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A R T I C L E I N F O A B S T R A C T

Editor: R. Gregory A new class of modified gravity theories, made possible by subtle features of the canonical formulation of 
general covariance, naturally allows MOND-like behavior (MOdified Newtonian Dynamics) in effective space-
time solutions without introducing new fields. A detailed analysis reveals a relationship with various quantum-
gravity features, in particular in canonical approaches, and shows several properties of potential observational 
relevance. A fundamental origin of MOND and a corresponding solution to the dark-matter problem are therefore 
possible and testable.

1. Introduction

Applications of general relativity to cosmology at low curvature and, 
increasingly, to black holes in strong-field regimes have led to sev-
eral unexplained phenomena, highlighting the need to find alternative 
gravitational theories for detailed comparisons with observations. The 
requirement that such theories be generally covariant is often taken as 
implying that they must be related to general relativity by introduc-
ing additional interactions from higher-curvature terms or from new 
fields of scalar, vector or tensor nature. However, many such theories 
are ruled out by the observational insight that the speed of gravi-
tational waves is very close to the speed of light [1–4]. Moreover, 
higher-curvature actions often have instabilities caused by higher time 
derivatives [5].

Recent results in canonical gravity [6,7] have culminated in the 
conclusion that the usual road that leads to higher-curvature or scalar-
vector-tensor actions is not the only one to alternative gravity theories, 
thanks to a subtle feature of general covariance: Its mathematical for-
mulation, expressed canonically by conditions on fields on a foliation 
of space-time into spacelike hypersurfaces, does not take the same form 
as in the common picture of coordinate changes in a 4-dimensional 
space-time manifold. Conditions that ensure general covariance of the 
foliation have been constructed early on in canonical formulations of 
general relativity [8], requiring the imposition of constraints which gen-
erate hypersurface deformations as a gauge symmetry. It is well-known 
that algebraic properties of the constraints are rather complicated be-
cause they have Poisson brackets or commutators with structure func-
tions that depend on the fundamental fields, in particular on the spatial 
metric on a hypersurface. (In an independent line of mathematical re-
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search, the relationship between this feature and an 𝐿∞-structure that 
modifies the usual Jacobi identity has been analyzed in [9].)

Classically, the structure function equals the inverse of a funda-
mental spatial metric field used to define the theory, and all standard 
theories of modified gravity in metric form maintain this relationship. 
The opening to new classes of modified gravity consists in the observa-
tion that the structure function may well have a different relationship 
with the fundamental fields. Provided that its gauge transformations 
take the form required for coordinate transformations of an inverse spa-
tial metric, the structure function then defines an emergent space-time 
line element distinct from the fundamental fields. With hindsight, the 
results of [6] show that there are indeed new non-trivial candidates for 
this new class of emergent modified gravity, at least in spherically sym-
metric models. Here, we provide a complete fundamental formulation 
as well as new applications.

In particular, we use our new formulation of the underlying canon-
ical theory to show that several of its features can imply a natural rel-
ativistic realization of Modified Newtonian Dynamics (MOND, [10,11]) 
without introducing extra fields. Constructing such theories has proven 
difficult in manifestly covariant form in a standard space-time descrip-
tion, unless new non-geometrical fields are introduced [12–14]. The 
new theories discussed here may therefore help to analyze or explain 
long-standing cosmological puzzles such as dark matter. Their funda-
mental nature is highlighted by several examples provided here that 
show how terms required for emergent modified gravity may be im-
plied by ingredients of canonical quantum gravity. We discuss proper-
ties of orbital motion and light deflection in emergent modified gravity 
in order to show how its implication can be confronted by observa-
tions.
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2. Emergent modified gravity

Infinitesimal deformations of spacelike hypersurfaces in space-time 
are known to have an unusual and challenging feature: While infinites-
imal deformations 𝐷(𝑀⃗) along a spatial vector field 𝑀⃗ tangential to a 
spacelike hypersurface have a simple commutator

