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Abstract

In this paper, we focus on the computation of the nonparametric maximum likelihood es-
timator (NPMLE) in multivariate mixture models. Our approach discretizes this infinite
dimensional convex optimization problem by setting fixed support points for the NPMLE
and optimizing over the mixing proportions. We propose an efficient and scalable semis-
mooth Newton based augmented Lagrangian method (ALM). Our algorithm outperforms
the state-of-the-art methods (Kim et al., 2020; Koenker and Gu, 2017), capable of handling
n ≈ 106 data points with m ≈ 104 support points. A key advantage of our approach is
its strategic utilization of the solution’s sparsity, leading to structured sparsity in Hessian
computations. As a result, our algorithm demonstrates better scaling in terms of m when
compared to the mixsqp method (Kim et al., 2020). The computed NPMLE can be directly
applied to denoising the observations in the framework of empirical Bayes. We propose new
denoising estimands in this context along with their consistent estimates. Extensive nu-
merical experiments are conducted to illustrate the efficiency of our ALM. In particular, we
employ our method to analyze two astronomy data sets: (i) Gaia-TGAS Catalog (Anderson
et al., 2018) containing approximately 1.4× 106 data points in two dimensions, and (ii) a
data set from the APOGEE survey (Majewski et al., 2017) with approximately 2.7 × 104

data points.
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1. Introduction

We observe data Y1, . . . , Yn in Rd (for d ≥ 1) from the heteroscedastic Gaussian location
mixture model

Yi = θi + Zi, with θi
iid∼ G∗ and Zi

ind∼ N (0,Σi) (1)

where the underlying (unknown) latent parameters {θi}ni=1 are assumed to be drawn
i.i.d. from a common unknown distribution G∗ on Rd, and {Σi}ni=1 is a collection of known
d × d positive definite heteroscedastic covariance matrices; assume further that θi and Zi
are independent for each i = 1, . . . , n. It is of importance to nonparametrically estimate G∗

and the latent variables {θi}ni=1 that are observed with errors. Such mixture models arise
naturally in various applications (Carlin and Louis, 1996; Efron, 2010; Efron and Hastie,
2021), including in the analysis of astronomy data (Akritas and Bershady, 1996; Hogg et al.,
2010; Kelly, 2012); see the left panel of Figure 1 which shows the noisy color-magnitude
diagram (CMD) corresponding to observations {Yi}ni=1 for n ≈ 1.4 × 106 stars from the
Gaia-TGAS Catalog (Anderson et al., 2018).

Observe that the marginal density of Yi in (1) is given by

fG∗,Σi(y) :=

∫
φΣi(y − θ) dG∗(θ), for y ∈ Rd, (2)

where φΣi(y) := [det(2πΣi)]
−1/2 exp(−y>Σ−1

i y/2) is the density function of N (0,Σi); fur-
ther the observed Yi’s are independent. A classical approach to estimating the unknown
probability distribution G∗ in (1), which goes back to the works of Robbins (1950) and
Kiefer and Wolfowitz (1956), is via the following nonparametric maximum likelihood esti-
mator (NPMLE) which maximizes the marginal likelihood of the observations Yi’s (Jiang
and Zhang, 2009; Kiefer and Wolfowitz, 1956; Lindsay, 1983, 1995; Robbins, 1950):

Ĝn ∈ arg max
G∈G

1

n

n∑
i=1

log fG,Σi(Yi), (3)

where the set G consists of all probability distributions on Rd. Based on the solution Ĝn
of (3), the marginal density fG∗,Σi of Yi can be estimated by f

Ĝn,Σi
, and each observation

Yi can be denoised via the empirical Bayes estimator (see e.g., Soloff et al. (2021)):

θ̂i := E
Ĝn

[θi | Yi], where θi ∼ Ĝn and Yi | θi ∼ N (θi,Σi), (4)

to obtain an “estimate” of the underlying latent parameter θi; see e.g., Efron (2019), Jiang
and Zhang (2009), Soloff et al. (2021). For the noisy CMD from Anderson et al. (2018), the
right panel of Figure 1 shows the denoised empirical Bayes estimate {θ̂i}ni=1 based on the
NPMLE solved via the augmented Lagrangian method proposed and studied in this paper.

