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1 Introduction

Quantum effects such as tunneling may be relevant in the early universe at high temperature
and curvature. Early models [1] have recently been extended to oscillating versions [2, 3]
in which the evolving scale factor, classically trapped in a Ąnite region, may escape by
quantum tunneling and approach a singularity [4Ű6]. An application [7] of quasiclassical
methods revealed non-trivial features of the tunneling dynamics that is not captured by the
traditional derivation of tunneling coefficients from stationary states. In particular, some of
the dynamics was found to depend sensitively on the choice of initial values in the trapped
region, suggesting chaotic behavior. The purpose of the present paper is to conĄrm this
suspicion by a dedicated analysis.

The physical relevance of chaos in universe models can be seen by going beyond the
Ąrst approximation of an exactly homogeneous universe. At low curvature, observations
of large-scale structure indicate that approximate spatial homogeneity is a good late-time
assumption, but it is unlikely to hold in the early universe. At large density and curvature,
the gravitational dynamics is rather dominated by attraction to denser regions and their
subsequent collapse, suggesting a very inhomogeneous distribution out of which our universe
may have arisen by cosmic inĆation. The corresponding rapid expansion would then have
magniĄed and diluted a small region that eventually formed our visible universe. In the initial
distribution, however, this small region would have been only one tiny patch. Thanks to its
smallness, it may be assumed to be nearly homogeneous and approximately described by
simple (classical or quantized) Friedmann dynamics. But its properties were determined by
high-density features that are more involved than those tested at late times.

It has been known for some time that the classical dynamics of such a patch is chaotic [8Ű
11], provided it includes effects of anisotropy (while still being spatially homogeneous). Such
a dynamics is expected asymptotically close to a spacelike singularity according to the
Belinskii-Khalatnikov-Lifshitz (BKL) scenario [12]. Given the asymptotic nature of this
model, the effects of this kind of chaos are most pronounced in backward evolution closer and
closer to the big-bang singularity. They are therefore relevant for a conceptual analysis of
possible initial conditions at the very beginning of the universe, but their implications for
potential observations, seen for instance through the magnifying glass of inĆation, would be
rather indirect.

Once certain matter effects start being relevant, the anisotropic asymptotic geometry
may isotropize [13], a property that is also desirable for models of inĆation. In an intermediate
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phase between an asymptotically early BKL regime and the (still early) beginning of inĆation,
anisotropy may be ignored while quantum effects are strong. The results presented here show
that even the isotropic dynamics is chaotic if it is described quasiclassically by including
quantum Ćuctuation terms, applied in the speciĄc analysis to tunneling-type potentials as
in oscillating models. We will use the same model and quasiclassical extensions as derived
in [7], reviewed in the next section, and show proofs of chaos based on a numerical analysis
of the fractal domension in a space of initial values. In our conclusions we will demonstrate
which features of the speciĄc potential are likely to be responsible for chaos. Compared with
BKL-type chaos, the new chaotic features identiĄed here, closer to the onset of inĆation, may
have phenomenological implications which we leave for future analysis.

2 Quasiclassical model

The classical model and its potential, introduced in [3] follow from the Friedmann equation

ȧ2

a2
+

k

a2
=

8πG

3



Λ +
σ

a
+

p2
ϕ

2a6



(2.1)

with positive spatial curvature, k > 0, a negative cosmological constant Λ < 0, and two matter
contributions, one with energy density σ/a where σ > 0, and one from a free, massless scalar
Ąeld ϕ with momentum pϕ. Our results do not depend much on the speciĄc features of the
contributions from σ and pϕ, other than the trapped potential region they form together with
the curvature term. For the latter, we choose k = 1, but smaller values are also possible;
see [7, 14] for more details.