[𝐷(𝑀⃗1),𝐷(𝑀⃗2)] =𝐷(
𝑀⃗1
𝑀⃗2) (1)

given by a directional or Lie derivative 
𝑀⃗1
𝑀⃗2, the commutator of two 

deformations 𝐻(𝑁) normal to the hypersurface by a displacement func-
tion 𝑁 ,

[𝐻(𝑁1),𝐻(𝑁2)] =𝐷(𝑁1∇⃗𝑁2 −𝑁2∇⃗𝑁1)) , (2)

depends, through the gradient ∇𝑎𝑁 = 𝑞𝑎𝑏𝜕𝑏𝑁 , on the metric 𝑞𝑎𝑏 induced 
on the hypersurface, with inverse 𝑞𝑎𝑏. Since the hypersurfaces may be 
curved with varying spatial geometries, the commutator depends on the 
hypersurface to which it is applied. The generators 𝐷(𝑀⃗) and 𝐻(𝑁) of 
gauge transformations are constrained to vanish on physical solutions of 
the theory. The presence of structure functions then complicates quanti-
zations of these equations because it requires specific factor orderings of 
non-commuting metric and constraint operators. In the context of clas-
sical modified gravity, however, the presence of a structure function is 
powerful because it gives us a direct link from algebraic properties of 
gauge transformations to geometrical structures of space or space-time.

We analyze the specific form of the constraints for spherically sym-
metric line elements of the general form

d𝑠2 = −𝑁2d𝑡2 +
(𝐸𝜑)2

𝐸𝑥
(d𝑥+𝑁𝑥d𝑡)2 +𝐸𝑥(d𝜗2 + sin2 𝜗d𝜑2) (3)

in which all functions depend only on 𝑥 and 𝑡. The functions 𝑁 and 
𝑁𝑥 parameterize foliations of space-time into spacelike hypersurfaces, 
on which the induced metric is described by two functions, 𝐸𝜑 and 𝐸𝑥. 
These two functions, in a canonical formulation, are the momenta of 
components of extrinsic curvature, 𝐾𝜑 and 𝐾𝑥 [15]. In canonical form, 
candidates for theories of gravity are given by phase-space functions 𝐷
and 𝐻 with Poisson brackets of the form (1) and (2), replacing the ac-
tion functional. In general, the classical 𝑞𝑎𝑏 in ∇𝑎𝑁 , or 𝑞𝑥𝑥 in spherical 
symmetry, is then some phase-space function 𝑞𝑥𝑥(𝐸𝑥, 𝐸𝜑, 𝐾𝑥, 𝐾𝜑) that is 
not required to have a simple relationship with the fundamental canon-
ical fields. A candidate theory defined like this is generally covariant if 
the structure function 𝑞𝑥𝑥 is subject to gauge transformations consistent 
with coordinate changes of an inverse spatial metric. It can then be used 
to define a compatible emergent space-time line element, supplying a 
geometrical interpretation to solutions of the theory.

The covariance conditions can be evaluated in a canonical version of 
effective field theory, in which one starts with a general expression for 
the integrand of 𝐻(𝑁) = ∫ d𝑥𝑁𝐻 as a local function of the canonical 
fields up to some order in spatial derivatives and a certain polynomial 
order in 𝐾𝑥, which has a non-zero density weight. The coefficients of 
spatial derivatives of 𝐸𝑥 and 𝐸𝜑 and of the 𝐾𝑥-terms are initially free 
functions of 𝐸𝑥 and 𝐾𝜑 (which both have zero density weight), but their 
form is strongly restricted by two conditions, that (i) the Poisson bracket 
{𝐻(𝑁1), 𝐻(𝑁2)} be of the form (2) with (ii) a structure function 𝑞𝑥𝑥 that 
has gauge transformations consistent with coordinate transformations 
of an inverse spatial metric.

As shown in [7], completing earlier versions in [16,17], the most 
general such expression for a generator 𝐻 of normal deformations takes 
the form

𝐻 = −𝜆0

√
𝐸𝑥

2
𝐸𝜑

[
𝑐𝑓0 +

𝛼0

𝐸𝑥
+ 2

sin2
(
𝜆̄𝐾𝜑

)

𝜆̄2

𝜕𝑐𝑓

𝜕𝐸𝑥
+ 4

sin
(
2𝜆̄𝐾𝜑

)

