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Abstract—The shift between the training and testing distribu-
tions is commonly due to sample selection bias, a type of bias
caused by non-random sampling of examples to be included in
the training set. Although there are many approaches proposed to
learn a classifier under sample selection bias, few address the case
where a subset of labels in the training set are missing-not-at-
random (MNAR) as a result of the selection process. In statistics,
Greene’s method formulates this type of sample selection with
logistic regression as the prediction model. However, we find
that simply integrating this method into a robust classification
framework is not effective for this bias setting. In this paper, we
propose BiasCorr, an algorithm that improves on Greene’s
method by modifying the original training set in order for a
classifier to learn under MNAR sample selection bias. We provide
theoretical guarantee for the improvement of BiasCorr over
Greene’s method by analyzing its bias. Experimental results on
real-world datasets demonstrate that BiasCorr produces robust
classifiers and can be extended to outperform state-of-the-art
classifiers that have been proposed to train under sample selection
bias.

Index Terms—Robust classifier, missing-not-at-random, sample
selection bias

I. INTRODUCTION

Dataset shift [16] describes the phenomenon in which the
training and testing sets come from different distributions.
One scenario that can cause dataset shift is sample selection
bias, where an example is non-uniformly chosen from the
population to be part of the training process. This type of bias
can ultimately cause a set of training examples to be partially
observed, where any of the covariates or label of an example
is missing, or even completely unobserved. As a result, the
performance of classifiers that are trained using a dataset
subject to sample selection bias will be degraded. Most works
have proposed solutions to problems dealing with missing-at-
random (MAR) bias [3], [13], [23], where the selection of
samples is assumed to be independent from the label given
the observed variables in the training set. However, these
proposed solutions cannot properly account for the missing-
not-at-random (MNAR) setting, where the selection of samples
is assumed to not be independent from the label given the
observed variables in the training set.

In this paper, we focus on MNAR sample selection bias on
the label. One classic method proposed to account for MNAR
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sample selection bias on the label is the Nobel Prize winning
Heckman’s two-step method [9]. Heckman’s method models
the prediction and selection of samples as linear equations,
where their relationship lies in the correlation between the
noise terms. The method constructs an unbiased model by
first estimating inverse Mills ratio (IMR) using the selection
features and then incorporating it as a new noise term in the
prediction equation. Due to its short computation time and
effectiveness on bias correction, Heckman’s method has been
a popular choice for solving linear regression under MNAR
sample selection bias. However, applying Heckman’s method
in the classification context is difficult. This is because the
assumptions made for the use of the IMR may not be present
in classifiers, causing them to perform inconsistently [18].

The joint likelihood approach [15] addresses this challenge
by fitting the selection and prediction simultaneously using
full information maximum likelihood (FIML) estimators. In
this work, we specifically examine the task of estimating
this likelihood using Greene’s method [8]. As a general
framework for non-linear regression models under MNAR
sample selection bias, Greene’s method was one of the first
methods to approximate the joint likelihood in order to reduce
computational complexity. We find that although the method
provides a first-order optimization process to produce an
optimal solution, the minimization of its loss function over
the biased training set does not take samples with missing
labels into account. Thus, Greene’s formulation alone cannot
be used as an objective function when attempting to learn a
classifier robust to MNAR sample selection bias.

A. Problem Definition

Formally, let X be the feature space and Y be the binary tar-
get attribute. We first consider the training set D¢y = ftig]_,
of n samples that are originally sampled from the population
to be modeled yet biased under MNAR sample selection bias.
Each sample t; is defined as:

(
Xi;¥i;si=1) 1im
g Doves=d | ()
(xi; si = 0) m+1in
where the binary variable s; indicates whether or not yiis
observed for a training sample. Let Ds denote the set
containing the first m training samples where each sample is
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fully observed and Dy be the set that contains the remaining
n m training samples with unobserved labels.

We consider the following definition to formally describe
the MNAR sample selection bias scenario on Dy, :

Definition 1 (MNAR Sample Selection):
Missing-not-at-random occurs for a sample t; if s;i is
not independent of y; given x;, i.e. P(sijxi; Vi) = P (sijxi).
This means that s; may depend on x; and y;. For Greene’s
method, the selection mechanism is expressed in terms of
a set of selection features to model the missingness of vy;
for a training sample. These selection features are observed
for all training samples. Thus the following assumptions are
additionally made in this work:

(i) Given a set of selection features x Xi, P(sijxi;yi)is
approximated by computing P (sijx i(s)).
(ii) The set of selection features includes every prediction

feature, i.e. x{*) x(P).

