Quantifying noise effects in optical measures of excited state transport
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ABSTRACT

Time-resolved microscopy is a widely used approach for imaging and quantifying charge and
energy transport in functional materials. While it is generally recognized that resolving small
diffusion lengths is limited by measurement noise, the impacts of noise have not been
systematically assessed or quantified. This manuscript reports modeling efforts to elucidate
the impact of noise on optical probes of transport. Excited state population distributions,
modeled as Gaussians with additive white noise typical of experimental conditions, are
subject to decay and diffusive evolution. Using a conventional composite least-squares fitting
algorithm, the resulting diffusion constant estimates are compared with the model input
parameter. The results show that heteroscedasticity (i.e., time-varying noise levels),
insufficient spatial and/or temporal resolution, and small diffusion length relative to the
magnitude of noise lead to a surprising degree of imprecision under moderate experimental
parameters. Moreover, the compounding influence of low initial contrast and small diffusion
length leads to systematic over-estimation of diffusion coefficients. Each of these issues is
quantitatively analyzed herein and experimental approaches to mitigate them are proposed.

General guidelines for experimentalists to rapidly assess measurement precision are provided,
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as is an open-source tool for customizable evaluation of noise effects on time-resolved

microscopy transport measurements.

I. INTRODUCTION

Time-resolved optical microscopy has recently gained prominence as an effective tool to
study excited state transport in materials relevant to photovoltaic, photocatalytic, lighting, and
other optoelectronic materials.!> For such measurements, a short laser pulse is focused with a
high numerical aperture lens, producing a localized population of excited states. The spatial
and temporal evolution of the photogenerated excited state population is then probed with a
spatially offset second laser pulse (in the case of pump-probe microscopies) or by imaging
the time-resolved photoluminescence (in the case of time-resolved photoluminescence

microscopy).5®

While data collection specifics may vary among practitioners and for
different materials systems, all methods directly image the excited state population's
spatiotemporal evolution and provide quantitative measures of energy and/or charge
transport. For the remainder of this manuscript, we will refer to this class of measurement
techniques collectively as transport imaging.

Regardless of whether the excited state population is imaged via a pump-probe response
or through photoluminescence, it is common practice to quantify excited state transport by a
composite least squares fitting approach, illustrated in Fig. 1.*7-° The first step of this
composite fit extracts the mean squared width of the excited state distribution immediately
following photoexcitation and at a series of fixed delays. Often, this profile is well-described
by a Gaussian model.!” The functional dependence of how the profile width changes with
time is the key observable in transport imaging, as it is indicative of the physical processes
that govern excited state transport. In the limit excited state transport is diffusive, the mean-

squared displacement (MSD) of the distribution increases linearly with time and the diffusion

coefficient can be determined from a linear fit to the time-dependent MSD derived from the
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fitted Gaussian curves.® !! For cases where transport deviates from this ideal scenario, the
MSD of the excited state distribution can be fit to non-linear functions including power law
diffusion, exponential transitions of linear diffusion regimes, trapping/detrapping models, or

other numerical approaches.® 12-2!
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Figure 1: Illustration of the conventional two-step composite fitting procedure in optical measures of excited
state transport. Panel (a) shows a modeled two-dimensional point-spread function typical of transport imaging,
in which photoluminescence or a change in the optical constants reveals a distribution of photogenerated
excited states. In this simulated example, the contrast-to-noise ratio (CNR) is 20. A cross section of the signal
intensity is shown in panel (b). A fitted Gaussian function, blue solid line, yields the width parameter opgp. In
panel (c), additional profiles are collected at increasing delay times following photoexcitation, normalized to
the peak amplitude, and fitted to Gaussian functions (gold, green solid lines). (d) The mean squared
displacements (6 — 02sp, blue, gold, and green circles with error bars) are fitted to a linear function where the
slope is proportional to the diffusion coefficient.

It is generally acknowledged that the precision of a diffusion coefficient determined with
transport imaging is primarily limited by uncertainties stemming from measurement noise.*
16.22-25 Uncertainties in transport imaging manifest in two steps, reflecting the two-step
approach to extracting a diffusion coefficient from experimental data. First, spatial
uncertainty is conveyed as an error bar associated with the fit of the excited state distribution
mean squared width for a particular time delay. In the second step, an overall confidence
interval is provided for the diffusion coefficient, capturing the uncertainty associated with the

temporal evolution of the excited state spatial distribution.?®?® These two uncertainties,



presented separately, often stand as heuristic indicators of fit quality. While some researchers

have provided statistical analyses of their results,? 282

a systematic analysis of the extent to
which noise impacts the precision and accuracy of diffusion estimates has not been reported.
Consequently, it is difficult to evaluate whether a reported diffusion coefficient derived from
a single data set is representative of the range of possible values caused by finite
experimental noise. With the growing importance of optical methods in determining transport

properties of materials, !> % & 233031

quantitative assessment of the ramifications of noise on
such measurements is imperative.

