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ABSTRACT 

Time-resolved microscopy is a widely used approach for imaging and quantifying charge and 

energy transport in functional materials. While it is generally recognized that resolving small 

diffusion lengths is limited by measurement noise, the impacts of noise have not been 

systematically assessed or quantified. This manuscript reports modeling efforts to elucidate 

the impact of noise on optical probes of transport. Excited state population distributions, 

modeled as Gaussians with additive white noise typical of experimental conditions, are 

subject to decay and diffusive evolution. Using a conventional composite least-squares fitting 

algorithm, the resulting diffusion constant estimates are compared with the model input 

parameter. The results show that heteroscedasticity (i.e., time-varying noise levels), 

insufficient spatial and/or temporal resolution, and small diffusion length relative to the 

magnitude of noise lead to a surprising degree of imprecision under moderate experimental 

parameters. Moreover, the compounding influence of low initial contrast and small diffusion 

length leads to systematic over-estimation of diffusion coefficients. Each of these issues is 

quantitatively analyzed herein and experimental approaches to mitigate them are proposed. 

General guidelines for experimentalists to rapidly assess measurement precision are provided, 
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as is an open-source tool for customizable evaluation of noise effects on time-resolved 

microscopy transport measurements. 

I. INTRODUCTION 

Time-resolved optical microscopy has recently gained prominence as an effective tool to 

study excited state transport in materials relevant to photovoltaic, photocatalytic, lighting, and 

other optoelectronic materials.1-5 For such measurements, a short laser pulse is focused with a 

high numerical aperture lens, producing a localized population of excited states. The spatial 

and temporal evolution of the photogenerated excited state population is then probed with a 

spatially offset second laser pulse (in the case of pump-probe microscopies) or by imaging 

the time-resolved photoluminescence (in the case of time-resolved photoluminescence 

microscopy).6-8  While data collection specifics may vary among practitioners and for 

different materials systems, all methods directly image the excited state population's 

spatiotemporal evolution and provide quantitative measures of energy and/or charge 

transport. For the remainder of this manuscript, we will refer to this class of measurement 

techniques collectively as transport imaging. 

 Regardless of whether the excited state population is imaged via a pump-probe response 

or through photoluminescence, it is common practice to quantify excited state transport by a 

composite least squares fitting approach, illustrated in Fig. 1.4, 7, 9 The first step of this 

composite fit extracts the mean squared width of the excited state distribution immediately 

following photoexcitation and at a series of fixed delays. Often, this profile is well-described 

by a Gaussian model.10 The functional dependence of how the profile width changes with 

time is the key observable in transport imaging, as it is indicative of the physical processes 

that govern excited state transport. In the limit excited state transport is diffusive, the mean-

squared displacement (𝑀𝑀𝑀𝑀𝑀𝑀) of the distribution increases linearly with time and the diffusion 

coefficient can be determined from a linear fit to the time-dependent 𝑀𝑀𝑀𝑀𝑀𝑀 derived from the 
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fitted Gaussian curves.8, 11 For cases where transport deviates from this ideal scenario, the 

𝑀𝑀𝑀𝑀𝑀𝑀 of the excited state distribution can be fit to non-linear functions including power law 

diffusion, exponential transitions of linear diffusion regimes, trapping/detrapping models, or 

other numerical approaches.8, 12-21  

 

Figure 1: Illustration of the conventional two-step composite fitting procedure in optical measures of excited 
state transport. Panel (a) shows a modeled two-dimensional point-spread function typical of transport imaging, 
in which photoluminescence or a change in the optical constants reveals a distribution of photogenerated 
excited states. In this simulated example, the contrast-to-noise ratio (𝐶𝐶𝐶𝐶𝐶𝐶) is 20. A cross section of the signal 
intensity is shown in panel (b). A fitted Gaussian function, blue solid line, yields the width parameter 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃. In 
panel (c), additional profiles are collected at increasing delay times following photoexcitation, normalized to 
the peak amplitude, and fitted to Gaussian functions (gold, green solid lines). (d) The mean squared 
displacements (𝜎𝜎𝑡𝑡2 − 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃2 , blue, gold, and green circles with error bars) are fitted to a linear function where the 
slope is proportional to the diffusion coefficient. 

It is generally acknowledged that the precision of a diffusion coefficient determined with 

transport imaging is primarily limited by uncertainties stemming from measurement noise.4, 

16, 22-25 Uncertainties in transport imaging manifest in two steps, reflecting the two-step 

approach to extracting a diffusion coefficient from experimental data. First, spatial 

uncertainty is conveyed as an error bar associated with the fit of the excited state distribution 

mean squared width for a particular time delay. In the second step, an overall confidence 

interval is provided for the diffusion coefficient, capturing the uncertainty associated with the 

temporal evolution of the excited state spatial distribution.26-28 These two uncertainties, 
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presented separately, often stand as heuristic indicators of fit quality. While some researchers 

have provided statistical analyses of their results,25, 28, 29 a systematic analysis of the extent to 

which noise impacts the precision and accuracy of diffusion estimates has not been reported. 

Consequently, it is difficult to evaluate whether a reported diffusion coefficient derived from 

a single data set is representative of the range of possible values caused by finite 

experimental noise. With the growing importance of optical methods in determining transport 

properties of materials,1, 4, 6, 23, 30, 31 quantitative assessment of the ramifications of noise on 

such measurements is imperative. 

