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ARTICLE INFO ABSTRACT

Editor: R. Gregory A new class of modified gravity theories, made possible by subtle features of the canonical formulation of
general covariance, naturally allows MOND-like behavior (MOdified Newtonian Dynamics) in effective space-
time solutions without introducing new fields. A detailed analysis reveals a relationship with various quantum-
gravity features, in particular in canonical approaches, and shows several properties of potential observational

relevance. A fundamental origin of MOND and a corresponding solution to the dark-matter problem are therefore

possible and testable.

1. Introduction

Applications of general relativity to cosmology at low curvature and,
increasingly, to black holes in strong-field regimes have led to sev-
eral unexplained phenomena, highlighting the need to find alternative
gravitational theories for detailed comparisons with observations. The
requirement that such theories be generally covariant is often taken as
implying that they must be related to general relativity by introduc-
ing additional interactions from higher-curvature terms or from new
fields of scalar, vector or tensor nature. However, many such theories
are ruled out by the observational insight that the speed of gravi-
tational waves is very close to the speed of light [1-4]. Moreover,
higher-curvature actions often have instabilities caused by higher time
derivatives [5].

Recent results in canonical gravity [6,7] have culminated in the
conclusion that the usual road that leads to higher-curvature or scalar-
vector-tensor actions is not the only one to alternative gravity theories,
thanks to a subtle feature of general covariance: Its mathematical for-
mulation, expressed canonically by conditions on fields on a foliation
of space-time into spacelike hypersurfaces, does not take the same form
as in the common picture of coordinate changes in a 4-dimensional
space-time manifold. Conditions that ensure general covariance of the
foliation have been constructed early on in canonical formulations of
general relativity [8], requiring the imposition of constraints which gen-
erate hypersurface deformations as a gauge symmetry. It is well-known
that algebraic properties of the constraints are rather complicated be-
cause they have Poisson brackets or commutators with structure func-
tions that depend on the fundamental fields, in particular on the spatial
metric on a hypersurface. (In an independent line of mathematical re-
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search, the relationship between this feature and an L -structure that
modifies the usual Jacobi identity has been analyzed in [9].)

Classically, the structure function equals the inverse of a funda-
mental spatial metric field used to define the theory, and all standard
theories of modified gravity in metric form maintain this relationship.
The opening to new classes of modified gravity consists in the observa-
tion that the structure function may well have a different relationship
with the fundamental fields. Provided that its gauge transformations
take the form required for coordinate transformations of an inverse spa-
tial metric, the structure function then defines an emergent space-time
line element distinct from the fundamental fields. With hindsight, the
results of [6] show that there are indeed new non-trivial candidates for
this new class of emergent modified gravity, at least in spherically sym-
metric models. Here, we provide a complete fundamental formulation
as well as new applications.

In particular, we use our new formulation of the underlying canon-
ical theory to show that several of its features can imply a natural rel-
ativistic realization of Modified Newtonian Dynamics (MOND, [10,11])
without introducing extra fields. Constructing such theories has proven
difficult in manifestly covariant form in a standard space-time descrip-
tion, unless new non-geometrical fields are introduced [12-14]. The
new theories discussed here may therefore help to analyze or explain
long-standing cosmological puzzles such as dark matter. Their funda-
mental nature is highlighted by several examples provided here that
show how terms required for emergent modified gravity may be im-
plied by ingredients of canonical quantum gravity. We discuss proper-
ties of orbital motion and light deflection in emergent modified gravity
in order to show how its implication can be confronted by observa-
tions.
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2. Emergent modified gravity

Infinitesimal deformations of spacelike hypersurfaces in space-time
are known to have an unusual and challenging feature: While infinites-
imal deformations D(M) along a spatial vector field M tangential to a
spacelike hypersurface have a simple commutator

[D(M}), D(My)] = D(L ;3 My) 6))

given by a directional or Lie derivative £ i, M,, the commutator of two
deformations H(N) normal to the hypersurface by a displacement func-
tion N,

[H(N)), H(Ny)] = D(N,VN, = N,VN))). @

depends, through the gradient VYN = ¢°*9, N, on the metric g,, induced
on the hypersurface, with inverse ¢?. Since the hypersurfaces may be
curved with varying spatial geometries, the commutator depends on the
hypersurface to which it is applied. The generators D(M) and H(N) of
gauge transformations are constrained to vanish on physical solutions of
the theory. The presence of structure functions then complicates quanti-
zations of these equations because it requires specific factor orderings of
non-commuting metric and constraint operators. In the context of clas-
sical modified gravity, however, the presence of a structure function is
powerful because it gives us a direct link from algebraic properties of
gauge transformations to geometrical structures of space or space-time.