To provide a quantitative evaluation of the impacts of noise on transport imaging, we
model the diffusion and decay of excited state spatial distributions for a range of diffusion
lengths, additive white noise amplitudes, and spatiotemporal resolutions. As is typically
performed experimentally, the resultant time-dependent mean-squared displacements are fit
to extract diffusion coefficient estimates. Comparisons of model outputs (i.e., estimated
diffusion coefficients) to the nominal inputs show surprising levels of imprecision, and in
some cases systematic inaccuracies, to the extent that even qualitative comparisons of
transport properties of materials are called into question with moderate levels of noise and
common experimental parameters. For example, assuming a plausible set of experimental
parameters — a diffusion length of 50 nm, an initial signal full-width-half-maximum
(FWHM,) of 1 um, a spatial resolution of 20 pixels per FWHM,, a temporal resolution of 10
frames per lifetime, and an initial peak amplitude-to-noise ratio (or contrast-to-noise ratio,
CNR) of 50:1 — our results show fewer than one half of experimental measurements will
recover a diffusion coefficient that is within 50% of the actual value. We also find significant

systematic error in scenarios of small signal size and short diffusion length. For example, for

a diffusion length of 10 nm and a CNR, of 10:1 (maintaining the other parameters), the



average fit-determined diffusion coefficient is overestimated by more than an order of
magnitude.

To facilitate a more robust evaluation of transport imaging experimental conditions, we
provide a means for practitioners to rapidly assess the likelihood that their experimentally
determined diffusion coefficients are accurate, given a set of experimental parameters
(resolution, noise, and diffusion length over one decay lifetime). We also make available an
open-source software tool that can be customized for diverse experimental protocols to
estimate noise and assess its impact on composite fitting precision. Lastly, we recommend
that authors of transport imaging papers include not only standard experimental parameters
(e.g., spot size, excitation fluence), but also report contrast-to-noise ratios and a sufficient

number of measurements for statistical analysis.

II. METHODS
A. Time-evolving excited state population

To generate time-dependent excited state spatial distributions, we adopt a simple 1-D
model in which the excited state population, n(x, t), is assumed to evolve with first order

decay and isotropic normal diffusion, Eq. 1.

on(x,t
% = —k,n—DV?n (D

Here k; is the first order rate constant and D is the diffusion constant. Solving Eq. 1 for a
point source at a position x, the population density is characterized by a Gaussian function

that broadens and decays in amplitude over time, Eq. 2, with lifetime 7 = k; ™.

1 — x,)?
n(x,t) = exp(—t/t) \/Wexp I— %} (2)

The mean-squared displacement (MSD) of excited states in a Gaussian distribution is

proportional to the diffusion coefficient D. The MSD is equivalent to the difference between



the Gaussian mean squared width at a specific time after photoexcitation (o) and the initial

mean squared width of the measurement point spread function (ofgg)."?
MSD = o — o2z = 2Dt 3)

The experimentally convenient full width at half maximum (FWHM) of the signal profile is

related to the mean squared width of a Gaussian via 62 = FWHM?/81n 2.

B. Contrast to noise ratio

A common parameterization of noise in imaging sciences is contrast to noise ratio,
CNR = A/oy, which relates the signal amplitude (A4) given by the absolute difference
between the signal peak and baseline, to the standard deviation of the noise (g ).>>>* The
amplitude parameter is time dependent in transport imaging, reflecting the diffusion and
decay processes of the excited state population. For an initial Gaussian excited state
distribution, the time dependent amplitude, A(t) is given by Eq. 4, where A, is the initial
signal amplitude, o is the initial point-spread function mean squared width, 7 is the excited

state lifetime, and D is the diffusion coefficient.
A(t) = Ayopsr exp(—t/1) /(2Dt + 0isp)/? @