The quasiclassical methods we use are canonical. We therefore replace the time derivative
ȧ of the scale factor with the standard momentum

pa = −
3

4πG
aȧ (2.2)

in Friedmann cosmology; see for instance [15]. The Friedmann equation (2.1) can then be
written as

0 =
16

9
π2G2p2

a + a2Uharmonic(a) −
p̃2

a2
(2.3)

with a harmonic potential

Uharmonic(a) = ω2(a − γ/ω)2 + k − γ2 (2.4)

expressed in terms of the parameters

ω =

√

−
8πGΛ

3
and γ =

√

−
2πGσ2

3Λ
. (2.5)

The scalar contribution is not harmonic, and only slightly rewritten by introducing

p̃ =

√

4πG

3
pϕ . (2.6)

Finally, we perform a canonical transformation from (a, pa) to (α, pα) where

α = ln(ωγa) (2.7)
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Figure 1. The potential (2.10) for several values of γ, with Ąxed β = 0.1 and p = 1 as well as k = 1.

and

pα = apa = −
3

4πG
a2ȧ . (2.8)

In these variables, the Friedmann equation is equivalent to

0 = p2
α + Up(α) (2.9)

with the potential

Up(α) =
e4α

β2



k − 2eα +
e2α

γ2



− p2 (2.10)

and

β =
4πG

3
ω2γ2 =



4πG

3

3

σ2 , p =
3

4πG
p̃ =

√

3

4πG
pϕ . (2.11)

As shown in Ągure 1, the contribution from the scalar Ąeld can now be seen as opening
up a classically allowed region around α → −∞, making it possible for the universe to tunnel
from the trapped region, formed by the other contributions, to a big-bang singularity. On
the other side of the α-axis, expansion to inĄnite size is prevented by the steep positive
potential contribution proportional to e6α, which is implied by the negative cosmological
constant. The density contribution σ/a provides a negative contribution to the potential
Up(α) that forms a trapped region at intermediate values of α, separated from the asymptotic
free region around α → −∞ by a positive barrier implied by the curvature term. For the
intermediate negative contribution to form a trapped region, it must be dominant between
the two regions implied by the contributions from spatial curvature and the cosmological
constant, respectively. In the original Friedmann equation, the corresponding energy density
must therefore follow a behavior between the power laws a−2 of the curvature term and a0 of
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the cosmological constant. This requirement explains the non-standard a-dependence of the
energy density σ/a.

The quasiclassical dynamics of a given classical system in canonical form is obtained
by viewing variables such as α and pα as expectation values of the corresponding operators,
taken in an evolving quantum state. Any non-harmonic potential then implies that these
variables couple to Ćuctuations, correlations, and higher moments, implying dynamics in a
higher-dimensional conĄguration space. Coupling terms can be derived by equipping moments
with a Poisson bracket and inserting them in the expectation value of the Hamilton operator
of the system, taken in the same state in which the moments are computed [16, 17]. In
general, the usual central moments do not immediately appear in canonically conjugate form,
but suitable canonical pairs exist locally thanks to the Darboux theorem. Such canonical
variables have been derived for moments up to fourth order [18, 19].

For second-order moments, as a Ąrst approximation, canonical moment variables for
a single pair of degrees of freedom, such as (α, pα) here, have been known for some time,
discovered independently in a variety of Ąelds [20Ű25]: There is an independent canonical pair
(s, ps) that describes second-order moments according to

∆(α2) = s2 (2.12)

∆(αpα) = sps (2.13)

∆(p2
α) = p2

s +
U

s2
, (2.14)

where U is a constant bounded from below by U ≥ ℏ
2/4 by the uncertainty relation. We are

using a general notation for moments

∆(AaBb) =
〈

(Â − ⟨Â⟩)a(B̂ − ⟨B̂⟩)b
〉

symm
(2.15)

in completely symmetric (or Weyl) ordering. According to this notation, the two variances for
a single canonical pair are (∆α)2 = ∆(α2) and (∆pα)2 = ∆(p2

α) and the covariance is ∆(αpα).
If the classical Hamiltonian is H(α, pα), the new canonical variables for second-order

moments can be introduced in an effective Hamiltonian by performing a Taylor expansion of
H(α + δα, pα + δpα) around a generic pair (α, pα) and replacing terms quadratic in δα and
δpα with the moments (2.12)Ű(2.14). The effective energy expression, derived from (2.9) in
the cosmological model, then reads

0 = p2
α + p2

s +
U

s2
+ Up(α) +

1

2
U ′′

p (α)s2 (2.16)

where Up(α) is given in (2.10). (The classical equation (2.9) is a Hamiltonian constraint, which
in a quantization is turned into a constraint operator that annihilates physical states. This
condition restricts not only expectation values of basic operators by an equation approximated
by (2.16) semiclassically, but also Ćuctuations and higher moments of the state [26Ű28]. Since
the constraint does not depend on ϕ but only on its momentum, we can assume that moment
constraints are solved by using restricted values for ϕ-moments. The latter do not appear in
the effective constraint and we do not need speciĄc solutions for them.)

