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Abstract—While numerous defense methods have been pro-
posed to prohibit potential poisoning attacks from untrusted
data sources, most research works only defend against specific
attacks, which leaves many avenues for an adversary to exploit. In
this work, we propose an efficient and robust training approach
to defend against data poisoning attacks based on influence
functions, named Healthy Influential-Noise based Training. Using
influence functions, we craft healthy noise that helps to harden
the classification model against poisoning attacks without signifi-
cantly affecting the generalization ability on test data. In addition,
our method can perform effectively when only a subset of the
training data is modified, instead of the current method of adding
noise to all examples that has been used in several previous
works. We conduct comprehensive evaluations over two image
datasets with state-of-the-art poisoning attacks under different
realistic attack scenarios. Our empirical results show that HINT
can efficiently protect deep learning models against the effect of
both untargeted and targeted poisoning attacks.

Index Terms—Data poisoning, adversarial defense, robust
training

I. INTRODUCTION

Having access to high-quality, clean, and human-annotated

data is essential to building and training a well-performing

prediction model. However, it is common that an organization

only has a limited amount of this type of data on hand.

Consequently, organizations are often tasked with collecting

additional data from outside sources using techniques such

as web scraping and/or crowd-sourcing. This, unfortunately,

opens numerous avenues for attacking the proposed model,

such as data poisoning attacks in which an attacker injects

harmful data into the training routine to affect the final model’s

utility. For example, in [1], [2], the authors demonstrate the

ability of adversarially crafted examples to destroy a DNN’s

prediction accuracy and [3]–[6] show that attackers can force

a model to predict the adversarial class on a specific targeted

example by only having to modify a small fraction of the

training data.

Telling if a certain collected data point is benign or ma-

licious is a non-naı̈ve task, and there is an active area of

research focused on building defense methods against poi-

soning attacks as well as analyzing the harm that poisoning

attacks have on the final model [7]–[10]. From a defense

perspective, most of the proposed works are attack-specific

and are easily defeated by newer types of attacks that consider

the underlying defense mechanism. Some other defenses focus

on pre-processing the training data in order to detect and

remove malicious examples before they are used for training

[11]–[14]. The pre-processing approach works well when the

malicious perturbations are large, or when only a fraction of

the dataset is poisoned. However, when those criteria are not

met, the defenses based on pre-processing are easily overcome

[7], [8]. Another problem inherent to current research on

defending against poisoning attacks is the trade-off between

model accuracy and the effectiveness of a defense – especially

in cases where DNN’s are used as the model architecture.

Although some modern defense mechanisms have the ability

to achieve better generalization [8], [10], [11], the need for

more research remains.

In this work, we consider the realistic scenario of the

training dataset only containing a limited number of clean

and human-labeled data points, while the remaining points

are unverified and malicious data collected from untrustworthy

outside sources. In order to defend a classifier against poi-

soning attacks, we propose Healthy Influential-Noise based

Training (HINT)1 – a robust training procedure based on

influence functions. Influence functions, originally a product

of robust statistics [15], have grown popular over the last few

years as an explainability method for understanding black-box

model predictions [16]. In this work, we show that influence

functions, in addition to explaining the effect an entire training

point has on the model parameters and/or test loss, can capture

useful information about the impact of each local pixel to

the model’s prediction. Consequently, those pixels, which are

identified as influential, form local regions that cause signif-

icant changes in the test loss of the model. By incorporating

HINT in the training procedure, we are able to: (1) identify

a subset of training examples that have high impact on the

model loss, (2) craft the healthy influential-noises that both

reduce the harmful regions and boost the helpful regions inside

images, and then add them into training examples to reduce the

effect of poisoning attacks. HINT can help the trained model

predict the correct class with high confidence score. Through

extensive experiments, we show that the classification model

trained with our HINT can resist different types of untargeted

and targeted attacks while retaining good generalization.

The remainder of the paper is as follows. In Section II,

we detail closely related works in poisoning attacks and

1We interchangeably use healthy noise as an alternative to healthy

influential-noise in the paper
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defenses. In Section III, we introduce the influence function,

the central mechanism in our method. Section IV details our

HINT method. Section V discusses data poisoning attacks and

defenses that we use in our evaluation. Then, Section VI shows

our experiments on HINT and other baselines. Finally, we offer

our concluding remarks in Section VII.

II. RELATED WORK

A. Poisoning Attacks

Poisoning attacks, which manipulate the training data to

compromise the model’s performance at test time, can be

grouped into two categories: untargeted attacks (or availability

attacks) and targeted attacks (or integrity attacks). In untar-

geted attacks, the attacker manipulates a subset of the training

data to degrade the utility of the machine learning model

in general, and are originally proposed to attack traditional

classification models such as linear regression and support

vector machines [17]–[20]. In the deep learning setting, there

are few modern untargeted attacks [1], [2], [21] that focus

on threatening model availability. In addition to performing

attacks on DNN models, untargeted attacks focusing on affect-

ing the fairness of a model have been proposed. Specifically,

[22], [23] both proposed untargeted poisoning attacks on

fair machine learning models and demonstrated the trade-off

between fairness and accuracy.

Contrasting untargeted attacks, instead of attempting to

sabotage the model in general, targeted attacks aim to un-

dermine the integrity of a specific test example (or a set

of test examples), which are more challenging to defend

against than untargeted attacks. The victim model trained

on poisoned data crafted using targeted attacks still achieves

good overall accuracy, but the predictions on the targeted

examples (selected by the attacker) are misclassified into the

intended adversarial class. Many proposed attacks [3]–[6] can

successfully cause a deep learning model (e.g., ResNet or

VGG) to predict, with high probability, the adversarial class

for a targeted image instead of the actual class.

