorr (probit, LR)

BiasCorr (LR, LR)
BiasCorr (probit, MLP)

BiasCorr (LR, MLP)

Adult
Train Acc. (%) Test Acc. (%)
86.57  0.00 86.57  0.00
77.56  0.00 62.44  0.00
62.94  0.07 62.89  0.09
77.84  0.21 71.86  0.23
93.69  0.05 85.21  0.06
86.84  0.02 70.05  0.04
87.36  0.04 69.84  0.04
94.08  0.02 85.68  0.01
93.45  0.01 85.79  0.02

German
Train Acc. (%) Test Acc. (%)
73.29  0.00 72.67  0.00
75.28  0.00 69.33  0.00
72.77  0.47 69.67  0.30
75.62  0.27 70.06  0.32
81.88  0.14 70.46  0.27
79.97  0.14 71.60  0.13
80.11  0.25 71.07  0.13
79.69  0.40 71.27  0.25
79.69  0.50 71.00  0.21

Drug
Train Acc. (%) Test Acc. (%)
69.83  0.00 69.08  0.00
77.78  0.00 66.78  0.00
68.89  0.27 66.71  0.33
77.84  0.10 67.40  0.26
89.14  0.48 67.62  0.15
87.93  0.07 69.22  0.02
88.89  0.09 67.81  0.17
86.19  0.06 67.39  0.09
85.97  0.13 67.77  0.14

samples, where D u  contains samples that are uniformly drawn
from D N  and n >  m.

To obtain Daug , we first randomly draw n samples uni-
formly from D N  , where n >  m. Let D n  denote this set
of n samples1. To construct Du ,  we compare the empirical
frequencies of D s  and Dn ,  which follows a similar procedure
as [3]. For a distinct sample t, let D t  be a subset of D s  that
contains all instances of t and at =  jDt j. We similarly define
D t  and bt for Dn .  Until D u  contains n      m samples, we add
bt   at random samples from D t  to D u  for each t such that
bt >  at.

We note that choosing n as the size of Da u g  is significant
in determining the performance of estimating the selection
probability and the efficiency of BiasCorr. First, the following
lemma from [3] shows the error of using a t      as an estimate of
the selection probability P (si  =  1jt).

Lemma 3: [3] Let  >  0. Let a0 be the number of distinct
samples in D s      and p0      =  

t  
min P (t) =  0. Then, with

probability at least 1   , the following inequality holds for all
distinct t 2  D  :

s

P ( s i  =  1jt)   
bt 

 log 2a +  log  (22)

Here we see that for a given number of distinct samples in
Ds ,  the error of estimating P (si  =  1jt) depends on the value
of p0n, which equals the number of occurrences of the least
frequent sample in Daug . This value is dependent on the set
Du , which may include samples t that are not in Ds .  Second,
the computational complexity of generating Da u g  is bounded
by n, where in the worst case D n  has n distinct samples and
the last n      m samples in D n  are added to Du .

V. E X P E R I M E N T S

A. Experiments on BiasCorr

We evaluate the performance of our proposed algorithms on
the Adult, German, and Drug datasets [6]. The attributes and
statistics used for each dataset are listed in Table I. We choose
70% of samples in each dataset to generate the original training
set Dt r .  We work with two different bias scenario types in our
experiments: one where the condition of  listed in Theorem

1We note that in some cases, N  <  m. To obtain D n ,  we draw n  samples
from D N  with replacement.

1 is satisfied and another where the condition is not met. To
create the sample selection bias on D t r  for the Adult dataset,
we select a training sample to have an observed label if the
years of education is more than 12. For the German dataset, we
select a training sample to be fully observed if the person has
been employed for more than 1 year. For the Drug dataset, we
create the sample selection bias scenario for D t r  by selecting
individuals whose Oscore is at most 43.
Baselines and Implementation. We compare BiasCorr to
the following baselines: (a) logistic regression without sample
selection bias (NoBias), which is trained using D t r  where all
samples in D t r  are fully observed, (b) logistic regression with
sample selection bias (SSBias), which is trained using Ds ,
(c) logistic regression with sample selection bias correction
based on Greene’s method, which is trained using the set
D s  [ D u  where all samples in D u  have non-randomly missing
labels, (d) inverse propensity scoring (IPS) [12], where the
optimized loss function is reweighted with the reciprocal of
the selection probability, and (e) Doubly Robust [1], where all
labels in D u  are imputed and the loss is reweighted based on
IPS. Compared to BiasCorr, IPS and Doubly Robust do not
consider the correlation between the prediction and selection
equations. Our models and all baselines are implemented using
Pytorch. The prediction and selection coefficients  and  are
initialized to zero while  and  are initialized to 0:01. The
number of random draws R  is set to 200. Our source code can
be downloaded using the link https://tinyurl.com/4kvux87n.
Results. Table II  shows the training/testing accuracy of each
model. We report average accuracies and their standard devi-
ations over 5 runs. We first see that while the change in train-
ing accuracies is different for each dataset when comparing
NoBias and SSBias, NoBias outperforms SSBias by 24.13%,
3.34%, and 2.30% when considering the testing accuracy
for the Adult, German, and Drug datasets, respectively. This
shows that the utility of the logistic regression model is
reduced when trained on Ds .  We also see that Greene’s method
does not outperform SSBias by much when evaluated on the
testing set. For instance, when looking at the results for the
Adult dataset in Table II, the testing accuracy of Greene’s
method is 0.55% higher than SSBias while the testing accuracy
of NoBias is 24.13% higher. This demonstrates that a classifier
is not robust to MNAR sample selection bias when learning
to optimize Eq. (11).
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TA B L E  II I
E M P I R I C A L  M I S S I N G N E S S R AT I O  C O M PA R I S ON.

