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In its canonical formulation, general relativity is subject to gauge transformations that are equivalent to

space-time coordinate changes of general covariance only when the gauge generators, given by the

Hamiltonian and diffeomorphism constraints, vanish. Since the specific form taken by Poisson brackets of

the constraints and of the gauge transformations and equations of motion they generate is important for

general covariance to be realized, modifications of the canonical theory, suggested for instance by

approaches to quantum gravity, are not guaranteed to be compatible with the existence of a covariant space-

time line element. This caveat applies even if the modification preserves the number of independent gauge

transformations and the modified constraints remain first class. Here, a complete derivation of covariance

conditions, regained from the canonical constraints without assuming that space-time has its classical

structure, is presented and applied in detail to spherically symmetric vacuum models. As a broad

application, the presence of structure functions in the constraint brackets plays a crucial role, which in an

independent analysis has recently been shown to lead to higher algebraic structures in hypersurface

deformations given by an L∞ bracket. The physical analysis of a related feature presented here

demonstrates that, at least within the spherically symmetric setting, new theories of modified gravity

are possible that are not of higher-curvature form.

DOI: 10.1103/PhysRevD.108.084066

I. INTRODUCTION

General relativity cannot be a complete fundamental

theory valid on all scales because a large number of relevant

solutions are limited by space-time singularities. Quantum

effects might change this outcome, but they are also

expected to modify general relativity away from singular-

ities. Since general relativity has a large and nontrivial

gauge content, which classically ensures general covari-

ance, possible modifications that could describe quantum

effects at least in an effective formulation are highly

constrained. In a metric formulation based on space-time

tensors, for instance, the class of admissible effective

theories is given by higher-curvature actions. The obser-

vation that the speed of gravitational waves is very close to

the speed of light puts strong constraints on phenomeno-

logically viable higher-curvature actions [1–4]. It is there-

fore of interest to look for new alternatives.

Some aspects of classical gravity and, in particular, of

possible equantizations are more conveniently expressed in

a canonical formulation, in which space-time tensors are

replaced by a combination of spatial tensors on spacelike

hypersurfaces in a space-time foliation, with flow equations

that determine how these fields change from hypersurface

to nearby hypersurface. Depending on how they are

applied, the flow equations may present a picture of

evolution for the spatial tensors in a given foliation, or

they may be used to determine how the spatial tensors and

other quantities change if one transforms to a different

foliation. For these hypersurface deformations to be equiv-

alent to general covariance, the spatial tensors on any

hypersurface must obey the Hamiltonian and diffeomor-

phism constraints of canonical general relativity [5]. These

constraints, at the same time, generate the flow equations

via their Hamiltonian vector fields. This equivalence is

often used in practice when one interchangeably refers to

coordinate invariance and slicing independence in an

analysis of space-time solutions in general relativity.

Both concepts are usually included in the condition of

general covariance, but it turns out that there are subtle

differences between them, owing to the requirement that

constraints are to be imposed.

An immediate implication is that canonical gravity is a

Hamiltonian gauge theory with first-class constraints.

However, unlike in gauge theories encountered for instance

in the standard model of particle physics, Poisson brackets

of the constraints do not define a Lie algebra because they

do not have structure constants: In ADM notation [6,7], the

diffeomorphism constraint H⃗½M⃗�, depending on a spatial

shift vector field M⃗ of an infinitesimal tangential deforma-

tion of a spatial hypersurface, and the Hamiltonian
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constraint H½N�, depending on a spatial lapse function N
that determines how much a hypersurface is deformed in its

normal direction within space-time, have Poisson brackets

fH⃗½N⃗�; H⃗½M⃗�g ¼ H⃗½LN⃗M⃗�; ð1Þ

fH½N�; H⃗½N⃗�g ¼ −H½Nb
∂bN�; ð2Þ

fH½N�; H½M�g ¼ H⃗½qabðN∂bM −M∂bNÞ� ð3Þ

that depend not only on M⃗ and N, but also on the inverse of

the spatial metric qab on a spatial hypersurface.

A closed set of brackets is obtained only if the defor-

mation functions M⃗ and N inserted in the constraints,

including the diffeomorphism constraint on the right-hand

side of (3), depend not only on space-time coordinates, but

independently also on the spatial metric. Starting with

phase-space independent M⃗ and N and iterating Poisson

brackets, such as

fH½N�; fH½N�; H½M�gg
¼ fH½N�; H⃗½qabðN∂bM −M∂bNÞ�g
¼ −H½qabðN∂bM −M∂bNÞ∂aN�
þ H⃗½fH½N�; qabgðN∂bM −M∂bNÞ�;

shows that not only the diffeomorphism constraint in (3)

appears with a metric-dependent shift, but also the

Hamiltonian constraint shows up with a metric-dependent

lapse function. Iterating further, different dependencies on

the metric are generated in each step that adds a new factor

of the inverse metric. However, if we allow phase-space

dependent lapse and shift in the Poisson brackets on the

left-hand sides of (1)–(3), there are additional terms on the

right-hand sides that, via the chain rule, depend on

derivatives of the deformation functions by the spatial

metric. These terms disappear only when the constraints are

imposed and the theory is taken on shell, giving rise to the

on-shell condition for an equivalence between the gauge

symmetries of hypersurface deformations and coordinate

changes. Off shell, however, there is a difference between

hypersurface deformations and space-time coordinate

transformations.

Mathematically, the dependence on the spatial metric is

conveniently expressed in an algebroid picture, in which

Eqs. (1)–(3) are related to a suitable bracket structure for

sections of a fiber bundle over the base manifold of spatial

metrics (or a suitable substitute or extension of this space),

rather than a bracket for elements in a Lie algebra as it

appears for constraint brackets without structure functions.

Moreover, as has been shown in an explicit form only

recently [9], the same metric dependence also implies that a

consistent algebraic bracket corresponding to (1)–(3) is not

Lie but rather an L∞ bracket in which the Jacobi identity is

violated in a specific way. The gauge content of canonical

gravity is therefore described by a higher algebraic

structure.

The purpose of the present article, in brief, is to perform

a complete physical analysis of geometrical consequences

of structure functions in hypersurface deformation brack-

ets. As suitable for physical evaluations of canonical

gravity through Hamiltonian vector fields generated by

the constraints, we will employ Poisson brackets, which by

definition obey the Jacobi identity and, when directly

applied to the constraint functions on phase space, do

not show the algebraic features of an L∞ bracket. We will

discuss how the structure function of hypersurface defor-

mation brackets for a given set of modified constraints,

such as a general expansion up to a certain order in

derivatives of an effective field theory, can be used to

derive a space-time geometry in which the corresponding

constraints generate hypersurface deformations, and which

is subject to a complete set of covariance conditions. In an

analysis of new theories of modified gravity, the resulting

spatial part of the space-time metric may be distinct from

the original phase-space function qab in which the con-

straints have been formulated. Since the precise form of the

space-time metric then does not have a close relationship

with the fundamental fields and must be derived using the

form of gauge transformations, it is emergent within this

broad set of emergent modified gravity.

This new possibility of modified gravity relies on the

presence of structure functions, just like the higher alge-

braic structures found earlier. At this point, however, we are

not aware of a more detailed relationship between these two

properties. From a mathematical point of view, we are

looking for different realizations of the classical algebraic

structure underlying hypersurface deformations, which

guarantees that new models will be amenable to standard

space-time analysis using for instance line elements. We are

not interested in modifications of hypersurface deforma-

tions or of the underlying L∞ structure. Our strategy is

comparable to the well-known derivations of modified

gravity in space-time form, which lead to different real-

izations of higher-curvature actions that all share the same

space-time structure with standard covariance symmetries,

expressed canonically through hypersurface deformations.

The main difference with our approach is that we aim to

derive modified theories fully on the canonical level,

arriving at a space-time picture only at the very end through

covariance conditions on the canonical constraints and their

Poisson brackets. Rather surprisingly, we will show that

new modified theories can be obtained in this form that are

not of higher-curvature form. The crucial feature that makes

such new theories possible is that we allow for the resulting

(emergent) space-time metric to be different from the

fundamental fields that enter the defining equations, given

here by the constraints. In our case, the correct space-time

metric cannot be identified before a detailed covariance
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analysis has been performed, in contrast to other theories of

modified gravity in which a space-time metric must be

known before the theory is defined through its curvature

tensors. From a mathematical point of view, the identi-

fication of an emergent space-time makes use of a redefi-

nition of the spatial metric, which could be formulated as a

diffeomorphism on a suitable extension of the base mani-

fold of the L∞ algebroid, and an application of nonconstant

sections of the fiber bundle. These steps in our construction

do not change the algebraic structure of an L∞ algebroid,

but they can change the geometry and physics of space-

time solutions of the constraints, equipped with the new

emergent metric.

As a specific example of new theories, brackets of

the form (1)–(3) may be obtained not only for metric-

independent M⃗ and N, for which they have been derived

from canonical general relativity via Poisson brackets, but

also for M⃗ and N with a specific dependence on the spatial

metric and perhaps also extrinsic curvature of a hypersur-

face. For this to happen, any contributions from partial

derivatives of M⃗ and N that initially appear in a calculation

of the Poisson brackets would have to cancel out. There is

then a new on-shell interpretation as a gravity theory

associated to these metric and extrinsic-curvature depen-

dent M⃗ and N, but it need not be the same as the original

theory of canonical general relativity because the structure

function, used as the inverse spatial metric of an emergent

space-time line element, need not be of the classical form

where it is identical with one of the basic phase-space

degrees of freedom. This identification of the emergent

space-time metric through structure functions depends on

the off-shell behavior of the theory, just as the higher

structures in hypersurface deformations.

In a modified theory of gravity that has a chance of being

generally covariant, the brackets (1)–(3) are of the classical

form, but possibly with a modification of the structure

function that classically equals inverse spatial metric qab.
Uniqueness results [10,11] that show how classical general

relativity follows from the brackets (1)–(3) on-shell can be

circumvented by such a modification. Canonical gravity

then has a potential to allow consistent modifications that

are not of higher-curvature form. [All higher-curvature

effective actions have the brackets (1)–(3) without a

modification of qab [12].] If qab in (3) is replaced with

a different phase-space function, however, it is not guar-

anteed that its inverse can still play the role of a spatial

metric in some space-time line element, together with a

lapse function and shift vector for the time components.

Our analysis of modified gravity in canonical form there-

fore requires an extension of the classic results of [10,11] in

which not only the dynamical equations, but also space-

time structure (that is, the existence of a consistent space-

time line element) must be derived, or regained from the

constraints, their brackets, and from the gauge transforma-

tion they generate. As a general contribution of this paper,

we present a complete set of covariance conditions in

canonical form, building on previous constructions in [13].

As an example, the Poisson brackets of constraints with

phase-space dependent lapse and shift are guaranteed to

equal a linear combination of the constraints. They are first

class and present a consistent gauge theory in canonical

form. For the underlying gauge transformations to corre-

spond to space-time symmetries via hypersurface deforma-

tions, we require in addition that new contributions to the

brackets depending on partial derivatives of lapse and shift

by phase-space degrees of freedom cancel out. A new set of

brackets of the form (1)–(3) is then obtained from which a

candidate for an emergent inverse spatial metric can be read

off via the structure function. (We refer to this metric as

“emergent” in this case because it is not one of the

fundamental fields and must be derived from covariance

conditions, unlike in standard general relativity.) As wewill

show, the appearance of a candidate spatial metric in the

brackets does not guarantee that it can be part of a consistent

and coordinate independent space-time line element. We

will derive an additional, previously unrecognized condition

on the gauge flow generated by the Hamiltonian constraint

that guarantees matching symmetries and therefore an

invariant emergent space-time line element. Together with

the cancellation property, this covariance condition imposes

strong restrictions on possible dependences of M⃗ and N on

the spatial metric or on extrinsic curvature. We will specify

all these conditions and evaluate them in spherically

symmetric models, demonstrating that new theories of

modified gravity are indeed possible in this setting. Some

of the new models we derive are closely related to recent

constructions of consistent modified theories in canonical

spherically symmetric models [14–17], and they explain the

origin of these modifications.

As a part of our new discussion of general covariance

from a canonical theory, we construct a complete procedure

to derive an emergent space-time line element from

canonical hypersurface-deformation brackets, extending

previous results from [13]. In addition to the construction

of emergent modified spherically symmeytric models based

on phase-space dependent lapse and shift, we also construct

more general consistent theories that include potential

modifications possibly implied by quantum gravity, such

as nonpolynomial terms in extrinsic curvature instead of

the classical quadratic form. In this case as well, we will

see that general covariance imposes previously unrecog-

nized conditions on possible modifications of canonical

gravity theories, in addition to the usual condition that the

constraints remain first-class and resemble hypersurface-

deformation brackets. General covariance in an emergent

line element is therefore recognized as a restrictive con-

dition on possible quantum space-time effects, required to

be consistent with a geometrical continuum theory of

space-time at low curvature. These general properties will

be derived and discussed in Sec. II.
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Wewill work out specific versions of generally covariant

emergent modified gravity theories in Sec. III, using

spherically symmetric reductions. We will first redefine

the classical constraints by replacing them with phase-

space dependent linear combinations. The resulting modi-

fied theories demonstrate that off-shell properties of

hypersurface deformations are indeed relevant for physical

implications because they make it possible to evaluate the

cancellation condition and the structure function. We will

also revisit the partial Abelianizations of brackets proposed

in [18,19] in Sec. III D and, following [20,21], reanalyze

their off-shell structure from our new perspective.

Examples of modifications that obey the new conditions

are those of [15,22]. Section IV will present the general

case of modified Hamiltonian constraints up to second

order in spatial derivatives that are consistent with the

covariance condition, including a discussions of the free-

dom implied by applying canonical transformations. As an

application, in Sec. IV F, we will use our constraints

and related methods to derive new, nontrivial partial

Abelianizations compatible with general covariance.

II. MODIFIED GRAVITY IN A CANONICAL

FORMULATION

As usual in canonical theories, we assume that space-

time, or at least a region of interest, is globally hyperbolic:

M ¼ Σ × R with a three-dimensional “spatial” manifold Σ.

In a generally covariant theory, there is no unique embed-

ding of Σ inM, but we can parametrize different choices by

working with foliations of M into smooth families of

spacelike hypersurfaces Σt, t∈R, each of which is homeo-

morphic to Σ. For a given foliation, Σ can be embedded in

M as a constant-time hypersurface: Σ ≅ Σt0
≅ ðΣt0

; t0Þ ↪
M for any fixed t0.

A. Canonical decomposition

Given a foliation into spacelike hypersurfaces Σt, a

metric gμν on M induces a unique spacelike metric

qabðt0Þ on any Σt0
. (As in this example, we use greek

letters for indices of space-time tensors, and latin letters for

indices of spatial tensors.) Using the unit normal vector

field nμ on Σt0
, the induced spatial metric is obtained by

restricting the space-time tensor qμν ¼ gμν þ nμnν to vector

fields tangential to the hypersurface, while qμνn
ν ¼ 0.

The space-time metric is therefore expressed as a time-

dependent family of spatial metrics. Since spatial hyper-

surfaces within a foliation of a covariant theory are

invariant under spatial diffeomorphisms, interpreting the

time dependence of qabðtÞ as unambiguous evolution

requires an additional structure that relates points on

infinitesimally related hypersurfaces defined by different

values of t. This additional structure can be expressed as a

time-evolution vector field

tμ ¼ Nnμ þ Nas
μ
a ð4Þ

in space-time, with the lapse function N and shift vector

field Na [7]. The three vector fields s
μ
aðt0Þ inject TΣt0

into

TM such that gμνn
μs

μ
a ¼ 0.