While the momentum dependence of (2.9) is quadratic and does not imply higher-order
terms in the Taylor expansion, the potential is not harmonic. We therefore ignore certain
quantum corrections in a truncation to second order in s, given by (2.16). Tunneling, a
process during which a wave packet splits up into at least two smaller packets, is likely to
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Figure 2. Contour plot of the quasiclassical potential in (2.17). Negative values of the potential are
shown in shades of gray, while positive values are in blue. The black region crossing the Ągure in a
diagonal way is the deep channel that extends the trapped region into the s-dimension. The thinner
light-gray strip that bounds the channel on its left Ćank is an elevation in the region of negative
potential implied by the classical barrier. For a complete description of tunneling, trajectories in the
quasiclassical model must cross the elevation once in the past and in the future of being trapped.

depend on moments of order higher than two. We should therefore amend (2.16) by suitable
higher-order terms, while keeping the system sufficiently simple for an initial analysis. In
particular, higher-order moments, in a canonical formulation, describe degrees of freedom
independent of both (α, pα) and (s, ps), and therefore lead to conĄguration spaces of large
dimensions if they are included in complete form.

As an approximation, it is possible to include some higher-moment effects without higher
dimensions by making an ansatz for the possible behavior of moments on the quantum degree
of freedom (s, ps) already introduced for second order. Dimensional arguments suggest the
power-law form ∆(αn) ∝ sn for an α-moment of order n. If this form were realized exactly
with coefficient one, the Taylor expansion of the effective potential could be summed up
analytically:

0 = p2
α+p2

s +
U

s2
+Up(α)+

∞
∑

n=2

U
(n)
p

n!
∆(αn) = p2

α+p2
s +

U

s2
+

1

2
(Up(α + s) + Up(α − s)) . (2.17)

As in [7], following [29, 30], we bring the fourth-order term closer to Gaussian form, where
∆(α4) = 3s4 rather than s4, by adding the Ąnal term in

0 = p2
α + p2

s +
U

s2
+

1

2
(Up(α + s) + Up(α − s)) +

1

12
U

′′′′

p (α)s4 . (2.18)
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Figure 3. Contour plot of the modiĄed quasiclassical potential (2.18) with new features in the small-s
part of the channel. While keeping a door open to exit the channel at small s, the channel itself
narrows such that it is less likely for quasiclassical trajectories to follow it to large s. At the same
time, the new features introduce additional convex or defocusing contributions to the channel walls at
small s, which are expected to enhance chaos.

Our analysis of chaos will use mainly the small-s dynamics in the trapped region before much
tunneling happens, in which case the quasiclassical approximation is expected to be reliable.

3 Tunneling and chaos

Tunneling is quasiclassically described by motion in the (α, s)-plane, relying on several
characteristic features of the effective potential in (2.18); see Ągures 2 and 3. By the addition
and subtraction of s in the terms resulting from (2.17), the classically trapped region is
extended to a diagonal channel in the s-direction. The channel is bounded by a Ąnite wall to
the left and a steep increasing wall to the right. Since the wall on the left has a height lower
than the classical barrier for sufficiently large s, tunneling is possible when a quasiclassical
trajectory crosses over the wall into the unbounded region to the left, where it will then
continue almost freely except for one possible reĆection at the U/s2 potential.

A detailed analysis of trajectories, given in [7], showed that the potential (2.17) does not
reliably describe tunneling because the uniform nature of the channel, seen in Ągure 2, makes
it much more likely for trajectories to follow the channel, rather than crossing the wall to
the left. The fourth-order modiĄcation in (2.18), motivated by a more Gaussian behavior of
states, was found to improve the tunneling description by quasiclassical trajectories. With
this modiĄcation, the channel acquires new features at small s, shown in Ągure 3, that can
help to turn trajectories toward the channel wall. Figure 4 shows an example of a trajectory
in the potential (2.18) with tunnel exits to the past and the future, indicated by differently
colored branches in the Ągure. Each of the two parts of the trajectory outside of the channel
clearly shows a reĆection at the U/s2-potential, and nearly-linear behavior away from the
relfection points. The trajectory within the channel has a region where it is able to cross over
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Figure 4. Example of a trajectory that tunnels in the past and in the future. The number in the top
line indicates the initial potential, while initial phase-space values are given in the second line in the
form [α, pα, s, ps]. The nearly straight dark green, blue and red lines show features of the potential
walls delineating the channel, as derived in [7].

the red line on the right which marks the rightmost wall of the original potential (2.17). As
seen in Ągure 3, the modiĄcation in the potential (2.18) dents the channel wall, allowing the
trajectory to move further to the right.