To parameterize the CNR for the modeled data, the initial profile amplitude is set at unity
and additive white noise is applied to the initial and time-evolved simulated signal profiles.
For each time frame, a pseudorandom number generator (with a fresh seed value) returns a
normal distribution of values with arbitrary standard deviation and mean of zero, and the
generated noise values are added to each spatial pixel in the simulated signal profile. Noise is
generated using NumPy’s PCG-64, an implementation of O’Neill’s permutation congruential

generator.>> 3¢



Although the modeled CNR can be determined based on input parameters, a robust
method to estimate CNR is necessary for evaluation of experimental data. Our approach for
estimating CNR uses a 1D profile (which could be, for example, a slice through the center of
a 2D signal profile). After normalization, a unitary Fourier transform (FT) is performed on
the data. In the FT of the data set, the signal is centered at zero frequency, and the noise
generally lies at higher spatial frequencies. Noise is estimated by finding the root mean
squared amplitude for frequencies that lie above the first local minimum after the signal peak.
The ratio of the peak amplitude to the RMS noise provides an estimate of the experimental

CNR.

C. Generalized model parameters

Unless otherwise specified, the modeling described in this manuscript uses the following
parameters: the spatial width of the entire data domain (L, ) is set to 5 in relative units of
initial profile width (FWHM,); the number of pixels across the spatial domain (Npx) is 100;
the duration over which profiles are fit is one decay lifetime (¢t/t = 1); the number of
observations over the duration (time frames, N;) is 10; the initial signal amplitude (4,) is
unity; the initial profile width (FWHM,) is unity; and the spatial offset of the initial profile
() 1s zero in relative units of FWHM . These parameters, chosen to be comparable to those

found in relevant experimental literature, are summarized in Table 1.

To simplify analysis of the described simulations, the influence of decay and diffusion on
CNR is normalized by parameterizing the lifetime diffusion length Ly, which is dependent on
both diffusion and decay. The diffusion length is formally the mean squared displacement

(MSD) of the distribution at t = 7, but the numerical constant is typically omitted, L, =

vVDt.*37 To facilitate comparison across many materials systems and experimental



apparatuses, this manuscript expresses the diffusion length in terms of the initial profile

FWHM,.
Parameter Symbol Default value Unit
— spatial width across domain L, 5 FWHM,
=
1
é- g number of pixels Npix 100 pixels
gz
=3 duration t/t 1 none
5]
;g ju
2 number of time frames N, 10 frames
- initial amplitude Ay 1 arbitrary
=
g3 initial profile width FWHM, 1 arbitrary
=5
= spatial offset u 0 FWHM,

Table I: Generalized simulation parameters and their default values and units.

D. Composite fitting algorithm

Following the generation of a series of noisy profiles in a given simulation, each profile is

fit using the Levenberg—Marquardt algorithm implemented in the Python SciPy wrapper of

the MINPACK Fortran library®® 3 to find the parameters of a Gaussian function that

minimize the sum of the squares of the deviations. The fitted parameters are the Gaussian

mean squared width o2, the amplitude A, and the spatial offset u. Because background is

typically subtracted from experimental data, the baseline offset was fixed at zero. For the

fitting algorithm, a common set of reasonable bounds and initial guesses were applied to the

entire set of simulations. These bounds and initial guesses are summarized in Table II.



Parameter Lower bound Upper bound  Initial guess

Variance (6?) (Lx/Npix)® 12 12/16
Amplitude (4) 0 24 Ao
Mean (u) —L,/10 L,/10 0

Table II: Initial bounds and guesses for Gaussian fitting parameters where L, is the length of the spatial
domain, Ny, is the total number of spatial pixels, and Apqy is the profile data maximum.

To determine the diffusion coefficient, the MSD array — i.e., the series of g parameters
estimated by the Gaussian fits — is fit to Eq. 3. Both ordinary (i.e., unweighted) least squares
and weighted least squares fits are compared. For weighted fitting (used in all cases except
where otherwise indicated), normalized weights are calculated by the reciprocal of the
relative variance of the mean squared width parameters from the Gaussian fits. To
characterize both precision and accuracy of diffusion estimates, the results are described in

terms of the portion of fits that are within a given proximity to the nominal input value.