We can see that the density function fG,Σi(·) defined by (2) is linear in G and thus
the objective function in (3) is concave in G (due to the concavity of the log function).
Moreover, the domain of the variable G is the infinite dimensional space of all probability
distributions G which is a convex set. Thus, (3) is an infinite dimensional convex optimiza-
tion problem that is challenging to solve computationally. Many numerical methods for
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Figure 1: Left: The noisy CMD corresponding to data {Yi}ni=1 ⊂ R2 for n ≈ 1.4×106 stars obtained

from the Gaia-TGAS Catalog. Right: The denoised CMD using empirical Bayes estimates {θ̂i}ni=1

based on the NPMLE computed via the augmented Lagrangian method. The denoised CMD has
rather sharp tails in the bottom of the plots (i.e., the main sequence) and the top right (i.e., the tip
of the red-giant branch) as well as a definitive cluster in the center-right (i.e., the red clump).

approximately computing the NPMLE have been considered — including the expectation
maximization (EM) algorithm (Laird, 1978), vertex direction and exchange methods (Böhn-
ing, 1985), semi-infinite methods (Lesperance and Kalbfleisch, 1992), constrained-Newton
methods (Wang, 2007), and hybrid methods (Böhning, 2003; Liu and Zhu, 2007).

A natural way to alleviate the computational difficulty of (3) is to discretize (a compact
region of) the whole space Rd and restrict G to the class of all distributions with a finite
fixed support, say {µ1, . . . , µm} ⊆ Rd; see e.g., Koenker and Mizera (2014), Kim et al.
(2020). Namely, we assume that every G ∈ G takes the form

G =

m∑
j=1

xjδµj , where xj ≥ 0 ∀j, and

m∑
j=1

xj = 1 (5)

for unknown mixture proportion x = (x1, . . . , xm)> and fixed {µ1, . . . , µm} with m large;
here by δa we mean the Dirac delta measure at a. Under the above reduction, (3) reduces
to the following finite dimensional convex optimization problem:

maximize
x=(x1,...,xm)>∈Rm

1

n

n∑
i=1

log

 m∑
j=1

Lijxj

 subject to 1>m x = 1, xj ≥ 0 ∀j, (6)

where L := (Lij) ∈ Rn×m is a fixed matrix with nonnegative entries such that Lij :=
φΣi(Yi − µj) and 1m denotes the vector of all ones in Rm. It can be shown that for every
n, as m → ∞, the optimal value of (6) converges to the optimal value of (3); see e.g.,
Royset and Wets (2022, Example 4.23 & Convergence 4.14). This justifies the discretization
approach (5) to the infinite dimensional convex problem (3).

Observe that the optimization problem (6) can also arise in other contexts, e.g., it en-
compasses MLE for mixture proportions in a finite mixture model where the component
densities are known. That is, suppose we observe Y1, . . . , Yn i.i.d. following the mixture den-
sity

∑m
j=1 xjfj(·) with unknown mixture proportion x = (x1, . . . , xm)> and known densities

f1, . . . , fm. Taking Lij = fj(Yi), the MLE of x reduces to problem (6).
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The most classical approach to NPMLE is the EM algorithm (Dempster et al., 1977).
However, the EM may converge very slowly; see e.g., Redner and Walker (1984), Varadhan
and Roland (2008), Koenker and Mizera (2014). Compared to the EM, modern convex
optimization methods would be more efficient and stable. Among them, first-order methods,
see e.g., Tran-Dinh et al. (2015), Dvurechensky et al. (2020), are natural choices for solving
(6), although the convergence of first-order methods for solving this problem may slow down
considerably as they approach the solution as shown by Kim et al. (2020, Section 4.3.5),
especially when m and n are large. In principle, the convex problem (6) can also be
solved by off-the-shelf interior point based solvers. In fact, the routine KWDual in the R

package REBayes (Koenker and Gu, 2017) adopts the interior point method implemented
by the commercial interior point solver MOSEK (Andersen and Andersen, 2000) to solve the
Lagrangian dual formulation of (6). Although very stable and efficient for small to medium
sized problems, the interior point method has inherently ill-conditioned normal equations
that are extremely costly to solve by an iterative method when both m and n are large1.
Recently, Wang et al. (2021) have proposed a cubic regularized Newton method to solve (6)
for d = 1 under additional shape constraints.