Problem Statement. Given a set of prediction features x

(s)
I

(pi) Xi,

we seek to train a binary classifier h(x(p);i) with param-eters

that learns to minimize a loss function over the biased training
set D¢r.

B. Contributions

We summarize the core contributions of our work as fol-
lows. First, we propose BiasCorr to address training a robust
classifier where some labels in the training set are MNAR due
to sample selection bias. BiasCorr extends Greene’s method to
improve the performance of the robust classifier by assigning a
soft selection value and pseudolabel to each unlabeled training
sample. Second, using the soft selection value, we derive a
condition based on the proportion of unlabeled samples in
the training data to theoretically guarantee that BiasCorr is
less biased than Greene’s method whenever the condition is
satisfied. Third, we extend BiasCorr to train a robust classifier
given a training set of labeled samples that come from a biased
source distribution and a testing set of unlabeled samples
that come from an unbiased target distribution. Fourth, we
provide empirical results on real-world datasets to confirm
that BiasCorr trains classifiers that are robust against MNAR
sample selection bias and can be extended to outperform state-
of-the-art classifiers trained under sample selection bias.

Heckman’s method and its variants have been widely used
for different applications to handle MNAR sample selection
bias (see a comprehensive survey [21]). Despite its popularity,
Heckman’s method has some key limitations when applied
to non-linear regression models. First, for non-linear models,
this noise term of the prediction equation does not contain
the IMR [18]. Second, the IMR may be incorrectly specified
given the collinearity between the coefficients of the selection
and prediction equations [17]. In the area of fair machine
learning, [5] formulated a fair regression model under the
assumption that a subset of training outcomes are MNAR.
The model adopts Heckman’s method as part of its framework
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to account for sample selection bias. Unlike these approaches,
where the dependent variable is assumed to be continuous, our
approach handles sample selection bias where the dependent
variable is categorical. As closed-form solutions do not exist
for likelihood equations maximized for logistic regression
models, we depend on iterative optimization techniques in
order to learn a classifier under MNAR sample selection bias.

Most research works in the area of learning under sample
selection bias fall in the category of MAR bias. Approaches
proposed in these works often incorporate ideas of importance
weighting [2], [23] and minimax estimation [10], [13]. These
approaches generally assume a labeled training set of biased
samples and an unlabeled testing set of unbiased samples [2].
As we address MNAR bias, we differ from these assumptions.
In our study, we assume that the testing set cannot be accessed
during training and that the training set contains a mixture of
labeled and unlabeled examples given that the labels are non-
randomly selected.

Our problem setting is related to other machine learn-ing
tasks. In recommender learning, [22] proposed the joint
learning of imputation and prediction models to estimate
the performance of rating prediction given MNAR ratings.
While the approach in [22] also uses a separate propensity
estimation model to predict label observation, it considers
matrix factorization as the prediction model, which is not
for binary classification on tabular data. In semi-supervised
learning [20], where a training sample is treated differently
based on whether the sample has a label or not, [11] employed
class-aware propensity score and imputation strategies using
pseudolabels to develop a semi-supervised learning model that
is doubly robust against MNAR data. This approach computes
the probability of label missingness for a training sample in
terms of a class prior. On the other hand, our approach does
not require a class prior to compute the probability of label
missingness for a training sample.

1.
A. Sample Selection Model

GREENE’S METHOD REVISITED

For any (x;;y;) 2 X Y, the selection equation of theith
x4 q(s), where is the set of regression
() is the set of features for sample

selection, and u® N (0; 1} is the noise term for the selection
equation. The selection value of the ith sample s; is defined
as: (

1 Zi > 0

0 0

sample is z =
coefficients for selection, x

(2)

Si =
Zj

The prediction equation f(yijx(ip); i) of the ith sample is
based on logistic regression with

exp(x ¥ ),

flyi = 1ix";1) = (3)

1+ exp(x' #)

where is the set of regression coefficients for prediction, x(pi) is

the set of features for prediction, and ; is the noise term for the
prediction equation, with as the standard deviation of
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the term and
(’,’), where u
fly, = 1JX(p) )., C
The noise terms u'®’ and u'
(5) _ Pop
normal, i.e. u, +. 1

i 2v; , where is the correlation
coefficient between ui(s) and ui(p) and v; N(0;1) is a
random variable independent to ;.

