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ABSTRACT

Premise of the study

Changes to flowering time caused by climate change could impact plant fecundity, but studies 

that compare the individual-level responses of phenologically distinct, co-occurring species are 

lacking. We assessed how variation in floral phenology affects the fecundity of individuals from 

three montane species with different seasonal flowering times, including in snowmelt 

acceleration treatments aimed at increasing variability in bloom time.

Methods

We collected floral phenology and seed set data for individuals of three montane plant species 

(Mertensia fusiformis, Delphinium nuttallianum, Potentilla pulcherrima) in the Colorado Rocky 

Mountains. To examine the drivers of seed set, we measured conspecific floral density and 

conducted pollen limitation experiments to isolate pollination function. We advanced the 

phenology of plant communities in a controlled large-scale snowmelt acceleration experiment.

Key Results

We found that differences in individual flowering time relative to the rest of the population 

impacted fecundity in our focal species, but that effects were species-specific. For our early-

season species, individuals that bloomed late relative to the population peak bloom had increased 

fecundity, while for our mid-season species, simply blooming before or after the population peak 

bloom period increased individual fecundity. For our late-season species, blooming earlier than 

the population peak bloom increased individual fecundity. The early- and mid-season species 

were pollen-limited, and we found evidence that conspecific density impacted seed set only for 

our early-season species.

Conclusions

2

3

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

4



Our study shows that variation in individual plant phenology impacts fecundity in three 

phenologically distinct montane species, and that pollen limitation may be a more influential 

driver than conspecific density. Our results suggest that individual-level changes in phenology 

are important to consider for understanding plant reproductive success. 

Key words: accelerated snowmelt; Delphinium nuttallianum; floral phenology; individual 

variation; Mertensia fusiformis; montane wildflowers; plant reproduction; Potentilla 

pulcherrima; pollen limitation
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INTRODUCTION

The seasonal timing of life history events, or phenology, can influence success of many stages in 

an organism’s life cycle (Poulin et al., 1992; Fitter and Fitter, 2002; Parmesan, 2007). Phenology 

is particularly important in sessile organisms, including plants, because their lack of spatial 

mobility puts an additional emphasis on proper timing (Cleland et al., 2007; Forrest and Miller-

Rushing, 2010; Ibáñez et al., 2010). A key plant fitness component that is particularly dependent 

on timing is flowering, the ultimate success of which is affected by both abiotic and biotic 

conditions (Crone and Lesica, 2006; Forrest and Miller-Rushing, 2010, Hall et al., 2018). In 

terms of abiotic conditions, an individual plant’s flowering time can influence factors such as the 

risk of frost damage on its flowers or the soil moisture available for floral or seed development 

(Franks et al., 2007; Thomson, 2010; Hall et al., 2018). In terms of biotic conditions, an 

individual’s flowering time relative to its population can affect the availability of pollen donors 

(Crone et al., 2009; Hall et al., 2018). Flowering time also impacts pollinator visitation rates and 

synchrony with pollinator activity, which are likely important for pollinator-dependent plant 

species (Kudo and Ida, 2013; Kudo, 2014; Rafferty et al., 2015; Robinson and Henry, 2018). 

Understanding the role of flowering phenology on plant fitness is particularly timely in light of 

rapid climate change, which has been linked to shifts in flowering phenology in recent decades 

(Molau, 1996; Molau, 2005; Dunne et al., 2003; Inouye et al., 2003; Iler et al., 2013; CaraDonna 

et al. 2014). These phenological shifts could be detrimental to the fecundity of wild plant 

populations (Kudo and Cooper, 2019; Pardee et al., 2019), again driven by both biotic and 

abiotic conditions, but much remains unknown about how individual differences in flowering 

time affect the fecundity of individuals within a population. 
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Individual plants often time their life history events to occur within an optimal range of abiotic 

conditions (Rathcke and Lacey, 1985; Franks et al., 2007; Thomson, 2010). For example, species 

usually have ideal ranges for air temperature, soil moisture, and nutrient availability for 

reproduction (Walker et al., 1995; Vaz et al., 2004; Allen et al., 2010), with plants in higher 

altitude or latitude environments flowering when they are less likely to freeze (Inouye, 2000; 

Bennie et al., 2010). Consequently, large temporal deviations in flowering from the periods of 

optimal abiotic conditions can have fitness costs (Zimmerman and Gross, 1984; Mu et al., 2014). 

Similarly, individuals time their fruiting and seed release to maximize seedling establishment in 

their abiotic conditions (Pearson et al., 2002; Moles and Westoby, 2006). In addition to timing, 

seed size and weight often determine establishment, with larger seeds germinating and 

establishing more frequently than smaller seeds (Schaal, 1980; Silvertown, 1981). 

 

Phenology also influences individual fitness through changes in biotic interactions, in particular, 

plant interactions with one another and their animal pollinators. Within plant interactions, 

conspecific and heterospecific plants influence an individual’s reproductive success differently. 

For example, blooming gregariously with individuals of the same species increases the pool of 

potential pollen donors, which can facilitate outcrossing and increase fitness in self-incompatible 

species (Hall et al., 2008; Crone et al., 2009; Mu et al., 2014; Bogdziewicz et al., 2020). 