2𝜆̄

𝜕𝑞

𝜕𝐸𝑥

+
𝛼2

𝜆̄2𝐸𝑥
𝑐𝑓 −

(𝐸𝜑)2

𝜆2
0
𝜆̄2𝐸𝑥

(
𝛼2
𝐸𝑥
𝑞𝑥𝑥 + 2

𝐾𝑥

𝐸𝜑
𝜕𝑞𝑥𝑥

𝜕𝐾𝜑

)

−

(
(𝐸𝑥)′

(
(𝐸𝜑)−2

)′

2
+

(𝐸𝑥)′′

(𝐸𝜑)2

)
cos2

(
𝜆̄𝐾𝜑

)
]

(4)

when it is expanded up to second order in spatial derivatives (using 
units such that the speed of light and Newton’s constant equal one), 
where

𝑞𝑥𝑥 =

((
𝑐𝑓 +

(
𝜆̄(𝐸𝑥)′

2𝐸𝜑

)2
)
cos2

(
𝜆̄𝐾𝜑

)
− 2𝑞𝜆̄2

sin
(
2𝜆̄𝐾𝜑

)

2𝜆̄

)
𝜆2
0

𝐸𝑥

(𝐸𝜑)2
(5)

is the structure function replacing 𝑞𝑥𝑥 = 𝐸𝑥∕(𝐸𝜑)2 in the classical 
bracket (2). Here, 𝜆̄ is a free constant, and 𝜆0, 𝑐𝑓 , 𝑐𝑓0, 𝛼0, 𝛼2 and 𝑞
are free functions of 𝐸𝑥 not determined by the covariance condition 
alone. The free parameters take simple values zero or one in classical 
general relativity, which demonstrates the existence of a number of new 
modified gravity theories. (More precisely, we obtain the classical limit 
for 𝜆0, 𝑐𝑓 , 𝛼1, 𝛼2 → 1, 𝜆̄→ 0, and 𝑐𝑓0 → −Λ if there is a cosmological con-
stant.) Among the free functions, only 𝑐𝑓 , 𝜆0 and 𝑞 (for 𝜆̄ ≠ 0) appear in 
the emergent spatial metric and are therefore characteristic of emergent 
modified gravity, while 𝑐𝑓0, 𝛼0 and 𝛼2 parameterize freedom present in 
the classical spherically symmetric theory, akin to the free potential of 
dilaton gravity. The phase space is not enlarged, and therefore there 
are no additional fields such as those implied by higher time deriva-
tives in a canonical formulation, or additional scalar, vector or tensor 
fields added to general relativity by hand.

The rather involved relationship (5) is unambiguously determined 
by the Poisson bracket of two modified Hamiltonian constraints of the 
form (2). The fact that 𝑞𝑥𝑥 is not a simple combination of the basic 
phase-space functions demonstrates that these theories are not easily 
related to action principles formulated for a fundamental space-time 
metric, as done in standard modified gravity. Nevertheless, dynamical 
and gauge properties, and therefore physical predictions, are uniquely 
determined by Hamilton’s equations generated by the constraints.

Given the canonical structure and the covariance condition, it is 
possible to evaluate the space-time dynamics implied by 𝐻 and the cor-
responding emergent line element with inverse spatial metric (5). The 
freedom of choosing a suitable space-time slicing allows us to impose 
additional conditions in order to simplify the calculations or to focus at-
tention on specific space-times such as static ones close to the standard 
Schwarzschild solution. For the latter, we choose 𝐸𝑥 = 𝑥2 and 𝑁𝑥 = 0. 
(According to (3), the radial coordinate 𝑥 then determines the area of 
symmetric spheres by the usual equation 𝐴 = 4𝜋𝑥2.)

The second choice, 𝑁𝑥 = 0, implies that the equations of mo-
tion are given by Hamilton’s equations of 𝑁𝐻 (rather than the full 
𝐻(𝑁) +𝐷(𝑁𝑥)), where 𝑁 is the same space-time function that appears 
in (3). The first choice, 𝐸𝑥 = 𝑥2, implies a consistency condition because 
𝐸𝑥 is then time-independent and the corresponding Hamilton equa-
tion must be zero. Given the general Hamiltonian, this condition reads 
𝐸̇𝑥 = −𝑁𝜕𝐻∕𝜕𝐾𝑥 = 0, or tan