The new ingredients N and Na describe the frame of an

observer in curved space-time who measures the evolving

qabðtÞ. In the four-dimensional picture, the frame corre-

sponds to a choice of space-time coordinates which

completes spatial coordinates on Σ by a time coordinate

t inM such that Σt0
¼ Mt¼t0

. The space-time metric or line

element is then in one-to-one correspondence with the

family ðqabðtÞ; NðtÞ; NaðtÞÞ of spatial tensors on the

foliation ðΣt; tÞ ↪ M. We have

ds2 ¼ −N2dt2 þ qabðdxa þ NadtÞðdxb þ NbdtÞ: ð5Þ

A hypersurface in the foliation has extrinsic curvature

Kab ¼
1

2
Lnqab ð6Þ

related to the Lie derivative of the spatial metric in the

normal direction. Expressed through a “velocity” of qab
with respect to the time-evolution vector field tμ, it takes
the form

Kab ¼
1

2N
qa

cqb
dðLtqcd − LNqcdÞ: ð7Þ

Evolution on a given foliation, defined by a choice of t
and tμ (or N and Na), is Hamiltonian: Infinitesimal changes

of qab and Kab are obtained via Poisson brackets of these

tensors with a Hamiltonian H½N;Na�, where the Poisson

bracket is defined by considering

pab ¼
ffiffiffiffiffiffiffiffiffiffi
det q

p

16πG
ðKab − Kc

cq
abÞ ð8Þ

as canonically conjugate momenta of qab. Given the

original manifold M as well as general covariance of the

relativistic dynamics, evolution within a foliation is closely

related to transformations of the foliation to a new one. We

merely have to reinterpret N and Na as gauge parameters ϵ0

and ϵa that parametrize an infinitesimal change of the

foliation.

Evolution and gauge transformations are therefore

described by the same flow, which implies that the

dependence on qab and pab of the Hamiltonian H½ϵ0; ϵa�
of the gauge flow is the same as the dependence of the

HamiltonianH½N;Na� for evolution. In its role as generator
of a gauge flow, however, H½ϵ0; ϵa� must be a constraint,

H½ϵ0; ϵa� ¼ 0 for all ϵ0 and ϵa, in order to have a well-

defined symplectic structure on gauge-invariant observ-

ables. The dynamics, therefore, is also fully constrained:

H½N;Na� ¼ 0 for all N and Na. (We assume that our
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manifolds do not require nontrivial boundary conditions, in

which case some choices of N and Na may not be

considered gauge.) Since spatial and normal deformations

of hypersurfaces are independent, there are two different

constraint functionals, the Hamiltonian constraint H½N�
and the diffeomorphism constraint Ha½Na� such that

H½N;Na� ¼ H½N� þHa½Na�. Physical solutions of the

theory are “on shell,” that is, they have qab and pab on

each hypersurface of a foliation such that H½N� ¼ 0

and Ha½Na� ¼ 0.

The constraints generate gauge transformations for any

given phase-space function O, depending on qab and pab,

via the Poisson bracket δϵO ¼ fO; H½ϵ0; ϵa�g. These are

indeed gauge transformations because the constraints obey

the hypersurface-deformation brackets (1)–(3) and are

therefore first class. Within each foliation related by a

gauge transformation, the canonical fields qab and pab, or

any function O of them, evolve according to Ȯ≡ δtO ¼
fO; H½N;Na�g. Poisson brackets of this form do not

immediately provide gauge transformations of N and Na

because they do not have momenta, and they do not

physically evolve because they specify a frame with respect

to which evolution is defined. However, N and Na must be

subject to gauge changes because the corresponding

coefficients in the line element (5) depend on the foliation.

These gauge transformations can be derived from the

condition that the gauge transformation of an evolution

equation should be consistently related to evolution of

gauge-transformed phase-space variables. This condition

refers to commutators of gauge transformations and evo-

lution, and is therefore sensitive to the structure functions in

(1)–(3). Gauge transformations obeying this condition are

given by [13,23,24]

δϵN ¼ ϵ̇0 þ ϵa∂aN − Na
∂aϵ

0; ð9Þ

δϵN
a ¼ ϵ̇a þ ϵb∂bN

a − Nb
∂bϵ

a

þ qabðϵ0∂bN − N∂bϵ
0Þ; ð10Þ

where the structure function appears in the last term.

The final ingredient required for a discussion of general

covariance in canonical form is a relationship between

gauge transformations generated by a Hamiltonian and Lie

derivatives along a space-time vector field ξμ. Components

of the latter refer to coordinate directions, while hypersur-

face deformations refer to the normal direction. These basis

choices are linearly related by

ξμ ¼ ϵ0nμ þ ϵas
μ
a ¼ ξttμ þ ξas

μ
a; ð11Þ

or

ξt ¼ ϵ0

N
; ξa ¼ ϵa −

ϵ0

N
Na; ð12Þ

if we assume that the same spatial coordinate systems are

used, as in (5). If the constraints and equations of motion

are satisfied (on shell or “O.S.”), the gauge transformations

fqab; H⃗½ϵ⃗�gjO:S: ¼ Lϵ⃗qab;

fqab; H½ϵ0�gjO:S: ¼ Lϵ0nqab ð13Þ

together with the gauge transformations of lapse and shift,

(9), are equivalent to infinitesimal space-time diffeomor-

phisms of the metric in (5),

δϵgμνjO:S: ¼ Lξgμν; ð14Þ

identifying time derivatives by using evolution equations

generated by the same constraints.

Off-shell, however, hypersurface deformations are rather

different from coordinate changes. The presence of struc-

ture functions in the description of hypersurface deforma-

tions implies that a closed set of brackets can be obtained

from them only if lapse and shift are allowed to depend on

the spatial metric, in addition to their dependence on space-

time coordinates. However, if one computes Poisson

brackets of the phase-space functions that provide the

Hamiltonian and diffeomorphism constraints smeared with

phase-space dependent lapse and shift, additional terms

appear compared with (1)–(3), given by constraints evalu-

ated with partial derivatives of lapse and shift by compo-

nents of the spatial metric. These terms do not change the

first-class nature of the constraints or their on-shell proper-

ties, but in general they are not compatible with the

equivalence (14) if one attempts to extend it to off-shell

metrics. Only specific phase-space functions for lapse and

shift may be compatible with general covariance, provided

they obey conditions that we will derive in what follows.

Changing lapse and shift in this way is equivalent to

redefining the Hamiltonian constraint or the normal direc-

tion in a corresponding space-time geometry. The normal

direction together with the spatial metric determines the

emergent space-time geometry. In order to evaluate whether

this basic property could lead to new theories of modified

gravity, we have to look look more closely at possible

modifications of the constraints and their resulting brackets.

B. Hypersurface-deformation brackets

and covariance conditions

There are different sources for possible modifications of

the constraints in models of canonical gravity. As just

described, there may be new terms in their brackets if lapse

and shift are allowed to be phase-space dependent. In

addition, one may be interested in studying possible

modifications of the dependence of the Hamiltonian and

diffeomorphism constraints on the canonical fields. For

instance, higher-order terms beyond the classically at most

quadratic dependence of the constraints on momenta could
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be motivated by quantum effects, as a canonical version of

higher-curvature effective actions but without higher time

derivatives that usually accompany the latter. We will

derive general conditions for a covariant modification,

making two common assumptions: that the spatial structure

of hypersurfaces is unmodified (governed by the classical

diffeomorphism constraint) and that the theory remains

spatially local (with a Hamiltonian constraint that depends

on spatial derivatives up to some finite order).

Any modification of a canonical gauge theory is subject

to consistency conditions. First, the constraints must remain

first class, or vanish on shell, which is guaranteed if we try

to modify the classical theory by using phase-space

dependent lapse and shift, but not necessarily by modifi-

cations of the phase-space dependence of the constraints, as

implied by higher-order terms in momenta. Second, for the

modified theory to be considered a space-time theory, any

modified brackets of the constraints must in some way

exhibit an equivalence with space-time coordinate changes,

at least (and usually only) on shell, as in (14). Since the

structure functions of classical hypersurface deformations

imply the correct transformations of lapse and shift via (9),

the modified brackets must be of the classical form (1)–(3).

While this condition leads to brackets identical in form to

the classical ones, an opening for new theories of modified

gravity can be found in the possibility that lapse, shift, and

spatial metric as they appear initially inH½N� andH½Na� are
not required to be identical to the same objects seen as

components of the space-time metric (5), in which form

they have been derived classically. There may be an

emergent lapse Ñ, shift Ña and spatial metric q̃ab that

depend on N, Na, and qab as they appear in the constraints

and define the phase-space structure together with pab, but

are not identical to them. An emergent extrinsic curvature

K̃ab would then be derived as well for hypersurfaces in the

emergent space-time line element defined by Ñ, Ña and

q̃ab. This possibility had been exploited in [13] to show, via
(9), that a sign change of the classical structure function

amounts, under certain conditions, to signature change in

an emergent space-time consistent with general covariance

in the modified theory. The additional conditions, however,

were quite restrictive as they only allowed emergent spatial

metrics obtained from qab by multiplication with a spatially

constant function [which was allowed to depend on time

when used in a completion to a space-time metric as in (5)].

1. Emergent space-time metric and general covariance

More generally, whenever modifications lead to brackets

of the form

fH⃗½N⃗�; H⃗½M⃗�g ¼ H⃗½L
N⃗
M⃗�; ð15Þ

fH̃½N�; H⃗½N⃗�g ¼ −H̃½Nb
∂bN�; ð16Þ

fH̃½N�; H̃½M�g ¼ −H⃗½q̃abðN∂bM −M∂bNÞ� ð17Þ

without additional terms off-shell for phase-space inde-

pendent N and M⃗, but with a modified structure function

q̃ab ≠ qab as some phase-space function, then q̃ab rather

than qab should be used as the spatial metric of an emergent

space-time line element:

ds2 ¼ −N2dt2 þ q̃abðdxa þ NadtÞðdxb þ NbdtÞ: ð18Þ

(For now we assume that q̃ab is invertible; see Sec. II C for

the more general case of q̃ab that may be noninvertible on

submanifolds of codimension at least one in space-time.)

Under gauge transformations, lapse and shift then trans-

form as

δϵN ¼ ϵ̇0 þ ϵa∂aN − Na
∂aϵ

0; ð19Þ

δϵN
a ¼ ϵ̇a þ ϵb∂bN

a − Nb
∂bϵ

a

þ q̃abðϵ0∂bN − N∂bϵ
0Þ; ð20Þ

consistent with corresponding coordinate changes in the

new emergent line element.

Here, our construction differs from that in [13], where

factors that multiply the classical qab in a modified

structure functions were attempted to be absorbed in a

redefined lapse function. Such a choice is more natural in a

discussion of signature change, which is expected to affect

the time components of the space-time metric where the

lapse function appears, but it leads to strong conditions on

allowed modifications. Redefining the spatial metric rather

than the lapse function agrees with the constructions of

[16,17] and earlier in [25], where signature change did not

occur. Our general treatment here allows for signature

change as well as redefined spatial metrics, as we will see.

A third, and final, condition appears because a modified

structure function q̃ab is not guaranteed to gauge transform

in a way compatible with an interpretation as the inverse of

a spatial metric in a space-time line element. This condition

has not been analyzed completely in previous studies. We

say that the theory is generally covariant if there are

sufficiently many independent fields f (fundamental or

composite) such that (i)

δϵfjO:S: ¼ LξfjO:S:; ð21Þ

and (ii) they can be arranged as components of a space-time

line element (18). The space-time geometry regained via

(18) is then generally covariant:

δϵg̃μνjO:S: ¼ Lξg̃μνjO:S:: ð22Þ

This covariance condition is not automatically satisfied

just by virtue of the hypersurface deformation brackets,

(15)–(17), even after a redefinition of the spatial metric or

lapse and shift. In order to see this, we look at each

MARTIN BOJOWALD and ERICK I. DUQUE PHYS. REV. D 108, 084066 (2023)

084066-6



component of the covariance condition, using (15)–(17)

and performing the ADM decomposition with (12). In what

follows, it is understood that each covariance condition is

required to hold only on-shell, but we drop the symbol

“O.S.” for the sake of simplicity.

Beginning with the ta components, the left-hand side of

the covariance condition (22) is

δϵg̃ta ¼ Nbδϵq̃ab þ q̃abδϵN
b: ð23Þ

If we assume that δϵq̃ab ¼ Lξg̃ab, then this covariance

condition can be written as

q̃abδϵN
b ¼ Lξg̃ta − NbLξg̃ab;

¼ q̃abðNb
∂tξ

t þ ∂tξ
b − NbNc

∂cξ
t

− Nc
∂cξ

b þ ξμ∂μN
bÞ − N2

∂aξ
t;

¼ q̃abðϵ̇b þ ϵc∂cN
b − Nc

∂cϵ
bÞ

þ ϵ0∂aN − N∂aϵ
0; ð24Þ

where we have used (12) in the last step. This result is

consistent with the canonical gauge transformation of the

shift, (20). The derivation also shows that the classical

relation (12) between a coordinate basis and one adjusted to

hypersurfaces should not be modified: Because there is a

term in the final result for q̃abδϵN
b that depends on q̃ab and

one that does not, all components of this relation have been

used independently in its derivation. [This conclusion

might be circumvented by using metric-dependent coef-

ficients in a modified version of (12), but such a choice

would complicate other equations.]

Similarly, the left-hand side of the tt component is

δϵg̃tt ¼ −2NδϵN þ NaNbδϵq̃ab þ 2q̃abN
aδϵN

b: ð25Þ

If we assume again that δϵq̃ab ¼ Lξg̃ab and that the shift

transforms as (20), then the tt component of the covariance

condition can be written as

2NδϵN ¼ 2Nðϵ̇0 þ ϵa∂aN − Na
∂aϵ

0Þ; ð26Þ

which is consistent with the canonical gauge transforma-

tion (19) of the lapse function.

Lastly, the spatial components of the covariance con-

dition are

δϵq̃ab ¼ Lξg̃ab;

¼ ϵ0

N
˙̃qab þ ϵc∂cq̃ab þ q̃ca∂bϵ

c þ q̃cb∂aϵ
c

−
ϵ0

N
ðNc

∂cq̃ab þ q̃ca∂bN
c þ q̃cb∂aN

cÞ ð27Þ

from (12). To proceed with our evaluation of this equation,

we make the common assumption that the diffeomorphism

constraint remains unmodified, which implies that q̃ab is a
spatial tensor and that its Poisson bracket with the diffeo-

morphism constraint equals a spatial Lie derivative along

the shift vector. The time derivative ˙̃qab ¼ fq̃ab; H̃½N;Na�g
inserted on the right-hand side of (27) and the gauge

transformation δϵq̃ab ¼ fq̃ab; H̃½ϵ0; ϵa�g on the left-hand

side of this equation then have matching terms for all

spatial derivatives in (27) to cancel out. We are left with the

equation

fq̃ab; H̃½ϵ0�gjO:S: ¼
ϵ0

N
fq̃ab; H̃½N�gjO:S:: ð28Þ

We now assume that the modified theory remains local,

such that H̃½ϵ0� depends on spatial derivatives of the phase-
space degrees of freedom up to some finite order. As a local

functional of ϵ0, the normal gauge transformation of the

spatial metric takes the generic form

fq̃ab; H̃½ϵ0�g¼Qabϵ
0þQc

ab∂cϵ
0þQcd

ab∂c∂dϵ
0þ�� � ; ð29Þ

where the Q tensors are phase-space dependent and the

series truncates at some finite order. Substituting this

expansion into (28), we obtain

Qc
ab

∂cϵ
0

ϵ0
þQcd

ab

∂c∂dϵ
0

ϵ0
þ � � �

����
O:S:

¼ Qc
ab

∂cN

N
þQcd

ab

∂c∂dN

N
þ � � �

����
O:S:

ð30Þ

(neglecting boundary terms that may result after integrating

by parts). For a generally covariant theory, the gauge

generator functions ðϵ0; ϵaÞ must be independent of each

other, and of N, Na as well as phase-space functions that

they are supposed to transform. Thus, eachQ tensor in (29)

must vanish independently, and we obtain a series of

conditions on the gauge transformation of the emergent

spatial metric or its inverse:

∂ðδϵ0 q̃abÞ
∂ð∂cϵ0Þ

����
O:S:

¼ ∂ðδϵ0 q̃abÞ
∂ð∂c∂dϵ0Þ

����
O:S:

¼ � � � ¼ 0: ð31Þ

Since this tensor is determined by the structure function in

the hypersurface-deformation brackets of a modified

canonical theory, generally covariant modifications are

subject to additional conditions that go beyond the basic

requirement that the brackets remain first class. They must

be first class with structure functions obeying (31). Because

the structure function and its gauge transformation are both

determined by the constraints, these are nontrivial con-

ditions on the modified Hamiltonian constraint. This

condition has been overlooked in several previous treat-

ments of canonical gravity and possible modifications, such

as models of loop quantum gravity, but it is essential for

complete covariance.
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2. Extrinsic curvature and the geometry

of embedded hypersurfaces

In our discussion so far, we have used the constraint

equations and the gauge flow (28) or the equation of motion

of the emergent metric. The condition that this transforma-

tion is equivalent to theLie derivative of a spatialmetric led to

a nontrivial consistency condition (31) for general covari-

ance. Owing to modifications of the structure function, the

emergent spatial metric that obeys this condition need not

agree with the basic phase-space function qab of the

canonical theory, unlike in classical theories of gravity. In

the same way, the momentum pab canonically conjugate to

qab need not be linearly related to extrinsic curvature if the

structure function is modified. Instead, the emergent space-

time line element (18) may be used to derive a suitable

extrinsic curvature tensor K̃ab in the same slicing inwhich the

emergent metric q̃ab is induced by (18) as the spatial metric.