Although blooming with more conspecific individuals may lower the probability of being visited 

by pollinators in some cases (Kehrberger and Holzschuh, 2019), high concentrations of flowers 

can attract more pollinators that bring in higher quality pollen (i.e., not inbred pollen) from 

surrounding areas (Bosch and Waser, 1999). Blooming with abundant heterospecifics, however, 

can interfere with pollen transfer and increase competition for pollinators (Waser, 1978; 

Kehrberger and Holzschuh, 2019). In terms of pollinator interactions, high pollinator visitation 
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rates typically benefit an individual’s reproductive success (Gezon et al., 2016; Kehrberger and 

Holzschuh, 2019), but this requires temporal synchrony between flowering time and pollinator 

seasonal abundance. The cues for plant flowering time and pollinator foraging have presumably 

evolved to be tightly coupled to ensure the reproductive success of both plants and pollinators 

(Kudo, 2014; Forrest, 2015). However, climate change threatens to decouple the typically 

distinct cues that plants and pollinators use to time life history events (Memmott et al., 2007; 

Forrest and Thomson, 2011; Kudo and Ida, 2013; Kudo and Cooper, 2019), though the impacts 

of potential phenological mismatches on plant fecundity can vary between species (Pardee et al., 

2019) and over time (Thomson, 2019). Understanding the long-term consequences of 

phenological shifts on plants requires linking differences in the phenology of individuals to the 

relative fecundity of individuals within populations. 

Previous studies have focused on how variation in individual flowering time affects plant 

reproduction (Zimmerman and Gross, 1984; Forrest and Thomson, 2010; Thomson, 2010; 

Rafferty and Ives, 2012; Mu et al., 2014; Gezon et al., 2016; Rafferty et al., 2016; Kehrberger 

and Holzschuh, 2019; Pardee et al., 2019; Gallagher and Campbell, 2020), but several important 

knowledge gaps remain. First, to our knowledge all of the studies except two (Rafferty and Ives, 

2012; Pardee et al., 2019), focus on a single species, thus precluding cross-taxa comparisons in 

the same site and season. Multi-species studies facilitate a better understanding of taxonomic 

differences and enable generalization to other species with similar traits. Second, none of these 

studies included both hand-pollination experiments to distinguish between pollen and resource 

limitation and measurement of floral conspecific density at bloom time to assess potential pollen 

donor limitation. Pollen limitation studies are important for assessing pollination effectiveness 
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and attributing reproductive differences to pollen or resource availability (Kearns and Inouye, 

1993). Third, of the studies that experimentally manipulated individual flowering time (Rafferty 

and Ives, 2012; Gezon et al., 2016; Pardee et al., 2019; Gallagher and Campbell, 2020), all have 

either manipulated single plants or very small plots via small-scale snow removal, thus not 

changing plant conspecific and heterospecific flowering density simultaneously. To fully 

understand how shifting phenology impacts individual reproduction, we need to determine the 

mechanisms that drive fecundity and the different responses to phenological shifts in co-occuring 

species.  To our knowledge, no studies have induced phenological change in individuals and 

examined the impact on plant reproduction across multiple co-occurring, phenologically distinct 

plant species, while accounting for potential drivers of plant fecundity.

  

Here, we connect differences in the flowering time of individuals within a population to 

individual seed production as a proxy for per capita fecundity in three montane species in the 

Rocky Mountains (Colorado, USA). We used both natural variation in individual phenology as 

well as experimental advancement in the phenology of a subset of individuals (via replicated, 

controlled snowmelt acceleration manipulations) to create substantial individual variation in 

flowering phenology. A key difference in our experiments relative to others in this area is that 

our manipulations were much larger scale (10 x 14 m plots), thus altering not just the bloom time 

in target individuals but in their pollen donors and competitors as well. To identify the possible 

selective pressures on blooming time, we assessed how shifts in individual phenology relative to 

their population blooming affects fecundity through: (a) prevailing conspecific floral density 

during an individual’s peak bloom period, and (b) pollen limitation, using hand pollination 

experiments (Kearns and Inouye, 1993). An individual plant may bloom earlier or later than their 

population’s peak bloom, and this may affect the availability of conspecific pollen donors or 
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pollination, which can ultimately affect the individual’s fecundity. We hypothesized that 

individuals that bloom much earlier or later than neighboring conspecifics will produce lower 

seed set due to the lack of conspecific pollen donors and pollen transfer by pollinators. Similarly, 

we also predict that pollen limitation would be greatest in the earliest blooming of the three focal 

species in this study, relative to the mid- and late-season species, because early season species 

bloom shortly after snowmelt (Molau, 1993; CaraDonna et al., 2014) and, therefore, are 

susceptible to frost damage and low pollinator visitation (Molau, 1993; Inouye, 2000; Thomson, 

2010; Kudo and Ida, 2013).

MATERIALS AND METHODS

Study location– 

We conducted this study between May and August 2019 in montane meadows in and around the 

Rocky Mountain Biological Laboratory (RMBL) in the Gunnison National Forest, western 

Colorado, United States (38°57.5′ N, 106°59.3′ W, ~2900 m above sea level). This system 

receives considerable snowfall starting from November to early May (CaraDonna et al., 2014). 

The growing season extends from around mid-May, soon after the ground becomes snow-free, to 

September (CaraDonna et al., 2014). Soil moisture is highest during and immediately after 

snowmelt, typically falling steadily until monsoon rains arrive in July (Appendix S1; see 

Supplemental Data with this article). Pollinators tend to increase in diversity and abundance over 

the course of the growing season, tapering off in mid-August (Forrest and Thomson, 2011).

Experimental design and phenology manipulation–  
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We established eight study sites, spaced at least 800 m apart, in meadows across two adjacent 

valleys. We selected site locations based on their similarity in plant community composition and 

distance from each other. Each study site contained paired 10 m x 14 m study plots (16 plots 

total), with the two plots within a site spaced at least 5 m apart and of similar aspect, slope, and 

plant community composition (Appendix S2; see Supplemental Data with this article). We 

spaced the paired plots at least 5 m apart to ensure that plant community composition was 

similar, while allowing buffer space for conducting the manipulation and walking around the 

plots. At each site, one plot was manipulated with an accelerated snowmelt treatment and the 

other served as a control in which snowmelt was unmanipulated. We accelerated snowmelt to 

advance flowering phenology (Price and Waser, 1998; Steltzer et al., 2009; Pardee et al., 2019; 

Jerome et al., 2021). This generated greater variability in individual bloom times, amplifying the 

phenological range over which we could assess fitness effects (Steltzer et al., 2009; Pardee et al., 

2019; Jerome et al., 2021). We accelerated snowmelt by placing a 14 m x 10 m sheet of black 

50% woven plastic shade cloth, which absorbs solar radiation over each snowmelt plot five to six 

weeks before the anticipated natural snowmelt date (Steltzer et al., 2009). Shade cloths were 

removed when 80% of the snow in plots was completely melted to the ground. Within each study 

plot, we marked three 1 m x 10 m transects for recording site-level flowering phenology (Fig. 1). 