III.RESULTS & DISCUSSION

A. Noise and Spatial Uncertainty

Transport imaging of a diffusive process generally proceeds via a two-step composite
fitting procedure. The first step fits individual profiles to a model, often Gaussian, and the
second step fits a linear model to the time-dependent mean squared profile widths. It is
therefore essential to assess how error propagates through these two interconnected steps. In
Figure 2, we examine step one of this composite fit. With CNR of 50, Fig. 2(a), profiles are
well-fitted, with all fits yielding profile mean squared width estimates (o&;) within 10% of
the nominal parameter (62,,,) input to the model, Fig. 2(b). The portion of good fits rapidly
decreases below CNR of 20; but even for a CNR of 1 (i.e., where the contrast is the same
magnitude as the standard deviation of the noise), about 60% of fitted mean squared width
estimates are still within 10% of the nominal value. These low CNR fits are artificially

precise, reflecting the influence of the fitting constraints (see Table II). Figure 2(c)



summarizes these results, showing the fraction of Gaussian fits with an estimated mean
squared width that lies within 10% of the nominal value when CNR is between 1 and 20. It is
worth noting that fits to the full image (Fig. 1a) with a two dimensional Gaussian improves fit
performance over a 1D Gaussian because the increased number of data points constrain the
fit. However, for cases in which transport is known to be isotropic or is only of interest along
one direction, larger performance gains are obtained by collecting a single 1D profile
multiple times (and averaging to improve CNR) or by spatial oversampling (see discussion

below) than by collecting a full 2D image.
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Figure 2: Gaussian fitting performance on noisy profiles with resolution of 20 pixels per FWHM and a domain
5 times the length of FWHM. (a) Example Gaussian fit (gold solid) of a simulated profile with CNR = 50 (blue
circles). (b) Histogram showing the relative proximity of 10,000 mean squared width estimates to the nominal
value. (c) Portion of fitted mean squared width estimates, 62, within 10% of the nominal value, 62y, as a
function of 1 < CNR < 20. Each of the 100 scatter points in panel (c) represents 10,000 fits.
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The bounds imposed on the width parameter (6%;) of the Gaussian model described
above led us to evaluate how fitting biases of low CNR profiles could propagate into the
second step of the composite fit. While such low CNR fits are not common, they can become
increasingly relevant at late delay times, when a significant portion of the photogenerated
population has decayed. Figure 3 shows results from 100,000 individual fits of simulated
profiles for CNR values of 20 (a), 5 (b), and 2 (c). Best-fit width (6Z;) parameters along with
their standard errors (SE') calculated from the covariance matrix are shown as histograms.
Also shown is the standard deviation (SD) directly calculated from the distribution of fit-
determined o&; values. For profiles with CNR = 5 (Figs. 3a, b), distributions of 6Z; values
are unbiased and symmetric around the nominal modeled width, 6.2,,,. SE values reported by
individual least squares fits are closely comparable to the SD of the distribution. While there
are cases where the SE estimate from a single fit deviates from the SD of the population,
generally these results show that, on average, the least squares fit provides an unbiased
estimate of the parameter mean value and uncertainty. However, at very low CNR (CNR < 5,
Fig. 3¢), the Gaussian least-squares fit leads to two sources of bias. First, the SE determined
from the covariance matrix underestimates the SD of the population by ~20%. This
discrepancy is a result of the Gaussian model which restricts oZ; > 0. Because the model
cannot be linearized in this limit, the SE calculated from the covariance matrix is incorrect.*
Second, the average of the width estimates ((6Z;)) is more than 5% higher than ¢;2,,, while
the median of 6%, is about 3% below the nominal value. This difference between the mean
and the median indicates a skewing of the g% distribution toward larger widths at low CNR.
As discussed and shown below (Fig. 7), The skewness of the distribution of 62 distribution

leads to systematic errors in diffusion constant estimation at low CNR.
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Figure 3: Comparison between standard deviation (SD, solid blue vertical bars) of fitted mean squared width
estimates (0%, blue histogram bars) and the standard error (SE, gold histogram bars) as given by the fitting
algorithm. The profile widths, SD, and SE are all normalized against the nominal profile mean squared width
parameter (62,m). The distributions shown on each panel were derived from 100,000 simulated Gaussian
profiles with additive white noise. Histograms are normalized to the highest bars for visual comparison. (a)
Results for CNR = 20. No skewness is apparent in the distribution of 0%, with mean and median both being
1.000. The SD and mean standard error of 62 (SE) are both equal to 0.037. (b) Results for CNR = 5. Slight
skewness is apparent in the distribution of 62, with mean of 1.006 and median of 0.995. The SD and SE are
near agreement with SD = 0.150 and SE = 0.146. (c) Results for CNR = 2. The distribution of 6%, is skewed
right due to many outliers with large values, with mean of 1.054 and median of 0.968. The SD of 6% is 0.507,
but SE = 0.364, showing an underestimation of the error calculated by the fitting algorithm.