B. Defenses Against Poisoning Attacks

There are two main strategies to defend against data poi-

soning attacks: filtering defense and robust training. Filtering

defense aims to detect malicious examples in the training data

and intervene before they can harm the model. The most

common filtering defenses are: 1) applying pre-processing

techniques on a pre-trained model; and 2) implementing in-

processing strategies during the training phase. In [12], the

authors used clustering methods on the activation layers of

a neural network to detect poisons in the training set. Data

provenance is used in [13] to identify poisoned data by

evaluating the likelihood of a data point being poisoned. [14]

showed that strong signals in hidden representations often

mean that a data point has been attacked. Their method, in

turn, examines the distribution shift between malicious and

clean inputs to detect and remove poisoned examples. [10]

proposed EPIC, an effective defense that performs filtering

during the training phase. The common assumption of all these

attacks is that the overall fraction of malicious examples in

the training set is small, and removing them does not hurt the

model’s generalization ability. Moreover, heavy computational

resources are required to choose the optimal filtering settings

for each method correctly. In contrast, our HINT method does

not aim to remove malicious examples from the training data.

Instead, we generate healthy noise such that when added to

an image, it alleviates the effect of the poisoned data.

Robust training methods usually apply smoothing and aug-

mentation techniques to make the model more robust to noisy

data. In [24], the authors introduced a unified framework to

deal with poisoning attacks via randomized smoothing. From

the augmentation approach, [25] proposed to use strong data

augmentation such as MixUp while [26] combined MixUp

with random smoothing noise from differentially private train-

ing to achieve more robust defense. [7] and [9] both leveraged

the idea of adversarial training, which was proposed initially to

deal with evasion attacks, to defend against poisoning attacks.

While [9] aims to perform adversarial training against delusive

attacks (a.k.a clean-label availability attacks), [7] simulated

the attacks during the training phase by creating and injecting

targeted poisoning attacks into training data. In [8], the authors

proposed optimizing two components, friendly noise, and

random noise, to perturb training examples so that they can

alleviate the harmful effects of poisoned data without losing

the generalization ability of the model. Differentially private

SGD (DP-SGD) has also been proposed as a strategy to train

a robust model against poisoning attacks [27], [28].

III. PRELIMINARIES

Inspired by the influence function from robust statistics [15],

Koh and Liang [16] introduced a method for estimating the in-

fluence that a training point z = (x, y) has on a machine learn-

ing model, where x ∈ X in the input and y ∈ Y is the class.

Let fθ be a classification model parameterized by θ and let

Dtrn/Dval/Dtst be the training/validation/test sets. Let l(·, θ)
represent the loss and L(Dtrn, θ) =

1

|Dtrn|

∑

zi∈Dtrn
l(zi, θ)

be the empirical loss to be minimized during training. To see

the change in model parameters w.r.t to training point z, the

ERM formulation can be modified as:

θ̂ε,z = argmin
θ∈Θ

1

|Dtrn|

∑

zi∈Dtrn

l(zi, θ) + εl(z, θ) (1)

where z is effectively upweighted by a small weight ε (usually

on order of 1

n
where n is the number of training points).

Instead of actually performing training using Eq. 1, [16] shows

that it can be estimated without actually having to retrain the

model on Dtrn \ {z}:

Iup,param(z) =
dθ̂ε,z
dε

∣

∣

∣

ε=0

= −H−1

θ̂
∇θl(z, θ̂) (2)

In addition to showing the effect a training point z has on the

parameters, Eq. 2 can be extended to show the influence that

z has on a test point ztest.

Iup,loss(z, ztest) = −∇θl(ztest, θ̂)
�H−1

θ̂
∇θl(z, θ̂) (3)
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Eq. 2 and Eq. 3 simulate the effect of z being removed

from the dataset. However, the effect of perturbing z can be

estimated via influence functions as well. Let ẑ = (x + δ, y)
be the perturbed variant of z by adding a small noise δ. One

can define the parameters resulting from moving ε mass from

z onto ẑ as:

θ̂ε,ẑ,−z = argmin
θ∈Θ

1

|Dtrn|

∑

zi∈Dtrn

l(zi, θ) + εl(ẑ, θ)− εl(z, θ)

(4)

Analogous to Eq. 4, Eq. 5 uses the influence function to

approximate the effect that modifying a training point z → ẑ
has on the model parameters:

Ipert,param(z) =
dθ̂ε,ẑ,−z

dε

∣

∣

∣

ε=0

= Iup,param(ẑ)− Iup,param(z)

= −H−1

θ̂

(

∇θl(ẑ, θ̂)−∇θl(z, θ̂)
)

(5)

As in the case with Eq. 2, [16] extends Eq. 5 to show how

perturbing z → ẑ would affect the loss of a test point ztest:

Ipert,loss(z, ztest) = −∇θl(ztest, θ̂)
�H−1

θ̂
∇x∇θl(z, θ̂) (6)

The main difference between Eq. 3 and Eq. 6 is that in Eq.

6, the gradient of ∇θL(z, θ̂) w.r.t x is additionally calculated.

This additional gradient computation captures how changing

z along each dimension of x affects the loss of a test point.

IV. HEALTHY INFLUENTIAL-NOISE BASED TRAINING

In this section, we propose Healthy Influential-Noise based

Training (HINT) which is a training procedure robust to

malicious training examples. Our HINT reduces the potential

harm caused by untrusted data sources while retaining the

model’s generalization ability.

A. Framework

Most robust training approaches manipulate the training data

(or a subset of the training data) to train a robust model. In

our method, we construct a subset Ds ⊂ Dtrn by choosing the

most influential examples in Dtrn. Additionally, we denote the

training points not chosen to be in the subset as Du = Dtrn \
Ds. Let δi is the healthy influential-noise and ẑi = (xi+δi, yi)
be the healthy-perturbed version of zi = (xi, yi). With image

data, δi lies in the space Δ = {δ ∈ R
H×W : ‖δ‖∞ ≤ β},

where ‖ · ‖∞ is the L∞-norm and β is the hyper-parameter

for bounding the noise.

We define the healthy-perturbed training set as D̂trn =
D̂s∪Du, where D̂s is the set Ds after healthy noise is added.