We also marked a 1 m wide section within the plot along the perimeter, at least 1 m away from 

the plot edge, in which we tagged individual plants of the focal species to track individual 

phenology and seed set (Fig. 1). This perimeter section was inside of the plot boundaries, and in 

the snowmelt manipulation plot, the snow in the perimeter section melted at a similar rate to the 

snow in the center of the plot. We measured soil moisture at seven points in the plot every week 

(Fig. 1). 
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Selection of focal species–  

We selected three native perennial wildflowers as focal taxa: Mertensia fusiformis 

(Boraginaceae), Delphinium nuttallianum (Ranunculaceae), and Potentilla pulcherrima 

(Rosaceae) (hereafter referred to by genus). The wildflowers in this system bloom in the summer 

growing season, and the flowering phenology of most species is closely linked to the timing of 

snowmelt, defined hereafter as the first day on which the ground is snow-free (Price and Waser, 

1998; Wipf, 2010; Pardee et al., 2019). Mertensia is one of the first species to bloom, beginning 

to bloom within two weeks after snowmelt (Inouye et al., 2000). Delphinium generally blooms 

three to four weeks after snowmelt (Wadgymar et al., 2018) and occasionally overlaps in 

flowering period with Mertensia (Miller-Rushing and Inouye, 2009). Potentilla blooms about 

five to six weeks after snowmelt (Stinson, 2004) and its flowering period typically does not 

overlap with the other two focal species (Pardee et al., 2019). In this study, we consider 

Mertensia, Delphinium, and Potentilla to be early-, mid-, and late-season blooming species 

respectively. We selected these focal species to assess how individual variation in flowering time 

affects fecundity in species with naturally different phenologies, and we maintain this sequence 

of discussing the focal species in the paper. We also selected these focal species because they are 

locally abundant and rely on pollinators for maximal seed set (Bosch and Waser, 1999; Burkle 

and Irwin, 2010; Forrest and Thomson, 2010), allowing us to assess the relative importance in 

the seasonal availability of pollinators and conspecific pollen donor flowers on fecundity. While 

Mertensia and Delphinium are both self-incompatible (Waser, 1978; Forrest and Thomson, 

2010), Potentilla can self-pollinate, but outcrossing increases seed set (Burkle and Irwin, 2010). 

Mertensia is typically pollinated by bumblebees and solitary bees (Forrest and Thomson, 2010; 
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Forrest et al., 2011), Delphinium is pollinated by bumblebees and hummingbirds (Waser, 1978; 

Schulke and Waser, 2001), and Potentilla is pollinated by a wide range of bees and fly species 

(Burkle and Irwin, 2010).

Tracking phenology and conspecific density–  

We tagged individuals of each focal species to assess how their individual flowering phenology 

impacted their seed set. For each focal species at a site, we selected 16 individual plants per plot

—32 plants total per site—that we included in pollen limitation experiments. We used stratified 

random selection to ensure that these plants were well-spaced along the perimeter section within 

the plot (Fig. 1). Each selected individual was tagged with soft wire and a colored plastic bead. 

We visited every tagged plant twice per week to track its flowering phenology, recording the 

date that we first observed it with an open flower (bloom start) and the date of total flower 

senescence with no ensuing buds (bloom end). In addition to flowering phenology events, we 

recorded the total number of flowers that each tagged individual produced. Focal plants were 

spatially interspersed with conspecific individuals and bloomed with similar timing to the rest of 

the population in the plot. 

In addition, we recorded the total number of open, reproductively receptive flowers of each of 

the three focal species once per week in the three transects of both control and accelerated 

snowmelt plots. Flowers were considered reproductively receptive when petals were open, 

anthers had pollen, and stigmas were receptive. These floral abundance measures did not include 

the tagged individuals, only neighboring conspecific plants within the plots. Tracking flower 

abundance within plots served two functions. First, we used floral abundance in the control plots 
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as the baseline for natural phenological progress at a site when calculating the variation in bloom 

time for tagged individuals (see Data analysis: Calculating individual phenology). Second, we 

used floral abundances in both control and accelerated snowmelt plots to estimate the conspecific 

floral density during each tagged individual’s bloom period (see Data analysis: Calculating 

conspecific floral density). In the snowmelt manipulation plots, the transect plants and focal 

plants received the manipulation at the same time, and the distance transect and focal plants was 

4 m or less.

Pollen limitation experiment–  

We conducted hand-pollination treatments to isolate the effect of pollen limitation from resource 

availability (Kearns and Inouye, 1993). For each focal species, of the 16 tagged individual plants 

in every plot of every site, we randomly assigned eight to receive only natural pollination 

(“open” treatment, i.e., unmanipulated) and the other eight received supplemental pollen via 

hand-pollination (“hand” treatment). When hand-pollinating, we used a clean paintbrush to 

collect pollen from two or three untagged plants within each plot, transferring pollen onto the 

stigmas of plants tagged for hand-pollination. As individual plants produced a succession of 

flowers over time, we visited every site twice per week to hand-pollinate fresh flowers. We used 

the difference in seed set between the open and hand-pollinated treatment plants to assess the 

degree of pollen limitation at each plot (see Data analysis: Evaluating pollen limitation).