We analyze the specific form of the constraints for spherically sym-
metric line elements of the general form

(E

)2
ds®> = —N2d? + E—X)(dx + N*df)? + E*(d9? + sin® 9dg?) 3)

in which all functions depend only on x and 7. The functions N and
N~ parameterize foliations of space-time into spacelike hypersurfaces,
on which the induced metric is described by two functions, E# and E*.
These two functions, in a canonical formulation, are the momenta of
components of extrinsic curvature, K, and K, [15]. In canonical form,
candidates for theories of gravity are given by phase-space functions D
and H with Poisson brackets of the form (1) and (2), replacing the ac-
tion functional. In general, the classical ¢°* in V¢N, or ¢** in spherical
symmetry, is then some phase-space function §**(E*, E?, K, K,,) that is
not required to have a simple relationship with the fundamental canon-
ical fields. A candidate theory defined like this is generally covariant if
the structure function §** is subject to gauge transformations consistent
with coordinate changes of an inverse spatial metric. It can then be used
to define a compatible emergent space-time line element, supplying a
geometrical interpretation to solutions of the theory.

The covariance conditions can be evaluated in a canonical version of
effective field theory, in which one starts with a general expression for
the integrand of H(N) = / dxN H as a local function of the canonical
fields up to some order in spatial derivatives and a certain polynomial
order in K, which has a non-zero density weight. The coefficients of
spatial derivatives of EX and E? and of the K, -terms are initially free
functions of E* and K, (which both have zero density weight), but their
form is strongly restricted by two conditions, that (i) the Poisson bracket
{H(N,), H(N,)} be of the form (2) with (ii) a structure function ¢** that
has gauge transformations consistent with coordinate transformations
of an inverse spatial metric.

As shown in [7], completing earlier versions in [16,17], the most
general such expression for a generator H of normal deformations takes
the form

e . E
Ex a sin“ (AK,_,) dc sin (24K F)
2 E* 2 0EX 2 0Ex
s R (K0
J2EX ! }%ZZEX Ex E?® aK,,,
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EY(ED2) @y
_< 5 + (L7 cos (ﬁKq,) 4)
when it is expanded up to second order in spatial derivatives (using

units such that the speed of light and Newton’s constant equal one),
where

~XX Z(EX), 2 - _ sin (ZZK ) EX
! =(<cf +< 267 ) >°OSZ(AKV’)_2‘”2 ) ey ©

is the structure function replacing ¢** = EX/(E?)?> in the classical
bracket (2). Here, 1 is a free constant, and A, ¢ 1> Cr0s ®os %o and g
are free functions of E* not determined by the covariance condition
alone. The free parameters take simple values zero or one in classical
general relativity, which demonstrates the existence of a number of new
modified gravity theories. (More precisely, we obtain the classical limit
for Ag,cp @y = 1, 2> 0, and ¢,y — —A if there is a cosmological con-
stant.) Among the free functions, only ¢/, 4j and ¢ (for 4 # 0) appear in
the emergent spatial metric and are therefore characteristic of emergent
modified gravity, while ¢, @, and @, parameterize freedom present in
the classical spherically symmetric theory, akin to the free potential of
dilaton gravity. The phase space is not enlarged, and therefore there
are no additional fields such as those implied by higher time deriva-
tives in a canonical formulation, or additional scalar, vector or tensor
fields added to general relativity by hand.

The rather involved relationship (5) is unambiguously determined
by the Poisson bracket of two modified Hamiltonian constraints of the
form (2). The fact that §** is not a simple combination of the basic
phase-space functions demonstrates that these theories are not easily
related to action principles formulated for a fundamental space-time
metric, as done in standard modified gravity. Nevertheless, dynamical
and gauge properties, and therefore physical predictions, are uniquely
determined by Hamilton’s equations generated by the constraints.