However, since the quasiclassical model does not capture all features of tunneling, there
are also trajectories that never cross over the wall even if their energy would be sufficient for
full quantum mechanical tunneling; see Ągure 5. Such trajectories are stuck in the channel
and keep bouncing between the two walls, moving to ever larger s. Here, the quasiclassical
approximation will eventually break down.

Trajectories stuck in the channel therefore do not describe correct features of tunneling,
but their presence allows us to draw an important distinction between two types of trajectories:
Those that tunnel correctly by moving over the wall on the left, and those that get stuck in
the channel. The latter can be split into subcases of trajectories getting stuck only to one side
in time (future or past; see Ągure 6) or to both sides as in Ągure 5. Physically, any trajectory
that gets stuck corresponds to a wave function for which higher moments are relevant, while
trajectories that do not get stuck have a tunneling process well described by lower moments.

There were two indications for chaos in this dynamics found in [7]: A sensitive dependence
of long-term outcomes of trajectories on their initial values in the classically trapped region;
and the shape of the conĄning walls around the classically trapped region, extended to the
(α, s)-plane. Since the latter have convex or defocussing contributions, especially with the
fourth-order modiĄcation as seen in Ągure 3, mathematical arguments from dynamical billiard
systems may be used to infer the possibility of chaotic features [31], as done also in other
cosmological models [11]. However, the walls are not completely convex. A dedicated analysis
is therefore required to determine properties of chaos [32]. We do so now by numerical
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Figure 5. Example of a trajectory that never tunnels. The number in the top line indicates the initial
potential, while initial phase-space values are given in the second line in the form [α, pα, s, ps].

Figure 6. Example of a trajectory that tunnels only once in the past or future. The number in the
top line indicates the initial potential, while initial phase-space values are given in the second line in
the form [α, pα, s, ps].
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Figure 7. An initial 20×20 lattice of outcomes, depending on the initial values of q = α and s. Within
this lattice, initial points are marked with colors depending on the long-term outcome of trajectories
starting there, all with the same initial momenta pα = 0.075 and ps = 0. The red points indicate
initial conditions that never tunnel (as in Ągure 5), blue points indicate initial conditions that tunnel
once (in the future or past, as in Ągure 6), and green points indicate initial conditions that tunnel in
and out (as in Ągure 4). The black region is outside the channel walls and does not lead to tunneling.

computations of the fractal dimension of sets of initial values in the bottom part of the
channel that give rise to the same long-term outcome of tunneling trajectories. The sensitivity
to the choice of initial values is illustrated by Ągures 7 and 8.

The procedure for calculating the fractal dimension of the model and demonstrating
chaos involved generating a 50 × 50 lattice of distinct tunneling results, illustrated in Ągure 8.
(The lattice size is limited by computational time since each lattice point requires a long-term
numerical evolution with sufficient accuracy to resolve many oscillations and sharp turns as
seen in Ągures 4Ű6.) Based on the numerically evolved trajectories, which were obtained using
standard built-in methods in Python, the lattice points in the sample region were classiĄed as
fully trapped, partially trapped, or untrapped. These outcomes therefore deĄne subregions
on the lattice with boundaries whose fractal dimension may present an indicator of chaos.