To provide a quantitative evaluation of the impacts of noise on transport imaging, we 

model the diffusion and decay of excited state spatial distributions for a range of diffusion 

lengths, additive white noise amplitudes, and spatiotemporal resolutions. As is typically 

performed experimentally, the resultant time-dependent mean-squared displacements are fit 

to extract diffusion coefficient estimates. Comparisons of model outputs (i.e., estimated 

diffusion coefficients) to the nominal inputs show surprising levels of imprecision, and in 

some cases systematic inaccuracies, to the extent that even qualitative comparisons of 

transport properties of materials are called into question with moderate levels of noise and 

common experimental parameters. For example, assuming a plausible set of experimental 

parameters – a diffusion length of 50 nm, an initial signal full-width-half-maximum 

(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0) of 1 µm, a spatial resolution of 20 pixels per 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, a temporal resolution of 10 

frames per lifetime, and an initial peak amplitude-to-noise ratio (or contrast-to-noise ratio, 

𝐶𝐶𝐶𝐶𝐶𝐶) of 50:1 – our results show fewer than one half of experimental measurements will 

recover a diffusion coefficient that is within 50% of the actual value. We also find significant 

systematic error in scenarios of small signal size and short diffusion length. For example, for 

a diffusion length of 10 nm and a 𝐶𝐶𝐶𝐶𝐶𝐶0 of 10:1 (maintaining the other parameters), the 
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average fit-determined diffusion coefficient is overestimated by more than an order of 

magnitude. 

To facilitate a more robust evaluation of transport imaging experimental conditions, we 

provide a means for practitioners to rapidly assess the likelihood that their experimentally 

determined diffusion coefficients are accurate, given a set of experimental parameters 

(resolution, noise, and diffusion length over one decay lifetime). We also make available an 

open-source software tool that can be customized for diverse experimental protocols to 

estimate noise and assess its impact on composite fitting precision. Lastly, we recommend 

that authors of transport imaging papers include not only standard experimental parameters 

(e.g., spot size, excitation fluence), but also report contrast-to-noise ratios and a sufficient 

number of measurements for statistical analysis.  

II. METHODS 

A. Time-evolving excited state population 

To generate time-dependent excited state spatial distributions, we adopt a simple 1-D 

model in which the excited state population, 𝑛𝑛(𝑥𝑥, 𝑡𝑡), is assumed to evolve with first order 

decay and isotropic normal diffusion, Eq. 1. 

𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= −𝑘𝑘1𝑛𝑛 − 𝐷𝐷∇2𝑛𝑛 (1) 

Here 𝑘𝑘1 is the first order rate constant and 𝐷𝐷 is the diffusion constant. Solving Eq. 1 for a 

point source at a position 𝑥𝑥0, the population density is characterized by a Gaussian function 

that broadens and decays in amplitude over time, Eq. 2, with lifetime 𝜏𝜏 = 𝑘𝑘1
−1. 

𝑛𝑛(𝑥𝑥, 𝑡𝑡) = exp(−𝑡𝑡/𝜏𝜏)
1

√4𝜋𝜋𝜋𝜋𝜋𝜋
exp �−

(𝑥𝑥 − 𝑥𝑥0)2

4𝐷𝐷𝐷𝐷 �  (2) 

The mean-squared displacement (𝑀𝑀𝑀𝑀𝑀𝑀) of excited states in a Gaussian distribution is 

proportional to the diffusion coefficient 𝐷𝐷. The 𝑀𝑀𝑀𝑀𝑀𝑀 is equivalent to the difference between 
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the Gaussian mean squared width at a specific time after photoexcitation (𝜎𝜎𝑡𝑡2) and the initial  

mean squared width of the measurement point spread function (𝜎𝜎PSF2 ).12  

𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝜎𝜎𝑡𝑡2 − 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃2 = 2𝐷𝐷𝐷𝐷 (3) 

The experimentally convenient full width at half maximum (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) of the signal profile is 

related to the mean squared width of a Gaussian via 𝜎𝜎2 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 8 ln 2⁄ . 

B. Contrast to noise ratio 

A common parameterization of noise in imaging sciences is contrast to noise ratio, 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴/𝜎𝜎𝑁𝑁, which relates the signal amplitude (𝐴𝐴) given by the absolute difference 

between the signal peak and baseline, to the standard deviation of the noise (𝜎𝜎𝑁𝑁).32-34 The 

amplitude parameter is time dependent in transport imaging, reflecting the diffusion and 

decay processes of the excited state population. For an initial Gaussian excited state 

distribution, the time dependent amplitude, 𝐴𝐴(𝑡𝑡) is given by Eq. 4, where 𝐴𝐴0 is the initial 

signal amplitude, 𝜎𝜎PSF2  is the initial point-spread function mean squared width, 𝜏𝜏 is the excited 

state lifetime, and 𝐷𝐷 is the diffusion coefficient. 

𝐴𝐴(𝑡𝑡) = 𝐴𝐴0𝜎𝜎PSF exp(−𝑡𝑡 𝜏𝜏⁄ ) /(2𝐷𝐷𝐷𝐷 + 𝜎𝜎PSF2 )1/2 (4) 

To parameterize the 𝐶𝐶𝐶𝐶𝐶𝐶 for the modeled data, the initial profile amplitude is set at unity 

and additive white noise is applied to the initial and time-evolved simulated signal profiles. 

For each time frame, a pseudorandom number generator (with a fresh seed value) returns a 

normal distribution of values with arbitrary standard deviation and mean of zero, and the 

generated noise values are added to each spatial pixel in the simulated signal profile. Noise is 

generated using NumPy’s PCG-64, an implementation of O’Neill’s permutation congruential 

generator.35, 36  
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Although the modeled 𝐶𝐶𝐶𝐶𝐶𝐶 can be determined based on input parameters, a robust 

method to estimate 𝐶𝐶𝐶𝐶𝐶𝐶 is necessary for evaluation of experimental data. Our approach for 

estimating 𝐶𝐶𝐶𝐶𝐶𝐶 uses a 1D profile (which could be, for example, a slice through the center of 

a 2D signal profile). After normalization, a unitary Fourier transform (FT) is performed on 

the data. In the FT of the data set, the signal is centered at zero frequency, and the noise 

generally lies at higher spatial frequencies. Noise is estimated by finding the root mean 

squared amplitude for frequencies that lie above the first local minimum after the signal peak. 