N (0; 1) as a random variable. We express as
(e) N(0;2). In our work, we let h(xP;) =

(s) are assumed to be bivariate

B. Loss Function

From the above sample selection model, the loss function

_ 1Y X
L= = logf(yi;si jX ) (4)
n i=1
over Dtr is then derived. The joint density function
flyi; S|JX (S)) is expressed as
Z .
flyi;sijx®;x!*) = flyisix®; x50 f()di (5)

1

Both yi and s; are independent when conditioned on ;. Thus,

flyissi= 1jxP x50 = fyiix™5 0P (si = 1jx*50) (6)
For si = 0, where y; is missing,
f(yi;si= ij(p) (S), i)= P(si= ij(si); i) (7)
Because ui(s) and ui P) are bivariate normal, we have
|
e
P(sijx\”;i) = (2si 1) Toit (8)
1 2
where () is the standard normal cumulative distribution

function. Since ; N (0; 1), f (i) is (i), where () is the standard
normal density function. Thus, Eqg. (5) is rewritten as

f(y.,s.Jx (S)=

(9)

(1 si)+ sif(yiix'P 01 P(siix®0) (Ddi

1
using Eq. (6), Eq. (7), and Eqg. (8). Thus the negative log-
likelihood function L over n training data samples is

YA
Xn 1
1 log  [(1
N 1

P (sijx"); i) (i) di

L = si) + sif(yijx{?; )]

(10)

L needs to be minimized with respect to ;;; and . Given that the
computation of Eq. (10) is intractable, the simulation approach
from [19] is used to minimize an approximate form of L,
denoted

fi (11)
where

XR
[(1 si)+ Sif(yin(ip);ir)] P(Sin(S)i;ir) (12)

r=1

1
i = log =
& R

This approach involves taking R random draws . from the

standard normal population for each t;. As long as R is greater
than P N, then asymptotically I = L. A proof of this claim is
provided in [7].
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C. Optimization

Iterative first-order optimization techniques such as stochas-
tic gradient descent can be used to solve Eq. (11) and obtain
an estimate or the classifier h. We note that the gradient
of Eq. (12) with respect to for the ith training sample is
expressed as

11 X°¢ ) )
rli’s T—o— s P(SiJX(S)i;ir) f(yijx(p);;r)
L (13)
o @)
: @

We also apply the first-order optimization techniques to com-

pute the other estimated parameters in Eq. (11), namely , ™ and
A

IV. ROBUST CLASSIFICATION UNDER MNAR SAMPLE
SELECTION BIAS

Despite Greene’s method incorporating a sample selection
model towards fitting logistic regression, the task of training a
robust classifier h over D¢, under MNAR sample selection bias
cannot be accomplished using this method. We specifically
note a key issue in the optimization process. For any sample
in the training set such that s; = 0, the value of Eq. (13) is O,
meaning that r | ‘would account for only samples such that y;
is observed. Thus, using a first-order optimization technique
to solve Eq. (11) does not result in an iterative solution such
that the classifier h(x(ip); )"is robust against MNAR sample
selection bias on the label.

However, learning a robust classifier under MNAR sample
selection bias can still be achieved by making improvements
to Greene’s method. First, we can refine the selection value of
each sample in D, to have a soft value in order to include
information regarding the losses of samples in D, when
optimizing the classifier. While making the refinement, we still
assume that each sample in Ds is assigned s;i = 1. Second,
we can impute the missing labels in D, with pseudolabels to
further improve Greene’s method.

A. BiasCorr

To ensure that we learn classifiers that are robust to MNAR
sample selection bias, we introduce BiasCorr, a framework that
addresses the challenge of training a classifier using Greene’s
method. In BiasCorr, we ensure that the losses of samples with
missing labels are included in the optimization process. Using
this framework, we train h(x(ip);) to minimize L°) which is
an enhanced version of Eq. (11), over a modified training set

0, We make these modifications while conforming to the
original MNAR conditions on the label. Figure 1 gives an
illustration of the process to obtain D°tr

Using the same assumptions as Greene’s method on the
training set D¢r, BiasCorr assigns both an estimated soft
selection value sand a pseudolabel ¢ to each sample in Dy,
resulting in h training to minimize the equation

o 1 X 1 X

= - g [(1 s +sF(yIxP 1P (58" 0r)

(14)
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Algorithm 1 BiasCorr(gs; gy)
Input: Original training set
Der = f(xi;yi;si = 1)giLy [ f(xi;si= 0)gi_pms1, 8ss By

Output: Estimated classifier parameters "
1: D f(xi;yi;si= 1)gT,

2: Dy f(xi;si= 0)glpmeq

3: DC .