Since extrinsic curvature by definition depends on normal

derivatives of the spatial metric, equations of motion of the

canonical theory could be used to relate K̃ab to the original

canonical fields qab and pab, just as q̃ab is not a basic

canonical field but depends, in general, on both qab and p
ab

in a nonlinear way.

Such an extrinsic curvature tensor K̃ab would be derived

from a consistent space-time geometry and would therefore

be a proper covariant two tensor. This property implies that

there is no additional momentum-version of the covariance

condition derived from q̃ab. If one is interested in comparing

canonical gauge transformations of K̃ab, defined through the

relationship between this tensor and the phase-space func-

tions qab and pab, with space-time coordinate transforma-

tions of this tensor, one would make use of the momentum

version of the gauge transformations (or of the correspond-

ing equations of motion) (28). The full set of gauge trans-

formations is therefore used if one compares gauge

transformations with space-time Lie derivatives for both

q̃ab and K̃ab. However, since the structure function of

hypersurface-deformation brackets uniquely determines

the complete space-time line element, only the gauge

transformations of q̃ab yield nontrivial covariance condi-

tions, while covariance of K̃ab is then implied. Heuristically,

the correct transformation of K̃ab is implied because K̃ab is

defined as a certain space-time coordinate change of q̃ab.
(This transformation is not a Lie derivative because extrinsic

curvature depends on the slicing. It is a spatial tensor on a

fixed hypersurface but not a space-time tensor.) A detailed

derivation together with explicit equations for the correct

coordinate transformations can be found in Appendix A.

Covariance of the spatial metric tensor therefore implies

covariance of the extrinsic-curvature tensor. While all

equations of motion are used if one derives explicit trans-

formations for both q̃ab and K̃ab, only the former lead to

nontrivial covariance conditions. This result reinforces the

heuristic understanding that the equations of motion for q̃ab

determine geometrical properties of an embedded hyper-

surface (the relationship between extrinsic curvature and

normal derivatives of the spatial metric), equations of

motion for q̃ab determine the dynamics of the theory

and therefore physical properties.

3. The necessity of emergence for modified gravity

As an example, consider a theory in metric variables,

where the phase space is composed of the “bare” spatial

metric qab (used to define the phase-space structure) and

its conjugate momenta pab, and the emergent spatial

metric equals the bare spatial metric (that is, the structure

function remains classical). The covariance condition (31)

then implies, from fqab; H̃½ϵ0�g ¼ δH̃½ϵ0�=δpab, that the

Hamiltonian constraint must not contain spatial derivatives

of pab. If we use only up to second-order spatial derivatives

of qab, the Hamiltonian constraint is uniquely determined

by the hypersurface deformation brackets, (15)–(17), up to

the choice of Newton’s and the cosmological constant, and

assuming parity symmetry [10,11]. It must therefore be

classical, and generally covariant modifications are ruled

out under the stated conditions.

If the spatial metric is considered a composite function of

the phase space, as it happens when the space-time line

element has an emergent spatial metric q̃ab distinct from the

phase-space function qab (and not just obtained by directly

applying a canonical transformation), the regaining pro-

cedure of [10,11] is modified and may result in new

gravitational theories even at second derivative order.

The covariance condition (31) is nontrivial in this situation.

For instance, if the emergent spatial metric depends on the

momenta, as it happens in the examples discussed in the

next section, spatial derivatives of the bare metric, which

always appear in the Hamiltonian constraint, also contrib-

ute to the covariance condition and could cancel out with

unwanted terms from spatial derivatives of the momenta.

The covariance condition and the concept of an emergent

metric then present important ingredients in constructions

of modified canonical gravity, in addition to the require-

ment that hypersurface-deformation brackets of the form

(15) be realized. Although there are then different versions

of qab in such a theory, given by the bare metric and the

emergent metric, it is not an example of bimetric gravity: A

unique metric, the emergent one, is singled out by the

covariance condition, if the latter can be solved at all.

Results similar to those of the present section can be

formulated for triad variables, in which case the spatial

metric has the status of a composite field even in the

classical theory.

C. Noninvertible structure functions

and signature change

The definition of an emergent line element from a

modified structure function q̃ab requires that this spatial
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tensor is invertible in a space-time region in which it is

applied. If this condition is not strictly fulfilled but still

holds on a dense submanifold in space-time, then there are

hypersurfaces (possibly timelike or lightlike and not just

spacelike) that separate regions in which q̃ab is invertible.

Emergent line elements then exist only in these regions but

not on the separating hypersurfaces. Moreover, they may

differ from one another by certain sign factors of

sgn det q̃ab. Space-time then has distinct regions in which

emergent line elements exist but no global line element.

(A single space-time object is defined by solutions of the

constraints before they are equipped with emergent line

elements.) An example for such emergent space-times is

given by models with dynamical signature change [26,27].

If we are in a region where sgn det q̃ab ¼ −1, then the

emergent line element (18) is of (negative) Euclidean

signature ð−1;−1;−1;−1Þ and no longer Lorentzian as

in the classical limit. (We assume that the signature remains

spatially isotropic in order to prevent the existence of a

distinguished spatial direction in the resulting gravity

theory.) Combining our constructions with those in [13],

it follows that this emergent line element is equivalent to

one with positive Euclidean signature ðþ1;þ1;þ1;þ1Þ
because we may define the emergent spatial metric as

˜̃qab ¼ sgnðdet q̃abÞq̃ab ð32Þ

and introduce an emergent line element

ds2 ¼ −sgnðdet q̃abÞN2dt2

þ ˜̃qabðdxa þ NadtÞðdxb þ NbdtÞ: ð33Þ

Because sgnðdet q̃abÞ is spatially constant in any region in

which q̃ab is invertible, the conclusions of [13] apply and

show that the new definitions guarantee general covariance.

III. SPHERICALLY SYMMETRIC THEORY

OF GRAVITY IN VACUUM

Following the general results of the previous section,

we will now focus on spherically symmetric models. We

choose the basic phase-spacevariables to be certain extrinsic-

curvature components as the configuration variables and

densitized-triad components as their conjugate momenta, as

used frequently in models of loop quantum gravity [28,29].

A. Classical spherically symmetric theory

In the spherically symmetric classical theory, the space-

time metric is

ds2 ¼ −N2dt2 þ qxxðdxþ NrdtÞ2 þ qϑϑdΩ
2; ð34Þ

where dΩ2 ¼ dϑ2 þ sin2 ϑdφ2. The spatial metric compo-

nents are related to the radial and angular components of a

densitized triad, Ex and Eφ, respectively, via

qxx ¼
ðEφÞ2
Ex

; qϑϑ ¼ Ex; ð35Þ

which, for the purpose of the present paper, may be

considered a part of a canonical transformation of the

phase space in metric variables. Extrinsic-curvature com-

ponents are then transformed to radial fields Kx and Kφ

such that

fKxðxÞ; ExðyÞg ¼ fKφðxÞ; EφðyÞg ¼ δðx − yÞ: ð36Þ

(We choose units such that 2G ¼ 1.) The geometrical

interpretation of Kx and Kφ follows from their equations

of motion, generated by the Hamiltonian and diffeomor-

phism constraints,

H½N� ¼
Z

dxN

� ððExÞ0Þ2
8

ffiffiffiffiffiffiffiffi
jExj

p
Eφ

−
Eφ

2
ffiffiffiffiffiffiffiffi
jExj

p

−
EφK2

φ

2
ffiffiffiffiffiffiffiffi
jExj

p − 2Kφ

ffiffiffiffiffiffiffiffi
jExj

p
Kx

−

ffiffiffiffiffiffiffiffi
jExj

p
ðExÞ0ðEφÞ0

2ðEφÞ2 þ
ffiffiffiffiffiffiffiffi
jExj

p
ðExÞ00

2Eφ

�
; ð37Þ

and

Hr½Nr� ¼
Z

dxNrðK0
φE

φ − KxðExÞ0Þ; ð38Þ

where the primes are radial derivatives.

The hypersurface-deformation brackets in this case are

fHr½Nr�; Hr½Mr�g ¼ Hr½NrðMrÞ0 −MrðNrÞ0�; ð39Þ

fH½N�; Hr½Mr�g ¼ −H½MrN0�; ð40Þ

fH½N�; H½M�g ¼ Hr½qxxðNM0 − N0MÞ� ð41Þ

with the structure function qxx ¼ Ex=ðEφÞ2, which indeed

follows from Poisson brackets of the constraints for phase-

space independent N and Mr. The structure function

determines off-shell gauge transformations for lapse and

shift as

δϵN ¼ ϵ̇0 þ ϵrN0 − Nrðϵ0Þ0; ð42Þ

δϵN
r ¼ ϵ̇rþ ϵrðNrÞ0−NrðϵrÞ0þqxxðϵ0N0−Nðϵ0Þ0Þ: ð43Þ

Condition (14) for the covariance of the metric is

satisfied, and the gauge generator functions are related

to the two-component vector generator of infinitesimal

diffeomorphisms by

ξμ ¼ ϵ0nμ þ ϵrsμ ¼ ξttμ þ ξrsμ ð44Þ
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with components

ξt ¼ ϵ0

N
; ξr ¼ ϵr −

ϵ0

N
Nr: ð45Þ

B. Modified spherically symmetric theory

We consider modifications to the spherically symmetric

theory with canonical variables ðKφ; E
φÞ and ðKx; E

xÞ. If
we modify the Hamiltonian constraint, then the brackets

(39)–(41) determine the emergent radial spatial metric via

q̃xx ¼ ðq̃xxÞ−1 if the modified structure function q̃xx is

invertible everywhere, and therefore positive definite. The

angular component of the metric q̃ϑϑ cannot be determined

in this way because it does not appear in the classical

brackets. We will therefore keep it unmodified in the

present section. The emergent space-time line element is

then given by

ds2 ¼ −N2dt2 þ q̃xxðdxþ NrdtÞ2 þ ExdΩ2 ð46Þ

if q̃xx > 0 is strictly positive. If q̃xx is not positive definite,
then we define the emergent line element as

ds2 ¼ −sgnðq̃xxÞN2dt2 þ ˜̃qxxðdxþ NrdtÞ2 þ ExdΩ2 ð47Þ

with ˜̃qxx ¼ jq̃xxj−1, choosing the second option of Sec. II C
in order to avoid a distinguished role played by the radial

direction in space-time signature. This choice is determined

by our decision to keep qϑϑ unmodified.

Another immediate implication of this decision is that

qϑϑ ¼ Ex is not a composite field in the emergent line

element. As in our general discussion, we therefore con-

clude that modified constraints cannot depend on spatial

derivatives of the variable Kx canonically conjugate to Ex:

The covariance condition (31), evaluated for the angular

component of the metric, implies

∂H̃

∂K0
x

����
O:S:

¼ ∂H̃

∂K00
x

����
O:S:

¼ � � � ¼ 0; ð48Þ

using δϵ0E
x ¼ −δH̃½ϵ0�=δKx.

Radial derivatives of Kx in H̃ can be consistent with the

covariance condition only if one considers a more general

emergent angular metric component q̃ϑϑ that depends not

only on Ex but also on other phase-space variables such as

extrinsic curvature. Within spherically symmetric models, a

choice of q̃ϑϑ ≠ Ex could therefore be justified if one would

like to include a specific term, for instance with spatial

derivatives of Kx, in a modified Hamiltonian constraint.

Such terms have been considered in [30] but without

finding a closed version of the modified constraints.

Alternatively, a modified angular metric could potentially

be determined by constraint brackets if they are derived

from the spherical reduction of a consistently modified full

theory, or from a model system with less symmetry than

spherical models. We will leave these possibilities for

future research.

The radial component of the covariance condition takes

the form

∂ðδϵ0 q̃xxÞ
∂ðϵ0Þ0

����
O:S:

¼ ∂ðδϵ0 q̃xxÞ
∂ðϵ0Þ00

����
O:S:

¼ � � � ¼ 0: ð49Þ

Since q̃xx, like qxx itself in a triad formulation, is a

composite field, this condition is more complicated than

the angular version (48). Wewill consider specific modified

constraints and their structure functions in our evaluations

of this condition.

A direct application of the covariance condition (49) to

the emergent space-times considered in [15,22] confirms

that these two models are both covariant. The space-times

proposed in several other works, among them [13,19], can

be shown not to satisfy covariance, even though the

underlying modified constraints are first class and have

constraint brackets of hypersurface-deformation form. In

the next subsection we construct a new example by using

phase-space dependent gauge generator functions, as per-

formed in a different way in [18,19].

C. Linear combination of constraints

with phase-space dependence

We have now specified conditions for general covariance

of an emergent line element determined by the structure

functions of hypersurface-deformation brackets. As a first

application, we can now test whether it is possible, at least

in spherically symmetric models, to construct modified

gravity theories by using different versions of phase-space

dependent lapse and shift in such a way that the structure

function no longer agrees with a basic phase-space variable.

From the point of view of a canonical gravity theory,

phase-space dependent lapse and shift matter because they

imply additional terms in off-shell gauge transformations.

Consider two phase space functions Q and B, and a lapse

function N that is phase-space independent. The gauge

transformation of Q generated by the Hamiltonian con-

straint H with gauge function BN instead of N is given by

fQ;H½BN�g ¼
Z

dyfQ;HðyÞBðyÞgNðyÞ

¼
Z

dyðfQ;HðyÞgBðyÞ

þ fQ;BðyÞgHðyÞÞNðyÞ ð50Þ

with a new term fQ;Bg ≠ 0. While this new term is

multiplied by HðyÞ and therefore disappears on shell, it

changes the form of off-shell gauge transformations. Off-

shell gauge transformations, applied to the constraints

themselves, are relevant for properties of hypersurface-

deformation brackets and may contribute to their structure
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functions and thereby to emergent line elements. Our new

methods from the previous section bring us in a position to

evaluate these implications.

For the sake of simplicity, we will implement phase-

space dependent lapse and shift in a way that does not

change spatial diffeomorphisms. Only the Hamiltonian

constraint will then have a phase-space dependent multi-

plier. As a generalization of (50), in addition to replacing N
with BN we may also add a contribution from the diffeo-

morphism constraint to the new normal deformation.