The ratio of the peak amplitude to the RMS noise provides an estimate of the experimental 

𝐶𝐶𝐶𝐶𝐶𝐶. 

C. Generalized model parameters 

Unless otherwise specified, the modeling described in this manuscript uses the following 

parameters: the spatial width of the entire data domain (𝐿𝐿𝑥𝑥) is set to 5 in relative units of 

initial profile width (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0); the number of pixels across the spatial domain (𝑁𝑁pix) is 100; 

the duration over which profiles are fit is one decay lifetime (𝑡𝑡/𝜏𝜏 = 1); the number of 

observations over the duration (time frames, 𝑁𝑁𝑡𝑡) is 10; the initial signal amplitude (𝐴𝐴0) is 

unity; the initial profile width (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0) is unity; and the spatial offset of the initial profile 

(𝜇𝜇) is zero in relative units of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0. These parameters, chosen to be comparable to those 

found in relevant experimental literature, are summarized in Table I.  

To simplify analysis of the described simulations, the influence of decay and diffusion on 

𝐶𝐶𝐶𝐶𝐶𝐶 is normalized by parameterizing the lifetime diffusion length 𝐿𝐿𝐷𝐷, which is dependent on 

both diffusion and decay. The diffusion length is formally the mean squared displacement 

(𝑀𝑀𝑀𝑀𝑀𝑀) of the distribution at 𝑡𝑡 = 𝜏𝜏, but the numerical constant is typically omitted, 𝐿𝐿𝐷𝐷 =

√𝐷𝐷𝐷𝐷.4, 37 To facilitate comparison across many materials systems and experimental 



8 
 

apparatuses, this manuscript expresses the diffusion length in terms of the initial profile 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0.  

 

 

 Parameter Symbol Default value  Unit 
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spatial width across domain 𝐿𝐿𝑥𝑥 5 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 

number of pixels 𝑁𝑁pix 100  pixels 

duration 𝑡𝑡/𝜏𝜏 1 none 

number of time frames 𝑁𝑁𝑡𝑡 10 frames 

in
iti

al
 

di
st

ri
bu

tio
n 

 initial amplitude 𝐴𝐴0 1 arbitrary 

initial profile width 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 1 arbitrary 

spatial offset 𝜇𝜇 0 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 

Table I: Generalized simulation parameters and their default values and units. 

D. Composite fitting algorithm 

Following the generation of a series of noisy profiles in a given simulation, each profile is 

fit using the Levenberg–Marquardt algorithm implemented in the Python SciPy wrapper of 

the MINPACK Fortran library38, 39 to find the parameters of a Gaussian function that 

minimize the sum of the squares of the deviations. The fitted parameters are the Gaussian 

mean squared width 𝜎𝜎2, the amplitude 𝐴𝐴, and the spatial offset 𝜇𝜇. Because background is 

typically subtracted from experimental data, the baseline offset was fixed at zero. For the 

fitting algorithm, a common set of reasonable bounds and initial guesses were applied to the 

entire set of simulations. These bounds and initial guesses are summarized in Table II.  
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Parameter Lower bound Upper bound Initial guess 

Variance (𝝈𝝈𝟐𝟐) (𝐿𝐿𝑥𝑥 𝑁𝑁pix)⁄ 2 𝐿𝐿𝑥𝑥2  𝐿𝐿𝑥𝑥2/16 
Amplitude (A) 0 2𝐴𝐴max 𝐴𝐴max 

Mean (µ) −𝐿𝐿𝑥𝑥 10⁄  𝐿𝐿𝑥𝑥 10⁄  0 
Table II: Initial bounds and guesses for Gaussian fitting parameters where 𝐿𝐿𝑥𝑥 is the length of the spatial 
domain, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 is the total number of spatial pixels, and 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 is the profile data maximum. 

To determine the diffusion coefficient, the 𝑀𝑀𝑀𝑀𝑀𝑀 array – i.e., the series of 𝜎𝜎𝑡𝑡2 parameters 

estimated by the Gaussian fits – is fit to Eq. 3. Both ordinary (i.e., unweighted) least squares 

and weighted least squares fits are compared. For weighted fitting (used in all cases except 

where otherwise indicated), normalized weights are calculated by the reciprocal of the 

relative variance of the mean squared width parameters from the Gaussian fits. To 

characterize both precision and accuracy of diffusion estimates, the results are described in 

terms of the portion of fits that are within a given proximity to the nominal input value. 