(
2𝜆̄𝐾𝜑

)
= −2𝜆̄𝑞∕(𝑐𝑓 + 𝜆̄

2𝑥2∕(𝐸𝜑)2). A simple 
solution of 𝐾𝜑 = 0 is obtained if we choose a modified dynamics with 
the classical value 𝑞 = 0. The other curvature 𝐾𝑥 = 0, then also vanishes 
as a consequence of 𝐷 = 0. The constraint 𝐻 = 0 implies

0 = (ln(𝐸𝜑)2)′ +
(𝐸𝜑)2

𝑥

(
𝑐𝑓0 +

𝛼0

𝑥2

)
−
𝛼2 + 2

𝑥
, (6)

which for specific choices of 𝑐𝑓0 and 𝛼2 can be solved for 𝐸𝜑. The 
remaining Hamilton equations are consistent with a static solution, 
𝐸̇𝜑 = 0, and a final condition,

(ln(𝑁𝐸𝜑))′ =
𝛼2
𝑥

− (ln𝜆0)
′ , (7)

is implied by 𝐾̇𝜑 = 0 because 𝐾𝜑 = 0. The condition 𝐾̇𝑥 = 0 does not 
result in an independent equation.

Equation (6) may be solved by making an ansatz 𝐸𝜑(𝑥) = 𝑥∕√
1 − 𝑓𝜑(𝑥) with a function 𝑓𝜑 subject to the equation

0 = 𝑥𝑓 ′
𝜑 + 𝛼2𝑓𝜑 + 𝛼0 − 𝛼2 + 𝑐𝑓0𝑥

2 . (8)
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If the free functions are such that the classical limit with a vanishing 
cosmological constant is obtained for large 𝑥, the solution to this equa-
tion is asymptotically of the form 𝑓𝜑(𝑥) ∼ 2𝑀∕𝑥 with a constant 𝑀 that 
is interpreted as the central mass, such as a black hole, that gives rise 
to our curved space-time. The solution of (7) for 𝑁 then takes the form

𝑁(𝑥) =

√
1 − 𝑓𝜑(𝑥)

𝜇(𝑥)𝜆0(𝑥)
, (9)

provided

(ln𝜇)′ =
1 − 𝛼2(𝑥)

𝑥
. (10)

These solutions simplify (5) and imply an emergent space-time line 
element

d𝑠2 = −

(
1 − 𝑓𝜑(𝑥)

)

𝜇(𝑥)2𝜆0(𝑥)
2
d𝑡2 +

d𝑥2

𝜆0(𝑥)
2
(
𝑐𝑓 (𝑥) + 𝜆̄

2
(
1 − 𝑓𝜑(𝑥)

))(
1 − 𝑓𝜑(𝑥)

)

+ 𝑥2dΩ2

(11)

which is clearly different from the general form of the Schwarzschild 
line element, implying new effects. A characteristic feature of (11) is 
that 𝑔𝑥𝑥 ≠ −𝑔−1𝑡𝑡 in general. Several new phenomena can be expected 
from this inequality, for instance in the behavior of horizons, but most 
of them depend on details of the specific modification functions 𝑐𝑓
and 𝜆0 and the corresponding solutions 𝑓𝜑 and 𝜇. We will focus in-
stead on a more generic phenomenon that may show implications even 
in non-relativistic regimes. To this end, we will first derive an effec-
tive gravitational potential for geodesic motion of massive objects in a 
space-time with line element (11).

3. Gravitational potential

A standard procedure derives geodesic motion using spherical and 
time translation symmetry of our space-time, together with the mass 
condition ||𝐩||2 = 𝑔𝜇𝜈𝑝𝜇𝑝𝜈 = −𝑚2 for the 4-momentum 𝐩 = 𝑚d𝐱∕d𝜏 of an 
object of mass 𝑚, using proper time 𝜏 . Killing vectors for the symme-
tries provide the conserved energy 𝐸 = (1 −𝑓𝜑)𝜇−2𝜆−20 d𝑡∕d𝜏 and angular 
momentum 𝐿 = 𝑥2d𝜑∕d𝜏 , and the mass condition takes the form

0 =
1

2
𝑚
(
d𝑥

d𝜏

)2

+
𝑞𝑥𝑥

2

(
𝑚+

𝐿2

𝑚𝑥2
−

𝐸2

𝑚𝑁2

)
(12)

of a Newtonian-style energy balance, where 𝑞𝑥𝑥 is the inverse spatial 
metric and −𝑁2 the time component in (11). Geodesic motion of mas-
sive objects can therefore be expressed by the effective potential