Under this setting, we define the empirical loss function of

the defense model as L(D̂trn, θ) = L(D̂s, θ) + L(Du, θ),

where L(D∗, θ) =
1

|D∗|

∑

zi∈D∗

l(zi, θ) and D∗ denotes “any

dataset”. We define the defender’s objective as:

min
δ∈∆

L(Dval, θδ) s.t. θδ = argmin
θ∈Θ

L(D̂trn, θ) (7)

The naı̈ve approach to the above problem would be for

the defender to try several different healthy noise values δi

Algorithm 1 HINT: Healthy Influential-Noise based Training

Input: Training data Dtrn, validation data Dval, train epochs

T , pre-train epochs Tpre, scaling factor γ, healthy noise

bound β, ratio of selected examples r, learning rate η,

healthy noise update schedule S
Output: Trained model θ̂
1: Initialize θ0

2: for t = 1 . . . Tpre do

3: θt ← θt − η∇L(Dtrn, θ
t)

4: Ds, Du ← SecInf(Dtrn, Dval, r) using Algorithm 2

5: D̂trn ← Dtrn, D̂s ← Ds

6: for t = Tpre + 1 . . . T do

7: if t ∈ S then

8: D̂s ← AddNoise(D̂s, Ds, γ, β) using Algorithm 3

9: D̂trn ← D̂s ∪Du

10: θt ← θt − η∇L(D̂trn, θ
t)

and to train/optimize several different models. However, this

naı̈ve approach is intractable since the feasible spaces for

Δ and Θ are sufficiently large, and it will take significant

computational resources to train multiple instances of only one

particular model architecture. By using the influence function,

we avoid the requirement of costly retraining. Specifically, we

use influence function to estimate the change in the model’s

loss on Dval when modifying a particular training data point

to efficiently defend against poisoning attacks.

In this work, we introduce HINT, a training algorithm with

healthy influential-noise, that: (1) selects a subset of training

points Ds which have the most impact on the model by

calculating the influence of each training point on the model

loss; and (2) generates healthy noise for every example in Ds

to reduce the success of poisoning attacks without significantly

degrading the model performance over the test data. Algorithm

1 fully presents HINT. First, in lines 2-3, we perform pre-

training of the model parameterized by θ for a few epochs.

This pre-training is to warm-up the θ parameter to avoid

instability in early epochs. Lines 4-10 contain the main routine

of HINT. In line 4, we select the most influential training

points Ds using Algorithm 2 (discussed in Section IV-B). In

lines 6-10, we first check if the round is an update round

(which is defined by an update schedule S), and if it is, we

generate and add healthy noise to selected training examples

following Algorithm 3 (line 8), and then update D̂trn (line 9).

Details of generating healthy influential-noise will be given in

Section IV-C. Regardless if the noise is updated or not, the

model parameters are updated on D̂trn in every epoch (line

10).

Influence Function on Validation Group. It is essential to

note that Eqs. 3 and 6 consider the influence that a single

training point has on a single test point. Calculating the

influence score with respect to only one single test point,

however, may not produce a good estimation when the training

data is poisoned. Additionally, it is computationally expensive

to calculate the influence score for each pair of training and test
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Algorithm 2 SecInf(Dtrn,Dval,r) - Selecting Influential Ex-

amples

Input: Training data Dtrn, validation data Dval, ratio of

selected data r
Output: Ds, Du

1: Ds ← ∅
2: for zi ∈ Dtrn do

3: Compute Iup,loss(zi, Dval) using Eq. 8

4: Sort data points in Dtrn in descending order of absolute

influence scores

5: Assign the first �r × |Dtrn|� examples of Dtrn to Ds

6: Du ← Dtrn \Ds

7: return Ds, Du

points individually, since each pair requires the inverse Hessian

matrix to be calculated (or estimated). Therefore, we extend

the influence functions of Eqs. 3 and 6 to estimate the impact

that a single training point has on a group of test (or validation)

points. Since influence is additive [16], we can extend both

equations to consider the loss on a group of validation points.

The influence of a training point on the loss of a validation

set Dval, in both the total removal and perturbation cases are:

Iup,loss(z,Dval) = −∇θL
(

Dval, θ̂
)�

H
−1

θ̂
∇θl

(

z, θ̂
)

= −

⎡

⎣∇θ

1

|Dval|

|Dval|
∑

i=1

l
(

zi, θ̂
)

⎤



�

H
−1

θ̂
∇θl

(

z, θ̂
)

(8)

Ipert,loss(z,Dval) = −∇θL
(

Dval, θ̂
)�

H
−1

θ̂
∇x∇θl

(

z, θ̂
)

= −

⎡

⎣∇θ

1

|Dval|

|Dval|
∑

i=1

l
(

zi, θ̂
)

⎤



�

H
−1

θ̂
∇x∇θl

(

z, θ̂
)

(9)

Note that for deep learning models, we can compute the

influence score using only the top layers instead of the full

network, which is a common way since the top layers work

as a classifier and the bottom layers work as a feature extractor.

Even if we only consider the top layers, computing the inverse

Hessian matrix (H−1

θ̂
) is computationally intensive. To avoid

the direct computation of the inverse Hessian matrix, we can

instead leverage the inverse Hessian-Vector Product (IHVP)

method to approximate H−1

θ ∇θL(Dval, θ̂) in Eq. 8 and Eq.

9. We use Linear time Stochastic Second-Order Algorithm

(LiSSA) [29] to compute the IHVP efficiently.

B. Selecting Influential Examples

Recall from Section III that the influence function tells how

the model loss would change if a data point z was removed

from the training set. In the presence of attacks, poisoned

examples in training data can silently change the underlying

data distribution. In other words, poisoning attacks shift the

model’s decision boundary away from the one over clean

data, and the poisoned model effectively treats both poisoned

and clean examples as normal training data. However, some

poisoned examples are more effective than others in changing

the model’s predictions [8], [10]. Intuitively, we can increase

the generalization ability of the model by focusing on the

training examples which have a higher impact. To do so, we

introduce a subset selection method in Algorithm 2. For each

example in the training data, we calculate the influence score

using upweighting approach (Eq. 8) as shown in lines 2-3.