III. RESULTS & DISCUSSION 

A. Noise and Spatial Uncertainty 

Transport imaging of a diffusive process generally proceeds via a two-step composite 

fitting procedure. The first step fits individual profiles to a model, often Gaussian, and the 

second step fits a linear model to the time-dependent mean squared profile widths. It is 

therefore essential to assess how error propagates through these two interconnected steps.  In 

Figure 2, we examine step one of this composite fit. With 𝐶𝐶𝐶𝐶𝐶𝐶 of 50, Fig. 2(a), profiles are 

well-fitted, with all fits yielding profile mean squared width estimates (𝜎𝜎est2 ) within 10% of 

the nominal parameter (𝜎𝜎nom2 ) input to the model, Fig. 2(b). The portion of good fits rapidly 

decreases below 𝐶𝐶𝐶𝐶𝐶𝐶 of 20; but even for a 𝐶𝐶𝐶𝐶𝐶𝐶 of 1 (i.e., where the contrast is the same 

magnitude as the standard deviation of the noise), about 60% of fitted mean squared width 

estimates are still within 10% of the nominal value. These low 𝐶𝐶𝐶𝐶𝐶𝐶 fits are artificially 

precise, reflecting the influence of the fitting constraints (see Table II). Figure 2(c) 
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summarizes these results, showing the fraction of Gaussian fits with an estimated mean 

squared width that lies within 10% of the nominal value when 𝐶𝐶𝐶𝐶𝐶𝐶 is between 1 and 20. It is 

worth noting that fits to the full image (Fig. 1a) with a two dimensional Gaussian improves fit 

performance over a 1D Gaussian because the increased number of data points constrain the 

fit. However, for cases in which transport is known to be isotropic or is only of interest along 

one direction, larger performance gains are obtained by collecting a single 1D profile 

multiple times (and averaging to improve 𝐶𝐶𝐶𝐶𝐶𝐶) or by spatial oversampling (see discussion 

below) than by collecting a full 2D image. 

 

Figure 2: Gaussian fitting performance on noisy profiles with resolution of 20 pixels per 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and a domain 
5 times the length of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹. (a) Example Gaussian fit (gold solid) of a simulated profile with 𝐶𝐶𝐶𝐶𝐶𝐶 = 50 (blue 
circles). (b) Histogram showing the relative proximity of 10,000 mean squared width estimates to the nominal 
value. (c) Portion of fitted mean squared width estimates, 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒2 , within 10% of the nominal value, 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛2 , as a 
function of 1 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 20. Each of the 100 scatter points in panel (c) represents 10,000 fits.  
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The bounds imposed on the width parameter (𝜎𝜎est2 ) of the Gaussian model described 

above led us to evaluate how fitting biases of low 𝐶𝐶𝐶𝐶𝐶𝐶 profiles could propagate into the 

second step of the composite fit. While such low 𝐶𝐶𝐶𝐶𝐶𝐶 fits are not common, they can become 

increasingly relevant at late delay times, when a significant portion of the photogenerated 

population has decayed. Figure 3 shows results from 100,000 individual fits of simulated 

profiles for 𝐶𝐶𝐶𝐶𝐶𝐶 values of 20 (a), 5 (b), and 2 (c). Best-fit width (𝜎𝜎est2 ) parameters along with 

their standard errors (𝑆𝑆𝑆𝑆) calculated from the covariance matrix are shown as histograms. 

Also shown is the standard deviation (𝑆𝑆𝑆𝑆) directly calculated from the distribution of fit-

determined 𝜎𝜎est2  values. For profiles with 𝐶𝐶𝐶𝐶𝐶𝐶 ≳ 5 (Figs. 3a, b), distributions of 𝜎𝜎est2  values 

are unbiased and symmetric around the nominal modeled width, 𝜎𝜎nom2 .  𝑆𝑆𝑆𝑆 values reported by 

individual least squares fits are closely comparable to the 𝑆𝑆𝑆𝑆 of the distribution. While there 

are cases where the 𝑆𝑆𝑆𝑆 estimate from a single fit deviates from the 𝑆𝑆𝑆𝑆 of the population, 

generally these results show that, on average, the least squares fit provides an unbiased 

estimate of the parameter mean value and uncertainty. However, at very low 𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶𝐶𝐶𝐶𝐶 ≲ 5, 

Fig. 3c), the Gaussian least-squares fit leads to two sources of bias. First, the 𝑆𝑆𝑆𝑆 determined 

from the covariance matrix underestimates the 𝑆𝑆𝑆𝑆 of the population by ~20%. This 

discrepancy is a result of the Gaussian model which restricts 𝜎𝜎est2 > 0. Because the model 

cannot be linearized in this limit, the 𝑆𝑆𝑆𝑆 calculated from the covariance matrix is incorrect.40 

Second, the average of the width estimates (〈𝜎𝜎est2 〉) is more than 5% higher than 𝜎𝜎nom2 , while 

the median of 𝜎𝜎est2  is about 3% below the nominal value. This difference between the mean 

and the median indicates a skewing of the 𝜎𝜎est2  distribution toward larger widths at low 𝐶𝐶𝐶𝐶𝐶𝐶. 

As discussed and shown below (Fig. 7), The skewness of the distribution of 𝜎𝜎est2  distribution 

leads to systematic errors in diffusion constant estimation at low 𝐶𝐶𝐶𝐶𝐶𝐶. 
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Figure 3: Comparison between standard deviation (SD, solid blue vertical bars) of fitted mean squared width 
estimates (𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒2 , blue histogram bars) and the standard error (SE, gold histogram bars) as given by the fitting 
algorithm. The profile widths, SD, and SE are all normalized against the nominal profile mean squared width 
parameter (𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛2 ). The distributions shown on each panel were derived from 100,000 simulated Gaussian 
profiles with additive white noise. Histograms are normalized to the highest bars for visual comparison. (a) 
Results for 𝐶𝐶𝐶𝐶𝐶𝐶 = 20. No skewness is apparent in the distribution of 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒2 , with mean and median both being 
1.000. The SD and mean standard error of 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒2  (𝑆𝑆𝑆𝑆����) are both equal to 0.037. (b) Results for 𝐶𝐶𝐶𝐶𝐶𝐶 = 5. Slight 
skewness is apparent in the distribution of 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒2 , with mean of 1.006 and median of 0.995. The SD and 𝑆𝑆𝑆𝑆���� are 
near agreement with 𝑆𝑆𝑆𝑆 = 0.150 and 𝑆𝑆𝑆𝑆���� = 0.146. (c) Results for 𝐶𝐶𝐶𝐶𝐶𝐶 = 2. The distribution of 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒2  is skewed 
right due to many outliers with large values, with mean of 1.054 and median of 0.968. The SD of 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒2  is 0.507, 
but 𝑆𝑆𝑆𝑆���� =  0.364, showing an underestimation of the error calculated by the fitting algorithm.  