B. Noise and Estimation of D

In the limit transport is well described by normal diffusion, the mean squared width (6?)
of the excited state spatial profile increases linearly with time after photoexcitation. A set of
fit-determined MSDs can therefore be linearly fit to find the diffusion coefficient. Figure 4(a)

illustrates this procedure for a representative series of data modeled with initial contrast to
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noise ratio, CNR, = 50, and a diffusion length, L, = 0.1 FWHM,,. The blue solid line shows
the best linear fit to the MSD data obtained from least squares fits of time-dependent profiles.
The gold line shows the slope of theoretical 67 values, which is proportional to the nominal
diffusion coefficient input to the model. The difference in slope between the two lines is a
consequence of the cumulative uncertainty in mean squared widths associated with random

noise and decreasing signal amplitude due to diffusion and single exponential decay (Egs. 2,

4).

For a given diffusion length and CNR, the precision of the composite fitting procedure
can be characterized by the spread of the diffusion constant estimates. Fig. 4(b) shows the
results of linear fits to 1000 data sets (like those shown in Fig. 4a), each simulated with
CNRy, =100, and L, = 0.1 FWHM,. A histogram of the fit-determined diffusion
coefficients from these 1000 simulations, normalized to the model input parameter, Dy o, 1S
shown in Fig. 4(c). For this high-contrast example with moderate diffusion length, 96% of the

estimates are within 50% of the nominal diffusion coefficient.

A challenge of the composite fitting approach is that both diffusion and excited state
relaxation cause a decrease in the CNR with time, which in turn leads to profile fits whose
uncertainty increases with time. This noise variability in a dataset, called heteroscedasticity,
has been previously identified as a confounding factor in the analysis of imaging
spectroscopy, transient kinetics, and lifetime imaging.*'** When the uncertainty of
measurements changes monotonically over time, the ratio of final to initial CNR 1is a simple
way to characterize heteroscedasticity. For a one-dimensional Gaussian profile with arbitrary
initial RMS width opgr and an excited state diffusion length L, under first-order decay, the
time-dependent decrease in contrast is a function of diffusion length, L, and time as a

fraction of lifetime, t /7, Eq. 5.
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CNR;/:/CNRy = Opsp exp(—t/7)/(2L5 (t/7) + ofsp)*/? (5)

Examination of Eq. 5 shows that amplitude is diminished (assuming noise is constant) by a

factor that scales exponentially with time and as 1/L, (for large Lp).

One strategy for mitigating the impacts of heteroscedasticity is to use weighted fitting in
the second step of the composite fitting procedure. Figure 4(d) compares the precision of
weighted and unweighted composite fitting as a function of L, for an initial CNR, = 50.
While the performance of both approaches quickly diminishes for L, < 0.1 FWHM,,, the
weighted approach does provide better precision across the range. For moderate L from
about 0.1 to 1.0 FWH M,, both approaches yield estimates that all are within 50% of the
nominal diffusion coefficient. In cases of high diffusion length, L, > 1.0 FWHM,, the
unweighted fit performs worse again, due to the rapid loss of contrast from diffusion. As will
be discussed later, weighting the fit does not always fully correct more extreme cases where
contrast diminishes quickly. Figure 4(e) compares weighted and unweighted fitting methods
as a function of CNR, for an L, = 0.1 FWHM,,. Here again, the weighted approach provides
a small, but consistent improvement across the range of CN R, values. In fact, in our
modeling of 2 million diffusion trajectories with 3.33 < CNR, < 100 and 0.01 < Lp <
20 FWHM,, a collection of weighted fits was never found to be /ess precise than the
corresponding collection of unweighted fits. Given the ease with which weights are
calculated (see section IIB) there is, as far as we can determine, no reason not to implement
weighted fits in the linear fit of time-evolved mean squared widths of excited state population

distributions in transport imaging data.
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Portion of fits within 50%
of nominal diffusion coefficient