𝑉 (𝑥) =
𝜆2
0

2

(
𝑐𝑓 + 𝜆̄2

(
1 − 𝑓𝜑

))
(
(
1 − 𝑓𝜑

)(
𝑚+

𝐿2

𝑚𝑥2

)
−
𝜇2𝜆2

0
𝐸2

𝑚

)
. (13)

In the classical case, in which the 𝑥-dependent functions 𝜇, 𝑐𝑓 and 
𝜆0 equal one while 𝜆̄ = 0 and the solution to (8) is 𝑓𝜑(𝑥) = 2𝑀∕𝑥 +Λ𝑥2, 
(13) contains Newton’s gravitational potential, the centrifugal potential, 
and a long-distance correction from Λ. Depending on the modification 
functions, the potential may deviate from the two classical power laws 
of 𝑥−1 and 𝑥2. In a region with small and constant deviations from the 
classical values for the remaining parameters, 𝛼2 ≈ 1, 𝛼0 ≈ 1, 𝑐𝑓0 ≈ −Λ, 
and some 𝜆0, the solution of (8) stays close to its classical form,

𝑓𝜑(𝑥) ≈
2𝑀

𝑥𝛼2
+
𝛼2 − 𝛼0

𝛼2
𝑥𝛼2 +

Λ

3

1

𝛼2 + 2
𝑥2+𝛼2 , (14)

and 𝜇 depends only weakly on 𝑥 as a consequence of (10). The Newto-
nian power law may therefore change, but not significantly enough for 
MOND-like effects that would require a logarithmic contribution to 𝑓𝜑
in order to result in a 1∕𝑥 force law on intermediate scales.

Logarithmic MOND effects can, however, appear in the gravitational 
potential via more dramatic modifications in at least two ways. The first 
is by choosing 𝛼0 = 𝛼2 = 1 and 𝑐𝑓0 = −Λ +(𝑐1∕𝐸

𝑥) ln
(
𝑒2𝐸𝑥∕𝑐2

)
, with con-

stants 𝑐1 and 𝑐2 with vanishing 𝑐1 in the classical limit, such that (8) is 
solved by 𝑓𝜑 = 2𝑀∕𝑥 + Λ𝑥2∕3 − 𝑐1 ln

(
𝑥2∕𝑐2

)
despite having 𝑐𝑓0 ≈ −Λ

at large scales. The second, simpler way that we will mainly focus 
on is by simply adding a logarithmic contribution to the function 𝑐𝑓 , 
which directly appears in the gravitational potential. Our new theories 
of emergent modified gravity allow logarithmic terms in these functions 
while preserving general covariance. More importantly, as we will now 
show, there are several reasons for quantum-gravity effects to imply 
logarithmic contributions to 𝑐𝑓 , which appears directly in the gravi-
tational Hamiltonian and the structure function. Such terms would be 
relevant on intermediate scales, between the Newtonian one dominated 
by 2𝑀∕𝑥 and the cosmological one dominated by Λ𝑥2∕3. This is the 
extra-solar or galactic range of MOND.

A well-known source of logarithmic terms in quantum field theories 
is given by renormalization. In the present case of a canonical theory, 
this process requires Hamiltonian renormalization in a background-
independent manner, which is still being developed; see for instance 
[18] or the moment derivation of the Coleman–Weinberg potential in 
[19], to which renormalization can be applied as in [20]. Treating grav-
itational models in this way remains a challenge, but there are indepen-
dent results from [21] that explicitly show a non-classical logarithmic 
term in the Hamiltonian constraint of a quasiclassical spherically sym-
metric model, resulting from a solution for quantum fluctuations of the 
metric components. Importantly, these canonically derived logarithms 
need not be Lorentz invariants, as in standard renormalization theory. 
They cannot be implemented in standard higher-curvature actions but 
may find a new home in emergent modified gravity.