Measuring individual fecundity–  

To assess how an individual’s phenology affects fecundity, we collected and counted fruits from 

all tagged individuals of the three focal species. All fruits were collected from each focal plant 
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when ovules were fully expanded but fruits had not yet released seed. We scored all seeds in all 

fruits for each plant as developed or undeveloped based on species-specific measurements of 

seed length, width, and color. While these thresholds for length, width, and color were consistent 

for scoring all seeds of a species, the thresholds were subjective. We used two different metrics 

to quantify plant fecundity: 1) the total number of developed seeds and 2) the proportion of 

developed seeds (vs. undeveloped ovules). An individual’s seed set is dependent upon the flower 

number, and we found high variation in the number of flowers produced per plant for the three 

species. The total number of flowers was included in our models and figures to account for the 

effect on fecundity metrics. While flower number itself is a metric of fecundity, we accounted 

for flower number to capture the effectiveness of pollination and limit the extent to which 

genetics determine flower number, and therefore, seed set. The total number of developed seeds 

is important when comparing individual fecundity and ultimately fitness. The proportion of 

developed seeds to undeveloped ovules, by contrast, can be used to assess pollination success 

(Allison, 1990; Slobodník, 2002; Brys et al., 2007), though resource availability and genetics 

influence the proportion as well (Griffin and Barrett, 2002; Holland and Chamberlain, 2007). We 

initially measured seed mass but found no substantial differences between the seeds measured. 

We calculated the total developed seeds for all three species, and we calculated the proportion of 

developed seeds for Mertensia and Delphinium, but not Potentilla. We were unable to calculate 

the proportion of developed seeds for Potentilla because undeveloped seeds were difficult to 

distinguish from other elements of the carpel. 

Data analysis– 
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All analyses were conducted in R 3.5.1 (R Core Team, 2018). A fully reproducible Rmarkdown 

report of the analysis is available as supplemental material. Soil moisture was not a driver of 

plant fecundity, and therefore was not included as an explanatory variable (Appendix S3: see 

Supplemental Data with this article). 

Calculating individual phenology– 

To determine if blooming early or late impacts a plant’s fecundity, we first needed to establish 

how much earlier or later a tagged individual bloomed relative to the rest of the population. To 

create a basis for comparison of individuals to their population at each site, we used the Day of 

Year at which untagged, unmanipulated plants in the control plot attained the greatest recorded 

total number of blooming flowers across all three transects (the natural “population peak bloom” 

for a focal species at a site). We included flower surveys from all three transects to increase 

sample size and improve accuracy for floral abundance.

We then estimated the peak bloom date for every tagged individual of a focal species, defined as 

the estimated day with the most active reproductively receptive flowers in an individual’s 

blooming period. We estimated the peak floral abundance for each species and determined 

Mertensia peaked approximately  one third through its blooming period, while Delphinium and 

Potentilla peaked approximately halfway through their blooming periods (Appendices S4-S6; 

see Supplemental Data with this article). The individual peak was calculated based on estimated 

(rather than directly observed) dates of bloom start and bloom end, because it was not logistically 

possible to observe individuals daily, and data were recorded twice per week. The estimated day 

for individual phenological events (bloom start or end) was the midpoint between the day of a 

newly recorded event and the most recent preceding day the event was not recorded. For 
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example, the first day a tagged individual blooms is estimated to be the midpoint between the 

first day a bloom was observed and the day of the most recent record of bloom absence (Taylor, 

2019). 

 

We calculated the variation in individual phenology at every site by the difference in days 

between an individual’s peak bloom date and the population’s peak bloom date at the site. An 

individual that bloomed earlier than its site’s population peak thus had a negative value for its 

difference in bloom time, while a late-blooming individual had a positive value. An individual 

that bloomed on the same day as the calculated population peak bloom had an individual 

phenology value of zero. 

Calculating conspecific floral density–  

We calculated the mean number of blooming conspecific flowers in the three transects of both 

control and manipulated plots every week. To calculate the conspecific density during an 

individual’s bloom, we assigned each tagged individual the mean conspecific floral density 

associated with the week closest to its peak bloom date. Thus, the conspecific density value for 

an individual was the average number of open conspecific flowers within the plot during the 

individual’s peak bloom date. These values represent the average number of neighboring 

conspecifics and are not the absolute conspecific density in the meadow. For two weeks during 

the season, we could not do a Potentilla flower survey in some sites due to logistical constraints 

(we visited three of the seven sites in one week and the other four sites in the following week) 

and could not calculate mean conspecific density for the week. In those cases, an individual’s 

peak bloom date did not match to a mean conspecific density value and those individuals were 

removed from the dataset.

Evaluating individual phenology and conspecific density–  
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We analyzed the relationship between individual phenology and fecundity using generalized 

linear mixed effects models (GLMMs) from the “glmmTMB” package (Brooks et al., 2017). We 

used a mixed-effects modeling framework because repeated measurements within research sites 

led to non-independence of data. The three focal species were modeled separately. For each, we 

modeled seed set as a function of individual phenology and conspecific density. We included 

two groups of fixed effects: one for individual blooming time and one for conspecific density. 

Both groups included an interaction with the number of flowers produced by an individual 

(henceforth “flowers”). The number of flowers was assessed in both fixed effects terms, but not 

as a main effect to preserve degrees of freedom. Our response variables for seed set were the 

total number of developed seeds and the proportion of developed seeds (data available only for 

Mertensia and Delphinium). We used negative binomial errors for total developed seeds 

(“dev.seed” in the model below), as the data were overdispersed relative to a Poisson 

distribution, and binomial and beta-binomial errors for the proportion of developed seeds. We 

checked the models measuring total developed seeds for zero-inflation, and we corrected these 

models as needed using the “DHARMa” package (Hartig, 2022). We included “site” as a random 

effect (random intercept) in all models to account for site differences. We excluded individuals 

that received hand-pollination treatments from the individual phenology analysis because the 

pollen-supplemented individuals could influence the fecundity assessment.