Figure 4: Composite fitting and comparison between weighted and unweighted linear fit performance with a
domain width of 5 times FWHM,, pixel resolution of 20 per FWHM,, and temporal resolution of 10 per decay
lifetime. Displacement is normalized to the diffusion length and time normalized to the lifetime. Panels a), b)
and c) present data for L, = 0.1 FWHM, and CNR, = 50. (a) Simulated data showing 10 uniformly-timed
mean-squared displacements of the excited state spatial profile with added white noise, fitted as MSD relative to
the initial Gaussian mean squared width (62 — &) (circles). Error bars show the relative standard error of the
fitted mean squared width. The blue solid line shows a linear fit to the data to extract D ;. The gold line shows
the slope corresponding to the nominal diffusion coefficient (Dyom). (b) Linear fits from 1000 simulations. (c)
Histogram of fitted diffusion coefficients relative to the nominal value (D .t / Dyom), With a normal curve fitted
to the histogram (blue). Panels d) and e) present the portion of fitted diffusion coefficients that fall within 50%
of the nominal value, (D5t /Dpom = 1 £ 0.5), contrasting the performance of weighted (blue) and unweighted
(gold) linear fits of the Gaussian mean squared width over one lifetime. (d) CNR, = 50 and 0.01 FWHM,, <
Ly, < 2.0 FWHM,, and (e) 3.33 < CNRy < 100.0 and L, = 0.1 FWHM,. Each data point in panels d) and e)
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represents the result from 5000 fits.

parameters are the excited state diffusion length, L, and the contrast to noise ratio, CNR. To
provide more comprehensive insight into how these two parameters affect the precision and

accuracy afforded by the composite fitting procedure, simulations and fitting were performed

While many factors affect the robustness of transport imaging, the most important
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for 20 diffusion lengths between 0.01 and 2.0 FWHM,, over a range of 100,000 randomly
selected CNR, values, collected in 20 bins between 3.33 and 100. The range of these
parameters encompasses the vast majority of published experimental work in this area. For
each diffusion length and CNR,, bin, 5,000 simulations were performed. The results are
summarized in Fig. 5, which shows the fraction of diffusion constant estimates within 50% of

the nominal value.

Not surprisingly, Fig. 5 shows that measurements with longer diffusion lengths under
conditions of higher CNR, are generally more precise and accurate. For example, 90% of fits
recover a diffusion estimate, Dogi/Dpom = 1 £ 0.5 when the diffusion length is more than
~ 0.1 FWHM, and CNR, = 40. For longer diffusion lengths up to ~ 1.0 FWHM, noise is
better tolerated, with the same precision holding at CNR, as low as ~ 6. For diffusion lengths
greater than ~ 1.0 FWHM,), as we also saw in Fig. 3(d), the trend of greater noise tolerance
reverses, reflecting the rapid loss in CNR due to diffusion (Egs. 2, 5) at times that approach
one lifetime. Note however, that the deleterious effects of rapid diffusion on CNR can be

easily mitigated by collecting data for delay times «< 7.

Whether stemming from a short excited-state lifetime or from a small diffusion
coefficient, the precision of transport imaging drops sharply for diffusion lengths shorter than
~ 0.1 FWHM,, as evidenced by the density of contours in Fig. 5. This rapid loss in precision
primarily derives from the fact that the mean-squared displacement (due to transport) is
similar in magnitude to the standard error of the fitted profile width. Under these conditions,
the distribution of linear fits can be very large. For example, if it is desired to resolve L, =

0.05 FWHM, (e.g., a 50 nm diffusion length for a I um spot size), one needs an initial
CNR, = 70 just to ensure that half of the performed transport imaging measurements will

recover a Dqg; Within 50% of the actual diffusion coefficient of the material. If a better degree
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of accuracy were needed for a particular research goal, the CNR requirements are clearly

more stringent.

10°

1071t

Lp/FWHM, (arb. units)

CNR,

Figure 5: Proximity of diffusion coefficient estimates (Dost) to the nominal input values (Dyom) as a function of
initial contrast-to-noise ratio (CNR) and lifetime diffusion length relative to initial profile full width half-
maximum (FWHM,). Contours indicate the percent of fitted diffusion coefficient estimates where Dyg; [ Dpom =
1 1+ 0.5 All fitted linear functions to derive diffusion constant estimates were weighted by the reciprocal of the
relative variance of the mean squared width parameters from the Gaussian fits.

For many relevant materials systems, particularly those with strong coupling between
electronic and nuclear degrees of freedom, the diffusion length may be < 10 nm, which

corresponds approximately to the lower limit of Fig. 5 for typical diffraction limited
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experimental conditions (FWHM, ~ 1 pm). The conditions assumed in the generation of Fig.