We are also able to present an independent calculation that leads to 
logarithmic terms in 𝑐𝑓 , based on our new methods for the gravitational 
constraints and the covariance condition [7]. As suggested in [22], 
canonical quantization of a constrained system simplifies if one can 
eliminate the structure function, given by 𝑞𝑥𝑥 in spherically symmetric 
models. This may be possible by considering suitable linear combina-
tions of the constraints with phase-space dependent coefficients. The 
construction given in [22] can be generalized significantly, while also 
making sure that the resulting theories remain local and generally co-
variant. An example of such a solution obtained from a covariant linear 
combination of the constraints without structure functions, assuming 
the classical values 𝛼0 = 1 and 𝑐𝑓0 = −Λ, is given by

𝑐𝑓 (𝐸
𝑥) = 1 +

𝜆̄2

2

(
Λ𝐸𝑥 − ln(𝐸𝑥∕𝑐0)

)
(15)

where 𝑐0 is a positive integration constant unrelated to the other modi-
fication functions.

Since this modification is more significant on intermediate scales 
than the constant 𝛼-dependence in the function (14), we can approx-
imate 𝑓𝜑(𝑥) by its classical form. Up to a slowly-changing factor of 
𝜇−1𝜆−1

0
, the lapse function (9) then also has its classical form. Neverthe-

less, the geometry is non-classical because 𝑐𝑓 appears in the emergent 
line element (11), now given by

d𝑠2 = −
(
1 −

2𝑀

𝑥
−

Λ

3
𝑥2
)

d𝑡2

𝜇2𝜆2
0

+

(
1 + 𝜆̄2

(
1 −

2𝑀

𝑥
− ln

(
𝑥

√
𝑐0

)
+

Λ

6
𝑥2

))−1
𝜆−2
0
d𝑥2

1 − 2𝑀∕𝑥−Λ𝑥2∕3

+𝑥2(d𝜗2 + sin2 𝜗d𝜑2) . (16)

Independently of the origin of (15), our results show that there is a 
modified gravity theory in canonical form which has this emergent line 
element as a solution.

At distances large enough to neglect the Newtonian potential, but 
not so large that the cosmological term is relevant, we have an effec-
tive potential dominated by the logarithmic term. For non-relativistic 
objects with 𝐸 ≈𝑚, we have

𝑉 ≈
𝑚𝜆2

0

2

(
1 + 𝜆̄2

(
1 − ln

(
𝑥

√
𝑐0

)))(
𝐿2

𝑚2𝑥2
+ 1 − 𝜇2𝜆2

0

)
. (17)
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The combination of a negative logarithmic and a quadratic potential 
implies new stable circular orbits at a radius 𝑥0, which we may use 
for an estimate of the relevant distance and velocity scales. At a local 
minimum of the potential, the angular momentum is given by

𝐿2

𝑚2
=
𝜆̄2

2

(
𝜇2𝜆2

0
− 1

)(
1 −

𝜆̄2

2

(
ln

(
𝑥2

𝑐0𝑒
2

)
− 3

))−1

𝑥2 . (18)

In this condition, a stable circular orbit is then seen to exist only if 
𝜇2𝜆2

0
> 1, such that, to leading order in the 𝜆̄ expansion, it has the 

radius 𝑥0 = 𝐿(𝜆̄𝑚)−1
√

2∕𝜇2𝜆2
0
− 1 and velocity 𝑣2

0
=

1

2
𝜆̄2(𝜇2𝜆2

0
− 1). The 

Tully-Fisher relation [23] 𝑣4
0
≈ 𝑎0𝑀 , where 𝑎0 ≈

√
Λ∕3∕(2𝜋) is Mil-

grom’s universal acceleration [24], requires a mass-dependent 𝜇2𝜆2
0
−

1 = 2
√
𝑎0𝑀∕𝜆̄2. In our derivation, 𝜇 is part of the lapse function which 

usually depends on the mass in static solutions, and 𝜆0 is expected to 
depend on 𝑀 if its deviation from the classical value is implied by 
renormalization effects in quantum gravity. Notice also that 𝜆0 multi-
plies the gravitational Hamiltonian, just like Newton’s constant does if 
gravity is coupled to matter, and may therefore be renormalized. The 
expression (18) implies that further MOND effects may be seen at even 
larger scales. However, because 𝜆̄ is expected to be small, such scales 
may be cosmological and Λ effects would have to be taken into account 
too.