Given the canonical structure and the covariance condition, it is
possible to evaluate the space-time dynamics implied by H and the cor-
responding emergent line element with inverse spatial metric (5). The
freedom of choosing a suitable space-time slicing allows us to impose
additional conditions in order to simplify the calculations or to focus at-
tention on specific space-times such as static ones close to the standard
Schwarzschild solution. For the latter, we choose EX = x2 and N* =0.
(According to (3), the radial coordinate x then determines the area of
symmetric spheres by the usual equation A = 47zx?2.)

The second choice, N* = 0, implies that the equations of mo-
tion are given by Hamilton’s equations of N H (rather than the full
H(N)+ D(N*)), where N is the same space-time function that appears
in (3). The first choice, E* = x?, implies a consistency condition because
E* is then time-independent and the corresponding Hamilton equa-
tion must be zero. Given the general Hamiltonian, this condition reads
E¥=-NoH /0K, =0, ortan (2K ,) = —21q/(c; + 1*x* /(E?)?). A simple
solution of K, =0 is obtained if we choose a modified dynamics with
the classical value ¢ = 0. The other curvature K, =0, then also vanishes
as a consequence of D =0. The constraint H =0 implies

(E®)? a a+2
0=(n(E?)? + —2L 2 -
(In(E?®)")" + < cpot+ 2 .

, (6)

which for specific choices of c;, and «, can be solved for E?. The
remaining Hamilton equations are consistent with a static solution,
E® =0, and a final condition,

(In(NE®)) = % —(n4), @)

is implied by K, =0 because K, = 0. The condition K, =0 does not
result in an independent equation.

Equation (6) may be solved by making an ansatz E?(x) = x/
/T—f,(x) with a function f,, subject to the equation

0=xf(;+a2f¢+a0—a2+cf0x2. 8
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If the free functions are such that the classical limit with a vanishing
cosmological constant is obtained for large x, the solution to this equa-
tion is asymptotically of the form f,(x) ~2M /x with a constant M that
is interpreted as the central mass, such as a black hole, that gives rise
to our curved space-time. The solution of (7) for N then takes the form

V=T,

RRTETRE @
provided
(npy = 1220 10)

These solutions simplify (5) and imply an emergent space-time line
element

2o (l_fw(x))d2+ dx?
Ao (cp )+ 2 (1= £,(0)) (1= f,0) (11)

H(x)? Ag(x)?
+x2dQ?

which is clearly different from the general form of the Schwarzschild
line element, implying new effects. A characteristic feature of (11) is
that g, # —g,! in general. Several new phenomena can be expected
from this inequality, for instance in the behavior of horizons, but most
of them depend on details of the specific modification functions ¢,
and 4, and the corresponding solutions f,, and . We will focus in-
stead on a more generic phenomenon that may show implications even
in non-relativistic regimes. To this end, we will first derive an effec-
tive gravitational potential for geodesic motion of massive objects in a
space-time with line element (11).

3. Gravitational potential

A standard procedure derives geodesic motion using spherical and
time translation symmetry of our space-time, together with the mass
condition ||p||* = g, p#p* = —m? for the 4-momentum p = mdx/dz of an
object of mass m, using proper time 7. Killing vectors for the symme-
tries provide the conserved energy E = (1 — fw),u‘zllazdt/dr and angular
momentum L = x>d¢/dz, and the mass condition takes the form

1 dx\* | & > E?
0=~ (—) i (m+ = - = 12

2"\ 4z 2 <m mx?2  mN? (12)
of a Newtonian-style energy balance, where §* is the inverse spatial
metric and —N? the time component in (11). Geodesic motion of mas-
sive objects can therefore be expressed by the effective potential

2 2 2)2E?
V(x)=7°(cf+22(1—f¢))<(1—f¢)<m+L—2>—Mrs ) (13)

mx

In the classical case, in which the x-dependent functions 4, ¢, and
Ay equal one while 1=0 and the solution to (8) is fo()=2M/x+ Ax2,
(13) contains Newton’s gravitational potential, the centrifugal potential,
and a long-distance correction from A. Depending on the modification
functions, the potential may deviate from the two classical power laws
of x~! and x2. In a region with small and constant deviations from the
classical values for the remaining parameters, a, ~ 1, ¢y = 1, ¢ 0 R —A,
and some 4, the solution of (8) stays close to its classical form,