Formally, we may arrive at such linear combinations by

the substitution

N → BN; Nr
→ AN þ Nr ð51Þ

in the original constraints with phase-space independent N
and Nr. The original constraints obey the brackets (39),

while phase-space dependent A and B imply additional

terms in the brackets of Hr½Nr� with a new Hamiltonian

constraint

HðnewÞ½N� ¼ H½BN� þHr½AN� ð52Þ

derived from the complete Hamiltonian

H½BN; AN þ Nr� ¼ H½BN� þHr½AN� þHr½Nr� ð53Þ

after the substitution (51), collecting all N-dependent terms

in the definition of HðnewÞ½N�. This procedure of imple-

menting a phase-space dependent linear combination of the

constraints follows a construction proposed in [18,19] that

allows one to eliminate structure functions. Off-shell

consistency conditions and covariance, however, had not

been considered in these papers, which is made more

difficult, if not impossible, by the very act of eliminating

the structure function that determines consistent space-time

structures. In the present paper we are not interested

specifically in eliminating structure functions, but our

methods are general enough to analyze covariance also

in this context. We will briefly return to this question after

our derivation of general consequences of phase-space

dependent linear combinations.

In general, the off-shell Poisson brackets of HðnewÞ½N�
and Hr½Nr� are not of the form (39). The existence of a

covariant emergent line element is therefore not guaran-

teed. We will now use our methods from the previous

section to derive new results that tell us under which

conditions on A and B a covariant emergent line element

exists, based on (48) and (49).

1. Anomaly-freedom and the covariance condition

We now consider the same canonical variables ðKφ; E
φÞ

and ðKx; E
xÞ as well as the diffeomorphism constraint Hr

from (38) as used in spherically symmetric gravity. Our

derivations in this subsection are general enough to allow

for a generic initial Hamiltonian constraint HðoldÞ that

could, for instance, correspond to a dilaton gravity model.

We will then implement a phase-space dependent linear

transformation of the form just described, replacing HðoldÞ

with HðnewÞ defined as in (52). Because HðoldÞ and HðnewÞ

(before smearing) are densities of weight 1 and Hr is a

density of weight 2, it follows that B has density weight 0

and that A has density weight −1.

By construction, the gauge transformations δ
ðnewÞ
ϵ gen-

erated by the new constraint (52) are equivalent to a

combination of gauge transformations generated by the

old constraint and the diffeomorphism constraint, with

partially phase-space dependent generators:

δ
ðnewÞ
ϵ ≡ δ

ðnewÞ
ϵ0;ϵr

¼ δ
ðoldÞ
Bϵ0;Aϵ0þϵr

: ð54Þ

In order to highlight new terms implied by phase-space

dependent multipliers, we define for label=“new” and

label=“old” the contribution

=δ
ðlabelÞ
F0ϵ

0;Frϵ
rQ≡

Z
dyfQ;HðlabelÞðyÞgF0ðyÞϵ0ðyÞ

þ
Z

dyfQ;HrðyÞgFrðyÞϵ0ðyÞ ð55Þ

to normal gauge transformations, where ϵ0 and ϵr are

phase-space independent, while Q, F0, and Fr are phase-

space functions. Assuming that we already know the gauge

transformations generated by the old constraints, we can

then write the new transformations as

δ
ðnewÞ
ϵ QðxÞ ¼ =δ

ðoldÞ
Bϵ0;Aϵ0þϵr

QðxÞ
þHðoldÞ½fQðxÞ; Bgϵ0 þ fQðxÞ; Agϵr�

þH
ðoldÞ
r ½fQðxÞ; Agϵ0�: ð56Þ

We begin with the condition that the bracket (40) should

be reobtained for HðnewÞ and Hr if the new constraints

correspond to a realization of hypersurface deformations.

A direct calculation shows

fHðnewÞ½N�;Hr½Mr�g

¼−HðnewÞ½MrN0� þHr½ðδðoldÞ0;MrAÞN − ðA0Mr−AðMrÞ0ÞN�

þHðoldÞ½ðδðoldÞ
0;MrBÞN −B0MrN�: ð57Þ

For this to be of the hypersurface deformation form, we

have the conditions

δ
ðoldÞ
0;MrA ¼ MrA0 − AðMrÞ0; ð58Þ

δ
ðoldÞ
0;MrB ¼ B0Mr: ð59Þ
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which are satisfied provided B is of density weight zero and A of density weight −1.

The bracket of the new Hamiltonian constraint with itself contains several terms:

fHðnewÞ½N�; HðnewÞ½M�g ¼
Z

dxdyNðxÞMðyÞðfHðoldÞðxÞ; HðoldÞðyÞgBðxÞBðyÞ þ fBðxÞ; BðyÞgHðoldÞðxÞHðoldÞðyÞ

þ ðfBðxÞ; HðoldÞðyÞgHðoldÞðxÞBðyÞ − ðN ↔ MÞÞ
þ fHrðxÞ; HrðyÞgAðxÞAðyÞ þ fAðxÞ; AðyÞgHrðxÞHrðyÞ
þ ðfAðxÞ; HrðyÞgHrðxÞAðyÞ − ðN ↔ MÞÞ
þ ðfHrðxÞ; HðoldÞðyÞgAðxÞBðyÞ þ fAðxÞ; HðoldÞðyÞgHrðxÞBðyÞ − ðN ↔ MÞÞ
þ ðfBðxÞ; HrðyÞgHðxÞAðyÞ þ fAðxÞ; BðyÞgHrðxÞHðoldÞðyÞ − ðN ↔ MÞÞÞ: ð60Þ

The first term contains the old bracket fHðoldÞðxÞ; HðoldÞðyÞg for which we can use the hypersurface-deformation result, but

there are several additional terms which can be written as

fHðnewÞ½N�; HðnewÞ½M�g ¼ Hr½B2qxxðoldÞðNM0 −MN0Þ þ ð=δðoldÞBM;0AÞN − ð=δðoldÞBN;0AÞM�

þ
Z

dxdyðfBðxÞ; AðyÞgNðxÞHðoldÞðxÞMðyÞHrðyÞ − ðN ↔ MÞÞ

þ
Z

dxdyfAðxÞ; AðyÞgNðxÞHrðxÞMðyÞHrðyÞ

þ
Z

dxdyfBðxÞ; BðyÞgNðxÞHðoldÞðxÞMðyÞHðoldÞðyÞ

þHðoldÞ½ð=δðoldÞBM;0BÞN − ð=δðoldÞBN;0BÞM þ ABðNM0 −MN0Þ�: ð61Þ

For this combination of terms to be of the required

hypersurface-deformation form, it must include Hr

smeared by qxxðnewÞðNM0 −MN0Þ where qxxðnewÞ ¼ q̃xx is

the new structure function on which we will impose our

condition for general covariance. These terms are contained

in the first three lines of (61).

The last two lines in (61) do not contain Hr as an overall

factor, and thus they must vanish. To simplify the analysis

we restrict ourselves to functions B of the form

B ¼ BðEx; Kφ; ðExÞ0=EφÞ: ð62Þ

All arguments of such a function are of density weight zero

and therefore fulfill the earlier condition (59) on B. With

this choice, the fourth line in (61) vanishes because of

antisymmetry of the Poisson bracket, and the last line can

be written as HðoldÞ½FðNM0 −MN0Þ�, where

F ¼ ∂

∂M0 ð=δ
ðoldÞ
BM;0BÞ þ AB ¼ B

�
∂

∂M0 ð=δ
ðoldÞ
M;0 BÞ þ A

�
ð63Þ

is independent of M and N. The condition F ¼ 0 directly

relates A to B via

A ¼ −
∂

∂M0 ðδ
ðoldÞ
M;0 BÞ; ð64Þ

which is of density weight −1, and therefore fulfills (58).

The first three lines in (61) then determine the

new structure function via fHðnewÞ½N�; HðnewÞ½M�g ¼
Hr½qxxðnewÞðNM0 − N0MÞ�:

qxxðnewÞ ¼ B2qxxðoldÞ þ B
∂

∂M0
1

ðδðoldÞM1;0
AÞ þ

�
∂B

∂Ex

∂A

∂K0
x

þ ∂B

∂Eφ

∂A

∂K0
φ

−
∂B

∂Kφ

∂A

∂ðEφÞ0 −
∂B

∂ðExÞ0
∂A

∂Kx

�
HðoldÞ

þ 1

2

�
∂A

∂Ex

∂A

∂K0
x

þ ∂A

∂Eφ

∂A

∂K0
φ

−
∂A

∂Kx

∂A

∂ðExÞ0 −
∂A

∂Kφ

∂A

∂ðEφÞ0
�
Hr; ð65Þ
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where we have neglected possible second-order derivative

terms in A, for which a straightforward extension of the

present analysis would be needed. The covariance condition

(49) applied to the structure function (65) takes the form

∂

∂ðϵ0Þ0 δ
ðnewÞ
ϵ0

qxxðnewÞ

���
O:S:

¼ ∂

∂ðϵ0Þ00 δ
ðnewÞ
ϵ0

qxxðnewÞ

���
O:S:

¼ � � � ¼ 0:

ð66Þ

2. Constraints of the spherically symmetric theory

Using the Hamiltonian constraints, (37), and the classical

structure function, qxxðoldÞ ¼ Ex=ðEφÞ2, the anomaly-free

linear combination of the constraints of the form (52) is

obtained from (62) and (64):

A ¼ −

ffiffiffiffiffiffi
Ex

p
ðExÞ0

2ðEφÞ2
∂B

∂Kφ

− 2Kφ

ffiffiffiffiffiffi
Ex

p ∂B

∂ðExÞ0 : ð67Þ

The structure function (65) of the resulting anomaly-free

brackets of hypersurface-deformation form then equals

qxxðnewÞ ¼
Ex

ðEφÞ2B
2 −

KφE
x

ðEφÞ2B
∂B

∂Kφ

−

� ffiffiffiffiffiffi
Ex

p
ðExÞ0

2ðEφÞ2
�

2

B
∂
2B

ð∂KφÞ2

þExðExÞ0
ðEφÞ2 B

∂B

∂ðExÞ0 þ ð2Kφ

ffiffiffiffiffiffi
Ex

p
Þ2B ∂

2B

ð∂ðExÞ0Þ2

þ 2KφE
xðExÞ0

ðEφÞ2 B
∂
2B

∂Kφ∂ðExÞ0 : ð68Þ

[The second and third line of (65) vanish identically in the

present case.]

The covariance condition (66) requires that

16Kφð3Kφ∂zBð4Kφ∂
2
zBþ ∂Kφ

BÞ þ BðKφð4Kφ∂
3
zBþ 3∂Kφ

∂zBÞ − 3∂zBÞÞ
þ 12z½Kφ∂Kφ

Bð4Kφ∂
2
zBþ ∂Kφ

BÞ þ 4Kφ∂zBð∂zBþ 2Kφ∂Kφ
∂zBÞ þ BðKφð4∂2zBþ 4Kφ∂Kφ

∂
2
zBþ ∂

2

Kφ
BÞ − ∂Kφ

BÞ�
þ 12z2½∂Kφ

Bð∂zBþ 2Kφ∂Kφ
∂zBÞ þ Kφ∂zB∂

2

Kφ
Bþ Bð∂Kφ

∂zBþ Kφ∂
2

Kφ
∂zBÞ� þ z3½3∂Kφ

B∂2Kφ
Bþ B∂3Kφ

B� ¼ 0; ð69Þ

where z ¼ ðExÞ0=Eφ. If we further simplify the form of B to

B ¼ BðKφ; E
xÞ, the long condition (69) reduces to two

shorter equations for B:

Kφ

�
∂B

∂Kφ

�
2

þ B

�
Kφ

∂
2B

ð∂KφÞ2
−

∂B

∂Kφ

�
¼ 0; ð70Þ

B
∂
3B

ð∂KφÞ3
þ 3

∂B

∂Kφ

∂
2B

ð∂KφÞ2
¼ 0: ð71Þ

These equations have the general solutions B ¼

c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � K2

φ

q
and B ¼ c̃1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̃2 � K2

φ þ c̃3Kφ

q
, respectively,

where ci and c̃i are free functions of Ex. Consistency

between the two solutions yields

BsðKφ; E
xÞ ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sλ2K2

φ

q
; ð72Þ

where s ¼ �1, μ ¼ μðExÞ, λ ¼ λðExÞ. This result

implies

As ¼ μ

ffiffiffiffiffiffi
Ex

p
ðExÞ0

2ðEφÞ2
sλ2Kφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sλ2K2

φ

q ð73Þ

via (67), and

qxxðnewÞ ¼ μ2
�
1þ sλ2

1 − sλ2K2
φ

�ðExÞ0
2Eφ

�
2
�

Ex

ðEφÞ2 ð74Þ

follows from (68). The classical constraint and structure

function are recovered in the limit λ → 0, μ → 1. The new

structure function is always positive for s ¼ þ1 and there-

fore directly determines the radial metric of an emergent line

element. (In this case, the modified theory is equivalent to

what has been analyzed in [16,17] for constant λ and a

specific μ depending on λ. In these papers, the covariance

conditions had been checked specifically for the modified

constraints without a general underlying theory.) For s ¼ −1

there may be regions of signature change.

The case of s ¼ 1 is interesting because the square root in

(72) then implies a bounded curvature component jKφj≤1=λ.

The modified Hamiltonian constraint in this case equals

HðnewÞ ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sλ2K2

φ

q ��
1

8
ffiffiffiffiffiffiffiffi
jExj

p
Eφ

− sλ2
ffiffiffiffiffiffi
Ex

p

2ðEφÞ2
KφKx

1 − sλ2K2
φ

�
ððExÞ0Þ2 −

ffiffiffiffiffiffiffiffi
jExj

p

2ðEφÞ2 ðE
xÞ0ðEφÞ0 þ

ffiffiffiffiffiffiffiffi
jExj

p

2Eφ
ðExÞ00

þ sλ2
ffiffiffiffiffiffi
Ex

p

2ðEφÞ2
EφKφ

1 − sλ2K2
φ

ðExÞ0K0
φ −

Eφ

2
ffiffiffiffiffiffiffiffi
jExj

p −
EφK2

φ

2
ffiffiffiffiffiffiffiffi
jExj

p − 2Kφ

ffiffiffiffiffiffiffiffi
jExj

p
Kx

�
: ð75Þ
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This constraint was first found in [14,15], up to a canonical

transformation

Kφ →

sinðλKφÞ
λ

; Eφ
→

Eφ

cosðλKφÞ
ð76Þ

(for constant λ) that preserves the diffeomorphism constraint.

The canonically transformed constraint equals

Hcc ¼ −μ

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

Ex

�
1þ sin2ðλKφÞ

λ2

�
þ 4Kx

sinð2λKφÞ
2λ

−
ððExÞ0Þ2
4Eφ

�
1

Ex
cos2ðλKφÞ −

Kx

Eφ
2λ sinð2λKφÞ

�

þ cos2ðλKφÞ
ðExÞ0ðEφÞ0
ðEφÞ2 − cos2ðλKφÞ

ðExÞ00
Eφ

�
: ð77Þ

The structure function (72) must then also be trans-

formed, yielding

qxxcc ¼ μ2cos2ðλKφÞ
�
1þ

�
λðExÞ0
2Eφ

�
2
�

Ex

ðEφÞ2 : ð78Þ

By construction, this function implies a covariant emergent

line element. Static space-time solutions of the dynamical

equations generated by the constraint (77) and the classical

diffeomorphism constraint have been studied in [16,17] for

μ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
, where covariance was also demonstrated

explicitly. In this space-time, the surface of maximum

curvature Kφ is a surface of reflection symmetry, as is

readily seen from (77) and (78).

Physical properties of this modified space-time are

independent of the canonical transformation because the

evaluations of dynamics and covariance are based com-

pletely on Poisson brackets. This observation makes it

clear that the curvature bound and the avoidance of the

classical singularity in [16] must be a consequence of the

phase-space dependent linear combination of hypersurface-

deformation generators, which can lead to modified space-

time solutions because it changes the emergent normal

direction.