B. Noise and Estimation of 𝑫𝑫 

In the limit transport is well described by normal diffusion, the mean squared width (𝜎𝜎𝑡𝑡2) 

of the excited state spatial profile increases linearly with time after photoexcitation. A set of 

fit-determined 𝑀𝑀𝑀𝑀𝑀𝑀s can therefore be linearly fit to find the diffusion coefficient. Figure 4(a) 

illustrates this procedure for a representative series of data modeled with initial contrast to 
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noise ratio, 𝐶𝐶𝐶𝐶𝐶𝐶0 = 50, and a diffusion length, 𝐿𝐿𝐷𝐷 = 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0. The blue solid line shows 

the best linear fit to the 𝑀𝑀𝑀𝑀𝑀𝑀 data obtained from least squares fits of time-dependent profiles. 

The gold line shows the slope of theoretical 𝜎𝜎𝑡𝑡2 values, which is proportional to the nominal 

diffusion coefficient input to the model. The difference in slope between the two lines is a 

consequence of the cumulative uncertainty in mean squared widths associated with random 

noise and decreasing signal amplitude due to diffusion and single exponential decay (Eqs. 2, 

4). 

For a given diffusion length and 𝐶𝐶𝐶𝐶𝐶𝐶0, the precision of the composite fitting procedure 

can be characterized by the spread of the diffusion constant estimates. Fig. 4(b) shows the 

results of linear fits to 1000 data sets (like those shown in Fig. 4a), each simulated with 

𝐶𝐶𝐶𝐶𝐶𝐶0 = 100, and 𝐿𝐿𝐷𝐷 = 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0. A histogram of the fit-determined diffusion 

coefficients from these 1000 simulations, normalized to the model input parameter, 𝐷𝐷nom, is 

shown in Fig. 4(c). For this high-contrast example with moderate diffusion length, 96% of the 

estimates are within 50% of the nominal diffusion coefficient.  

A challenge of the composite fitting approach is that both diffusion and excited state 

relaxation cause a decrease in the 𝐶𝐶𝐶𝐶𝐶𝐶 with time, which in turn leads to profile fits whose 

uncertainty increases with time. This noise variability in a dataset, called heteroscedasticity, 

has been previously identified as a confounding factor in the analysis of imaging 

spectroscopy, transient kinetics, and lifetime imaging.41-43 When the uncertainty of 

measurements changes monotonically over time, the ratio of final to initial 𝐶𝐶𝐶𝐶𝐶𝐶 is a simple 

way to characterize heteroscedasticity. For a one-dimensional Gaussian profile with arbitrary 

initial RMS width 𝜎𝜎PSF and an excited state diffusion length 𝐿𝐿𝐷𝐷 under first-order decay, the 

time-dependent decrease in contrast is a function of diffusion length, 𝐿𝐿𝐷𝐷, and time as a 

fraction of lifetime, 𝑡𝑡/𝜏𝜏, Eq. 5. 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡/𝜏𝜏/𝐶𝐶𝐶𝐶𝐶𝐶0 = 𝜎𝜎PSF exp(−𝑡𝑡/𝜏𝜏)/(2𝐿𝐿𝐷𝐷2 (𝑡𝑡/𝜏𝜏) + 𝜎𝜎PSF2 )1/2 (5) 

Examination of Eq. 5 shows that amplitude is diminished (assuming noise is constant) by a 

factor that scales exponentially with time and as 1/𝐿𝐿𝐷𝐷 (for large 𝐿𝐿𝐷𝐷).  

One strategy for mitigating the impacts of heteroscedasticity is to use weighted fitting in 

the second step of the composite fitting procedure. Figure 4(d) compares the precision of 

weighted and unweighted composite fitting as a function of 𝐿𝐿𝐷𝐷 for an initial 𝐶𝐶𝐶𝐶𝑅𝑅0 = 50. 

While  the performance of both approaches quickly diminishes for 𝐿𝐿𝐷𝐷 < 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0, the 

weighted approach does provide better precision across the range. For moderate 𝐿𝐿𝐷𝐷 from 

about 0.1 to 1.0 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0, both approaches yield estimates that all are within 50% of the 

nominal diffusion coefficient. In cases of high diffusion length,  𝐿𝐿𝐷𝐷 > 1.0 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0, the 

unweighted fit performs worse again, due to the rapid loss of contrast from diffusion. As will 

be discussed later, weighting the fit does not always fully correct more extreme cases where 

contrast diminishes quickly. Figure 4(e) compares weighted and unweighted fitting methods 

as a function of 𝐶𝐶𝐶𝐶𝑅𝑅0 for an 𝐿𝐿𝐷𝐷 = 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0. Here again, the weighted approach provides 

a small, but consistent improvement across the range of 𝐶𝐶𝐶𝐶𝑅𝑅0 values. In fact, in our 

modeling of 2 million diffusion trajectories with 3.33 ≤ 𝐶𝐶𝐶𝐶𝑅𝑅0 ≤ 100 and 0.01 ≤ 𝐿𝐿𝐷𝐷 ≤