Dataset
Adult         0.7476

German       0.2314
Drug          0.6520

1=(2   s)  (probit for gs )
0.5868
0.6345
0.7159

1=(2   s)  ( L R  for gs )
0.5738
0.6233
0.5976

TA B L E  I V
E X E C U T I O N T I M E S ( IN S E C O N D S ) .

Method                      Adult
Greene’s method              93.53

BiasCorr (probit, LR)          94.59
BiasCorr (LR, LR)             99.62

BiasCorr (probit, MLP)       112.17
BiasCorr (LR, MLP)         112.90

German       Drug
2.06 3.14
1.84 2.85
1.87 2.28
1.86 2.69
1.87 2.26 (a) Adult. s =  0:2957 (probit) and s =  0:2571 (LR).

More importantly, we observe that BiasCorr, under all 4
pairs of settings for gs     and gy , outperforms SSBias and
Greene’s method. Using the German dataset as an example,
BiasCorr(LR, MLP) has the lowest test accuracy out of the
four BiasCorr settings after training on the dataset. Despite
this, BiasCorr(LR, MLP) outperforms SSBias by 1.67% on the
testing set. This difference is higher than the 0.34% margin
when comparing Greene’s method to SSBias.

Furthermore, we see that BiasCorr outperforms IPS and
Doubly Robust for most pairs of settings for gs and gy . For
instance, on the Drug dataset, the average testing accuracies
of BiasCorr(probit, LR), BiasCorr(LR, LR), and BiasCorr(LR,
MLP) are higher than that of IPS and Doubly Robust.

We also examine the values of  and 1=(2   s) in Table I I I
based on this experiment. Using gs     on probit as an
example, we see that the value of 1=(2   s) is 0.5868 for
the Adult dataset. We also observe that, as shown in Table II,
BiasCorr(probit, LR)  and BiasCorr(probit, MLP) outperform
Greene’s method by 7.16% and 22.79%, respectively. As
>  1=(2   s) for the Adult dataset, the result validates our
theoretical comparison of BiasCorr and Greene’s method. For
the other two datasets, we see that the value of 1=(2   s) is
not less than . However, BiasCorr still outperforms Greene’s
method across all 4 combinations of settings for gs     and
gy . This shows that our BiasCorr algorithm, which improves
Greene’s method by incorporating pseudolabel generation and
a soft selection assignment on samples in Du ,  produces a more
robust classifier against MNAR sample selection bias.
Execution Time. We also report the execution times of
training h using Greene’s method and BiasCorr in Table IV,
where the experiments were conducted on the Dell XPS 8950
9020 with an Nvidia GeForce RT X  3080 Ti. We see that
BiasCorr trains slower than Greene’s method for the Adult
dataset while BiasCorr has a slightly faster execution time
than Greene’s method for the German and Drug datasets.
Sensitivity Analysis. We further evaluate the performance of
BiasCorr by considering different assignments for the soft
selection value s on samples in D0 , up to s =  0:5. In this par-
ticular study, we run Algorithm 1 except we ignore the training
of gs using probit or logistic regression. Figure 2 shows the
results of this experiment over the Adult and German datasets.

(b) German. s =  0:4240 (probit) and s =  0:3957 (LR).

Fig. 2. Evaluation of BiasCorr using different assignments of s on samples
in D u .  Estimates of s obtained after training gs are also given.

TA B L E  V
P E R F O R M A N C E O F B A S E L I N E S  A C R O S S  D I F F E R E N T  VA L U E S  O F

C O M PA R E D T O B I A S C O R R  U S I N G T H E  DRU G D AT A S E T .