These physical implications are independent of the use

of the canonical transformation or periodic functions

originally intended to model holonomies of loop quantum

gravity; they are more general properties of emergent

modified gravity. (The canonical transformation is non-

bijective, which has been argued in a different model to

allow new physical effects [31], but this possibility has

been ruled out by [32].) Nevertheless, the application of the

canonical transformation (77) has a technical advantage

because, by its nonbijective nature, the holonomylike

variables can be extended to both sides of the reflection-

symmetry surface. The constraint (75) diverges at the

maximum-curvature surface, λKφ → 1, while the constraint

(77) remains finite, H
ðnewÞ
cc → −μEφ=

ffiffiffiffiffiffi
Ex

p
as λKφ → π=2.

This behavior is possible because the nonbijective canoni-

cal transformation maps all finite values of Eφ to infinite

values at λKφ ¼ π=2, suppressing terms that originally

diverge as the maximum-curvature surface is approached.

The nonbijective nature of the canonical transformation

therefore does have an implication, but only on the

convenient parametrization of the surface and not on the

surrounding space-time regions where Eφ is finite in both

descriptions.

Our solution for s ¼ −1 has not been found before. It

may be transformed canonically as in the s ¼ þ1 case,

using hyperbolic instead of trigonometric functions. There

is no curvature bound in this case, but the possibility of

signature change might turn it into an interesting model

system. We leave a detailed analysis to future work.

D. Off-shell partial Abelianization

As another application of our general equations, we can

systematically rederive the partial Abelianization of spheri-

cally symmetric constraints from [18,19]. To this end, we

need to find a function B in (68) that eliminates the structure

function in an anomaly-free way: qxxðnewÞ ≡ qxxðAÞ ¼ 0.

According to (68), this is possible if

B ¼ KφBxðExÞ ð79Þ

with some function Bx that depends only on Ex, such that

A ¼ −

ffiffiffiffiffiffi
Ex

p
ðExÞ0

ðEφÞ2 Bx: ð80Þ

This solution of the Abelianization condition qxxðnewÞ ¼ 0 is

unique up to a choice of Bx ¼ BxðExÞ. The resulting

Abelianized Hamiltonian constraint equals

HðAÞ

Bx

¼
� ððExÞ0Þ2
8

ffiffiffiffiffiffiffiffi
jExj

p
Eφ

ð1þ 8ExKxÞ

−
Eφ

2
ffiffiffiffiffiffiffiffi
jExj

p ð1þ K2
φÞ − 2Kφ

ffiffiffiffiffiffiffiffi
jExj

p
Kx

−

ffiffiffiffiffiffiffiffi
jExj

p
ðExÞ0ðEφÞ0

2ðEφÞ2 þ
ffiffiffiffiffiffiffiffi
jExj

p
ðExÞ00

2Eφ

�
Kφ

−

ffiffiffiffiffiffi
Ex

p
ðExÞ0
Eφ

K0
φ: ð81Þ

Compared with the constructions in [18,19], our

results provide a local and off-shell pathway to partial

Abelianizations without the need of an additional integra-

tion by parts in the Hamiltonian constraint, integrating the

lapse function. Our method therefore supports one of the

motivations of [18,19], which is to simplify common

quantization procedures that are often untractable in the

presence of structure functions. The fully local construction
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given here provides further simplifications in a quantization

procedure that also aims to supply solutions of the

Abelianized theory with space-time interpretations.

However, space-time considerations require a transforma-

tion back to brackets of hypersurface-deformation form: A

vanishing structure function, as found in a partially

Abelianized theory, makes it impossible to interpret sol-

utions of the theory as emergent space-times because the

theory does not provide an unambiguous choice of qxxeff .
Formally, our covariance condition is trivially satisfied in

this case, but only because there is no emergent line

element to begin with.

Instead of using a full quantization right away, one

may begin with an analysis of modifications that are

sometimes necessary in certain quantization approaches,

such as “polymerization” or the substitution of periodic

functions for extrinsic-curvature components in models

of loop quantum gravity. To have a chance of being

covariant, such modifications must be compatible with

suitable corresponding modifications to the hypersurface-

deformation constraint (37), in such a way that the latter

still satisfies the covariance condition (49). If one is

interested in a space-time picture with an emergent line

element, this condition remains in place also for the

Abelian constraint (81).

As an example, we may use the constraint (77) and its

structure function (78), already modeling holonomy mod-

ifications, and then perform the partial Abelianization as

done above using (62), (64), and (65). Considering

B ¼ BðEx; KφÞ, the resulting Abelianized constraint is

H
ðAÞ
cc

Bx

¼ −

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

Ex

�
1þ sin2ðλKφÞ

λ2

�
tanðλKφÞ

λ
þ 4Kx

sin2ðλKφÞ
λ2

−
ððExÞ0Þ2

Eφ

�
1

4Ex

sinð2λKφÞ
2λ

−
Kx

Eφ
λ2

sin2ðλKφÞ
λ2

þ Kx

Eφ

�

þ secðλKφÞ
ðExÞ0
Eφ

�
sinðλKφÞ

λ

�0
þ sinð2λKφÞ

2λ

�ðExÞ0ðEφÞ0
ðEφÞ2 −

ðExÞ00
Eφ

��
; ð82Þ

which is again unique up to a choice of Bx ¼ BxðExÞ. This
constraint reintroduces the divergence at λKφ ¼ π=2 owing

to the function tanðλKφÞ. The appearance of tanðλKφÞ in
the first line and secðλKφÞ in the K0

φ term, complicates a

promotion of H
ðAÞ
cc to an operator and a corresponding

discussion of covariance at the full quantum level.

Another key difference between (82) and the

Abelianized constraint of [18,19] is the lack of Kx in the

latter, which facilitates loop quantization as no radial

holonomies are needed. However, imposing the covariance

condition, radial holonomy modifications are not allowed

in the present spherically reduced model, presenting an

ongoing challenge to a complete loop quantization of black

holes. To see this, we will analyze the general case of

modified Hamiltonian constraints in spherically symmetric

models, which may describe combinations of possible

covariant versions of holonomy modifications with phase-

space dependent linear combinations of hypersurface-

deformation generators.

IV. GENERAL MODIFIED

HAMILTONIAN CONSTRAINTS

In the preceding section we have demonstrated that

phase-space dependent linear combinations of the con-

straints can give rise to modified gravity theories. We used

several simplifying assumptions, such as in the limited

dependence of one of the linear coefficients, B, on the

phase-space fields, for this demonstration. In the present

section, we continue to work with the same models, given

by the phase space and diffeomorphism constraint of

spherical symmetry, but aim to derive a more general form

of modified Hamiltonian constraints consistent with gen-

eral covariance according to our new condition.

The results can be understood as modified theories of

gravity in which the Hamiltonian constraint may be subject

to a number of different modifications, motivated for

instance by canonical approaches to quantum gravity.

For full generality, one should then also allow for possible

phase-space dependent linear combinations with the diffeo-

morphism constraint since it is not certain that a theory of

quantum space-time would follow the classical separation

into tangential and normal deformations of spacelike

hypersurfaces. Such linear combinations also provide addi-

tional free functions compared with modifications of the

Hamiltonian constraint by itself. As we will demonstrate,

these free functions help to regain general covariance in an

emergent space-time description of modified constraints.

In this way, we consider general modifications to the

spherically symmetric theory with canonical variables

ðKφ; E
φÞ and ðKx; E

xÞ, without introducing any additional

degrees of freedom as they would be implied by higher time

derivatives in the action. We therefore explore possibilities

of modified gravity that do not require new degrees of

freedom, reducing the danger of instabilities that might

otherwise arise as in higher-curvature effective actions; see

for instance [33].

Once we modify the Hamiltonian constraint in a specific

way, the constraint brackets (39)–(41) determine the

radial metric component via q̃xx ¼ 1=jq̃xxj. As before,

the angular component of the metric cannot be determined

by the constraint brackets. For now, we include a generic
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expression q̃ϑϑ ¼ q̃ϑϑðExÞ for the modified angular com-

ponent. As before, the covariance condition for the angular

component of the emergent metric implies (48) and (49),

using δϵ0E
x ¼ −δH̃½ϵ0�=δKx.

The emergent space-time metric is then given by

ds2 ¼ −sgnðq̃xxÞN2dt2 þ jq̃xxjðdxþ NrdtÞ2

þ q̃ϑϑdΩ
2: ð83Þ

Since the sign of q̃ϑϑ is not strictly determined within a

spherically symmetric theory, we assume that this metric

component remains positive. The emergent space-time

line element then follows the second option presented in

Sec. II C, applied to the (1þ 1)-dimensional radial space-

time. In this way, the four-dimensional space-time line

element that includes the angular term does not have a

distinguished spatial direction based on signature.

A. Modified constraint brackets

We follow the procedure employed in [14,15], but

consider an expanded version of the Hamiltonian constraint

to include solutions not contained in these papers. We use

the general ansatz

H ¼ a0 þ ððExÞ0Þ2axx þ ððEφÞ0Þ2aφφ þ ðExÞ0ðEφÞ0axφ
þ ðExÞ00a2 þ ðK0

φÞ2bφφ þ ðKφÞ00b2 þ ðExÞ0K0
φcxφ

þ ðEφÞ0K0
φcφφ þ ðEφÞ00c2 ð84Þ

for our Hamiltonian constraint, where a0, aij, a2, bφφ, b2,

c2, cij are all functions of the phase space variables, but not

of their derivatives. (Here and from now on, we drop the

tilde on H with the understanding that we are dealing with

modified constraints.) We have included terms quadratic in

first-order radial derivatives and linear in second-order

radial derivatives of all the phase space variables, except of

Kx because this would break covariance as demanded by

(48). Terms linear inK0
φ, with coefficient cxφ or cφφ, may be

viewed as derivative corrections, or as contributions from

the diffeomorphism constraint in a phase-space dependent

linear combination with the Hamiltonian constraint.

Starting from this ansatz we will obtain the conditions

for it to satisfy the hypersurface-deformation brackets

(39)–(41), possibly with a modified structure function q̃xx.

1. fH;Hrg bracket

The bracket fH½N�; Hr½Nr�g can be written as

fH½N�; Hr½Nr�g ¼
Z

dxNr½NF 0 þ N0F 1 þ N00F 2� ð85Þ

using integration by parts to avoid derivatives of Nr.

For this result to match (40), we set F 1 ¼ F 2 ¼ 0

and F 1 þH ¼ 0. Since all the free functions in the

Hamiltonian constraint (84) are, by definition, independent

of derivatives of the phase space variables, any terms in the

equations implied by (85) that multiply different kinds of

derivatives must vanish independently.

For a generic Hamiltonian constraint as used here, there

is a rather large number of such equations; see Appendix B

for more details. They imply that the constraint must have

the form

H ¼ −
ffiffiffiffiffiffi
Ex

p g

2

�
EφA0 þ

ððExÞ0Þ2
Eφ

Axx þ
ðExÞ0ðEφÞ0
ðEφÞ2

−
ðExÞ00
Eφ

þ ðK0
φÞ2

Eφ
Bφφ þ

ðExÞ0K0
φ

Eφ
Cxφ

þ
�ðEφÞ0K0

φ

ðEφÞ2 −
ðKφÞ00
Eφ

�
Cφφ

�
; ð86Þ

where A0, Aij, Bφ, Cij, and g are free functions of Ex, Kφ,

and Kx=E
φ. (The function g has been factored out for

convenience.)

2. fH;Hg bracket

The bracket fH½N�; H½M�g can be written as

fH½N�; H½M�g ¼
Z

dx½ðNM0 −MN0ÞðG0 − G0
1
þ G2

00Þ

− ðNM000 −MN000ÞG2�; ð87Þ

where we used several integration by parts. Specific

expressions for G0, G1, and G2 can be obtained from an

explicit calculation of the Poisson bracket of two

Hamiltonian constraints. At this stage, they are quite long,

but some of the terms have direct implications that simplify

the allowed dependence of coefficients on phase-space

degrees of freedom. We will indicate the simplifying

implications first and then proceed to more compli-

cated terms.

For the bracket to match (41), we must set G2 ¼ 0 and

G≡ G0 − G0
1
¼ Hrq̃

xx for some function q̃xx of density

weight −2. The first one of these equations, collecting the

highest derivative terms, implies

Cφφg
2

Ex

4ðEφÞ3 ððE
xÞ0 þ K0

φCφφÞ ¼ 0; ð88Þ

which, for a nontrivial Hamiltonian constraint, is solved

only by Cφφ ¼ 0.

The second equation, G ¼ q̃xxHr for some q̃xx, can again
be separated into terms multiplying different derivatives of

the phase space variables. The terms

G ⊃ −
1

4
Exgð∂g=∂KxÞðExÞ000 þ GxK0

x þ GφðEφÞ0; ð89Þ

with
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Gx ¼ −
Eφ

Kx

Gφ ¼ g2Ex

4ðEφÞ2
∂
2A0

∂ðKx=E
φÞ2 ; ð90Þ

are the only ones that cannot contribute to the diffeo-

morphism constraint and must therefore vanish separately.

The first term in (89) immediately implies that g does not

depend onKx, and therefore it does not depend on E
φ either

because such a dependence could occur only in the

combination Kx=E
φ.

In the remaining terms of (89), Gx and Gφ are phase-

space functions that do not depend on spatial derivatives.

Since they appear in the bracket of two Hamiltonian

constraints via terms with only two spatial derivatives,

one in NM0 −MN0 and one in K0
x or ðEφÞ0, they can result

only from a Poisson bracket of the first term in (86),

proportional to EφA0, with some of the other terms. The

presence of ðExÞ00 in any Hamiltonian constraint that has the

correct classical limit implies that A0 can be at most linear

in Kx, as also seen directly from (90), such that any spatial

derivative of fA0; E
xg taken after integrating by parts no

longer produces terms with K0
x. To summarize this step, g

does not depend on Kx=E
φ and A0 is linear in Kx=E

φ:

g ¼ gðEx; KφÞ and A0 ¼ f0 þ
Kx

Eφ
f1 ð91Þ

where f0 and f1 are free functions of Ex and Kφ.

The remaining nonzero terms in G. They are of the form

G ¼ GφK0
φ þGxðExÞ0 þ ðFxφðKφÞ0 þ FxxðExÞ0ÞðExÞ00 þ ðFφφK0

φ þ Fx2φðExÞ0ÞK00
φ

þ ðGφφxðK0
φÞ2 þ G

xφ
x K0

φðExÞ0 þ Gx
xxððExÞ0Þ2ÞK0

x þ ðGφφ
φ ðK0

φÞ2 þG
φ
xφðExÞ0K0

φ þ GxxφððExÞ0Þ2ÞðEφÞ0

þGφφφðK0
φÞ3 þ G

φφ
x ðK0

φÞ2ðExÞ0 þ G
φ
xxððExÞ0Þ2K0

φ þ GxxxððExÞ0Þ3: ð92Þ

Explicit expressions for all coefficients are given in

Appendix C. All terms can in principle contribute to the

diffeomorphism constraint. It is therefore convenient to

rearrange the terms according to

G ¼ ðq̃0 þ q̃2xðExÞ00 þ q̃2φK
00
φ þ ðq̃1φxK0

φ þ q̃1
x
xðExÞ0ÞK0

x

þ ðq̃1φφK0
φ þ q̃1xφðExÞ0ÞðEφÞ0 þ q̃2φφðK0

φÞ2

þ q̃2xφðExÞ0K0
φ þ q̃2xxððExÞ0Þ2ÞHr; ð93Þ

where all the q coefficients contribute to the structure

function of the resulting hypersurface-deformation bracket.