Ay — @

5

3ay+2

FRETS

and u depends only weakly on x as a consequence of (10). The Newto-
nian power law may therefore change, but not significantly enough for
MOND-like effects that would require a logarithmic contribution to f,
in order to result in a 1/x force law on intermediate scales.
Logarithmic MOND effects can, however, appear in the gravitational
potential via more dramatic modifications in at least two ways. The first
is by choosing ay = a; = 1 and ¢ ;o = ~A+(c; /E*)In (¢ E¥ /¢, ), with con-
stants ¢; and ¢, with vanishing ¢, in the classical limit, such that (8) is
solved by f,, =2M/x + Ax?/3 — ¢;In(x?/c,) despite having c;, ~ —A
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at large scales. The second, simpler way that we will mainly focus
on is by simply adding a logarithmic contribution to the function ¢,
which directly appears in the gravitational potential. Our new theories
of emergent modified gravity allow logarithmic terms in these functions
while preserving general covariance. More importantly, as we will now
show, there are several reasons for quantum-gravity effects to imply
logarithmic contributions to c¢;, which appears directly in the gravi-
tational Hamiltonian and the structure function. Such terms would be
relevant on intermediate scales, between the Newtonian one dominated
by 2M /x and the cosmological one dominated by Ax?/3. This is the
extra-solar or galactic range of MOND.

A well-known source of logarithmic terms in quantum field theories
is given by renormalization. In the present case of a canonical theory,
this process requires Hamiltonian renormalization in a background-
independent manner, which is still being developed; see for instance
[18] or the moment derivation of the Coleman-Weinberg potential in
[19], to which renormalization can be applied as in [20]. Treating grav-
itational models in this way remains a challenge, but there are indepen-
dent results from [21] that explicitly show a non-classical logarithmic
term in the Hamiltonian constraint of a quasiclassical spherically sym-
metric model, resulting from a solution for quantum fluctuations of the
metric components. Importantly, these canonically derived logarithms
need not be Lorentz invariants, as in standard renormalization theory.
They cannot be implemented in standard higher-curvature actions but
may find a new home in emergent modified gravity.

We are also able to present an independent calculation that leads to
logarithmic terms in ¢, based on our new methods for the gravitational
constraints and the covariance condition [7]. As suggested in [22],
canonical quantization of a constrained system simplifies if one can
eliminate the structure function, given by §** in spherically symmetric
models. This may be possible by considering suitable linear combina-
tions of the constraints with phase-space dependent coefficients. The
construction given in [22] can be generalized significantly, while also
making sure that the resulting theories remain local and generally co-
variant. An example of such a solution obtained from a covariant linear
combination of the constraints without structure functions, assuming
the classical values ¢ =1 and cyy = —A, is given by

72
cr(EY)=1+ % (AE* =In(E*/cy)) (15)

where ¢ is a positive integration constant unrelated to the other modi-
fication functions.

Since this modification is more significant on intermediate scales
than the constant a-dependence in the function (14), we can approx-
imate f,(x) by its classical form. Up to a slowly-changing factor of
u! /Ial, the lapse function (9) then also has its classical form. Neverthe-
less, the geometry is non-classical because ¢, appears in the emergent
line element (11), now given by

2
ds2:—<1—2ﬂ—%x2) —d;z
x WA
-1
B A72dx?
wlie2(1=2M i 2 )48 S S —
x Vo 6 1-2M/x—Ax%/3
+x%(d9? + sin? 9dg?) . (16)

Independently of the origin of (15), our results show that there is a
modified gravity theory in canonical form which has this emergent line
element as a solution.