4: Train classn"ler g J{x (5);) on D jo predict s 5
Train classifier gy (x (p);) on Ds to predict y;

6: fort, 2 D, do
7o g
& 9 1lgy(™;)> 03]
9: end for
. 1 Pon (s)
10: s m i=m+1 pl
11: for|2fm+1 """ ;ng do
122 DY DY f(xl,yi = 9i;80 = $g
13: end for
14: DY, D[ DY
15: Train h(x!®;) to minimize L%using DO, ,and obtain 16"
return A

over D2 = Ds [ D¢, where

(
o 1 ti2D;s

S = 15
: s tj2 Dy (15)
and (
yg _ i ti 2 D (16)
9i t 2Dy

To estimate the soft selection value swe start by computing

the probability p(s) of predicting s; = 1 for all samples in
Du Thls is based on our observation that the value of P(

1JX ; .) is not always equal to 0 for atuple in Dy, where the
ground truth selection value is s, = 0. In our framework, we

train a separate binary classifier gs(x(is); ) on D¢, to predict
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Process of producing D, using BiasCorr. The boxes outlined in red indicate the parts of Dtr used to train gs and gy.

s, and obtain p'*/
fixed soft selection value by taking the average value of p
all samples in Dy.

The pseudocode for BiasCorr is provided in Algorithm 1. In
line 4, we first train gs on D¢, to predict the original ground-
truth selection value s;. In line 5, we train another binary
classifier gy(x(p) ) with parameters on Ds to predict the
ground-truth label y;. To add samples to DO o, in line 7, we
evaluate gs and obtain the probability pi for each sample in
Dy. In line 8, we use the prediction from the evaluation of gy
on each sample in D, to obtain a pseudolabel ¢;. In line 10,
we compute the average safp(s)i of each samplein Dy. In line 12,
we add each tuple (xi; ¥ ; $to DO, where each x; is taken from
D . In ljne 15, using D° we pptain after nfinimizing Eq. (14)
such that h(x(p);) is | roblst against non-random sample
selection bias on the label.

The computational complexity of Algorithm 1 trivially
depends on the complexity of training gs, gy, and h to
convergence. Similar to the training of h using Eq. (11), the
complexity of training h by minimizing Eq. (14) is O(Tn),
where T is the number of iterations for training h.

We further note that the types of models used to train gs
and gy are listed as inputs to Algorithm 1. In our work,
we experiment with training gs using the probit and logistic
regression models. Compared to logistic regression models,
which are based on the sigmoid function, probit models use
the normal cumulative distribution function to model binary
classification. For gy, we consider logistic regression and
multi-layer perceptron.

based on predictions using D , We then get a
{s) for

B. Bias Analysis Regarding Loss Function

In this section, we analyze the bias of the loss function
estimator for both Greene’s method and BiasCorr. We compare
the two biases and show that our BiasCorr algorithm further
reduces the bias for classification performance estimation
given that the ratio of the unlabeled training set is larger than a
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threshold. We first define the optimized negative log-likelihood
loss function where the training data D¢, is fully observed:

1 X . 1Xn . (p)
L= = log P (yijxi) = log f(yijx™,")
JDtr] 204,

(17)

i=1

where f(yijx(ip)) takes the form of logistic regression. The
bias of an arbitrary loss function estimator L is defined as:

Bias(L)= L Ep, [L] (18)

Given jD¢j = n and jDsj = m, we further define
the missingness ratio of the unlabeled training samples as
= jDuj=jD«j = 1 ™. We also denote p(si) as the
ground truth selection probability for each tuple t, based
on its selection features x'*) and the expectation of the

[
estimated selection model P (s j)g(s); ir) and prediction model

f(yijxfp); i) over R random draws on the error terms as

p(si) and f'\yijx(ip)) respectively. We next formally derive the
bias of the loss function estimators from Greene’s method and
BiasCorr in the following two lemmas:

Lemma 1 (Bias of Greene’s method estimator): Given the es-

timated selection model P(si) and outcome model f‘(yijx§p)),

the bias of the loss function estimator for Greene’s method
shown in Eq. (11) is:

xn iy (P)
1 lo flyix;™)

Bias([) = =
LY B(si) + p(si)p(s )(f(yijx pi )

(19)
1)

Lemma 2 (Bias of BiasCorr estimator): Given the definitions
of s?;sand y in Section IV-A, the bias of the BiasCorr loss
function estimator shown in Eq. (14) is:

(p)
flyiix; )
S+ (p(s T+ S YNX

i=1 i i i [

n
Bias(l) = r&X log

(20)