In order to obtain the required factorization as a multiple

of the diffeomorphism constraint, the terms in G must

satisfy the relations

Gφ

Kφ

¼ −
Gx

Kx

; ð94Þ

F
φ
x

Eφ
¼ −

Fxx

Kx

; ð95Þ

Fφφ

Eφ
¼ −

F
2φ
x

Kx

; ð96Þ

Gφφx

Eφ
¼ −a

G
xφ
x

Kx

; ð97Þ

ð1 − aÞG
xφ
x

Eφ
¼ −

Gx
xx

Kx

; ð98Þ

G
φφ
φ

Eφ
¼ −b

G
φ
xφ

Kx

; ð99Þ

ð1 − bÞG
φ
xφ

Eφ
¼ −

Gxxφ

Kx

; ð100Þ

Gφφφ

Eφ
¼ −a1

G
φφ
x

Kx

; ð101Þ

b̃1
G

φ
xx

Eφ
¼ −

Gxxx

Kx

; ð102Þ

ð1 − a1Þ
G

φφ
x

Eφ
¼ −ð1 − b̃1Þ

G
φ
xx

Kx

; ð103Þ

where a, a1, and b̃1 are arbitrary functions of Ex, Kφ, and

Kx=E
φ. The first three equations can be solved for some of

the coefficients in (86):

Bφφ ¼ 1

z

1

2f0

�
∂f0

∂Kφ

þ 2f0
∂ ln g

∂Kφ

−
∂f1

∂Ex
þ 2f1f2

�

þ 1

z2
ðAxx − f2Þ; ð104Þ

Cxφ ¼ −
∂ ln g

∂Kφ

−
2

z
ðAxx − f2Þ; ð105Þ

where z ¼ Kx=E
φ and f2 ¼ f2ðEx; KφÞ. The remaining

relations remain quite long and complicated.

The structure function is now given by

q̃xx ¼ q0 þ q2x þ q2φ þ q1
x þ q1φ þ q3 ð106Þ
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with

q0 ¼
Gφ

Eφ
¼ Exg2

4ðEφÞ2
�
2f0Bφφ − f1Cxφ þ

∂f1

∂Kφ

�
; ð107Þ

q2x ¼
F
φ
x

Eφ
ðExÞ00 ¼ Exg2ðExÞ00

4ðEφÞ4z2
∂Cxφ

∂z
; ð108Þ

q2φ ¼ Fφφ

Eφ
K00

φ ¼ Exg2K00
φ

2ðEφÞ4
∂Bφφ

∂z
; ð109Þ

q1
x ¼

�
Gφφx

Eφ
K0

φ −
Gx

xx

Kx

ðExÞ0
�
K0

x;

¼ Exg2K0
x

2ðEφÞ6z4
�
Axx − f2 − z

∂Axx

∂z
þ z2

2

∂
2Axx

∂z2

�

×

�
a

1 − a
EφK0

φ − KxðExÞ0
�
; ð110Þ

q1φ ¼
�
G

φφ
φ

Eφ
K0

φ −
Gxxφ

Kx

ðExÞ0
�
ðEφÞ0

¼ Exg2ðEφÞ0
4ðEφÞ6z

∂
2Axx

∂z2

�
b

1 − b
EφK0

φ − KxðExÞ0
�
; ð111Þ

and

q3 ¼
Gφφφ

Eφ
ðK0

φÞ2 − b1
G

φ
xx

Kx

ðExÞ0K0
φ −

Gxxx

Kx

ððExÞ0Þ2;

¼ −
Exg2

2ðEφÞ6z4
�
AxxðAxx − f2Þ −

∂

∂Ex
ðAxx − f2Þ þ

z2

2

∂ ln g

∂Kφ

∂Axx

∂z

þ z

2

�
∂ ln g

∂Kφ

∂ ln g

∂Ex
−
1

g

∂
2g

∂Kφ∂E
x
þ ∂

2Axx

∂Ex
∂z

− 2f2
∂Axx

∂z
−
∂Axx

∂Kφ

��

×

�
a1

1 − a1

1 − b̃1

b̃1
ðEφÞ2ðK0

φÞ2 −
1 − b̃1

b̃1
EφKxK

0
φðExÞ0 þ K2

xððExÞ0Þ2
�
: ð112Þ

B. Covariance condition

Now that we have the structure function (106), we can

apply the covariance condition (49) which in our case is

nontrivial up to the third-order derivative of the gauge

function.

The covariance condition must be evaluated on shell. In

particular, one has to pay attention to the on-shell property

Hr ¼ 0, which implies EφK0
φ ¼ KxðExÞ0 and can mix some

derivative terms that were independent in the off-shell

treatment so far. In order to solve all the covariance

conditions, it is best to focus first on the highest derivative

terms of each one.

The highest-order derivative term of the first covariance

condition is

∂ðδϵqxxÞ
∂ðϵ0Þ0

����
O:S:

⊃
g3ðExÞ3=2

8ðEφÞ3K3
xf0

ðExÞ000

×

�
2gf2ð2f0 − zf1Þ− 4f0gAxx − 2f0z

∂g

∂Kφ

þ gz

�
2f0

∂Axx

∂z
þ ∂f1

∂Ex
−
∂f0

∂Kφ

��
: ð113Þ

The on-shell condition does not affect this equation, which

has the solution

Axx ¼ f2 −
z

2f0

�
2f0

∂ ln g

∂Kφ

þ ∂f0

∂Kφ

−
∂f1

∂Ex
þ 2f1f2

�

þ z2f3 ð114Þ

where f3 ¼ f3ðEx; KφÞ. With this result for Axx, the third

covariance condition,

∂ðδϵqxxÞ
∂ðϵ0Þ000 ¼ g3ðExÞ3=2

4ðEφÞ2K4
x

�
−ðExÞ0

�
2zAxx − 2zf2 þ z2

∂ ln g

∂Kφ

þ z2

2f0

�
2f1f2 þ

∂f0

∂Kφ

−
∂f1

∂Ex

�
− z2

∂Axx

∂z

�

þ
�

a

1 − a
K0

φ − zðExÞ0
�

×

�
Axx − f2 − z

∂Axx

∂z
þ z2

2

∂
2Axx

ð∂zÞ2
��

; ð115Þ

vanishes. The highest-order derivative term of the second

covariance condition is

∂ðδϵqxxÞ
∂ðϵ0Þ00 ⊃

gðExÞ3=2
Eφ

ðEφK00
φ − KxðExÞ00Þf3; ð116Þ

and we conclude that f3 ¼ 0.

MARTIN BOJOWALD and ERICK I. DUQUE PHYS. REV. D 108, 084066 (2023)

084066-18



We now go back to some of the anomaly-freedom

equations. We note that we can write Eq. (102) in powers

of z, which terminates at second order because of the

quadratic dependence on Kx. The nonvanishing powers are

zG
φ
xx ¼ zG

φð1Þ
xx ð117Þ

and

Gxxx ¼ G
ð0Þ
xxx þ zG

ð1Þ
xxx; ð118Þ

where all G
φ
xx

ðiÞ and G
ðiÞ
xxx are independent of z. Thus, the

anomaly-freedom equation (102) requires eb1 ¼ 1 and

G
ð0Þ
xxx ¼ 0, which in turn implies

0 ¼ f2
0

�
∂

∂Ex

�
∂ ln g

∂Kφ

− Cxφ

�
þ 2

∂f2

∂Kφ

�
: ð119Þ

We note that with b̃1 ¼ 1, the function a1 drops out of all
equations. Using these results we obtain Bφφ ¼ 0, and the

anomaly-freedom equations (97)–(101) and (103) are

automatically satisfied.

The remaining equations are given by lower-order

derivatives of Ex in

∂

∂ðϵ0Þ0 δϵq
xxjO:S: ¼ 0;

which has only two nonzero terms, with ðExÞ0 and with

ððExÞ0Þ3, that must vanish separately. The vanishing of the

ðExÞ0 term implies

0 ¼ ∂
2 ln g

ð∂KφÞ2
f1 − 2

∂ ln g

∂Kφ

∂f1

∂Kφ

−
∂
2f1

ð∂KφÞ2
−
∂ðf1CxφÞ
∂Kφ

þ 3f1

�
C2
xφ þ

∂Cxφ

∂Kφ

þ ∂ ln g

∂Kφ

Cxφ

�
; ð120Þ

and the vanishing of the ððExÞ0Þ3 term implies

0 ¼
�
∂ ln g

∂Kφ

þ 3Cxφ

��
∂
2 ln g

ð∂KφÞ2
þC2

xφ þ
∂Cxφ

∂Kφ

þ ∂ ln g

∂Kφ

Cxφ

�

þ ∂

∂Kφ

�
∂
2 ln g

∂K2
φ

þC2
xφ þ

∂Cxφ

∂Kφ

þ ∂ ln g

∂Kφ

Cxφ

�
: ð121Þ

This exhausts all the anomaly-freedom equations

(94)–(103). Using these values and condition (119), one

can check that the covariance condition ð∂δϵqxx=
∂ðϵ0Þ00ÞjO:S: ¼ 0 is automatically satisfied.

To summarize, the general form of an anomaly-free and

covariant Hamiltonian constraint is

H ¼ −
ffiffiffiffiffiffi
Ex

p g

2

�
Eφ

�
f0 þ

Kx

Eφ
f1

�

þ ððExÞ0Þ2
Eφ

�
f2 −

1

2

Kx

Eφ

�
∂ ln g

∂Kφ

þ Cxφ

��

þ ðExÞ0ðEφÞ0
ðEφÞ2 −

ðExÞ00
Eφ

þ ðExÞ0K0
φ

Eφ
Cxφ

�
; ð122Þ

where Cxφ is given by

Cxφ ¼ 1

f0

�
f0

∂ ln g

∂Kφ

þ ∂f0
∂Kφ

−
∂f1
∂Ex

þ 2f1f2

�
; ð123Þ

and g, f0, f1, and f2 are functions of E
x and Kφ that must

satisfy Eqs. (119)–(121). The structure function is

q̃xx ¼
�
∂f1

∂Kφ

− f1Cxφ −
1

2

�
∂
2 ln g

ð∂KφÞ2
þ C2

xφ þ
∂Cxφ

∂Kφ

þ ∂ ln g

∂Kφ

Cxφ

��ðExÞ0
Eφ

�
2
�
g2

4

Ex

ðEφÞ2 : ð124Þ

Unlike the structure function found in the preceding

section by using only a phase-space dependent linear

combination of the constraints but no further modification,

this structure function is not guaranteed to be positive.

Suitable sign choices are therefore necessary when using

the inverse of this structure function in an emergent space-

time line element, as discussed in Sec. II C.

C. Applying canonical transformations

By directly solving the required conditions, it can be

shown that the set of canonical transformations preserving

the diffeomorphism constraint (38) and leaving the variable

Ex invariant must have the form

Kφ ¼ fcðẼx; K̃φÞ; Eφ ¼ Ẽφ

�
∂fc

∂K̃φ

�
−1

;

Kx ¼ K̃x þ Ẽφ
∂fc

∂Ẽx

�
∂fc

∂K̃φ

�
−1

; Ex ¼ Ẽx; ð125Þ

where the new variables are written with a tilde. This

canonical transformation can be generalized by noting that

the transformation

Kx ¼
∂ðα2ExÞ
∂Ex

K̃x; Ẽx ¼ α2Ex ð126Þ

is canonical and preserves the diffeomorphism constraint

too, where α ¼ αðExÞ. We will be using a combination of

these as a subset of all diffeomorphism-preserving canoni-

cal transformations:
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Kφ ¼ fcðEx; K̃φÞ;

Eφ ¼ Ẽφ

�
∂fc

∂K̃φ

�
−1

;

Kx ¼
∂ðα2cExÞ
∂Ex

K̃x þ Ẽφ
∂fc

∂Ex

�
∂fc

∂K̃φ

�
−1

;

Ẽx ¼ α2cðExÞEx; ð127Þ

with type-3 generating function

F3ðEx; Eφ; K̃φ; K̃xÞ
¼ −fcðEx; K̃φÞEφ − α2cðExÞExK̃x: ð128Þ

Let us now consider the Hamiltonian constraint (122)

and perform a canonical transformation of the form (127).

By focusing on the ðExÞ0ðEφÞ0 and ðExÞ00 terms, we see that

the global factor transforms from gðEx; KφÞ to gccðEx; KφÞ,
where

gccðEx; KφÞ ¼ gðoldÞðEx=α2c; fcÞ
�
1 −

∂ ln α2c

∂Ex

�
1

α3c

∂fc

∂Kφ

:

ð129Þ

We then see that the CxφðEx; KφÞ coefficient transforms to

Ccc
xφðEx; KφÞ ¼ −

�
∂fc

∂Kφ

�
−1 ∂

2fc

∂K2
φ

þ ∂fc

∂Kφ

C
ðoldÞ
xφ ðEx=α2c; fcðEx; KφÞÞ: ð130Þ

By setting fc ¼ fcðKφÞ and αc ¼ 1, it is therefore possible

to find, at least locally in phase space, a diffeomorphism-

preserving canonical transformation by solving an ordinary

differential equation, such that Ccc
xφ ¼ 0. After such a

canonical transformation, the Hamiltonian constraint and

the structure function simplify by setting Cxφ ¼ 0.

Moreover, any modified angular component of the form

q̃ϑϑ ¼ α−2c ðExÞEx can be mapped to its classical form,

q̃ϑϑ → Ex, by using the canonical transformation (127)

with fc ¼ Kφ and the necessary αc, which preserves

Cxφ ¼ 0. With these choices, the residual canonical trans-

formation has the form

Kφ → fxKφ− μ̃φ; Eφ
→

Eφ

fx
;

Kx →KxþEφKφ

�
∂ lnfx

∂Ex
−

1

fx

∂μ̃φ

∂Ex

�
; Ex

→Ex; ð131Þ

where fx ¼ fxðExÞ and μ̃φ ¼ μ̃φðExÞ.
Because the anomaly-freedom equations and the covari-

ance condition are all based on Poisson brackets, canonical

transformations leave them form invariant. Therefore,

Cxφ ¼ 0 becomes a new condition on the free functions

through (123), greatly simplifying the remaining equations.

This observation allows us to obtain exact solutions to all

anomaly-freedom and covariance conditions as follows:

We first solve Eq. (121) for g, then solve Eq. (120) for f1,
Eq. (119) for f2, and Eq. (123), set equal to zero, for f0.
For future convenience we write the residual canonical

transformation of all terms in the Hamiltonian constraint

according to (131) as

gcc ¼ gðEx; fxKφ − μ̃φÞfx; ð132Þ

gccf
cc
0
¼gðEx;fxKφ− μ̃φÞ

�
f0ðEx;fxKφ− μ̃φÞ

fx

þ
�
∂lnfx

∂Ex
−
1

fx

∂μ̃φ

∂Ex

�
Kφf1ðEx;fxKφ− μ̃φ

��
; ð133Þ

gccf
cc
1
¼ gðEx; fxKφ − μ̃φÞf1ðEx; fxKφ − μ̃φÞ; ð134Þ

gccf
cc
2
¼ gðEx; fxKφ − μ̃φÞfx

�
f2ðEx; fxKφ − μ̃φÞ

− Kφ

�
∂ ln fx

∂Ex
−

1

fx

∂μ̃φ

∂Ex

�
1

2

∂ ln gðEx; fxKφ − μ̃φÞ
∂Kφ

−

�
∂ ln fx

∂Ex
−

1

fx

∂μ̃φ

∂Ex

��
: ð135Þ

D. Classical limit

When solving the anomaly-freedom and covariance

equations as outlined above with Cxφ ¼ 0 we should keep

in mind that the classical constraint, (37), must be recov-

ered in an appropriate limit. The general solution to (121) is

given by

g ¼ λ0 cos
2 ðλðKφ þ μφÞÞ; ð136Þ

where λ0, λ, and μφ are free functions of E
x, and its classical

limit is g → 1 as λ0 → 1, λ → 0. Using this, the general

solution to (120), compatible with the classical limit, is

gf1 ¼ 4λ0

�
cf

sinð2λðKφ þ μφÞÞ
2λ

þ q cosð2λðKφ þ μφÞÞ
�
;

ð137Þ

where cf and q are free functions of Ex, and its classical

limit is f1 → 4Kφ as λ0; cf → 1 and λ; μφ; q → 0. The

general solution to (119), compatible with the classical

limit, is then

f2 ¼ −
α2

4Ex
þ sin ð2λðKφ þ μφÞÞ
2λcos2ðλðKφ þ μφÞÞ

�
λ
∂ðλμφÞ
∂Ex

þ λKφ

∂λ

∂Ex

�
;

ð138Þ
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where α2 ¼ α2ðExÞ, and its classical limit is f2 → −1=ð4ExÞ as α2 → 1. The general solution to (123) equals

gf0 ¼ λ0

�
cf0 þ

α0

Ex
þ 2

sin2ðλðKφ þ μφÞÞ
λ2

∂cf

∂Ex
þ 4

sin ð2λðKφ þ μφÞÞ
2λ

∂q

∂Ex

þ 4cf

�
1

λ

∂ðλμφÞ
∂Ex

sin ð2λðKφ þ μφÞÞ
2λ

þ
�

α2

4Ex
−
∂ ln λ

∂Ex

�
sin2ðλðKφ þ μφÞÞ

λ2

�

þ 8q

�
−λ

∂ðλμφÞ
∂Ex

sin2ðλðKφ þ μφÞÞ
λ2

þ
�

α2

4Ex
−
1

2

∂ ln λ

∂Ex

�
sin ð2λðKφ þ μφÞÞ

2λ

�

þ 4Kφ

∂ ln λ

∂Ex

�
cf

sin ð2λðKφ þ μφÞÞ
2λ

þ q cos ð2λðKφ þ μφÞÞ
��

; ð139Þ

where cf0 and α0 are undetermined functions of Ex. (They

can be combined to a single free function, but it is

convenient to separate them for the purpose of taking

the classical limit.) Its classical limit is gf0 → 1=Ex as

α0; α2; λ0; cf → 1, λ; q; μφ.