For the individual phenology term, we used an interaction between two main effects because 

blooming time was non-monotonic, precluding the use of linear models in its unmodified form. 

Specifically, we split individual phenology into blooming before (“early”) vs. after (“late”) the 
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population peak bloom (henceforth “early.late”) and their continuous Day of Year distance from 

the population peak (henceforth “deviation”) to assess if individual flowering time affected 

fecundity. This structure allowed us to assess: 1) if earlier and later blooming individuals 

(relative to the population peak) had different fecundity levels, via the main effect of “early.late”; 

2) if temporal deviation from the population peak generally impacted fecundity, via the main 

effect of “deviation”; and 3) if temporal deviation impacted earlier vs. later blooming individuals 

distinctly, via the “deviation * early.late” interaction.

For the conspecific density term, we included an interaction between the number of conspecifics 

at the time of blooming (henceforth “conspecifics”) and the plot treatment (snowmelt 

acceleration vs. control; henceforth “plot.treat”). This was modeled as an interaction term 

because the abundance of conspecific flowers was on two different scales for the snowmelt 

acceleration vs. control plots. In the snowmelt acceleration plots, we advanced the phenology of 

the plants in the plot and created “islands” of early blooming individuals, where conspecific 

density was likely close to the absolute number of individuals in the manipulated plot. In the 

control plots, by contrast, plants both inside and outside of the plot bloomed simultaneously, and 

the conspecific density was thus functionally higher than that in the accelerated snowmelt plot. 

Our individual phenology and conspecific density models shared the basic form of:

dev.seed ~ flowers:(deviation * early.late) + flowers:number.conspecifics/plot.treat +  (1 | site)

17

33

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

34



Where “dev.seed” is the number of developed seeds, the “*” term indicates an interaction 

including the main effects, the “:” indicates an interaction without main effects, and the “/” 

indicates an interaction with only one main effect (“plot.treat” is not assessed as a main effect). 

The first group of fixed effects is the three-way interaction term for individual phenology: 

“deviation”, “early.late”, and “flowers”. The second group of fixed effects is the three-way 

interaction term for conspecific density: “number.conspecifics”, “plot.treat”, and “flowers”. 

Again, “flowers” was included in both interaction groups because the number of flowers on a 

plant determines seed set. The “1|” indicates a random intercept. 

Evaluating pollen limitation– 

We assessed pollen limitation in separate GLMMs to differentiate pollination function from 

resource availability and include our hand-pollinated individuals in the analysis. We again 

analyzed fecundity in two separate models for each species, using the total number of developed 

seeds and the proportion of developed seeds as response variables. We included “plot treatment” 

nested within “site” as a random effect (random intercept). We set our fixed effects as an 

interaction between pollination treatment (open vs. hand-pollinated; henceforth “treat”) and the 

number of flowers produced by the individual (“flowers”). Thus, pollen limitation would be 

detectable if the slope (interaction) of seed production relative to the number of flowers were 

steeper in the hand pollinated relative to the open flower treatments. The Mertensia and 

Potentilla models (but not the Delphinium model) measuring the total number of developed 

seeds were zero-inflated, and thus we corrected for zero-inflation in those two species.

Our pollen limitation models share the basic form of:
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dev.seed ~ treat/flowers + (1 | site/plot.treat)

Where “dev.seed” is the response variable for number of developed seeds. The fixed effect is an 

interaction between pollination treatment and number of flowers, excluding the main effect of 

“flowers” on seed set. The random effect (random intercept) is plot treatment nested within site, 

indicated by “1|”. 

RESULTS

Across the eight study sites, we examined Mertensia populations in four sites, Delphinium in 

four sites, and Potentilla in seven sites. We tagged 512 individuals in total and collected seeds 

from 463 individuals. We could not collect seeds from some tagged individuals due to damage 

from herbivory or disease. Of those 463 collected individuals, 124 were Mertensia individuals, 

118 were Delphinium individuals, and 221 were Potentilla individuals. Accelerated snowmelt 

plots melted out earlier than unmanipulated control plots by 5-17 days, with a mean of eight 

days. The 2019 growing season had relatively late snowmelt (our lowest elevation site melted at 

the end of May, and highest melted in mid-June) and a late June snowstorm, which caused frost 

damage in multiple early-season species. Soil moisture gradually decreased until late July, when 

late summer monsoons arrived and persisted through August (Appendix S1; see Supplemental 

Data for this article). The first snow after the growing season occurred in October (barr, 2020).

All relevant statistics from model summaries are listed in Table 1. 

Individual phenology and conspecific density–  
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For all focal species, we found relationships between individual phenology and fecundity. When 

flower number per individual is accounted for, all three species had statistically significant 

relationships between deviation from the population peak bloom and fecundity. Again, in 

Mertensia and Delphinium we separately measured both total developed seeds and the proportion 

of developed ovules, so there are two effects reported for each of those species. In Potentilla, we 

only measured the total developed seeds.

Individual phenology—positive effects–  

We found positive relationships with deviation (increased fecundity with increasing bidirectional 

departure from the population peak) in the total developed seeds in Delphinium (main effect of 

“deviation”; P = 0.025; Fig. 2C) and the proportion of developed ovules in Mertensia (main 

effect of “deviation”; P = 0.019; Fig. 3A). We also found marginal evidence that deviation 

positively impacted total developed seeds in Mertensia (main effect of “deviation; P = 0.088). In 

two of the three species, we detected directional effects, though in opposite directions. One of 

these was positive: in Mertensia, blooming later than the population peak had a marginally 

significant positive effect on the total developed seeds (main effect of “early.late”; P = 0.075; 

Fig. 2A). 