Note that both Bias(L') and Bias(L’®) are non-zero even if the
estimated selection and outcome models are accurate, that is,
#(si) = p(si) and f’(yijx(ip)) = f(yijx(ip)). According to the
design of the log-likelihood loss function in Eq. (10), Greene’s
method estimates the likelihood function f(yi;sijxi(p);xi(s))
by computing f'(\y;jx(f’)) p\(si) for samples in Ds and @(si) for
samples in D,. Due to the fundamental difference between
selection and prediction models, it is very challenging to
derive an unbiased estimator for the loss function based on
Greene’s method. However, by applying the modification from
BiasCorr, we are able to further reduce the bias for the
loss function estimator on classification tasks based on an
assumption on the ratio . We list our main theorem that
compares the biases of the two methods as follows:

Theorem 1: Given a training dataset with labeled and
unlabeled tuples Dty = Ds [ Dy, suppose f"(yijxfp)) takes
the form of logistic regression, and there is no bias caused by
the estimated selection model for both Greene’s method and

BiasCorr. If the ratio of the unlabeled training data is larger
than 1=(2 $, we have
Bias(®) < Bias([)
1210

TABLE |
DATASET ATTRIBUTES AND STATISTICS. PREDICTION FEATURES ARE IN
ITALIC FONT WHILE SELECTION FEATURES ARE IN EITHER ITALIC OR
REGULAR FONT. TARGET ATTRIBUTE IS BOLDED FOR EACH DATASET.

Dataset | Attrbutes jDtrj Adult

Age, Target, Education-Num,, Cap Gain, 0.7476
Hrs per week, Country Canada, Re| Not-in-fam,
Occ_Adm-clerical, Occ_Sales, Rel Husband,
Occ_Craft-repair, Rel_Unmarried, Rel Other-rel,
Occ_Armed-Forces, Rel_Own-child,
Occ_Other-service, Occ_Protect-serv, Cap Loss,
Occ_Prof-spec, Occ_Tech, Rel Wife,
Occ_Exec-manager, Occ_Farm-fish, Marital Status,
Occ_Mach-op-inspct, Occ_Priv-serv,
Occ_Handlers-cleaners, Occ_Transp, Workclass

45,222

German | status checking, duration, credit history, credit amt,
savings acct, telephone, liable, other plans,
last employment, age, status and sex, foreign worker,

last residence, property, existing credits, good customer

1,000 0.2314

Drug Age, Gender, Education, Country, Cscore, Impulsive, 0.6520

Ethnicity, Nscore, Escore, Oscore, Ascore, SS, Benzos

1,885

To obtain the result in Theorem 1 we consider the difference
between the two biases and analyze the terms after subtracting
Bias([) by Bias(I®). We first decompose the difference and
derive the inequality as follows:

Bias((') Bias([?)
n x 1 n X
s 1 s 2p(si) + Hyix ™) (2p(si) + § L
{z21 | {z }
term 1 term 2
(21)

According to Eq. (21), we find that if terms 1 and 2 are
positive, the BiasCorr estimator is guaranteed to achieve lower

bias than the estimator for Greene’s method. Both f‘(yijxi(p))
and p(si) lie in (0; 1) for each tuple ti, so term 2 is positive
after summation and averaging over all tj. Our theoretical
analysis shows that to guarantee the positivity of term 1, the
proportion of the unlabeled training data needs to be larger
than 1=(2  $. Notice that the condition 1=(2  $ does not
necessarily imply Bias(L9) i¢ larger than Bias(L). W still need
to compare the magnitude of term 1 and term 2, and the value
of term 2 heavily depends on the estimated selection and
outcome models.

Proof details of Lemma 1, Lemma 2 and Theorem 1 can be
found in the Appendix in [14].

C. Extending BiasCorr to BiasCorr

Most algorithms that have been proposed to learn clas-
sification under sample selection bias are trained under the
assumption that the training set Ds = f(xi; yi)g' contains
labeled samples that come from a biased source distribution.
Additionally, they assume that there exists a set Dy =
fxigiN=1 of testing samples drawn from an unbiased target
distribution. We propose an extension of BiasCorr, BiasCorr,
for this setting. We do so by augmenting the original set of
labeled training samples using the set of unlabeled samples
from the target distribution. Specifically, given Ds and Dy,
we construct an augmented training set Daug = Ds[ Dy of n
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TABLE 11
PERFORMANCE OF BASELINES COMPARED TO BIASCORR. HIGHEST TEST ACCURACIES AMONG SSBIAS, GREENE’S METHOD, IPS, DouBLY ROBUST,
AND THE FOUR BIASCORR SETTINGS ARE IN BOLD.