We then build the subset Ds by selecting the �r × |Dtrn|�
examples which have the highest impact.

According to Basu et al. [30], the influence function may

not accurately estimate the change in loss when working with

DNN models. The phenomenon is more noticeable when the

models have deeper and wider architectures. The correctness

of influence estimation also depends on various factors in the

training scheme. However, even though the estimated changes

in loss using Eq. 8 does not closely match the actual changes,

they are still highly correlated [16]. In fact, our Algorithm

2 constructs the training subset Ds based on the rank in the

influence scores, not on the estimated change in loss.

C. Adding Healthy Influential-Noise

We first make an observation of how the influence score

can help explain the effect of training input on the trained

model. Eq. 9, Ipert,loss(z,Dval), tells us the contribution of

each input pixel to the loss of the whole validation set. While

the gradient of the loss of the validation set, ∇θL(Dval, θ̂),
provides the information on how the trained model performs

on the unseen validation set, the term ∇x∇θl(z, θ̂) tells us

how each input pixel contributes to the loss. Pixels with either

significantly positive or negative influence scores will highlight

the model’s attention. Since the influence score represents the

change in loss, a pixel that has a positive (negative) score

will cause an increase (decrease) in the loss. Therefore, by

crafting a noise in the opposite direction of influence score,

i.e., δ = −Ipert,loss(z,Dval), we can perturb the original

image in a way that strengthens pixels that have a helpful effect

and weakens pixels that have a harmful effect. In the following

example, we show that images that are predicted wrongly by

the trained model can be altered by adding healthy noises

based on their influence scores to increase the probability of

being correctly classified by the model.

In the second column of Figure 1, we visualize the healthy

noise for either clean or poisoned MNIST images. Note that

the noise values can be either negative or positive, and we

scale the values to be between 0 and 1 in the visualization.

From the noise, we get distinct dark and bright regions which

give information about the harmful/helpful regions inside the

image. Each dark area corresponds to a harmful region, and

these patches of pixels cause confusing regions that need to

be reduced. On the other side, each bright area corresponds

to a helpful region and depicts where healthy influential-noise

can be added to improve the prediction ability of the model.

Therefore, the influence function intuitively provides useful

information on how we can perturb the original image to get

better classification results from the model. We note that this

conclusion is consistent with our observation from Eq. 9.
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Fig. 1: Using influence score to boost model prediction.

The first two rows are clean examples. The last two rows

are poisoned examples generated by DeepConfuse [1]. Three

columns from left to right are: original image, noise generated

by HINT, and healthy-noise perturbed image. Pred is the

predicted class and Prob is the probability. Red dotted circles

are important regions that the influential noise focuses on.

In the third column, we generate healthy-noise perturbed

images by adding the healthy noise (middle column) to the

original images (first column). By comparing the classification

results of the third column with the results of the first column,

we can see that adding noise based on the influence scores

helps reduce the effect of harmful regions and boost the helpful

regions of each image, as the correct class is now predicted

with high probability. Therefore, the model benefits from the

addition of healthy noise. Moreover, in the case of poisoned

images, the healthy noise assigns negative values to the

harmful poisoned regions so that the malicious perturbations

become less effective.

Algorithm 3 demonstrates how our method generates

healthy noise for each example in Ds. Let δi ∈ Δ be

the healthy influential-noise corresponding to training input

xi, i.e., x̂i = xi + δi in line 2. We optimize the noise

within L∞-norm β-bound. In other words, δ should belong to

Δ = {δ ∈ R
H×W : ‖δ‖∞ ≤ β}. During an update round, for

every training example ẑi = (x̂i, yi) ∈ D̂s, we first generate

the noise as Ipert,loss(ẑi, Dval) (line 3) and then project it onto

the feasible space. After that, we add the healthy noise to the

training input and clip pixel values to be within a valid range

(line 4). Finally, we update the newly perturbed examples on

D̂s in line 6. We note that for Ipert,loss(ẑi, Dval) in line 3,

Algorithm 3 AddNoise(D̂s,Ds,γ,β) - Adding Healthy

Influential-Noise

Input: Perturbed training subset D̂s at previous update step,

selected training subset Ds, scaling factor γ, healthy noise

bound β
Output: D̂s

1: for ẑi ∈ D̂s and zi ∈ Ds do

2: δi ← x̂i − xi

3: δi ← Πβ(δi − γIpert,loss(ẑi, Dval))
4: x̂i ← Clip(xi + δi)
5: ẑi ← (x̂i, yi)
6: Update new ẑi in D̂s

return D̂s

the differentiation involves all layers of the entire network to

calculate ∇x∇θl
(

z, θ̂
)

.

D. Complexity Analysis

In this section, we analyze the complexity of our proposed

method. Let p be the number of parameters in the model, n be

the size of the training set Dtrn, k be the size of the validation

set Dval, and d be the number of input features. In Algorithm

2, Iup,loss(z,Dval) is computed for each training example

before the inputs are sorted from most to least influential.

Since

[

∇θ

1

|Dval|

∑|Dval|
i=1

l
(

zi, θ̂
)

]�

H−1

θ̂
is fixed, it only

needs to be computed once – which helps to reduce the overall

running time. Algorithm 2 requires O(np) for calculating the

loss of n training examples and the one computation of IHVP

using LiSSA takes O(kp+rjp), where r is the recursion depth

and j is the number of recursions. Sorting takes O(n log(n))
on average, hence, the subset selection procedure takes in

total O(np + kp + rjp + n log(n)). Algorithm 3 generates

and updates the healthy influential-noise for each example in

the subset D̂s. The noise generation step in line 3 takes a

similar running time to perform the IHVP estimation, and

O(dp) is the cost for calculating the gradient with respect

to the input, ∇x∇θl
(

z, θ̂
)

. Since |Ds| ≤ n, Algorithm 3

takes O(ndp+ kp+ rjp). In Algorithm 1, the training phase

is performed over T epochs, each of which needs O(np) to

update model’s parameters. The training pipeline calls SecInf

(Algorithm 2) once in line 4, and AddNoise (Algorithm 3)

s times in line 6-9, where s = |S|. Since k 
 n and

s 
 T , the total complexity for our HINT (Algorithm 1)

is O(Tp(nd+ rj) + n log(n)).