5, where N,

pix = 100 and N; = 10, are insufficient to accurately measure such small

diffusion lengths. For these scenarios, it is important to consider what steps can be taken to

improve measurement fidelity. Figure 6 summarizes how increasing CNR,, and spatial (Npix)

and temporal (N;) oversampling can be leveraged to improve measures of D, for a diffusion
length of L, = 0.01 FHW M,,. Not surprisingly, temporal and/or spatial oversampling
improves the accuracy of individual fits and the precision of fit-determined D, values,
reflected by a decrease in the width of the distribution of estimates. However, like increases
to the CNR obtained by signal averaging, the improved performance comes at the expense of

increased measurement time. Indeed, the precision improvement of fit-determined Dgg;
values due to spatial and temporal oversampling generally scales as VN, where N is the

number of spatial pixels or time frames collected (see for example, the ~v10 improvement in

fit performance for a CNR, = 100 from panels a to c).

In terms of measurement duration, the VN scaling matches what can be achieved in shot-
noise-limited signal averaging, suggesting that spatial or temporal oversampling doesn’t
provide any advantage over improvements in CNR. It is worth noting, however, that
widefield detection (rather than single point scanning detection) enables spatial oversampling
without increases to measurement time, provided a sufficient photon flux can be realized.?* 2
29 Moreover, depending on experimental parameters (primary noise source, sample
sensitivity, photon flux, etc.), improvements in transport imaging via oversampling may be
more practical than simply improving CNR via signal averaging. Experimental modifications
can also help overcome noise limitations.** Nevertheless, for the extreme case in which Ly, =

0.01 FHW M,,, even with a spatial resolution of 800 pixels per FWHM, and 400 time frames

sampled within one recombination lifetime, the CNR, must still be at least 100 to ensure 90%
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of fits recover diffusion constants within 50% of the nominal value. These experimental
conditions are exceptionally challenging to achieve, suggesting that the most practical
strategy is to decrease spot size (i.e., move vertically in Fig. 5), which improves fit quality as
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Figure 6: Variations in spatial and temporal resolution for a simulation with diffusion length of 0.01 FWHM,,
duration of one lifetime, and spatial domain width of 5 FWHM, over a range of CNRyvalues between 100 and
1000. Increasing the number of spatial pixels or temporal frames improves the precision of diffusion coefficient
estimates. (a) 40 time frames, (b) 100 time frames, (c) 400 time frames.

Up to this point, we have discussed how noise introduces random error in fit-determined
Dgg; values, i.e., how wide the distribution of D, values is relative to D, o, for a set of
measurement parameters. However, we have not yet considered whether noise can lead to

systematic error in the average of the fit-determined Deg; values ({Dgg;)). Figures 7(a) and
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7(b) explore the effect of random noise on systematic error propagated through the composite
fitting approach. In Fig. 7(a), (Dest) normalized to Do, is plotted as a function of Lj,
assuming an atypical CNR, = 10 for illustration. For these simulations, (D) is calculated
by averaging 10,000 individual fit-determined D¢ values for L, ranging between

0.01 FWHM, and 2.0 FWHM,,. There is no systematic error for large diffusion lengths,
however for L, < 0.1 FWHM,, the mean estimated diffusion coefficient, (Deg:), is biased
toward faster diffusion rates. In the extreme case of low contrast and small diffusion length,
Lp = 0.01 FWHM,, the 5,000 runs of the composite least squares fitting routine yields a
(Dggt) that is an order of magnitude larger than D, ,,. Figure 7(b) explores systematic error as
a function of CNR, for an L, = 0.1 FWHM,. Here systematic error begins to bias the (D)

at CNR, < 10.

The systematic error introduced by the composite fitting approach arises primarily
because low CNR results in instances wherein the profile width is significantly
overestimated, as illustrated in Fig. 3(c). A compounding factor is that in these cases, the
least squares fit underestimates the uncertainty of the determined width parameter if the SE is
determined directly from the covariance matrix diagonals. Both effects lead to estimates of
the diffusion coefficient that skew (D) to values that are systematically larger than D4 ,.
These results indicate that it is inadvisable to simply find the mean of multiple composite
regression-derived fits of diffusion coefficients, at least when one is trying to measure small
diffusion constants with relatively low CNR,. Instead, it is more robust to average the data
across multiple measurements initially, thus reducing noise, before proceeding with the

composite fitting procedure.
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Figure 2: Composite fitting bias in the limit of low contrast and small diffusion length. Bias is defined as the
ratio of the mean diffusion estimate to the nominal diffusion coefficient. Panel (a) shows bias as a function of
diffusion length for CNR, = 10, and panel (b) presents bias as a function of CNR, for L, = 0.1 FWHM,. Each
point on these plots represents results from 5,000 simulations and composite fitting procedures.