Adult German Drug

Methods Train Acc. (%) | Test Acc. (%) | Train Acc. (%) | Test Acc. (%) | Train Acc. (%) | Test Acc. (%)
NoBias 86.57 0.00 86.57 0.00 | 73.29 0.00 72.67 0.00 | 69.83 0.00 69.08 0.00
SSBias 77.56 0.00 62.44 0.00 | 75.28 0.00 69.33 0.00 | 77.78 0.00 66.78 0.00
Greene’s method [8] 62.94 0.07 62.89 0.09 | 72.77 0.47 69.67 0.30 | 68.89 0.27 66.71 0.33
IPS [12] 77.84 0.21 71.86 0.23 | 75.62 0.27 70.06 0.32 | 77.84 0.10 67.40 0.26
Doubly Robust [1] 93.69 0.05 85.21 0.06 | 81.88 0.14 70.46 0.27 | 89.14 0.48 67.62 0.15
BiasCorr (probit, LR) 86.84 0.02 70.05 0.04 | 79.97 0.14 71.60 0.13 | 87.93 0.07 69.22 0.02
BiasCorr (LR, LR) 87.36 0.04 69.84 0.04 | 80.11 0.25 71.07 0.13 | 88.89 0.09 67.81 0.17
BiasCorr (probit, MLP) | 94.08 0.02 85.68 0.01 | 79.69 0.40 71.27 0.25 | 86.19 0.06 67.39 0.09

BiasCorr (LR, MLP) 93.45 0.01 85.79 0.02 79.69 0.50 71.00 0.21 85.97 0.13 67.77 0.14

samples, where D contains samples that are uniformly drawn
from Dy and n > m.

To obtain Daug, we first randomly draw n samples uni-
formly from Dy, where n > m. Let D, denote this set
of n samplest. To construct Dy, we compare the empirical
frequencies of Ds and D, which follows a similar procedure
as [3]. For a distinct sample t, let D' be a subset of Ds that
contains all instances of t and a; = jD!j. We similarly define
D' and b; for Dn. Until Dy contains 1 m samples, we add
b:" at random samples from Dt to D, for each t such that
bt > at. n

We note that choosing n as the size of Daug is significant
in determining the performance of estimating the selection
probability and the efficiency of BiasCorr. First, the following
lemma from [3] shows the error of using 2t as an estimate of

't

the selection probability P (si = 1jt).
Lemma 3: [3] Let > 0. Let a® be the number of distinct
samples in Ds and po = min P(t) = 0. Then, with
Dau

probability at least 1 , the following inequality holds for all
distinctt2 D :
S
— < T
log2a‘+ log =

Pon

at

P(si = 1jt) (22)

Here we see that for a given number of distinct samples in
Ds, the error of estimating P (si = 1jt) depends on the value
of pon, which equals the number of occurrences of the least
frequent sample in Daug. This value is dependent on the set
Dy, which may include samples t that are not in Ds. Second,
the computational complexity of generating Daug is bounded
by n, where in the worst case D, has n distinct samples and
the last . m samples in D are added to Dy.

V. EXPERIMENTS
A. Experiments on BiasCorr

We evaluate the performance of our proposed algorithms on
the Adult, German, and Drug datasets [6]. The attributes and
statistics used for each dataset are listed in Table I. We choose
70% of samples in each dataset to generate the original training
set D¢r. We work with two different bias scenario types in our
experiments: one where the condition of listed in Theorem

1We note that in some cases, N < m. To obtain Dn, we draw n samples
from Dy with replacement.
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1 is satisfied and another where the condition is not met. To
create the sample selection bias on D¢, for the Adult dataset,
we select a training sample to have an observed label if the
years of education is more than 12. For the German dataset, we
select a training sample to be fully observed if the person has
been employed for more than 1 year. For the Drug dataset, we
create the sample selection bias scenario for D¢, by selecting
individuals whose Oscore is at most 43.