V. DATA POISONING ATTACKS AND DEFENSES

A. Data Poisoning Attacks

We detail the untargeted and targeted attacks we utilize in

our experiments to craft adversarial examples.

1) Untargeted Attacks: The untargeted attacks we consider

include projected gradient descent (PGD) [2], delusive ad-

versarial perturbation (DAP) [9], delusive universal random

perturbation (DURP) [9], and deep confuse (DC) [1]. PGD
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was originally proposed as a test-time attack and it utilizes gra-

dient information to generate adversarial perturbations. DAP

crafts an adversarial training input x̃i by minimizing the loss

l(fθ(x̃i), ti) where ti is a class other than yi and x̃ is bounded

by a small tolerance rate ε. DURP works by adding class-wise

random perturbation μ(yi) to each xi. This means that for all

training examples having class yi, the attack will add the same

perturbation μ(yi) to them. DC generates malicious examples

using an Auto-Encoder architecture (e.g., UNet for the CIFAR-

10 dataset). This attack can craft imperceptible and efficient

poisoning examples.

2) Targeted Attacks: The attacker’s objective can be for-

mulated as a bi-level optimization problem:

min
ε∈C

l(fθε(xt), yadv) s.t. θε = argmin
θ∈Θ

l(fθ(xi + εi), yi)

(10)

where C = {ε ∈ R
H×W : ||ε||∞ ≤ ξ, εi = 0 ∀i /∈ Dp}

is the constraint set of malicious perturbation ε, and Dp is

the poisoned set. Commonly, the malicious perturbations lie

within ξ-bounded l∞ ball to be imperceptible. We consider

four different targeted attacks in our experimental evaluation:

MetaPoison (MP) [5], gradient matching (GM) [4], bullseye

polytope (BP) [3], and feature collision (FC) [6]. In four

attacks, GM and MP are two modern attacks in training-from-

scratch scenario, while BP and FC work efficiently in transfer

learning scenario.

MP uses a meta-learning approach to approximate the at-

tacker’s bilevel objective in Eq. 10. To do so, MP runs multiple

unroll steps to approximate the inner optimization, and looks

into the training pipeline to evaluate how the perturbation will

affect the adversarial loss in future training steps. Then, the

method uses the Adam optimizer to update the perturbation.

GM optimizes the malicious perturbation via aligning the

gradients of targeted and poisoned examples. Therefore, the

method only needs one unroll step to compute the gradient. To

optimize the malicious perturbation, GM attempts to minimize

the negative cosine similarity between adversarial loss and

natural loss, where the adversarial (natural) loss is the loss

defined in the outer (inner) objective function in Eq. 10.

In BP, the attacker crafts poisoned examples such that their

representation in feature space is close to the targeted image.

BP significantly improves the scalability and transferability of

Convex Polytope attack [31]. FC, also known as Poison Frogs

attack, has a similar idea to BP that it explores the feature

space of images. The method aims to optimize the malicious

examples such that they collide with the targeted example in

the feacture space.

B. Defenses against Data Poisoning Attacks

In this section, we detail the defense mechanisms that we

compare with HINT in Section VI. Specifically, we consider

the FRIENDS [8], adversarial training against delusive adver-

saries (ATDA) [9], and EPIC [10] algorithms.

FRIENDS. From the observation that each effective poison

causes a local increase in the training loss and the whole

poisoning set forms local regions in the loss space, FRIENDS

aims to optimize the maximum perturbation without changing

the model prediction. For each training example xi, the

friendly noise εi is generated as:

εi = argmin
ε:||ε||∞≤β

DKL(fθ(xi + ε)||fθ(xi))− λ||ε||2,

where λ is the scaling factor. Besides the friendly noise,

FRIENDS adds random noise from Gaussian, Uniform, or

Bernoulli distribution to smooth the training loss.

ATDA. Following the theoretical proof that the adversarial

risk can be the upper bound of natural risk, ATDA adapts

the adversarial training technique to defend against untargeted

poisoning attacks. By using FAT [32], the adversarial example

x̃i can be generated as:

x̃i = argmin
x̃:||x̃−x||p≤β

l(fθ(x̃i), yi)

s.t. l(fθ(x̃i), yi)−min
y∈Y

l(fθ(x̃i), y) ≥ τ,

where τ > 0 is the margin such that an adversarial example

would be misclassified.

EPIC. Different from the previously discussed methods, EPIC

finds and drops malicious training points. From the observation

that effective poisoned examples are often isolated from others

of the same class in the gradient space, EPIC builds a set of

medoids of each class, assigns other data points to its closest

medoid, and drops isolated medoids during the training. The

objective to find the set of medoids can be formulated as:

S ∈ argmin
S⊆V,|S|<m

∑

i∈V

min
j∈S

||∇l(fθ(xi), yi)−∇l(fθ(xj), yj)||2,

where m is the maximum number of medoids, S is the index

set of medoids, and V is the index set of training data.

Remark. Our HINT is similar to FRIENDS and ATDA in prin-

ciple as all three methods perturb training examples to defend

against poisoning attacks. But HINT uses a different defense

mechanism as aforementioned in Section IV. The healthy

noise can capture local harmful/helpful regions formed by

influential pixels and, by focusing on those important regions,

the trained model is more resilient to attacks. Furthermore,

HINT leverages the advantage of influence function, which

can estimate the impact of each training example to the model

loss, to choose a subset of training examples for perturbation.