Individual phenology—negative effects–  

We detected a negative directional effect and found a negative relationship with deviation 

(reduced fecundity with increasing departure from the population peak) in the total developed 

seeds in Potentilla (main effect of “deviation”; P = 0.006; Fig. 2E). Blooming later than the 

population peak had a negative effect on total developed seeds relative to blooming earlier (main 

effect of “early.late”; P = 0.005; Fig. 2E), with a more severe effect on later blooming 

individuals (significant “deviation*early.late” interaction; P = 0.002; Fig. 2E). 

20

39

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

40



Individual phenology—no effect–  

For the proportion of developed ovules in Delphinium, we did not detect an effect of deviation 

(main effect of “deviation”; P = 0.158; Fig. 3C), early or late blooming (main effect of 

“early.late”; P = 0.387; Fig. 3C), or the interaction between deviation and early vs. late (P = 

0.827; Fig. 3C).

Conspecific floral density–  

We detected an interaction effect of conspecific density and plot treatment on the proportion of 

developed seeds in Mertensia individuals (P = 0.005), with a more negative effect of conspecific 

density in the accelerated snowmelt plot (Fig. 3B). We did not detect an effect of conspecific 

floral density in Delphinium or Potentilla. Neither of the main effects of conspecific density and 

plot treatment, nor the interaction between the two, appeared to have an effect on their flowers 

and their seed set. 

Pollen limitation– 

We detected pollen limitation in Mertensia and Delphinium. The interaction between pollination 

treatment and flower number was significant for the developed seed count in Mertensia (P < 

0.001) and Delphinium individuals (P < 0.001). Pollen limitation was also evident in the 

proportion of developed seeds for Mertensia (P = 0.005) and Delphinium individuals (P = 0.028). 

We did not find evidence of pollen limitation in Potentilla.

DISCUSSION

We investigated whether individual differences in flowering time impact the fecundity of three 

montane forbs through two specific mechanisms, pollen donor availability (conspecific density) 
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and pollen limitation. We accelerated snowmelt at the plot level to generate greater variability in 

flowering phenology and tracked the phenology and fecundity of individual plants. We found 

that differences in individual flowering time from the population peak impacted fecundity in our 

focal species, with species-specific effects. In Mertensia, our earliest flowering focal species, we 

found that individuals with a peak bloom after the population peak had increased fecundity. For 

the mid-season species, Delphinium, individuals with a peak bloom that simply deviated from 

the population peak (either early or late) had increased fecundity. However, in Potentilla, the 

late-season species, individuals that peaked later than the rest of the population had reduced 

fecundity. Differences in flowering time relative to the rest of the population affected fecundity 

mainly via pollination rather than availability of pollen donors (conspecific density). In other 

words, when individuals bloomed earlier or later relative to the population peak bloom, effective 

pollination was likely limited and this drove changes in individual fecundity. This work 

underscores how individual-level variation in flowering phenology can affect reproductive 

success.

 

In Mertensia, our earliest flowering focal species, we found that deviation from the population 

peak, specifically blooming after the peak, increased the seed set. Our finding is consistent with 

other studies that have suggested late blooming in Mertensia can increase fecundity (Forrest and 

Thomson, 2010; Pardee et al., 2019). Additionally, we found that Mertensia individuals were 

pollen-limited and were affected by conspecific density. A variety of factors can limit the ratio of 

developed seed and undeveloped ovules, including pollen limitation, resource limitation, and 

genetic factors (Allison, 1990; Slobodník, 2002; Griffin and Barrett, 2002; Brys et al., 2007; 

Holland and Chamberlain, 2007). While these factors are still poorly understood, some pollen 

limitation and resource limitation can be phenologically driven. For many early-flowering 
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temperate plants, late-spring frosts may strongly limit plant fitness due to damage to flowers and 

ovules (Thomson, 2010; Gezon et al., 2016). Also, early season species like Mertensia may 

begin to flower while pollinator abundance is low, thereby impacting visitation rates and 

reproductive success of early-blooming individuals (Forrest and Thomson, 2010; Pardee et al., 

2019). Our pollen limitation and conspecific density results indicate that early-blooming 

Mertensia individuals likely endure lower pollinator visitation and greater competition with 

conspecific individuals for those early-season pollinators. Individuals that bloom later than the 

rest of the population may increase fecundity by avoiding frost damage, benefiting from higher 

pollinator abundance, and reducing competition with conspecifics. 

The seed set of our mid-season species, Delphinium, significantly increased with deviation from 

the population peak bloom, both early and late. Unlike early-season species like Mertensia, mid-

season species may be able to avoid the dangers of frost (Dunne et al., 2003; Pardee et al., 2019). 

Furthermore, Delphinium flowers have been shown to be remarkably tolerant to frost (Forrest et 

al., 2010a; CaraDonna and Bain, 2016). Thus, the phenology of Delphinium individuals may be 

less abiotically constrained, allowing for greater deviation in blooming time within a population 

(CaraDonna et al., 2014). Our results show that this deviation from the population peak 

increased individual fecundity (Fig. 2C), which is consistent with a recent study in the same 

system that used a snow removal treatment and found that this species produces more seeds 

when it blooms earlier than unmanipulated plants (Pardee et al., 2019). We suspect that 

pollinator visitation, rather than the availability of conspecific pollen donors, drove this increase 

in fecundity with deviation because we found that Delphinium was pollen-limited in the studied 

year, but we did not detect an effect of conspecific floral density. This suggests that there were 
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ample pollen donors for outcrossing, but pollinator visitation was insufficient. Although 

flowering during the population peak bloom could hypothetically increase genetic diversity, it 

may be detrimental to pollination due to increased intraspecific competition for pollinators. For 

Delphinium, blooming much earlier or later than the population peak bloom may reduce 

competition for pollinators, and therefore, increase seed set. This trend could indicate that 

Delphinium is experiencing disruptive selection, in which phenological shifts away from the 

peak bloom are selected through pollination (Sabat and Ackermen, 1996; Chen and Pannell, 

2022).  Also, it is important to note that while we did not detect an effect of conspecific floral 

density in our plots, Delphinium densities outside of the study plots were not measured. This is 

important because landscape-level conspecific floral density may be a greater driver for highly 

mobile pollinators, such as bumblebees and hummingbirds (Waser and Price, 1981; Bosch and 

Waser, 1999). Because Delphinium is less abiotically constrained than early season species, 

selection may act on individuals that deviate from the population peak bloom and potentially 

reduce the intraspecific competition for pollinators.