These results completely determine the anomaly-free,

covariant Hamiltonian constraint and the structure function

for vacuum up to the undetermined functions of Ex. The

classical constraint (37) can be recovered in different limits.

The most straightforward way is to set all the parameters

constant and then take the limits λ0; cf; αi → 1 and

λ; cf0; cf2; μφ → 0. The cosmological constant can be

recovered by instead setting cf0 → −Λ.

E. Periodicity and bounded-curvature effects

The additional restrictions on consistent modified

Hamiltonian constraints, implied by the covariance con-

dition, allow us to clarify the question of possible func-

tional dependences of the constraint on Kφ, with various

properties of relevance for models of loop quantum gravity.

The parameter λ can heuristically be interpreted as the

holonomy angular length in models of loop quantum

gravity. We may therefore restrict its form by referring

to specific triangulations of space. For example, we can

choose a fine lattice such that the spheres are triangulated

by small squares of side length λ. Each plaquette at radiusffiffiffiffiffiffi
Ex

p
then covers an area Exλ2. Requiring that the plaquettes

at different radii have equal sizes, we obtain

λ ¼ rffiffiffiffiffiffi
Ex

p λ̄; ð140Þ

where r̄ is a constant reference radius at which λ ¼ λ̄. This

result satisfies λ → 0 as Ex
→ ∞, as desired to recover the

classical limit at large distances.

Furthermore, the Hamiltonian constraint obtained from

the previous results would be nonperiodic in Kφ for

nonconstant λ, owing to the last term in (138) and (139).

In models of loop quantum gravity, a Hamiltonian periodic

in Kφ (if notKx, which is harder to achieve) is often desired

in order to motivate a well-defined quantization in a

representation of the holonomy-flux algebra. In addition

to being quite restricted by the covariance condition, such

periodicity properties are not invariant under canonical

transformations. The canonical transformations (132) can

be used to reestablish periodicity if we start with a non-

constant λ for which the last term in (138) and (139) is not

periodic.

Upon such a transformation with μ̃φ ¼ μφ, the

Hamiltonian constraint terms become

gcc ¼ λ0fx cos
2 ðλfxKφÞ; ð141Þ

gccf
cc
0
¼ λ0

fx

�
cf0 þ

α0

Ex
þ 2

sin2ðλfxKφÞ
λ2

∂cf

∂Ex
þ 4

sin ð2λfxKφÞ
2λ

∂q

∂Ex
þ 4cf

�
α2

4Ex
−
∂ ln λ

∂Ex

�
sin2ðλfxKφÞ

λ2

þ 8q

�
α2

4Ex
−
1

2

∂ ln λ

∂Ex

�
sin ð2λfxKφÞ

2λ

�
þ ∂ lnðλfxÞ

∂Ex
4λ0Kφ

�
cf

sinð2λfxKφÞ
2λ

þ q cosð2λfxKφÞ
�
; ð142Þ

gccf
cc
1
¼ 4λ0

�
cf

sinð2λfxKφÞ
2λ

þ q cosð2λfxKφÞ
�
; ð143Þ

gccf
cc
2
¼ λ0fx cos

2 ðλfxKφÞ
�
−

α2

4Ex
−
∂ ln fx

∂Ex
þ sin ð2λfxKφÞ
2λ cos2 ðλfxKφÞ

λ2fxKφ

∂ lnðλfxÞ
∂Ex

�
: ð144Þ
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The phase μφ then drops out of the Hamiltonian constraint.

Furthermore, the constraint is rendered periodic and

bounded in Kφ by choosing

fx ¼
λ̄

λ
; ð145Þ

where λ̄ is a constant. However, this transformation

also removes any Ex dependence in coefficients of Kφ

in periodic functions.

Building upon the constraint obtained by the preced-

ing canonical transformation, a further simplification

consists in redefining the remaining parameters accord-

ing to

λ0 → λ0
λ

λ̄
; q → q

λ̄

λ
; cf0 →

λ̄2

λ2
cf0;

α0 →
λ̄2

λ2
α0; α2 → α2 þ 4Ex

∂ ln λ

∂Ex
: ð146Þ

Under these redefinitions, the most general Hamiltonian

constraint, up to canonical transformations, is of the form

H ¼ −λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
cf0 þ

α0

Ex
þ 2

sin2ðλ̄KφÞ
λ̄2

∂cf

∂Ex
þ 4

sin ð2λ̄KφÞ
2λ̄

∂q

∂Ex
þ 4cf

α2

4Ex

sin2ðλ̄KφÞ
λ̄2

þ 8q
α2

4Ex

sin ð2λ̄KφÞ
2λ̄

�

þ 4Kx

�
cf

sinð2λ̄KφÞ
2λ̄

þ q cosð2λ̄KφÞ
�
þ ððExÞ0Þ2

Eφ

�
−

α2

4Ex
cos2ðλ̄KφÞ þ

Kx

Eφ
λ̄2

sin ð2λ̄KφÞ
2λ̄

�

þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄Kφ

��
;

¼ −λ0

ffiffiffiffiffiffi
Ex

p

2
Eφ

�
cf0 þ

α0

Ex
þ 2

sin2ðλ̄KφÞ
λ̄2

∂cf

∂Ex
þ 4

sin ð2λ̄KφÞ
2λ̄

∂q

∂Ex
þ α2

λ̄2Ex
cf −

ðEφÞ2
λ2
0
λ̄2Ex

�
α2

Ex
q̃xx þ 2

Kx

Eφ

∂q̃xx

∂Kφ

�

−

�ðExÞ0ððEφÞ−2Þ0
2

þ ðExÞ00
ðEφÞ2

�
cos2ðλ̄KφÞ

�
; ð147Þ

with structure function

q̃xx ¼
��

cf þ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2 ðλ̄KφÞ− 2qλ̄2

sin ð2λ̄KφÞ
2λ̄

�

× λ2
0

Ex

ðEφÞ2 : ð148Þ

The function λ has been completely absorbed by the

other parameters. Thus, we conclude that nonconstant λ can

always be traded in for nonclassical functions for the other

parameters but not in an obvious way. Within the setting

of modified gravity, there is no invariant meaning to

specific Ex dependencies or periodicity conditions in

holonomies. The classical constraint is recovered in the

limit λ0; cf; αi → 1 and λ̄; cf0; cf2 → 0. The cosmological

constant can be recovered by instead setting cf0 → −Λ. In

the following sections we drop the bar in λ̄ and write this

constant parameter as λ for simplicity.

The case λ0; cf; αi → 1 and cf0; q → 0 for (147) was first

found in [14] by demanding anomaly freedom and, since

they had no knowledge of the covariance condition derived

here, some functions were only proposed and the rest

obtained by solving the anomaly-freedom equations for a

less general constraint than (84). They also chose constant λ

in order to have a constraint periodic in Kφ.

In [14], it was shown that the Hamiltonian constraint in

this case is the result of a specific linear combination of the

classical constraints with phase-space dependent coeffi-

cients, after performing the diffeomorphism-constraint

preserving canonical transformation

Kφ →

sinðλKφÞ
λ

; Eφ
→

Eφ

cosðλKφÞ
: ð149Þ

The emergent space-time it implies was studied in [16],

where it was shown that the classical singularity does not

appear in a black-hole-like solution. Our analysis demon-

strates that this outcome is an implication of the phase-

space dependent linear combination, rather than of periodic

and bounded functions in the Hamiltonian constraint. Our

derivations strengthen this result by showing in Sec. III C

that this constraint is the unique covariant linear combi-

nation of the constraints up to an overall function of Ex.

In the constraint (147), the terms containing q are the

only modifications with nontrivial holonomy effects

allowed by anomaly freedom and covariance that have

not previously been considered. However, they do not seem

directly related to holonomy corrections in any obvious

way as some of them survive the limit λ → 0. Among all the

modification functions found here, cf, λ, q, and λ0 are the

most characteristic of emergent modified gravity: If we
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require the classical form of the structure function, these

functions must all take their classical expressions. The

freedom of choosing the remaining functions is related to

the emergent metric only through their dependence on a

nonconstant λ, but the freedom expressed by these

functions appears even classically in the terms of a

(1þ 1)-dimensional dilaton action. The same argument

shows that the constraints depend at most quadratically on

Kφ unless a nonclassical emergent metric is considered,

which requires λ ≠ 0.

F. General partial Abelianization

In a combination of our preceding results, we can now

use linear combinations of the form HðnewÞ ¼ BH þ AHr,

where A and B are phase-space dependent functions as in

Sec. III C, but insert the general modified Hamiltonian

constraint H from the present section, given in Eq. (147).

Since the Hamiltonian constraint is general, this procedure

should not result in new covariant theories, but we can use

the construction as in Sec. III D and impose conditions

other than general covariance on the resulting structure

function q̃xxðnewÞ. As an example, we derive new partial

Abelianizations by requiring that the new structure function

vanish. The resulting theory would be compatible with

general covariance because this condition has been imple-

mented on the original Hamiltonian constraint, and it might

be more amenable to quantizations using, for instance, the

loop representation because structure functions have been

eliminated in the partial Abelianization.

Assuming some function B ¼ BðEx; KφÞ, the second

function A in the linear combination and the structure

function are uniquely determined, now given by

A ¼ −λ0 cos
2ðλ̄KφÞ

ffiffiffiffiffiffi
Ex

p
ðExÞ0

2ðEφÞ2
∂B

∂Kφ

; ð150Þ

and

q̃xxðnewÞ ¼ B
Ex

ðEφÞ2
λ0 cosðλKφÞ

2

�
2λ0B

�
cf cosðλ̄KφÞ − 2λ2q

sinðλ̄KφÞ
λ̄

�

− 2λ0
∂B

∂Kφ

cos ðλ̄KφÞ
�
cf

sin ð2λ̄KφÞ
2λ̄

þ q

2
ðcos ðλKφÞ þ cos ð3λKφÞÞ

�

þ ððExÞ0Þ2
ðEφÞ2 λ0 cosðλ̄KφÞ

�
Bλ̄2 −

∂B

∂Kφ

3λ̄2
sin ð2λ̄KφÞ

2λ̄
þ ∂

2B

ð∂KφÞ2
cos2ðλ̄KφÞ

��
ð151Þ

if we apply the procedure to the general expression of a

modified Hamiltonian constraint.

Partial Abelianization requires q̃xxðnewÞ ¼ 0. Because B is

assumed to be independent of ðExÞ0, the first two lines of

(65) must vanish separately, such that

B ¼ Bx

cos2ðλ̄KφÞ

�
cf

sin ð2λ̄KφÞ
2λ̄

þ q cos ð2λ̄KφÞ
�
; ð152Þ

where Bx ¼ BxðExÞ. Inserting this result in the last two

lines, the condition that they vanish too implies

Bxλ̄q ¼ 0: ð153Þ

For a nontrivial Abelianization with λ̄ ≠ 0, this is realized

only if q ¼ 0. We arrive at the Abelianized constraint

HðAÞ

Bx

¼ −

ffiffiffiffiffiffi
Ex

p

2

tanðλ̄KφÞ
λ̄

�
Eφ

�
cf0 þ

α0

Ex
þ 2

sin2ðλ̄KφÞ
λ̄2

∂cf

∂Ex
þ cf

α2

Ex

sin2ðλ̄KφÞ
λ̄2

�

þ 4Kxcf
sinð2λ̄KφÞ

2λ̄
þ ððExÞ0Þ2

Eφ

�
−

α2

4Ex
cos2ðλ̄KφÞ þ

Kx

Eφ
2λ̄2

sin ð2λ̄KφÞ
2λ̄

�

þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

�
−

ffiffiffiffiffiffi
Ex

p
ðExÞ0

2ðEφÞ2 ðEφK0
φ − KxðExÞ0Þ; ð154Þ

where we redefined Bx in order to absorb an overall term

cfλ0. This result agrees with the partial Abelianization

obtained in Sec. III D if we choose all parameters except for

λ̄ to take classical values.

The Abelianized constraint HðAÞ has a divergence at

λ̄Kφ ¼ π=2 implied by the overall tanðλ̄KφÞ multiplying

the terms of the first line. Looking at the first three terms,

the divergence can be resolved by setting
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∂cf

∂Ex
¼ −

λ̄2

2

�
cf0 þ

α0

Ex

�
; ð155Þ

which is easily solved for cf if we use the classical values

α0 ¼ 1 and cf0 ¼ −Λ:

cf ¼ 1þ λ̄2

2
ðΛEx − lnðEx=c0ÞÞ; ð156Þ

where c0 is the integration constant. This nonclassical form

of the function cf, depending on λ̄, may be considered an

indirect effect of nonconstant holonomy length or a

modified angular metric. [Trying to include the divergence

of the last term of the first line in (154) in this derivation

does not result in a cf compatible with the classical limit

for λ̄ → 0.]

The first three terms of the first line are then free of

divergences in Kφ while respecting the classical limit of the

Hamiltonian constraint (147), a feat that could not be

accomplished in Sec. III D because nonclassical forms of

cf were not considered there. However, divergence of the

last term in the first line remains unresolved.

The last line does not show an immediate divergence in

Kφ, but there is one if we put K
0
φ into a manifestly periodic

form:

K0
φ ¼ secðβλ̄KφÞ

sinðβλ̄KφÞ0
βλ̄

; ð157Þ

with some integer β. The appearance of secðβλ̄KφÞmakes it

difficult to promote H
ðAÞ
cc to an operator in a loop quantiza-

tion because of its divergence at βλ̄Kφ ¼ π=2. One possible

resolution might be to consider a modified diffeomorphism

constraint as in [34,35], since K0
φ is introduced by taking a

linear combination with this constraint. This divergence

problem is therefore related to the fact [36] that the

diffeomorphism constraint, as the generator of infinitesimal

diffeomorphisms, cannot be directly quantized in the usual

loop representation but is replaced by the action of finite

diffeomorphisms. We leave this problem for future work.