At distances large enough to neglect the Newtonian potential, but
not so large that the cosmological term is relevant, we have an effec-
tive potential dominated by the logarithmic term. For non-relativistic
objects with E ~ m, we have

ma? _ 2
Ve —(1+21-m| = <L—+1—;42/1§>. a7
2 \/% m2x2
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The combination of a negative logarithmic and a quadratic potential
implies new stable circular orbits at a radius x,, which we may use
for an estimate of the relevant distance and velocity scales. At a local
minimum of the potential, the angular momentum is given by

w50 (125 (n(25) )
L _2ee-n(1-£L(n(2X)-3 . 18
m2 2(” o1 2 \" coe? * (a8

In this condition, a stable circular orbit is then seen to exist only if
/42/1(2) > 1, such that, to leading order in the 1 expansion, it has the

radius xo = L(Am)~'4/2/u?4% — 1 and velocity v3 = %Zz(yzig —1). The
Tully-Fisher relation [23] ug ~ ayM, where q; ~ \/A_/El/(er) is Mil-
grom’s universal acceleration [24], requires a mass-dependent ;42/1(2) -
1= 2\/aO_M /2. In our derivation, u is part of the lapse function which
usually depends on the mass in static solutions, and 4, is expected to
depend on M if its deviation from the classical value is implied by
renormalization effects in quantum gravity. Notice also that A, multi-
plies the gravitational Hamiltonian, just like Newton’s constant does if
gravity is coupled to matter, and may therefore be renormalized. The
expression (18) implies that further MOND effects may be seen at even
larger scales. However, because 1 is expected to be small, such scales
may be cosmological and A effects would have to be taken into account
too.

Since our theories of emergent modified gravity are fully relativis-
tic and generally covariant, it is straightforward to derive additional
physical effects such as modifications of the bending of light, which
may be used to subject the modification functions to further observa-
tional bounds. For instance, the deflection angle of light moving around
a central mass now takes the form

z VagM 2 2b

A¢~AO 1 S—+ 5 N
to leading order in a, and 1, with the impact parameter b of the light
ray. Unlike the usually expected deflection angle in the MOND literature
which is independent of the impact parameter, there is a logarithmic de-
pendence in this relativistic extension and this could lead to a negative
deflection angle repelling the light. In a semiclassical regime, however,
we expect \/apM < 12, so the overall correction to the deflection angle
is positive for large enough impact parameters.

We briefly discuss the alternative MOND-like modification from
cro=—N+(c;/ E¥)In(e*E*/c,). From a fundamental perspective, this
option is less preferred because it requires two undetermined constants
rather than only one. Moreover, because ¢/, does not appear in the
emergent spatial metric, it can be obtained also by choosing a suitable
dilaton potential. Phenomenologically, it also has more complicated
and ambiguous results. Following a similar procedure as above it re-
sults in the angular momentum expression

a9

12 e (14 A2+ 4% (1= 42 A2) +2¢, A2 In(x? /c5))
m2x2 e 422 (267 — 1)+ (14242¢7) In(x2/ey) + 222 In(x2 /)2
(20)

substituting (18) and using the shortcut o= 1 —¢;. The Tully-Fisher
relation can be obtained in several ways. For example, the choice
¢; =4/agM (which needs renormalization for ¢;) reproduces the Tully-
Fisher relation to zeroth order in 1. Alternatively, the constant u can
be used in several different ways and the expansions are ambiguous;
one such realization is 1 — ;42}% = \/aO—M /(c; 4%), which reproduces the
Tully-Fisher relation to zeroth order in both ¢, and A. The deflection
angle of light is instead, to leading order in ¢, and 1, given by

7 = 1 ¢ A2 4p?
Ap~ E 1—,1< +—>—— 1+ 2 ) m —2 ). 21
¢ T a+3 2( 5 )" CZezﬂz,l(Z) 21

If we take ¢; = y/ayM then this result differs from (19) by a factor of
approximately two when taking the limit 2 — 0 with fixed a,. Further-
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more, depending on the value of ¢,, at large enough impact parameter
the light is only repelled.

These discrepancies can be used to distinguish between the two al-
ternatives using the data on deflection angles. It is also possible to
couple various matter fields to gravity in our canonical formulation,
and thereby investigate the stability of compact objects. Unlike previ-
ous proposals such as [12-14], our theory of emergent modified gravity
makes it possible to formulate MOND-like effects in a generally covari-
ant form without introducing additional fields or higher time deriva-
tives. Stability is therefore easier to ensure, and since there is a single
emergent line element that determines the propagation of all massless
objects, gravitational waves and light travel at the same speed. The
space-time properties of the horizon and the interior region are well-
behaved, and it is possible to obtain a global structure with singularity
resolution for certain values of the constant ¢,. We therefore have a
promising class of new observationally viable alternatives to general
relativity.
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