In Potentilla, our late-season species, variation in individual phenology created differences in 

fecundity, but unlike Mertensia and Delphinium, these individuals were not pollen-limited. More 

specifically, in Potentilla populations, early-blooming individuals produced a higher seed set 

relative to late-blooming individuals, and blooming much later than the population peak was 

detrimental to fecundity (Fig. 2E). Our results are consistent with previous studies which showed 

that individuals of late-season species with artificially advanced phenology were more 

reproductively successful (Price and Waser, 1998; Pardee et al., 2019). Pardee et al. (2019) also 

found that early-blooming Potentilla individuals received higher pollinator visitation. We know 
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that pollinators are typically abundant later in the growing season in montane regions (Kudo, 

2014; Gallagher and Campbell, 2020), so pollen limitation may be less likely in this late-season 

species. By blooming early, individuals received higher pollinator visitation and produced more 

flowers and seeds (Pardee et al., 2019). For Potentilla, it may be advantageous to bloom early 

while pollinators are abundant in the late season, though other factors may limit how early or late 

this species can bloom. For example, interspecific competition with earlier season species or 

physiological constraints could weaken selection pressure for blooming much earlier (Iler et al., 

2013; Faust and Iler, 2021). Though late season snow in the 2019 season could have limited how 

early Potentilla bloomed, our Potentilla individuals likely benefited from blooming earlier than 

the population peak and receiving higher pollinator visitation. 

We found mixed evidence that the availability of conspecific pollen donors during blooming 

drives individual-level fecundity in our three study species. We hypothesized that low 

conspecific pollen donor density would decrease fecundity in our early-season species, but our 

results do not support this. In fact, high conspecific density caused decreased fecundity in our 

early-season individuals, potentially due to intraspecific competition for early-season pollinators. 

Furthermore, we did not find evidence for an effect of conspecific density in our other focal 

species. This is surprising because other studies suggest that the conspecific pollen donor density 

can be an important predictor of fecundity in herbaceous plants (Gibbs and Talavera, 2001; Waal 

et al., 2014; Kehrberger and Holzschuh, 2019; Towers et al., 2020). We measured conspecific 

density at the plot level, and it is possible that landscape-level conspecific density is more 

influential for fecundity, particularly for species that are dependent on highly mobile pollinators. 

Additionally, our snowmelt acceleration experiment advanced the phenology of the floral 
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community at the plot level. Therefore, the conspecific density count is a very accurate 

numerical representation in the early snowmelt plot (when other individuals surrounding the plot 

are not yet in bloom, though also when pollinator presence is low), while in the control plot, the 

count is a less accurate estimate of the conspecific density in the surrounding meadow. A 

separate issue is that conspecific density and variation in individual phenology could interact. 

Specifically, higher conspecific density could be beneficial when other conspecific pollen donors 

are rare, and detrimental due to intraspecific competition for pollinators when conspecific 

individuals are common. Ultimately, our interaction term of “conspecific density*plot treatment” 

does not take the differing effects of conspecifics on early vs. late individuals into account, and 

the effect could be canceled out by combining the potential benefits and detriments of 

conspecific pollen donor availability. Unfortunately, we did not have the statistical power to 

include a three-way interaction between conspecific density, plot treatment, and flowering time 

in our models to assess this issue directly. Thus, while we did not see consistent evidence of 

pollen donor availability on fecundity in all of our species, we also cannot rule out that it could 

be an important mediator of fecundity.

 

Individual differences in blooming time affect individual fecundity, and therefore species may 

experience selection pressure on floral phenology over time (Forrest et al., 2010a; Anderson et 

al., 2012; CaraDonna et al., 2014; Wadgymar et al., 2018). Our study shows that shifts in 

blooming relative to the rest of the population can be advantageous for fecundity via pollination. 

These phenological differences impact reproduction and may be selected for over other blooming 

times (Stinson, 2004; Faust and Iler, 2021). Depending on the species, selection on blooming 

time could be directional (O’Connell and Johnston, 1998; Elzinga et al., 2007; Koenig et al., 

2012) or disruptive (Sabat and Ackerman, 1996; Chen and Pannell, 2022). In the context of 

26

51

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

52



climate change, selection on individual phenological shifts could drive population-level 

phenology, which may facilitate climate “tracking” in these plant populations (Cleland et al., 

2012). Furthermore, as climate change alters the abiotic and biotic cues for floral phenology, 

selection may act on the species that are particularly sensitive to those cues. For example, 

selection could act on the early-season species that are sensitive to abiotic cues, or on the mid-

season species that are sensitive to biotic cues (Pau et al. 2011). However, despite the advantages 

of deviating from the population’s peak bloom, we cannot say for certain that directional 

selection is acting on our focal species. First, if deviating from the population peak bloom is 

beneficial for reproduction, selection pressure would weaken as other individuals shift their 

phenology in tandem. Second, our focal species are perennials with very long lifespans, and 

selection pressures may not be consistent for an entire generation (Forrest et al., 2010a; 

Thomson, 2019). Third, abiotic and biotic variation across years could weaken selection pressure 

(Forrest et al., 2010a; Iler et al., 2013; Faust and Iler, 2021). For instance, variation in the 

phenology of co-flowering species could increase interspecific competition through 

heterospecific pollen transfer and conspecific pollen loss, which could interfere with selection 

pressure for an individual’s blooming time (Forrest et al., 2010a; Faust and Iler, 2021). Further 

studies that assess the effect of individual variation in phenology on fecundity are needed to 

understand the potential barriers to directional selection in this system.