Since our theories of emergent modified gravity are fully relativis-
tic and generally covariant, it is straightforward to derive additional 
physical effects such as modifications of the bending of light, which 
may be used to subject the modification functions to further observa-
tional bounds. For instance, the deflection angle of light moving around 
a central mass now takes the form

Δ𝜙 ≈
𝜋

𝜆0

(
1 −

√
𝑎0𝑀

2
+
𝜆̄2

2
ln

(
2𝑏

√
𝑐0𝑒

))
(19)

to leading order in 𝑎0 and 𝜆̄, with the impact parameter 𝑏 of the light 
ray. Unlike the usually expected deflection angle in the MOND literature 
which is independent of the impact parameter, there is a logarithmic de-
pendence in this relativistic extension and this could lead to a negative 
deflection angle repelling the light. In a semiclassical regime, however, 
we expect 

√
𝑎0𝑀 < 𝜆̄2, so the overall correction to the deflection angle 

is positive for large enough impact parameters.
We briefly discuss the alternative MOND-like modification from 

𝑐𝑓0 = −Λ + (𝑐1∕𝐸
𝑥) ln(𝑒2𝐸𝑥∕𝑐2). From a fundamental perspective, this 

option is less preferred because it requires two undetermined constants 
rather than only one. Moreover, because 𝑐𝑓0 does not appear in the 
emergent spatial metric, it can be obtained also by choosing a suitable 
dilaton potential. Phenomenologically, it also has more complicated 
and ambiguous results. Following a similar procedure as above it re-
sults in the angular momentum expression

𝐿2

𝑚2𝑥2
=

𝑐1
(
1 + 𝜆2 + 𝜆2

(
1 − 𝜇2𝜆2

0

)
+ 2𝑐1𝜆

2 ln(𝑥2∕𝑐2)
)

𝑐−
1
+ 𝜆2

(
2𝑐−

1
− 1

)
+ 𝑐1

(
1 + 2𝜆2𝑐−

1

)
ln(𝑥2∕𝑐2) + 𝑐

2
1
𝜆2 ln(𝑥2∕𝑐2)

2

(20)

substituting (18) and using the shortcut 𝑐−
1
= 1 − 𝑐1. The Tully-Fisher 

relation can be obtained in several ways. For example, the choice 
𝑐1 =

√
𝑎0𝑀 (which needs renormalization for 𝑐1) reproduces the Tully-

Fisher relation to zeroth order in 𝜆̄. Alternatively, the constant 𝜇 can 
be used in several different ways and the expansions are ambiguous; 
one such realization is 1 − 𝜇2𝜆2

0
=
√
𝑎0𝑀∕(𝑐1𝜆̄

2), which reproduces the 
Tully-Fisher relation to zeroth order in both 𝑐1 and 𝜆̄. The deflection 
angle of light is instead, to leading order in 𝑐1 and 𝜆̄, given by

Δ𝜙 ≈
𝜋

𝜆0

(
1 − 𝜆̄2

(
𝑐1 +

1

2

)
−
𝑐1
2

(
1 +

𝜆̄2

2

)
ln

(
4𝑏2

𝑐2𝑒
2𝜇2𝜆2

0

))
. (21)

If we take 𝑐1 =
√
𝑎0𝑀 then this result differs from (19) by a factor of 

approximately two when taking the limit 𝜆̄→ 0 with fixed 𝑎0. Further-

more, depending on the value of 𝑐2, at large enough impact parameter 
the light is only repelled.

These discrepancies can be used to distinguish between the two al-
ternatives using the data on deflection angles. It is also possible to 
couple various matter fields to gravity in our canonical formulation, 
and thereby investigate the stability of compact objects. Unlike previ-
ous proposals such as [12–14], our theory of emergent modified gravity 
makes it possible to formulate MOND-like effects in a generally covari-
ant form without introducing additional fields or higher time deriva-
tives. Stability is therefore easier to ensure, and since there is a single 
emergent line element that determines the propagation of all massless 
objects, gravitational waves and light travel at the same speed. The 
space-time properties of the horizon and the interior region are well-
behaved, and it is possible to obtain a global structure with singularity 
resolution for certain values of the constant 𝑐0. We therefore have a 
promising class of new observationally viable alternatives to general 
relativity.
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