Baselines and Implementation. We compare BiasCorr to
the following baselines: (a) logistic regression without sample
selection bias (NoBias), which is trained using D¢, where all
samples in D¢, are fully observed, (b) logistic regression with
sample selection bias (SSBias), which is trained using Ds,
(c) logistic regression with sample selection bias correction
based on Greene’s method, which is trained using the set
Ds [ Dy where all samples in D, have non-randomly missing
labels, (d) inverse propensity scoring (IPS) [12], where the
optimized loss function is reweighted with the reciprocal of
the selection probability, and (e) Doubly Robust [1], where all
labels in Dy are imputed and the loss is reweighted based on
IPS. Compared to BiasCorr, IPS and Doubly Robust do not
consider the correlation between the prediction and selection
equations. Our models and all baselines are implemented using
Pytorch. The prediction and selection coefficients and are
initialized to zero while and are initialized to 0:01. The
number of random draws R is set to 200. Our source code can
be downloaded using the link https://tinyurl.com/4kvux87n.
Results. Table Il shows the training/testing accuracy of each
model. We report average accuracies and their standard devi-
ations over 5 runs. We first see that while the change in train-
ing accuracies is different for each dataset when comparing
NoBias and SSBias, NoBias outperforms SSBias by 24.13%,
3.34%, and 2.30% when considering the testing accuracy
for the Adult, German, and Drug datasets, respectively. This
shows that the utility of the logistic regression model is
reduced when trained on Ds. We also see that Greene’s method
does not outperform SSBias by much when evaluated on the
testing set. For instance, when looking at the results for the
Adult dataset in Table Il, the testing accuracy of Greene’s
method is 0.55% higher than SSBias while the testing accuracy
of NoBias is 24.13% higher. This demonstrates that a classifier
is not robust to MNAR sample selection bias when learning
to optimize Eq. (11).
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TABLE Il
EMPIRICAL MISSINGNESS RATIO COMPARISON.

Dataset 1=(2 3 (probit for gs) 1=(2 3 (LR for gs)
Adult 0.7476 0.5868 0.5738
German | 0.2314 0.6345 0.6233
Drug 0.6520 0.7159 0.5976
TABLE IV
EXECUTION TIMES (IN SECONDS).
Method Adult | German | Drug
Greene’s method 93.53 2.06 3.14
BiasCorr (probit, LR) 94.59 1.84 2.85
BiasCorr (LR, LR) 99.62 1.87 2.28
BiasCorr (probit, MLP) | 112.17 1.86 2.69
BiasCorr (LR, MLP) 112.90 1.87 2.26

More importantly, we observe that BiasCorr, under all 4
pairs of settings for gs and gy, outperforms SSBias and
Greene’s method. Using the German dataset as an example,
BiasCorr(LR, MLP) has the lowest test accuracy out of the
four BiasCorr settings after training on the dataset. Despite
this, BiasCorr(LR, MLP) outperforms SSBias by 1.67% on the
testing set. This difference is higher than the 0.34% margin
when comparing Greene’s method to SSBias.

Furthermore, we see that BiasCorr outperforms IPS and
Doubly Robust for most pairs of settings for gs and gy. For
instance, on the Drug dataset, the average testing accuracies
of BiasCorr(probit, LR), BiasCorr(LR, LR), and BiasCorr(LR,
MLP) are higher than that of IPS and Doubly Robust.

We also examine the values of and 1=(2 $ in Table Il
based on this experiment. Using gs on probit as an
example, we see that the value of 1=(2 § is 0.5868 for
the Adult dataset. We also observe that, as shown in Table II,
BiasCorr(probit, LR) and BiasCorr(probit, MLP) outperform
Greene’s method by 7.16% and 22.79%, respectively. As
> 1=(2 $ for the Adult dataset, the result validates our
theoretical comparison of BiasCorr and Greene’s method. For
the other two datasets, we see that the value of 1=(2 $§is
not less than . However, BiasCorr still outperforms Greene’s
method across all 4 combinations of settings for gs and
gy. This shows that our BiasCorr algorithm, which improves
Greene’s method by incorporating pseudolabel generation and
a soft selection assignment on samples in D, produces a more
robust classifier against MNAR sample selection bias.
Execution Time. We also report the execution times of
training h using Greene’s method and BiasCorr in Table 1V,
where the experiments were conducted on the Dell XPS 8950
9020 with an Nvidia GeForce RTX 3080 Ti. We see that
BiasCorr trains slower than Greene’s method for the Adult
dataset while BiasCorr has a slightly faster execution time
than Greene’s method for the German and Drug datasets.
Sensitivity Analysis. We further evaluate the performance of
BiasCorr by considering different assignments for the soft
selection value on samples in D°, up to s= 0:5. In this par-
ticular study, we run Algorithm 1 euxcept we ignore the training
of gs using probit or logistic regression. Figure 2 shows the
results of this experiment over the Adult and German datasets.
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TABLE V
PERFORMANCE OF BASELINES ACROSS DIFFERENT VALUES OF
COMPARED TO BIASCORR USING THE DRUG DATASET.