A notable difference between our result (154) and the

Abelianization of [18,19] is that the latter does not

depend on Kx, while the former does. This term is harder

to express in a loop representation because so far no

consistent modification periodic in Kx has been found,

but it demonstrates that our result is much more general

than the previous partial Abelianizations. If the Kx depend-

ence is completely eliminated, while spatial derivatives of

Eφ are also removed by the construction of [18], the

constraints trivially Poisson commute. However, removing

derivatives of Eφ requires integrating by parts, which

introduces a certain degree of nonlocality. In our constraint,

neither Kx not ðEφÞ0 have been eliminated, and we only

used linear combinations without integrating by parts.

Our construction is completely local and relies on highly

nontrivial cancellations of several terms for the new

constraints to Poisson commute.

V. CONCLUSIONS

Our analysis of canonical gauge transformations acting

on a space-time metric has revealed gaps in the widely

held assumption that the constraint brackets in canonical

models of modified gravity have full control over general

covariance. These brackets ensure the correct transforma-

tion of the “time” components of a compatible space-time

metric, as previously recognized, but by themselves they do

not guarantee the correct transformation of the spatial

metric, determined by the structure function in hypersur-

face-deformation brackets, to reproduce full space-time

diffeomorphisms on shell. The new covariance condition

formulated here is automatically satisfied if the structure

function depends directly on a single phase-space variable,

as in the classical case where the structure function is the

inverse spatial metric. But this is no longer the case if the

structure function is a composite field and depends on

multiple phase-space functions, for instance in modified

theories in which it may also depend on momentum

components. The full covariance condition is essential in

canonical theories of modified gravity, where it presents

strong restrictions on the allowed modifications.

We have specifically applied the covariance condition to

the spherically symmetric model in which the classical

constraints are replaced by phase-space dependent linear

combinations of the gauge generators. As we discussed in

the introduction, modifications are possible because such

linear combinations in the context of hypersurface defor-

mations imply a redefinition of the normal direction. The

normal, together with the spatial metric derived from the

structure function of the constraint brackets, then deter-

mines an emergent space-time metric which need not be

equivalent to the original classical geometry. Our explicit

derivations in the spherically symmetric model, where the

relevant equations that control general covariance can be

solved exactly, confirm this expectation. We derived a new

covariant model in which signature change may be pos-

sible, and confirmed the covariance of a recent model

derived initially by different means [16]. Our results also

demonstrate the covariance of older models, such as [22].

Other examples, such as [13,19], turned out not to be

covariant.

In this process, we have developed a general method to

obtain anomaly-free brackets from the linear combination

of some of the original constraints that resulted in the

computation of a new emergent space-time and a well-

defined, off-shell partial Abelianization along the lines of

[18,19]. This result opens the way to analyzing more

complicated modified constraints and their emergent

space-times, and it restricts the modifications to those
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compatible with general covariance, which had proved

challenging until now.

Finally, we have derived a general expression for

modified Hamiltonian constraints compatible with general

covariance, extending the vacuum results of [14,15] by

implementing the latter condition. A discussion of canoni-

cal transformations implied several simplifications and

revealed redundancies in common choices of modifications

in models of loop quantum gravity, in particular in the

choice of periodic functions with phase-space dependent

periods. As a byproduct, we derived new nontrivial partial

Abelianizations of constraints compatible with general

covariance.
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APPENDIX A: COVARIANCE OF THE

EMERGENT EXTRINSIC-CURVATURE TENSOR

Extrinsic curvature is defined as a Lie derivative of the

spatial metric along the unit normal to a hypersurface.

An analysis of how the tensor transforms therefore requires

an equation for the transformation of the unit normal by

a gauge transformation that changes the space-time slicing.

In this appendix, we assume that there is a covariant space-

time line element with space-time metric gμν. In our

canonical theories, gμν would be the emergent metric

tensor, but here we drop tildes for the sake of convenience.

Starting with

qμν ¼ gμν þ nμnν; ðA1Þ

both the unit normal vector and the spatial metric change to

nμ þ δϵn
μ and qab þ δqab under a gauge transformation.

Since nμ is assumed to be normalized, we have nμqμν ¼ 0.

It will remain normalized after the gauge transformation if

and only if δϵðNnμqμνÞ ¼ 0.

It is easier to evaluate this condition if we use the space-

time metric instead of the spatial metric, in which case we

can express normalization of nμ as Nnμgμνdx
ν ¼ σN2dt

where σ ¼ 1 for Lorentzian signature and σ ¼ −1 for

Euclidean signature. Normalization is then preserved by

a gauge transformation δϵ if and only if

δϵðNnμgμνÞdxν ¼ 2σNδϵNdt; ðA2Þ

where we shall use the transformation of the lapse (9). We

can now expand the left-hand side using the Leibniz rule to

obtain nμδϵðNgμνÞ þ Ngμνδϵn
μ. The change of basis nμ ¼

N−1ðtμ − Nas
μ
aÞ and the component expression gtμ of in

terms of the lapse function and shift vector then imply

δϵn
μ ¼ −

1

N
δϵNnμ −

1

N
δϵN

as
μ
a: ðA3Þ

The normal vector is associated to the particular coor-

dinates and foliation we choose, therefore, its transforma-

tion is not directly equivalent to a Lie derivative. (This is

similar to how connections do not transform by a simple

Lie derivative.) In fact, the Lie derivative of nμ and its

infinitesimal coordinate transformation are related by

Lξn
μ ¼ ξν∂νn

μ − nν∂νξ
μ;

¼ ϵ0

N

�
∂t

�
1

N

�
tμ − ∂t

�
Na

N

�
s
μ
a

�
þ
�
ϵb −

ϵ0

N
Nb

��
∂b

�
1

N

�
tμ − ∂b

�
Na

N

�
s
μ
a

�

−
1

N

�
∂t

�
ϵ0

N

�
tμ þ

�
∂tϵ

a − ∂t

�
ϵ0

N
Na

��
s
μ
a

�
þ Nb

N

�
∂b

�
ϵ0

N

�
tμ þ

�
∂bϵ

a − ∂b

�
ϵ0

N
Na

��
s
μ
a

�
;

¼ −
1

N
ðϵ̇0 þ ∂bN − Nb

∂bϵ
0Þnμ − 1

N
ðϵ̇a þ ϵb∂bN

a − Nb
∂bϵ

aÞsμa;

¼ −
δϵN

N
nμ −

δϵN
a − qabðϵ0∂bN − N∂bϵ

0Þ
N

s
μ
a;

¼ δϵn
μ þ qab

N
ðϵ0∂bN − N∂bϵ

0Þsμa: ðA4Þ

In addition to the normal vector, the spatial basis vectors

s
μ
a appear in some of the expressions. Before we apply our

results to extrinsic curvature, we make sure that s
μ
a does not

change by a gauge transformation. For these vectors to

remain spatial, we have δϵðgμνnμsνbÞ ¼ 0. We evaluate this

condition by decomposing
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δϵs
μ
b ≡ Abn

μ þ Bs
μ
b ðA5Þ

into normal and spatial components. Using (A3) and the

gauge transformations of lapse and shift, the condition that

s
μ
a remain spatial directly implies

Ab ¼ gμbδϵn
μ þ nμδϵgμb ¼ 0: ðA6Þ

Furthermore, δϵqab ¼ δϵðgμνsμasνbÞ implies B ¼ 0.

Now, the extrinsic-curvature tensor is given by

Kμν ¼
1

2
Lnqμν ðA7Þ

and therefore depends on the slicing through the unit

normal. Its transformation should reflect the slicing

dependence because nμ changes by a gauge transformation,

as we saw. If we consider the infinitesimal changes

qμν → qμν þ Lξqμν; ðA8Þ

nμ → nμ þ δϵn
μ; ðA9Þ

under a coordinate transformation, where δϵn
μ is given by

(A3), the extrinsic-curvature tensor transforms as

Kμν →
1

2
Lnþδϵn

ðqμν þ LξqμνÞ

¼ Kμν þ
1

2
Lδϵn

qμν þ
1

2
LnLξqμν; ðA10Þ

where we have kept only the first-order term in ξμ for an

infinitesimal transformation. For a gauge transformation of

the same tensor, we have

δϵKμν ¼ δϵ

�
1

2
Lnqμν

�
;

¼ 1

2
Lδϵn

qμν þ
1

2
LnðδϵqμνÞ: ðA11Þ

If the covariance condition, δϵqμν ¼ Lξqμν, is satisfied, this

is precisely the expression derived above. Therefore,

the gauge transformation of extrinsic curvature, derived

from the emergent space-time metric, gives the desired

covariant transformation, keeping in mind that the coor-

dinate transformation is not a Lie derivativewhich is similar

to the transformation of the normal vector or connections,

as all these cases depend on the foliation. (Extrinsic

curvature is a spatial tensor on a given slice but not a

space-time tensor.)

Since the spatial metric and extrinsic curvature form a

complete set of spatial tensors that define the geometry of

an embedded hypersurface, we conclude that the gauge

transformation of all tensors derived from the spacetime

metric will be equivalent to their infinitesimal coordi-

nate transformations provided the covariance condition

δϵgμν ¼ Lξgμν is satisfied.

APPENDIX B: RESTRICTIONS ON THE

GENERAL HAMILTONIAN CONSTRAINT

FROM fH;Hrg
The third term in (85) must vanish, F 2 ¼ 0, which

implies

0 ¼ a2 þ
�
axφ − 3

∂d2

∂Ex

�
Eφ; ðB1Þ

0 ¼ 2aφφ − 3
∂d2

∂Eφ
; ðB2Þ

0 ¼ b2 þ
�
cφφ − 3

∂d2

∂Kφ

�
Eφ; ðB3Þ

0 ¼ ∂d2

∂Kx

: ðB4Þ

Using this and F 0 ¼ 0, we obtain

∂

∂Eφ

�
Eφ

∂

∂Eφ

�
aφφ −

∂d2

∂Eφ

�
− Kx

∂aφφ

∂Kx

�
¼ 0 ðB5Þ

from the coefficient of ðEφÞ000,

∂

∂Kφ

�
Eφ

�
∂bφφ

∂Eφ
−
∂cφφ

∂Kφ

þ ∂
2d2

ð∂KφÞ2
�

þ Kx

∂bφφ

∂Kx

þ bφφ −
∂b2

∂Kφ

�
¼ 0 ðB6Þ

from the coefficient of K000
φ , and

∂

∂Ex

�
Eφ

�
−
∂axφ

∂Ex
þ ∂axx

∂Eφ
þ ∂

2d2

ð∂ExÞ2
�

þ Kx

∂axx

∂Kx

þ axx −
∂a2

∂Ex

�
¼ 0 ðB7Þ

from the coefficient of ðExÞ000.
Using these results and F 1 ¼ −H, we obtain

d2 þ 2
∂d2

∂Eφ
Eφ ¼ 0 ðB8Þ

from the coefficient of ðEφÞ00,

∂b2

∂Eφ
Eφ þ ∂b2

∂Kx

Kx þ b2 ¼ 3
∂d2

∂Kφ

Eφ ðB9Þ

from the coefficient of K00
φ,
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∂a2

∂Eφ
Eφ þ ∂a2

∂Kx

Kx þ a2 ¼ 3
∂d2

∂Ex
Eφ ðB10Þ

from the coefficient of ðExÞ00,

Eφ

�
∂bφφ

∂Eφ
− 2

∂cφφ

∂Kφ

þ 3
∂
2b2

ð∂KφÞ2
�
þ ∂bφφ

∂Kx

Kx þ bφφ − 2
∂b2

∂Kφ

¼ 0 ðB11Þ

from the coefficient of ðK0
φÞ2,

3Eφ

�
∂aφφ

∂Eφ
−

∂
2d2

ð∂EφÞ2
�
þ aφφ −

∂aφφ

∂Kx

Kx ¼ 0 ðB12Þ

from the coefficient of ððEφÞ0Þ2, and

Eφ

�
−2

∂axφ

∂Ex
þ∂axx

∂Eφ
þ3

∂
2d2

ð∂ExÞ2
�
þ∂axx

∂Kx

Kxþalxx−2
∂a2

∂Ex

¼ 0 ðB13Þ

from the coefficient of ððExÞ0Þ2.

APPENDIX C: RESTRICTIONS FROM fH;Hg
Using z ¼ Kx=E

φ, the coefficients in (92) are

Gφ ¼ g2Ex

4Eφ

�
2A0Bφφ − ð2zBφφ þ CxφÞ

∂A0

∂z
þ ∂

2A0

∂Kφ∂z

�
;

ðC1Þ

Gx ¼
g2Ex

4Eφ

�
A0

�
Cxφ −

∂ ln g

∂Kφ

�
− ð2Axx þ zCxφÞ

∂A0

∂z

−
∂A0

∂Kφ

þ ∂
2A0

∂Ex
∂z

�
; ðC2Þ

Fxx ¼
g2Ex

4ðEφÞ3
�
Cxφ þ

∂ ln g

∂Kφ

þ 2
∂Axx

∂z

�
; ðC3Þ

F
φ
x ¼ g2Ex

4ðEφÞ3
∂Cxφ

∂z
; ðC4Þ

Fφφ ¼ g2Ex

4ðEφÞ3
∂Bφφ

∂z
; ðC5Þ

F
2φ
x ¼ g2Ex

4ðEφÞ3
�
2Bφφ þ

∂Cxφ

∂z

�
; ðC6Þ

Gφφx ¼ g2Ex

4ðEφÞ4
∂
2Bφφ

ð∂zÞ2 ; ðC7Þ

G
xφ
x ¼ g2Ex

4ðEφÞ4
�
2
∂Bφφ

∂z
þ ∂

2Cxφ

ð∂zÞ2
�
; ðC8Þ

Gx
xx ¼

g2Ex

4ðEφÞ4
�
∂Cxφ

∂z
þ ∂

2Axx

ð∂zÞ2
�
; ðC9Þ

G
φφ
φ ¼ −

g2Ex

4ðEφÞ4
�
2
∂Bφφ

∂z
þ z

∂
2Bφφ

ð∂zÞ2
�
; ðC10Þ

G
φ
xφ ¼ −

g2Ex

4ðEφÞ4
�
2

�
Bφφ þ z

∂Bφφ

∂z
þ ∂Cxφ

∂z

�
þ z

∂
2Cxφ

ð∂zÞ2
�
;

ðC11Þ

Gxxφ ¼ −
g2Ex

4ðEφÞ4
�
∂ ln g

∂Kφ

þ Cxφ þ 2
∂Axx

∂z

þ z
∂Cxφ

∂z
þ z

∂
2Axx

ð∂zÞ2
�
; ðC12Þ

Gφφφ ¼ g2Ex

4ðEφÞ3
�
−2B2

φφ− ð2zBφφþCxφÞ
∂Bφφ

∂z
þ ∂

2Bφφ

∂Kφ∂z

�
;

ðC13Þ

G
φφ
x ¼ −

g2Ex

4ðEφÞ3
�
Bφφ

�
3Cxφ þ

∂ ln g

∂Kφ

þ 2z
∂Cxφ

∂z

�

þ ð2Axx þ zCxφÞ
∂Bφφ

∂z

þ Cxφ

∂Cxφ

∂z
−
∂Bφφ

∂Kφ

−
∂
2Cxφ

∂Kφ∂z
−
∂
2Bφφ

∂Ex
∂z

�
; ðC14Þ

G
φ
xx ¼−

g2Ex

4ðEφÞ3
�
C2
xφþ2Axx

�
Bφφþ

∂Cxφ

∂z

�

þCxφ

�
∂ lng

∂Kφ

þ∂Axx

∂z
þ z

∂Cxφ

∂z

�

þ2zBφφ

∂Axx

∂z
−
∂
2Axx

∂Kφ∂z
−2

∂Bφφ

∂Ex
−
∂
2Cxφ

∂Ex
∂z

�
; ðC15Þ

Gxxx ¼ −
g2Ex

4ðEφÞ3
�
Axx

�
∂ ln g

∂Kφ

þ Cxφ þ 2
∂Axx

∂z

�

þ zCxφ

∂Axx

∂z
þ ∂Axx

∂Kφ

−
∂Cxφ

∂Ex

∂Axx

∂Ex
∂z

�
; ðC16Þ
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