VI. EXPERIMENTS

A. Evaluation Setup

1) Dataset and Model: We focus on the image classifi-

cation tasks and use MNIST and CIFAR-10 as our primary

evaluation datasets. Each dataset is divided into three subsets

(train, validation, and test), and a classification model is trained

over the training set. Table I gives the specific details of our

dataset construction. For MNIST, we train the CNN model

using the SGD method with a learning rate of 0.01. For

CIFAR-10, we train the ResNet-18 model using the SGD

method with a Nesterov momentum of 0.9 and weight decay

of 5 × 10−4. Data augmentation techniques such as random

crop and horizontal flip are also applied to the training images.
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Additionally, the initial learning rate is set to 0.1, which is then

decreased by a factor of 10 at epochs 30, 50, and 70.

TABLE I: Description of datasets and corresponding models.

Dataset |Dtrn| |Dval| |Dtst| Model Batch Epoch

MNIST 59000 1000 10000 CNN 128 30
CIFAR-10 49000 1000 10000 Resnet-18 128 80

2) Poisoning Training Data: We use the attack algorithms

aforementioned in Section V-A to generate adversarial exam-

ples and inject them into the clean training data to produce

our poisoned training set.

Poisoning training data with untargeted attacks. In this ex-

periment, we consider the difficult scenario where the poisoned

training data contains poisoned examples generated by four

different malicious attacks: PGD, DAP, DURP, and DC. We

train a victim model over the clean data for each attack type

and generate the same amount of poisoned data per attack type

based on a poison ratio ρ. For example, using MNIST with

ρ = 0.4, we create a poisoned training dataset (with 59,000

images), which has 29,400 clean images and 24,500 poisoned

images (4,900 images per attack type). For each attack type,

the attacker’s budget for perturbation is ξ = 0.031 (or 8/255)

when attacking CIFAR-10 and ξ = 0.3 (or 76/255) when

attacking MNIST. The setting is practical since the attacker

tries to use a combination of multiple powerful attacks to

efficiently generate malicious data.

Poisoning training data with targeted attacks. When ana-

lyzing the ability of defenses against targeted attacks, we only

consider the CIFAR-10 as this dataset is commonly used for

targeted attack evaluation. In this experiment, we evaluate the

effectiveness of defense methods in both training-from-scratch

(with GM and MP) and transfer learning (with BP and FC)

settings as aforementioned in Section V-A. In both scenarios,

we assume that the attacker knows the dataset, model archi-

tecture, and training scheme. However, they do not know the

model weights. Similar to other papers aimed at defending

against targeted attacks [8], [10], and the benchmarks in [33],

we randomly choose the target and source classes, and then

generate 490 poisoned training images (ρ = 1%).

We run the attacks with the same setup, except for some

specific hyper-parameters for each attack that we mention in

this section. For GM, BP and FC, we train the victim model for

80 epochs and choose ξ = 0.062 (or 16/255) as the bound for

malicious perturbation. The number of attack iterations is set

at 250, 4,000, and 1,000, respectively. Other hyper-parameters

follow the default values from the implementation of GM2.

For MP, the poisoned data is downloaded from MetaPoison3.

We use an equal mix of poison-dog target-bird and poison-

frog target-plane settings in the evaluation. The bound for

perturbation used in MetaPoison is ξ = 0.031.

For transfer learning scenario, we use a similar setup as in

the from-scratch scenario to pre-train the victim model. Then,

we randomly re-initialize the top layers while freezing the

2https://github.com/JonasGeiping/poisoning-gradient-matching
3https://github.com/wronnyhuang/metapoison

feature extraction layers. The victim model is then optimized

on the transfer set. We construct the clean training set (for pre-

training the victim model) with 44,100 clean images (90%)

selected uniformly from each class. The transfer set consists

of the remaining 4,900 images (10%) of the training set, in

which 490 examples have been poisoned. We note that transfer

learning setting used in our evaluation is not a real transfer

learning setting as the clean training and the transfer sets

come from the same original dataset. This, however, is the

worst-case scenario that a defense has to consider to show its

effectiveness, as the setting makes it easier for the attacker to

succeed [4], [8].

3) HINT and Defense Baselines: In this section, we briefly

discuss the hyper-parameters for running each defense used in

our experiment.

Defense Baselines. We choose FRIENDS+Bernoulli in our

evaluation as it has the best performance according to [8].

Similar to the default setting of FRIENDS, we set β = 0.062.

For ATDA, we choose FAT as the representation and set the

default defender’s budget β as 0.25 based on the findings pre-

sented in [9]. When conducting experiments of ATDA against

targeted attacks, we also use β = 0.062 for a fair comparison

with other baselines. EPIC-0.1 is the default representation for

EPIC with the poison drop interval T and warm-up epochs K
as: T = 4, K = 10 for CIFAR-10; and T = 2, K = 5 for

MNIST. We note that our evaluation uses default values as

presented in the FRIENDS, ATDA, and EPIC papers [8]–[10]

for all other hyper-parameters. Besides the above defenses, we

additionally run experiments for a naı̈ve training method (W/o

Defense) using the default architecture of each dataset.

HINT. When computing the healthy noise, we only use the

weights from the top layers of the model and discard all other

weights (i.e., all weights from feature extraction layers). We

set the update schedule for healthy noise at epochs 5, 15, and

40 for CIFAR-10 and at epochs 5 and 15 for MNIST. We

choose the budget for the healthy noise to be β = 0.062 and

the scaling factor to be γ = 0.1.

Metrics. For each experiment, we report the average and

standard deviation of the test accuracy over five trials. When

defending against targeted attacks, we additionally report the

Attack Success Rate (ASR), which evaluates the success of an

attack in changing the prediction of targeted examples. Note

that an attack is considered successful only if it can change the

predicted class to the intended class, following the evaluation

in [4], [8], [10]. We use GPU Tesla V100 (32GB RAM) and

CPU Xeon 6258R 2.7 GHz to conduct all experiments.