Our work has some limitations worth highlighting. First, we did not ascertain the viability of 

developed seeds in this study and future studies could include germination trails. Second, while 

we included species that have distinct phenologies, different species from the same community 

could produce different results and further studies with more focal species are needed, in 
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particular to generalize our results related to the differences between early-, mid-, and late-

season species. Third, our snowmelt acceleration experiment created “islands” of early bloomers. 

These islands of early flowers can be—particularly in the early season—the only flowers in 

bloom in the area and may differentially attract pollinators, which could inflate the pollination 

services they receive (Forrest, 2015), and the pollen limitation results should be interpreted with 

caution, particularly for Mertensia, our earliest blooming species. Fourth, by conducting plot-

level flower counts once per week, our peak bloom estimates may not be completely accurate 

estimates of population phenology. Finally, the observed effect of flowering time on fecundity 

may differ over long periods of time (Thomson, 2019), and the long-term effects of blooming 

time on population fitness are unknown.

We show that variation in individual plant phenology is an important driver of fecundity, and 

that phenological shifts impact early-, mid-, and late-season species differently. By inducing 

early snowmelt, we increased variability in floral phenology and found that differences in 

phenology impacted seed production in our three focal species. Our findings suggest that an 

individual’s reproductive success is sensitive to small changes in phenology, and individual-level 

differences are important to consider when examining climate-induced phenological shifts. 

Understanding the relationship between individual phenology and fecundity is critical, as 

flowering time can affect species interactions and the abiotic environment in complex ways. 

These interactions could potentiate multiple, opposing drivers of plant fecundity that act 

simultaneously. While in a given year the net effect of such drivers may be impactful, we need 

more long-term studies across several environmentally-variable years, along with studies focused 

on the “downstream” impacts of pollination (i.e., gene flow, demography) to come to a fuller 
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understanding of how flowering phenology change will impact plant pollination, seed 

production, reproduction, population growth, and evolution. 
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at 

the end of the article.

Appendix S1: Soil moisture in percent volumetric water content (%VWC) during the growing 

season (May – August 2019) in control and accelerated snowmelt plots.

Appendix S2: Table of site information, including GPS coordinates, elevation, and aspect.

Appendix S3: Model selection results for soil moisture variables: effective minimum soil 

moisture, soil moisture at end of season, mean soil moisture, range of soil moisture, and rate of 

soil moisture decline over the course of the growing season. When seed set was analyzed as a 

function of these variables, the selected model (delta = 0) was not significantly different from the 

null model (delta = 0.03).

Appendix S4: Floral abundance over the blooming period for Mertensia fusiformis across all 

sites and both plot treatments. The dashed line indicates one third through the blooming period. 

Solid line indicates halfway through blooming period. 

Appendix S5: Floral abundance over the blooming period for Delphinium nuttallianum across all 

sites and both plot treatments.  For Delphinium, we only display the solid line as there is good 

congruence between the bloom peak and the halfway point through the blooming period of the 

species.
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Appendix S6: Floral abundance over the blooming period for Potentilla pulcherrima across all 

sites and both plot treatments.  For Potentilla, we only display the solid line as there is good 

congruence between the bloom peak and the halfway point through the blooming period of the 

species.
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Table 1: A summary of the effects of flowering time, conspecific density, and pollen limitation 

on the total developed seeds and proportion of developed seeds for Mertensia fusiformis, 

Delphinium nuttallianum, and Potentilla pulcherrima. Fecundity for each species is divided into 

the total number of developed seeds and proportion of developed seeds. The effects of flowering 

time and conspecific density are divided into main effects and interactions: deviation from the 

population peak bloom (“deviation”), blooming before or after the population peak (“early.late”), 

and their interaction (denoted with *), and conspecific density and its interaction with plot 

treatment (“number.conspecifics*plot.treat”). We included the coefficients, standard error, 

sample size, and p values for each result. Statistically significant results are in bold.

FIGURE LEGENDS

Fig. 1. The plot design for control and manipulated plots. We established three 1 x 10m transects 

for tracking the phenology of the floral community and a 1 m perimeter section within the plot 

for tagging individual plants of our focal species. We included a 1 m buffer zone between the 

phenology perimeter section and the edge of the plot. Individual plants were randomly selected 

and tagged in quadrats 1-30 in the perimeter section. The circles represent locations of soil 

moisture measurements.

Fig. 2. The effects of individual flowering time and conspecific density on total number of 

developed seeds for Mertensia fusiformis (A, B), Delphinium nuttallianum (C, D), and Potentilla  

pulcherrima (E, F) individuals. Each point represents an individual plant, and the lines are 

simple linear regression lines. In the individual flowering time plots, red circles represent flowers 
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that bloomed before the population peak and orange triangles represent flowers that bloomed 

after. In the conspecific density plots, green circles represent the control plot and blue triangles 

represent the accelerated snowmelt plot. Solid lines represent significant trends and dashed lines 

represent non-significant trends. Note the differences in scales on the x- and y-axes. Standard 

error is included in the shaded regions. 

 Fig. 3. The effects of individual flowering time and conspecific density on the proportions of 

developed seeds for Mertensia fusiformis (A, B) and Delphinium nuttallianum (C, D) 

individuals. Potentilla pulcherrima was not included in this analysis because we did not have 

undeveloped seed counts for the proportion calculations. Each point represents an individual 

plant, and the lines are simple linear regression lines (i.e., not following the binomial model 

predictions). In the individual flowering time plots, red circles represent flowers that bloomed 

before the population peak and orange triangles represent flowers that bloomed after. In the 

conspecific density plots, green circles represent the control plot and blue triangles represent the 

accelerated snowmelt plot. Solid lines represent significant trends and dashed lines represent 

non-significant trends. Note the differences in scales on the x- and y-axes. Standard error is 

included in the shaded regions.
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