20 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, a collection of weighted fits was never found to be less precise than the 

corresponding collection of unweighted fits. Given the ease with which weights are 

calculated (see section IIB) there is, as far as we can determine, no reason not to implement 

weighted fits in the linear fit of time-evolved mean squared widths of excited state population 

distributions in transport imaging data. 
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Figure 4: Composite fitting and comparison between weighted and unweighted linear fit performance with a 
domain width of 5 times 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, pixel resolution of 20 per 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, and temporal resolution of 10 per decay 
lifetime. Displacement is normalized to the diffusion length and time normalized to the lifetime. Panels a), b) 
and c) present data for 𝐿𝐿𝐷𝐷 = 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 and 𝐶𝐶𝐶𝐶𝐶𝐶0 = 50. (a) Simulated data showing 10 uniformly-timed 
mean-squared displacements of the excited state spatial profile with added white noise, fitted as 𝑀𝑀𝑀𝑀𝑀𝑀 relative to 
the initial Gaussian mean squared width (𝜎𝜎𝑡𝑡2 − 𝜎𝜎02) (circles). Error bars show the relative standard error of the 
fitted mean squared width. The blue solid line shows a linear fit to the data to extract 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒. The gold line shows 
the slope corresponding to the nominal diffusion coefficient (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛). (b) Linear fits from 1000 simulations. (c) 
Histogram of fitted diffusion coefficients relative to the nominal value (𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒/𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛), with a normal curve fitted 
to the histogram (blue). Panels d) and e) present the portion of fitted diffusion coefficients that fall within 50% 
of the nominal value, (𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒/𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 = 1 ± 0.5), contrasting the performance of weighted (blue) and unweighted 
(gold) linear fits of the Gaussian mean squared width over one lifetime. (d) 𝐶𝐶𝐶𝐶𝐶𝐶0 = 50 and 0.01 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 ≤
𝐿𝐿𝐷𝐷 ≤ 2.0 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, and (e) 3.33 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶0 ≤ 100.0 and 𝐿𝐿𝐷𝐷 = 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0. Each data point in panels d) and e) 
represents the result from 5000 fits. 

While many factors affect the robustness of transport imaging, the most important 

parameters are the excited state diffusion length, 𝐿𝐿𝐷𝐷 and the contrast to noise ratio, 𝐶𝐶𝐶𝐶𝐶𝐶. To 

provide more comprehensive insight into how these two parameters affect the precision and 

accuracy afforded by the composite fitting procedure, simulations and fitting were performed 
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for 20 diffusion lengths between 0.01 and 2.0 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, over a range of 100,000 randomly 

selected 𝐶𝐶𝐶𝐶𝐶𝐶0 values, collected in 20 bins between 3.33 and 100. The range of these 

parameters encompasses the vast majority of published experimental work in this area. For 

each diffusion length and 𝐶𝐶𝐶𝐶𝐶𝐶0 bin, 5,000 simulations were performed. The results are 

summarized in Fig. 5, which shows the fraction of diffusion constant estimates within 50% of 

the nominal value.  

Not surprisingly, Fig. 5 shows that measurements with longer diffusion lengths under 

conditions of higher 𝐶𝐶𝐶𝐶𝐶𝐶0 are generally more precise and accurate. For example, 90% of fits 

recover a diffusion estimate, 𝐷𝐷est 𝐷𝐷nom⁄ = 1 ± 0.5  when the diffusion length is more than 

~ 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 and 𝐶𝐶𝐶𝐶𝐶𝐶0 ≳ 40. For longer diffusion lengths up to ~ 1.0 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, noise is 

better tolerated, with the same precision holding at 𝐶𝐶𝐶𝐶𝐶𝐶0 as low as ~ 6. For diffusion lengths 

greater than ~ 1.0 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, as we also saw in Fig. 3(d), the trend of greater noise tolerance 

reverses, reflecting the rapid loss in 𝐶𝐶𝐶𝐶𝐶𝐶 due to diffusion (Eqs. 2, 5) at times that approach 

one lifetime. Note however, that the deleterious effects of rapid diffusion on 𝐶𝐶𝐶𝐶𝐶𝐶 can be 

easily mitigated by collecting data for delay times ≪ 𝜏𝜏.  

Whether stemming from a short excited-state lifetime or from a small diffusion 

coefficient, the precision of transport imaging drops sharply for diffusion lengths shorter than 

~ 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, as evidenced by the density of contours in Fig. 5. This rapid loss in precision 

primarily derives from the fact that the mean-squared displacement (due to transport) is 

similar in magnitude to the standard error of the fitted profile width. Under these conditions, 

the distribution of linear fits can be very large. For example, if it is desired to resolve 𝐿𝐿𝐷𝐷  =

 0.05 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 (e.g., a 50 nm diffusion length for a 1 µm spot size), one needs an initial 

𝐶𝐶𝐶𝐶𝑅𝑅0 ≳ 70 just to ensure that half of the performed transport imaging measurements will 

recover a 𝐷𝐷est within 50% of the actual diffusion coefficient of the material. If a better degree 
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of accuracy were needed for a particular research goal, the 𝐶𝐶𝐶𝐶𝐶𝐶 requirements are clearly 

more stringent. 

 

 

Figure 5: Proximity of diffusion coefficient estimates (𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒) to the nominal input values (𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛) as a function of 
initial contrast-to-noise ratio (𝐶𝐶𝐶𝐶𝐶𝐶0) and lifetime diffusion length relative to initial profile full width half-
maximum (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0). Contours indicate the percent of fitted diffusion coefficient estimates where 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛⁄ =
1 ± 0.5 All fitted linear functions to derive diffusion constant estimates were weighted by the reciprocal of the 
relative variance of the mean squared width parameters from the Gaussian fits. 