Method 1=(2   s) Test Acc. (%)       F1 Score (%)
=  0:5

SSBias                             -                 65.72  0.00       56.70  0.00 Greene’s
method                    -                 65.90  0.27       55.67  0.24 BiasCorr

(probit, L R )           0.6365           68.23  0.38       62.77  0.60 BiasCorr
(LR,  L R )             0.6224           67.95  0.52       61.97  0.82

 =  0:6
SSBias                             -                 68.55  0.00       62.61  0.00 Greene’s

method                    -                 67.63  0.32       60.38  0.51 BiasCorr
(probit, L R )           0.6279           69.40  0.07       65.16  0.06 BiasCorr

(LR,  L R )             0.6167           69.43  0.00       65.19  0.00
 =  0:7

SSBias                             -                 68.37  0.00       59.78  0.00 Greene’s
method                    -                 67.10  0.44       56.92  0.69 BiasCorr

(probit, L R )           0.6258           69.22  0.13       64.92  0.13 BiasCorr
(LR,  L R )             0.6072           69.43  0.16       65.05  0.13

We see that when training gy under both logistic regression
and an MLP, the performance of BiasCorr peaks within the
range of the estimates we obtain by computing the average of
predictions given by gs on samples in Du .

We also evaluate how modifying  on the training set affects
the performance of BiasCorr on the testing set. We look at the
values of 0.5, 0.6, and 0.7 for . We train our method using the
Drug dataset for this experiment. Using testing accuracy and
F1 score as evaluation metrics and logistic regression to train
gy , we report the results of this sensitivity analysis in Table
V. We first see that  >  1=(2   s) when  =  0:7. For  =
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TA B L E  V I
P E R F O R M A N C E O F B A S E L I N E S  C O M PA R E D T O B I A S C O R R .

Methods

RFLearn1 [4]
R BA  [13]

BiasCorr (probit, LR)
BiasCorr (LR, LR)

BiasCorr (probit, MLP)
BiasCorr (LR, MLP)

Adult
Train Acc. (%)      Test Acc. (%)
78.04  0.00 69.68  0.00
77.69  0.00 69.59  0.00
87.10  0.02 69.84  0.07
87.37  0.03 69.75  0.02
94.00  0.35 85.75  0.01
93.78  0.36 85.62  0.02

German
Train Acc. (%)      Test Acc. (%)
76.02  0.00 69.67  0.00
75.84  0.00 67.33  0.00
80.57  0.09 70.47  0.34
80.57  0.16 70.67  0.30
79.66  0.21 70.07  0.13
79.40  0.17 69.87  0.16

Drug
Train Acc. (%)      Test Acc. (%)
75.82  0.00 65.02  0.00
75.82  0.00 65.55  0.00
87.70  0.13 68.52  0.14
87.98  0.11 68.34  0.21
87.20  0.10 68.23  0.13
87.40  0.15 67.99  0.26

0:7, BiasCorr(probit, LR)  and BiasCorr(LR, LR)  outperform
SSBias and Greene’s method based on testing accuracy and
F1 score. For the other two values of , where the condition is
not satisfied, BiasCorr(probit, LR)  and BiasCorr(LR, LR)  still
outperform SSBias and Greene’s method.

B. Experiments on BiasCorr

For the biased training set of labeled samples, we use the
same set D s  that was used in the experiments on BiasCorr
and leave the rest of the samples unlabeled as part of the set
D N  . We fix the number of samples n drawn from D N  to be
the number of samples obtained after splitting each dataset.
Baselines. We compare BiasCorr to the following baselines
that were proposed to learn classification under MAR sam-
ple selection bias where samples from the unbiased target
distribution are unlabeled: (a) a robust non-fair version of
RFLearn1 [4], which considers the empirical frequencies of
each record in D s  and the unlabeled testing set to estimate the
true probability of selection, and (b) the Robust Bias Aware
(RBA) classifier [13], which uses minimax estimation to learn
against a worst-case conditional label distribution.
Results. As shown in Table VI, BiasCorr, under all combi-
nations of settings for gs and gy , outperforms the baselines
when trained on the three datasets. For instance, the testing
accuracy for BiasCorr (probit, LR)  is 3.14% higher than R BA
for the German dataset. These results suggest that BiasCorr
can outperform other classifiers trained under sample selection
bias regardless of the type of model chosen for gs and gy or
the proportion of unbiased, unlabeled samples in Daug .

V I . CO N C L U S I O N

In this paper, we have proposed a framework, BiasCorr,
to learn a classifier that is robust against MNAR sample
selection bias on the label. As a significant improvement to
a formulation previously proposed to model MNAR sample
selection bias, BiasCorr trains a robust classifier after learning
separate classifiers to predict pseudolabels and estimate a
soft selection value assignment for these samples. Theoretical
analysis of the bias of BiasCorr provides a guarantee for this
improvement based on the level of missingness in the training
set. Experimental results on real-world datasets demonstrate
not only the robustness of classifiers under this framework,
but also their better performance than baselines. In the future,
we plan to extend this framework to learn more complex non-
linear regression models such as kernel ridge regression.
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