B. Results

1) Defending against Untargeted Attacks: In this experi-

ment, we evaluate the ability of different defense mechanisms

to defend against poisoning attacks under different poison

ratios. In Table II, we report the average and standard deviation

of the test accuracy on CIFAR-10 and MNIST datasets. Each

row shows the result for one poisoning set constructed from a

particular poison ratio ρ. In most rows, HINT outperforms all
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other defense baselines, demonstrating our defense’s effective-

ness against poisoning attacks. For HINT and other methods,

the test accuracy decreases when ρ increases, which is not

surprising since the attacker is able to inject more poisoning

examples into the training set. With a large poison ratio

(p ≥ 0.8), our HINT method significantly reduces the effect

of poisoned samples when we compared to naı̈ve training. It

also clearly outperforms other three defense baselines.

When we look at the results on the CIFAR-10 with a small

poison ratio (ρ ≤ 0.4), HINT is the only defense method that

achieves better performance than naı̈ve training, while other

defenses have significant gaps below (more than 1.5%). A

similar pattern happens to the results on the MNIST when

ρ ≤ 0.6. In this case, the model still learns both clean and

malicious patterns but is able to focus more on the clean

data. With FRIENDS and ATDA, when friendly or adversarial

noises are added to clean training examples, the decision

boundary may move further away from the original one.

Recall from Section V-B where we explain that FRIENDS

and ATDA add noise to the whole training dataset while our

HINT method perturbs only a selected subset. Especially in

the case that there is no poisoning attack performed (ρ = 0.0),

our HINT method only loses 0.22% test accuracy compared

to naı̈ve training on MNIST and even has better accuracy on

CIFAR-10. These results match our previous observation in

Section IV-C that the model trained with healthy noise does

not lose its generalization ability. On both datasets, EPIC is

the worst performer in the four defenses. This is because

EPIC continuously detects and drops malicious examples,

which works more efficiently when poisoned examples are

far from their class in the gradient space. However, it is hard

for EPIC to detect poisoned examples by untargeted attacks

since untargeted attacks significantly perturb multiple training

examples of every class to shatter the decision boundary, which

also tampers the representations of training examples in the

gradient space. It is even more challenging when we mix four

different attack types with clean data in our setting.

In Figure 2, we show the predicted class, along with the

probability of the prediction, of HINT and other baselines for

five test examples from MNIST. We use red to denote each

defense’s success in preventing untargeted attacks. Each result

shows the predicted class with the confidence score from the

trained model using the corresponding defense method. Some

pairs of classes have a high chance of confusion in prediction,

which shows that untargeted attacks can successfully mislead

the victim model and shift the decision boundary. For example,

a trained model easily gets confusing an image of digit 7 for

digit 2, or an image of digit 5 for digit 6. The results show that

our method is more effective than other baselines in helping

the trained model avoid the effect of untargeted attacks and

give correct prediction results with a high confidence score.

2) Defending against Targeted Attacks: Table III shows a

comparison of our HINT method with all baselines in terms of

ASR and test accuracy on CIFAR-10. We compare the results

based on ASR (lower is better) and test accuracy (higher is

better). In this setting, our HINT method also significantly

Fig. 2: Prediction of defense methods on MNIST test images

under multiple untargeted attacks.

outperforms all other baselines. With all attacks, the naı̈ve

model fails all five trials, except for MP with 4/5. In particular,

HINT, FRIENDS, and EPIC succeed in keeping the targeted

example safe under the GM attack. However, our method

achieves the highest test accuracy of the three defenses. Under

other attack methods, HINT only fails once, while most other

baselines fail multiple times. In most experiments, our HINT

method also consistently has the best test accuracy compared

to the other baselines. ATDA is the worst performer in terms

of ASR compared to HINT, FRIENDS, and EPIC. This is

unsurprising since ATDA uses adversarial perturbation to

break the malicious examples by untargeted attacks, while the

training data is poisoned by targeted attacks in this experiment.

From the results, we can see that all the defense methods

work well when defending against GM and MP. In training-

from-scratch scenario, when training the model from scratch,

defense methods will have a better chance to capture the

malicious pattern from the poisoned examples and thereby be

able to reduce their effect. Conversely, FRIENDS and EPIC

have noticeably dropped in efficiency when defending against

BP and FC in transfer learning scenario.

Figure 3 and 4 illustrate our results under MP and BP

attacks, respectively. Similar to Figure 2, we use red color

to denote the defense’s success in preventing attacks from

falsifying the target’s class, and each result shows the predicted

class with the confidence score. The model trained with HINT

predicts the correct classes for most of the targeted examples

with a high confidence score, consistent with the results of

defending against untargeted attacks. Especially under the BP

attack, HINT is the only method to successfully defend against

the attack trials in the last two columns.

3) Sensitivity Analysis: Table IV shows the sensitivity

analysis of HINT on the ratio of selected examples r and the

defender’s budget β. We run our HINT method with different

r values to show how the size of the selected subset affects

the model’s performance. Note that when r = 1.0, the result

is equivalent to the case of removing the subset selection

module. The result shows that as r increases, the test accuracy

decreases. This observed trend highlights the contribution of

our subset selection module in the whole training method. The

trend also matches our previous observation that adding noise

into clean examples may cause a drop in test accuracy.
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TABLE II: Test accuracy (%) of our method and baselines when defending against multiple untargeted attacks

(PGD+DAP+DURP+DC) on CIFAR-10 and MNIST datasets. In this evaluation, r = 0.5 and ρ is the poison ratio.