For many relevant materials systems, particularly those with strong coupling between 

electronic and nuclear degrees of freedom, the diffusion length may be ≲ 10 nm, which 

corresponds approximately to the lower limit of Fig. 5 for typical diffraction limited 
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experimental conditions (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 ~ 1 µm). The conditions assumed in the generation of Fig. 

5, where 𝑁𝑁pix = 100 and 𝑁𝑁𝑡𝑡 = 10, are insufficient to accurately measure such small 

diffusion lengths. For these scenarios, it is important to consider what steps can be taken to 

improve measurement fidelity. Figure 6 summarizes how increasing 𝐶𝐶𝐶𝐶𝐶𝐶0 and spatial (𝑁𝑁pix) 

and temporal (𝑁𝑁𝑡𝑡) oversampling can be leveraged to improve measures of 𝐷𝐷est for a diffusion 

length of 𝐿𝐿𝐷𝐷 = 0.01 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0. Not surprisingly, temporal and/or spatial oversampling 

improves the accuracy of individual fits and the precision of fit-determined 𝐷𝐷est values, 

reflected by a decrease in the width of the distribution of estimates. However, like increases 

to the 𝐶𝐶𝐶𝐶𝐶𝐶 obtained by signal averaging, the improved performance comes at the expense of 

increased measurement time. Indeed, the precision improvement of fit-determined 𝐷𝐷est 

values due to spatial and temporal oversampling generally scales as √𝑁𝑁, where 𝑁𝑁 is the 

number of spatial pixels or time frames collected (see for example, the ~√10 improvement in 

fit performance for a 𝐶𝐶𝐶𝐶𝐶𝐶0 = 100 from panels a to c).  

In terms of measurement duration, the √𝑁𝑁 scaling matches what can be achieved in shot-

noise-limited signal averaging, suggesting that spatial or temporal oversampling doesn’t 

provide any advantage over improvements in 𝐶𝐶𝐶𝐶𝐶𝐶. It is worth noting, however, that 

widefield detection (rather than single point scanning detection) enables spatial oversampling 

without increases to measurement time, provided a sufficient photon flux can be realized.24, 28, 

29 Moreover, depending on experimental parameters (primary noise source, sample 

sensitivity, photon flux, etc.), improvements in transport imaging via oversampling may be 

more practical than simply improving 𝐶𝐶𝐶𝐶𝐶𝐶 via signal averaging. Experimental modifications 

can also help overcome noise limitations.44 Nevertheless, for the extreme case in which 𝐿𝐿𝐷𝐷 =

0.01 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0, even with a spatial resolution of 800 pixels per 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 and 400 time frames 

sampled within one recombination lifetime, the 𝐶𝐶𝐶𝐶𝐶𝐶0 must still be at least 100 to ensure 90% 
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of fits recover diffusion constants within 50% of the nominal value. These experimental 

conditions are exceptionally challenging to achieve, suggesting that the most practical 

strategy is to decrease spot size (i.e., move vertically in Fig. 5), which improves fit quality as 

approximately 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0
−2 .  

 

Figure 6: Variations in spatial and temporal resolution for a simulation with diffusion length of 0.01 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, 
duration of one lifetime, and spatial domain width of 5 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0 over a range of 𝐶𝐶𝐶𝐶𝐶𝐶0values between 100 and 
1000.  Increasing the number of spatial pixels or temporal frames improves the precision of diffusion coefficient 
estimates. (a) 40 time frames, (b) 100 time frames, (c) 400 time frames. 

Up to this point, we have discussed how noise introduces random error in fit-determined 

𝐷𝐷est values, i.e., how wide the distribution of 𝐷𝐷est values is relative to 𝐷𝐷nom for a set of 

measurement parameters. However, we have not yet considered whether noise can lead to 

systematic error in the average of the fit-determined 𝐷𝐷est values (〈𝐷𝐷est〉). Figures 7(a) and 
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7(b) explore the effect of random noise on systematic error propagated through the composite 

fitting approach. In Fig. 7(a), 〈𝐷𝐷est〉 normalized to 𝐷𝐷nom, is plotted as a function of 𝐿𝐿𝐷𝐷 

assuming an atypical 𝐶𝐶𝐶𝐶𝑅𝑅0 = 10 for illustration. For these simulations, 〈𝐷𝐷est〉 is calculated 

by averaging 10,000 individual fit-determined 𝐷𝐷est values for 𝐿𝐿𝐷𝐷 ranging between 

0.01 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0 and 2.0 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0. There is no systematic error for large diffusion lengths, 

however for 𝐿𝐿𝐷𝐷 ≤ 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0, the mean estimated diffusion coefficient, 〈𝐷𝐷est〉, is biased 

toward faster diffusion rates. In the extreme case of low contrast and small diffusion length, 

𝐿𝐿𝐷𝐷 = 0.01 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0, the 5,000 runs of the composite least squares fitting routine yields a 

〈𝐷𝐷est〉 that is an order of magnitude larger than 𝐷𝐷nom. Figure 7(b) explores systematic error as 

a function of 𝐶𝐶𝐶𝐶𝑅𝑅0 for an 𝐿𝐿𝐷𝐷 = 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀0. Here systematic error begins to bias the 〈𝐷𝐷est〉 

at 𝐶𝐶𝐶𝐶𝑅𝑅0 ≲ 10.  

The systematic error introduced by the composite fitting approach arises primarily 

because low 𝐶𝐶𝐶𝐶𝐶𝐶 results in instances wherein the profile width is significantly 

overestimated, as illustrated in Fig. 3(c). A compounding factor is that in these cases, the 

least squares fit underestimates the uncertainty of the determined width parameter if the SE is 

determined directly from the covariance matrix diagonals. Both effects lead to estimates of 

the diffusion coefficient that skew 〈𝐷𝐷est〉 to values that are systematically larger than 𝐷𝐷nom. 