Figure 2: The distribution of the singular values σi(L) of L computed from (left) the APOGEE data
(here n = 27, 135, and m = 1, 000) and (right) the synthetic Example 3(a) (here n = 5, 000, m =
1, 000) as d varies. The top 20 singular values are excluded so that the others are not overshadowed.
Observe the slow decay of the singular values when d > 1.

In order to solve (6) more efficiently an active set based sequential quadratic program-
ming (SQP) method was recently proposed by Kim et al. (2020). The proposed algorithm
mixsqp is able to solve (6) with large n (up to 106) and small to medium m (up to several
hundreds) very efficiently, by leveraging a low-rank approximation of the matrix L (in (6))
for univariate probability distributions (i.e., d = 1). However, the low-rank approximation
in the SQP method (Kim et al., 2020) may not work well for estimating multivariate (i.e.,
when d ≥ 2) probability distributions G∗. Figure 2 shows the distributions of the singular
values of the matrix L computed from the APOGEE survey (Majewski et al., 2017) (see
Section 4.2 for details) and the synthetic Example 3(a) (see Appendix C.4 for details). We
can see that most singular values of L are close to 0 when d = 1, but L has a significant
proportion of nonzero singular values when d ≥ 2, and this phenomenon is more pronounced

1. In particular, we found that the REBayes solver (Koenker and Gu, 2017) reports failure for a synthetic
data set with m = 104 and n = 7× 104; see Figure 4 in Section 4.1 for details.
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for larger d. This observation suggests that a low-rank approximation of L may lose crucial
information in data fitting when d ≥ 2. In addition, for problem (6), the number of grid
points m needed to obtain a good approximation to the infinite dimensional problem (3)
may be large for a large n, especially when d > 1; see Figure 5 where we show plots for the
noisy CMD data from Anderson et al. (2018) with different values of m.

The primary goal of the present paper is to provide a highly efficient, stable, and scalable
numerical algorithm for solving problem (6) that can handle large n and m (e.g., n ≈ 106

and m ≈ 104). Our proposal is to apply the augmented Lagrangian method (ALM) for
solving the dual problem of (6). Briefly, the ALM is an iterative method that solves a
sequence of unconstrained subproblems to approximate the targeted constrained problem;
see Hestenes (1969), Powell (1969), Rockafellar (1976). This method is expressed in terms
of an augmented Lagrangian function. Let Lσ(u, v;x, y) be the augmented Lagrangian
function associated with the dual problem of (6), defined later in (9). Here (x, y) is the
primal variable, (u, v) is the dual variable, and σ > 0 is a positive parameter. For a
nondecreasing sequence of parameters σk > 0 and an initial primal variable (x0, y0), the
ALM generates the primal iterative sequence {(xk, yk)} and the dual iterative sequence
{(uk, vk)} as follows:

(uk+1, vk+1) ≈ argmin
u,v

Lσk(u, v;xk, yk), (7)

(xk+1, yk+1) = (xk, yk) + σk∇(x,y)Lσk(uk+1, vk+1;xk, yk), (8)

where ∇(x,y)Lσ denotes the gradient of Lσ with respect to (x, y). Henceforth, problem (7)
is referred to as the ALM subproblem. We call the ALM iterations as the outer loop, and
the iterative method for solving the ALM subproblem as the inner loop. Details of the inner
loop for solving the ALM subproblem are given in Section 2.1.