The lattice was analyzed by using the basin method [33] which looks for fractal dimensions
in boundaries of different subregions, deĄned here by the different outcomes of our trajectories.
Here, the subregions are deĄned on the lattice. Intuitively, if we look at small regions around
each lattice point, there will be few variations in the outcomes if subregions have non-fractal
boundaries, and larger variations if the boundaries have fractal dimensions. The numerical
evaluation therefore begins with a Ąxed small value δ that deĄnes the radius of a small circle
around each lattice point (or, more generally, some size measure of a different shape). For
each lattice point, the number of points within a distance of δ with outcomes different from
the central point is then counted. The fraction of points with different outcomes relative to
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Figure 8. A Ąner sublattice of Ągure 7 with 50 × 50 lattice points, revealing new structures of
independent outcomes, using the same color code. The region used here is completely contained in
the channel.

the number of all lattice points within the small δ-region is the basic quantity computed by
the method. Averaged over all lattice points as centers of δ-regions, it deĄnes the value f(δ),
Ąrst for a given δ. The procedure is then repeated for other values, yielding several points on
the graph of a function f(δ).

For non-fractal boundaries of codimension C, the function f(δ) is expected to be a power
law f(δ) ∝ δC because increasing δ makes it more likely to include a new boundary in a circle
of radius δ if the circle extends further in directions transversal to the nearest boundary. In
our case, the codimension is one, and therefore f(δ) ∝ δ for non-fractal boundaries. Since
C = D − D0 where D is the dimension of the space and D0 the dimension of the boundary,
we have

f(δ) ∝ δD−D0 . (3.1)

This expression can directly be generalized to fractal boundaries where D0 is not an integer,
such that we have

f(δ) ∼ δϵ (3.2)

with the so-called uncertainty exponent ϵ. In general, ϵ may depend on δ, but a power-law
form may be used as a Ąrst approximation. Numerically, ϵ can be determined from a Ąt of
the values f(δ), which then deĄnes the fractal dimension

D0 = D − ϵ (3.3)

of the boundaries.
The range of ϵ for chaotic systems is given by 0 ≤ ϵ < 1. Lower values of ϵ indicate

that the boundaries are denser in the lattice, making it more likely for small changes of the
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Our model is closer to discussions of chaos in Bohmian quantum mechanics, such
as [35Ű37], in which the quantum potential plays the role of our quasiclassical potential.
Compared with Bohmian quantum mechanics, our analysis is held completely at a phase-space
level as in classical mechanics. Quantum effects are described by moments in a canonical
parameterization, implying new conĄguration variables and momenta. The full wave function
is approximated and ultimately replaced by the moments and does not play an intermediary
role, for instance as the wave function of Bohmian quantum mechanics used to compute
the quantum potential. Standard quantitative methods to analyze chaos can therefore be
applied directly.

A qualitative argument, using the convex nature of some portions of the potential
walls bounding the quasiclassical trapped region, demonstrate a relationship between chaos
and detailed properties of the quantum state. In particular, our quantitative results about
chaos refer to a quasiclassical potential with fourth-order moments of Gaussian form, which
compared with other choices of moments leads to more convex walls as seen in Ągure 3. Our
results therefore suggest that details of quantum states and properties of their quantum
information may have direct implications on important features of the early-universe dynamics.
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A Description of the numerical code

Our code that computes the fractal dimension consists of different parts, some of which use
standard methods. These parts include numerical evolution to Ąnd trajectories and their
long-term outcomes starting with various initial values on a lattice, and organizing these
outcomes in a suitable data structure. Once the outcomes are assembled in an array that
reproduces our lattice, the following calculations are performed in separate procedures:

Computation of an uncertainty ratio for a given δ at fixed lattice point. For the
sake of simplicity, we used diamond-shaped regions instead of circles. Two for-loops
over integer ranges from −δ to δ Ąrst deĄne a square region, which is then restricted to
a diamond by imposing the condition ♣∆x♣ + ♣∆y♣ ≤ δ on the displacements ∆x and ∆y.
For each non-zero ♣∆x♣ + ♣∆y♣, a counter is increased if the outcome at the displaced
point is different from the outcome of the central point. The result of this computation
is the ratio of the counter divided by the number of points in the region.

Computation of f(δ) for a given δ. The uncertainty ratios obtained in the previous step
are averaged over the entire lattice, resulting in the value of f(δ) for a given δ. This
computation is performed for a range of δ, in our case integers from one to ten.

Computation of the uncertainty exponent and related data. Linear regression is ap-
plied to the result f(δ) of the previous step. The slope is the numerical value for the
uncertainty exponent ϵ. The intercept is not of interest in this case, but standard
procedures also provide an estimate of R2 that can be used to judge the reliability of
the Ąt. In the present case, larger values of R2 correspond to more constant ϵ(δ).
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