These results indicate that it is inadvisable to simply find the mean of multiple composite 

regression-derived fits of diffusion coefficients, at least when one is trying to measure small 

diffusion constants with relatively low 𝐶𝐶𝐶𝐶𝑅𝑅0. Instead, it is more robust to average the data 

across multiple measurements initially, thus reducing noise, before proceeding with the 

composite fitting procedure. 
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Figure 2: Composite fitting bias in the limit of low contrast and small diffusion length. Bias is defined as the 
ratio of the mean diffusion estimate to the nominal diffusion coefficient. Panel (a) shows bias as a function of 
diffusion length for 𝐶𝐶𝐶𝐶𝐶𝐶0 = 10, and panel (b) presents bias as a function of 𝐶𝐶𝐶𝐶𝐶𝐶0 for 𝐿𝐿𝐷𝐷 = 0.1 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0. Each 
point on these plots represents results from 5,000 simulations and composite fitting procedures. 

 

IV. CONCLUSION 

In this work we have quantified the impact of noise on optical methods of estimating 

diffusion coefficients through composite least squares fitting. We have shown that noise can 

have a profound influence on the precision of diffusion estimates, depending on many 

experimental parameters which can, in some combinations, synergistically magnify 

measurement uncertainty. The parameters that contribute to the influence of noise include the 

contrast-to-noise ratio itself, the magnitude of diffusion over the experiment duration, the 

decay of contrast due to excited-state recombination and diffusion (i.e., heteroscedasticity), 

the initial mean squared width of the excited state population distribution, and the temporal 

and spatial resolution of measurements. Noise can add great uncertainty to estimates of 

diffusion coefficients even in the most idealized scenario of excited state profiles being well-

fitted by Gaussian functions, diffusion being isotropic, mean-squared displacement increasing 

linearly, and first-order recombination, to such an extent that even qualitative comparisons of 

transport mechanisms may be suspect under some sets of experimental parameters. Analytical 

approaches employing other profile fitting functions, non-linear diffusion functions, or 

phenomenological models may be even more sensitive to noise.   
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Not surprisingly, poor precision in diffusion estimates primarily arises under conditions 

when the standard error for each fitted profile is of similar magnitude to, or larger than the 

displacement over the experiment time. This intrinsic noise can lead to diffusion estimates 

that are imprecise, substantiating the general understanding that noise is the principal limiting 

factor in estimates of excited state diffusion. It is important to recognize, however, that some 

variability in determined diffusion coefficients is intrinsic to the measurement under all 

experimental conditions, and it should therefore be standard practice to report 𝐶𝐶𝐶𝐶𝐶𝐶0 and 

provide a sufficient number of determined diffusion coefficients to evaluate their statistical 

significance. However, under experimental parameters where estimates have systematic error, 

no number of estimates will be sufficient to evaluate their significance.  

Several strategies can be undertaken to mitigate the effects of noise. Increasing the initial 

𝐶𝐶𝐶𝐶𝐶𝐶 is perhaps the most obvious approach, which can be accomplished by improvements to 

instrumentation, or by averaging multiple measurements at a given time frame. In the case of 

slow diffusion, the impact of noise can be abated by collecting data at later times so that the 

𝑀𝑀𝑀𝑀𝑀𝑀 of the excited state population is comparable to 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0. Care must be taken, however, 

that the contrast does not diminish too greatly over the course of the experimental time. Also, 

spatial and/or temporal oversampling can provide better estimates at the expense of increased 

measurement time. The effects of heteroscedasticity can be diminished by using weighted 

least squares linear regression to estimate the diffusion coefficient in the second step of the 

composite fitting approach. Care should be taken, however, for profiles with 𝐶𝐶𝐶𝐶𝑅𝑅𝑡𝑡 ≲ 5 

because fits of noisy profiles have under-estimated uncertainty from standard least square 

algorithms and are therefore over-weighted in step 2 of the composite fit. Moreover, when 

measuring small diffusion lengths with low initial 𝐶𝐶𝐶𝐶𝐶𝐶, it is crucial to avoid averaging fitted 

diffusion coefficients that may be systematically over-estimated, and instead first reduce 

noise through averaging of individual profile images.  
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Performing simulations in advance can clarify what changes to experimental parameters, 

if any, may be fruitful. Therefore, we have created an open-source software tool for 

practitioners to simulate diffusion measurement experiments and evaluate the precision of 

diffusion coefficient estimates resulting from a set of arbitrary experimental parameters. The 

tool is available for download with full documentation.45 It provides easy access to modify all 

the parameters discussed herein, and can be further developed to include additional terms for 

higher order recombination, phenomenological perturbations of the idealized case, or to 

include other fitting models like bivariate Gaussian profiles, Voigt profiles, power law 

diffusion, etc. Moreover, the function to estimate the contrast to noise ratio of a 1-

dimensional profile, described in Section IIB, is available to use immediately on the web 

without installing Python. 

Because of the large parameter space and varying goals of researchers, it is impossible to 

summarize the precision that can be expected in every possible scenario in this work. The 

quantification of the impact of noise represented herein presumes that diffusion estimates 

within 50% of the nominal value are sufficiently accurate. It may be that better accuracy is 

necessary, or that lower accuracy can be tolerated, for a particular research project.  

Regardless, it is evident that the confidence with which optical measures of excited state 

transport are reported must be informed by more robust analysis than a set of error bars on a 

series of fitted Gaussian variances, as this method fails to capture the intrinsic uncertainty 

present with this technique.   
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