In Section 2.1, we show that the ALM subproblem (7) can be transformed into an un-
constrained minimization problem of a continuously differentiable objective function, with
the aid of the powerful tool of Moreau-Yosida regularization; see e.g., Rockafellar and Wets
(2009, Chapter 1.G). This transformation allows us to work with a continuously differen-
tiable objective function. Further, the gradient of this objective function is semismooth,
although it is not smooth. Consequently, solving the ALM subproblem is equivalent to
finding a solution to a semismooth equation. To tackle this, we can employ the semismooth
Newton method; see e.g., Facchinei and Pang (2007, Chapters 7 and 8). To reduce the
computational burden of the semismooth Newton method, our main technique is to exploit
the sparsity in the corresponding generalized Hessian matrix (a nonsmooth counterpart of
the Hessian matrix that arises in a second-order optimization problem; see (13) for details)
leveraging the sparsity of the solution x (Koenker and Gu, 2017; Polyanskiy and Wu, 2020).

Although the sparsity of the solution x is also exploited by Kim et al. (2020) in computing
the search direction for each SQP subproblem, their Hessian matrix itself is dense and the
computational cost in evaluating each Hessian is O((n + m)k2 + m2k), with k being the
(approximate) rank of the matrix L. In contrast, the generalized Hessian matrix arising
from our semismooth Newton method is inherently sparse and the computational cost can
be substantially reduced to O(nsmin(n, s)), where s is the number of nonzero elements in a
certain vector in Rm closely related to x; see (13) and the associated discussion. When s < n
(in fact, s� n in most situations; see Polyanskiy and Wu (2020)), the computational cost
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is O(ns2); see Section 2.3 for details. The mixsqp method (Kim et al., 2020) demonstrates
high efficiency when dealing with large n, moderate m, and numerically rank deficient L
(n ≈ 106,m ranging up to several hundreds, and k � m). However, our algorithm can
outperform mixsqp in two scenarios. Firstly, our algorithm exhibits better scalability in
terms of m. Secondly, when L is no longer numerically rank deficient, our Hessian evaluation
significantly reduces computational costs by fully leveraging sparsity.

Theoretically, we show that both the ALM for the outer loop (Algorithm 1) and the
semismooth Newton method for the inner loop (Algorithm 2) have global convergence (see
Proposition 1) and superlinear convergence rate (see Propositions 2 and 3). We illustrate
the scalability and efficiency of our proposed method via extensive numerical experiments.
In particular, as far as we are aware, for the 2-dimensional noisy CMD data set in the left
panel of Figure 1, our ALM is the only known convex optimization method that can handle
m ≈ 104 grid points (with n ≈ 1.4×106). For such a large m, even if we randomly subsample
n = 105 data points to make the package REBayes (Koenker and Gu, 2017) applicable (the
mixsqp solver still does not work), the latter package is about 15 times slower than our
ALM; see Section 4.2 for a comparison of these methods.

The second main contribution of this paper is related to the denoising of the observations
{Yi}ni=1. In (4), we have highlighted denoising the Yi’s by the empirical Bayes estimator.
In Section 3 we argue that these empirical Bayes estimates are not necessarily guaranteed
to lie “close” to the support of G∗, which may be undesirable in certain applications. We
propose new denoising estimands defined via the theory of optimal transport (Villani, 2003,
2009) that can mitigate this shortcoming of the empirical Bayes estimates. We also propose
sample estimates of these new denoising estimands and prove, via a finite sample high
probability bound (see Theorem 4), that the sample estimates are close to their population
counterparts.

We conduct extensive numerical experiments on synthetic and real astronomy data sets
in Section 4. We illustrate that, for problem (6), our ALM is much faster and scalable when
compared to other existing solvers. Further, relevant codes for our methods, including sim-
ulation experiments, are available2. Some remarks, implementation details of the proposed
methods, proofs of the main results, and extensive numerical experiments are relegated to
the Appendix.