Dataset ρ W/o Defense HINT ATDA FRIENDS EPIC

CIFAR-10

0.0 93.86 ± 0.26 93.64 ± 0.12 91.82 ± 0.17 89.25 ± 0.53 87.28 ± 0.71
0.2 92.54 ± 0.05 92.67 ± 0.04 90.97 ± 0.17 89.37 ± 0.52 86.98 ± 0.79
0.4 91.67 ± 0.12 92.08 ± 0.17 89.92 ± 0.25 88.53 ± 0.38 87.37 ± 0.40
0.6 83.51 ± 0.17 91.94 ± 0.21 90.00 ± 0.38 88.90 ± 0.53 86.70 ± 0.11
0.8 80.02 ± 0.36 91.20 ± 0.21 89.22 ± 0.57 87.75 ± 0.18 85.38 ± 0.73
1.0 48.62 ± 0.74 90.79 ± 0.13 89.41 ± 0.58 86.76 ± 0.55 84.73 ± 0.32

MNIST

0.0 98.44 ± 0.02 98.87 ± 0.01 98.45 ± 0.11 98.33 ± 0.09 98.06 ± 0.05
0.2 97.73 ± 0.01 98.42 ± 0.02 97.39 ± 0.29 97.58 ± 0.08 97.31 ± 0.16
0.4 97.15 ± 0.03 98.01 ± 0.09 97.01 ± 0.09 97.14 ± 0.12 96.76 ± 0.19
0.6 96.64 ± 0.12 96.87 ± 0.02 96.46 ± 0.14 96.58 ± 0.09 96.19 ± 0.19
0.8 95.55 ± 0.12 95.88 ± 0.04 95.59 ± 0.09 95.49 ± 0.21 95.03 ± 0.20
1.0 74.62 ± 0.94 88.92 ± 0.19 80.60 ± 1.01 77.08 ± 1.70 77.84 ± 1.54

TABLE III: Attack Success Rate and test accuracy (%) of defense mechanisms against different targeted poisoning attacks.

Experiments with MetaPoison is run without augmentation, following the setting in [5], [8].

GM MP BP FC

W/o Defense
ASR 5/5 4/5 5/5 5/5

Test acc. 93.69 ± 0.19 87.48 ± 0.41 91.41 ± 1.34 89.40 ± 1.39

HINT
ASR 0/5 1/5 1/5 1/5

Test acc. 92.99 ± 0.26 87.15 ± 0.46 92.41 ± 0.54 92.21 ± 0.31

ATDA
ASR 3/5 3/5 4/5 4/5

Test acc. 93.64 ± 0.27 87.45 ± 0.61 89.50 ± 1.51 88.37 ± 1.73

FRIENDS
ASR 0/5 1/5 3/5 2/5

Test acc. 89.17 ± 0.41 78.26 ± 0.63 89.53 ± 0.66 88.84 ± 0.94

EPIC
ASR 0/5 2/5 4/5 3/5

Test acc. 90.36 ± 0.43 86.68 ± 0.23 89.65 ± 2.34 89.19 ± 1.61

Fig. 3: Prediction of defense methods on CIFAR-10 test

images under MP attack. “A” and“I” stand for actual and

intended classes, respectively.

For hyper-parameter β, the test accuracy increases when

moving from 0.031 to 0.062, and decreases when β > 0.062.

This phenomenon is understandable since the healthy noise is

not large enough to reduce the effect of malicious perturbation

when we choose small β. However, when the healthy noise is

sufficiently large, it makes the values of the pixels move too

far from their original value and breaks the spatial relationship

in the images.

4) Execution Time: We report the execution time of all

defense methods used in our experiments in Table V. For

HINT, we report the time for four variants with different r
values. When r increases, the running time increases since the

method needs to compute healthy noise for more training ex-

amples. When r = 1.0, the running time does not significantly

Fig. 4: Prediction of defense methods on CIFAR-10 test

images under BP attack. “A” and“I” stand for actual and

intended classes, respectively.

TABLE IV: Sensitivity analysis of HINT on r and β with

untargeted attacks (ρ = 0.6).

Value CIFAR-10 MNIST

r

0.25 92.06 ± 0.08 97.13 ± 0.03
0.5 91.94 ± 0.21 96.87 ± 0.02

0.75 91.83 ± 0.11 96.62 ± 0.03
1.0 91.72 ± 0.15 96.46 ± 0.05

β

0.031 91.80 ± 0.18 96.76 ± 0.01
0.062 91.94 ± 0.21 96.87 ± 0.02
0.125 91.77 ± 0.13 96.74 ± 0.05
0.251 91.40 ± 0.20 96.43 ± 0.01

increase compared to when r = 0.75 since HINT disables the

subset selection module. For other defenses, the running time

of FRIENDS is close to the default setting of HINT (r = 0.5),

while ATDA and EPIC need more time to execute. ATDA
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generates and adds the noise for every training example in

every training step. EPIC executes poison identification, which

requires extensive resources to find medoids for each class in

gradient space, to drop isolated points in every T epoch.

TABLE V: Execution time of defenses with CIFAR-10.

Method Time (s)

HINT (r = 0.25) 2113
HINT (r = 0.5) 2427

HINT (r = 0.75) 2745
HINT (r = 1.0) 2875

Method Time (s)

W/o Defense 1600
ATDA 5760

FRIENDS 2426
EPIC 3147

VII. CONCLUSION

In this work, we presented an effective robust training

framework, HINT, that hardens the model with healthy

influential-noise to protect machine learning models from

poisoning attacks. Our method uses the influence function

as a central mechanism to select examples with the high-

est impact on the model test loss and crafts the healthy

influential-noise. Deep learning models trained with our HINT

method are more resilient to the effect of malicious examples.

Through comprehensive empirical evaluations, we demonstrate

the effectiveness and stability of HINT in defending against

powerful untargeted and targeted attacks (e.g., Deep Confuse,

Gradient Matching, and Bulleyes Polytope) and its superiority

over state-of-the-art defense baselines. These evaluations were

conducted in a realistic scenario, highlighting the suitability of

our defense mechanism for deployment in sensitive security

settings. In future work, we will extend our approach to

defend against other attack types, such as back door attacks,

which involve injecting specific backdoor patterns into selected

training data, manipulating test data to embed the triggers, and

causing intentional misclassification.

Reproducibility. Our source code is available at https://github.

com/minhhao97vn/HINT.
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