IV.CONCLUSION

In this work we have quantified the impact of noise on optical methods of estimating
diffusion coefficients through composite least squares fitting. We have shown that noise can
have a profound influence on the precision of diffusion estimates, depending on many
experimental parameters which can, in some combinations, synergistically magnify
measurement uncertainty. The parameters that contribute to the influence of noise include the
contrast-to-noise ratio itself, the magnitude of diffusion over the experiment duration, the
decay of contrast due to excited-state recombination and diffusion (i.e., heteroscedasticity),
the initial mean squared width of the excited state population distribution, and the temporal
and spatial resolution of measurements. Noise can add great uncertainty to estimates of
diffusion coefficients even in the most idealized scenario of excited state profiles being well-
fitted by Gaussian functions, diffusion being isotropic, mean-squared displacement increasing
linearly, and first-order recombination, to such an extent that even qualitative comparisons of
transport mechanisms may be suspect under some sets of experimental parameters. Analytical
approaches employing other profile fitting functions, non-linear diffusion functions, or

phenomenological models may be even more sensitive to noise.
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Not surprisingly, poor precision in diffusion estimates primarily arises under conditions
when the standard error for each fitted profile is of similar magnitude to, or larger than the
displacement over the experiment time. This intrinsic noise can lead to diffusion estimates
that are imprecise, substantiating the general understanding that noise is the principal limiting
factor in estimates of excited state diffusion. It is important to recognize, however, that some
variability in determined diffusion coefficients is intrinsic to the measurement under all
experimental conditions, and it should therefore be standard practice to report CNR, and
provide a sufficient number of determined diffusion coefficients to evaluate their statistical
significance. However, under experimental parameters where estimates have systematic error,

no number of estimates will be sufficient to evaluate their significance.

Several strategies can be undertaken to mitigate the effects of noise. Increasing the initial
CNR is perhaps the most obvious approach, which can be accomplished by improvements to
instrumentation, or by averaging multiple measurements at a given time frame. In the case of
slow diffusion, the impact of noise can be abated by collecting data at later times so that the
MSD of the excited state population is comparable to FWHM,,. Care must be taken, however,
that the contrast does not diminish too greatly over the course of the experimental time. Also,
spatial and/or temporal oversampling can provide better estimates at the expense of increased
measurement time. The effects of heteroscedasticity can be diminished by using weighted
least squares linear regression to estimate the diffusion coefficient in the second step of the
composite fitting approach. Care should be taken, however, for profiles with CNR, < 5
because fits of noisy profiles have under-estimated uncertainty from standard least square
algorithms and are therefore over-weighted in step 2 of the composite fit. Moreover, when
measuring small diffusion lengths with low initial CNR, it is crucial to avoid averaging fitted
diffusion coefficients that may be systematically over-estimated, and instead first reduce

noise through averaging of individual profile images.
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Performing simulations in advance can clarify what changes to experimental parameters,
if any, may be fruitful. Therefore, we have created an open-source software tool for
practitioners to simulate diffusion measurement experiments and evaluate the precision of
diffusion coefficient estimates resulting from a set of arbitrary experimental parameters. The
tool is available for download with full documentation.*® It provides easy access to modify all
the parameters discussed herein, and can be further developed to include additional terms for
higher order recombination, phenomenological perturbations of the idealized case, or to
include other fitting models like bivariate Gaussian profiles, Voigt profiles, power law
diffusion, efc. Moreover, the function to estimate the contrast to noise ratio of a 1-
dimensional profile, described in Section IIB, is available to use immediately on the web

without installing Python.

Because of the large parameter space and varying goals of researchers, it is impossible to
summarize the precision that can be expected in every possible scenario in this work. The
quantification of the impact of noise represented herein presumes that diffusion estimates
within 50% of the nominal value are sufficiently accurate. It may be that better accuracy is
necessary, or that lower accuracy can be tolerated, for a particular research project.
Regardless, it is evident that the confidence with which optical measures of excited state
transport are reported must be informed by more robust analysis than a set of error bars on a
series of fitted Gaussian variances, as this method fails to capture the intrinsic uncertainty

present with this technique.
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