‘ Method [ 1=(2 § [ Test Acc. (%) [ F1 Score (%) |
\ = 0:5 |
SSBias 65|72 0.00 56.70 0.00 Greene’s

method - 65|90 0.27  55.67| 0.24 BiasCorr
(probit, LR) 0.6365 68,23 0.38 62.77| 0.60 BiasCorr
(LR, LR) 0.622. 67.95 0.52 61.97 0.82

\ = 0:6
SSBias 68|55 0.00 62.61] 0.00 Greene’s
method - 67|63 0.32  60.38 0.51BiasCorr
(probit, LR) 0.6279 69140 0.07  65.16| 0.06 BiasCorr
(LR, LR) 0.616 69.43 0.00 65.19 0.00

\ = 07
SSBias 68[B7 0.00 59.78 0.00 Greene’s
method - 6710 0.44 56.92 0.69 BiasCorr
(probit, LR) 0.6258 69/2 0.13 64.92| 0.13 BiasCorr
(LR, LR) 0.607. 69.43 0.1 65.05 0.13

We see that when training gy under both logistic regression
and an MLP, the performance of BiasCorr peaks within the
range of the estimates we obtain by computing the average of
predictions given by gs on samples in Dy.

We also evaluate how modifying on the training set affects
the performance of BiasCorr on the testing set. We look at the
values of 0.5, 0.6, and 0.7 for . We train our method using the
Drug dataset for this experiment. Using testing accuracy and
F1 score as evaluation metrics and logistic regression to train
gy, we report the results of this sensitivity analysis in Table
V. We first see that > 1=(2 $ when = 0:7. For =
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TABLE VI
PERFORMANCE OF BASELINES COMPARED TO BIASCORR.

Adult German Drug

Methods Train Acc. (%) | Test Acc. (%) | Train Acc. (%) | Test Acc. (%) | Train Acc. (%) | Test Acc. (%)
RFLearn™ [4] 78.04 0.00 69.68 0.00 [ 76.02 0.00 69.67 0.00 [ 75.82 0.00 65.02 0.00
RBA [13] 77.69 0.00 69.59 0.00 | 75.84 0.00 67.33 0.00 | 75.82 0.00 65.55 0.00
BiasCorr (probit, LR) 87.10 0.02 69.84 0.07 | 80.57 0.09 70.47 0.34 | 87.70 0.13 68.52 0.14
BiasCorr (LR, LR) 87.37 0.03 69.75 0.02 | 80.57 0.16 70.67 0.30 | 87.98 0.11 68.34 0.21
BiasCorr (probit, MLP) 94.00 0.35 85.75 0.01 | 79.66 0.21 70.07 0.13 | 87.20 0.10 68.23 0.13

BiasCorr (LR, MLP) 93.78 0.36 85.62 0.02 79.40 0.17 69.87 0.16 87.40 0.15 67.99 0.26

0:7, BiasCorr(probit, LR) and BiasCorr(LR, LR) outperform
SSBias and Greene’s method based on testing accuracy and
F1 score. For the other two values of , where the condition is
not satisfied, BiasCorr(probit, LR) and BiasCorr(LR, LR) still
outperform SSBias and Greene’s method.

B. Experiments on BiasCorr

For the biased training set of labeled samples, we use the

same set D that was used in the experiments on BiasCorr
and leave the rest of the samples unlabeled as part of the set
Dn . We fix the number of samples n drawn from Dy to be
the number of samples obtained after splitting each dataset.
Baselines. We compare BiasCorr to the following baselines
that were proposed to learn classification under MAR sam-
ple selection bias where samples from the unbiased target
distribution are unlabeled: (a) a robust non-fair version of
RFLearn® [4], which considers the empirical frequencies of
each record in Ds and the unlabeled testing set to estimate the
true probability of selection, and (b) the Robust Bias Aware
(RBA) classifier [13], which uses minimax estimation to learn
against a worst-case conditional label distribution.
Results. As shown in Table VI, BiasCorr, under all combi-
nations of settings for gs and gy, outperforms the baselines
when trained on the three datasets. For instance, the testing
accuracy for BiasCorr (probit, LR) is 3.14% higher than RBA
for the German dataset. These results suggest that BiasCorr
can outperform other classifiers trained under sample selection
bias regardless of the type of model chosen for gs and gy or
the proportion of unbiased, unlabeled samples in Dayg.-

VI. CONCLUSION

In this paper, we have proposed a framework, BiasCorr,
to learn a classifier that is robust against MNAR sample
selection bias on the label. As a significant improvement to
a formulation previously proposed to model MNAR sample
selection bias, BiasCorr trains a robust classifier after learning
separate classifiers to predict pseudolabels and estimate a
soft selection value assignment for these samples. Theoretical
analysis of the bias of BiasCorr provides a guarantee for this
improvement based on the level of missingness in the training
set. Experimental results on real-world datasets demonstrate
not only the robustness of classifiers under this framework,
but also their better performance than baselines. In the future,
we plan to extend this framework to learn more complex non-
linear regression models such as kernel ridge regression.
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