When d is large (e.g., d ≥ 4), due to the curse of dimensionality, the choice of the
support points µj ’s (see (5)) becomes important. A standard solution here is to let the
support points also be variables, in which case the corresponding optimization problem
(cf. (6)) becomes non-convex. Indeed this is what the famous EM algorithm (Dempster
et al., 1977) solves; see Liu and Rubin (1994), Liu and Rubin (1998) for variants of this
approach. In the online companion version of the current paper (Zhang et al. (2022)), we
have also proposed a generalization of the EM approach — which we call as the partial EM
algorithm — to solve the non-convex model that is provably convergent to its stationary
point. Another line of approach for approximating (3) assumes G to belong to the class of
finite Gaussian mixture models itself; see e.g., Bovy et al. (2011), Sarkar et al. (2018).

2. https://github.com/YangjingZhang/Dual-ALM-for-NPMLE
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2. Augmented Lagrangian method for the dual of (6)

Since − log(·) is convex nonincreasing and scale invariant (i.e., for any t, α > 0, − log(αt) =
− log t−c for c := logα), it has been observed that problem (6) is equivalent to the following
convex problem with nonnegative constraints only (Kim et al., 2020, Proposition 3.2):

maximize
x=(x1,...,xm)>∈Rm

1

n

n∑
i=1

log

 m∑
j=1

Lijxj

− 1>mx+ 1 subject to xj ≥ 0, ∀j.

We introduce an auxiliary variable y to separate the components in the objective function
and obtain the following primal problem:

maximize
x∈Rm, y∈Rn

1

n

n∑
i=1

log yi − 1>mx+ 1 subject to
1

n
(Lx− y) = 0, x ≥ 0. (P)

Here by x ≥ 0 we mean that every coordinate of x is nonnegative. To enhance the scaling
of the problem and align with the factor 1

n in the objective function term
∑n

i=1 log yi, we
introduce a scaling factor of 1

n for the equality constraint Lx− y = 0. One can obtain the
Lagrangian dual problem3 (Nocedal and Wright, 2006, Chapter 12.9) of (P) by maximizing
the Lagrangian function associated with (P), i.e.,

maximize
x≥0∈Rm, y∈Rn

1

n

n∑
i=1

log yi − 1>mx+ 1 +
1

n
u>(Lx− y),

where u ∈ Rn is the Lagrange multiplier. The dual problem admits the following formula-
tion:

minimize
u,v∈Rn

h(u) := − 1

n

n∑
i=1

log ui subject to
1

n
L>v ≤ 1m, u− v = 0. (D)

Here the auxiliary variable v ∈ Rn is introduced to separate the difficulties in dealing with
the − log(·) objective function and the inequality constraint simultaneously. Strong duality
clearly holds for (P) and (D) since the Slater condition trivially holds for problem (P) by
taking xj = 1/m for all j = 1, . . . ,m; see Bertsekas (2016, Proposition 4.3.9).

We are now able to introduce the ALM applied to the dual problem (D). The ALM
was first proposed by Hestenes (1969) and Powell (1969) for equality-constrained nonlinear
programs. The augmented Lagrangian function involves quadratic penalties on the violation
of equality constraints, and the ALM converts the minimization of an equality constrained
problem into the minimization of a sequence of unconstrained problems. For a general
convex nonlinear program (having both equality and inequality constraints), we can follow
Rockafellar (1976) for the derivation of the ALM. For problem (D) having an inequality
constraint 1

n L
>v ≤ 1m, the augmented Lagrangian function (Rockafellar, 1976, (1.4)) is

(here ‖ · ‖2 denotes the usual Euclidean norm)

Lσ(u, v;x, y) := h(u) + y>(u− v) +
σ

2
‖u− v‖22

3. In this paper, the term “dual problem” always refers to the “Lagrangian dual problem”.
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+


x>
(

1

n
L>v − 1m

)
+
σ

2

∥∥∥∥ 1

n
L>v − 1m

∥∥∥∥2

2

if
1

n
L>v − 1m ≥ −

x

σ

− 1

2σ
‖x‖22 if

1

n
L>v − 1m ≤ −

x

σ

= h(u) +
σ

2

∥∥∥∥max

(
1

n
L>v − 1m +

1

σ
x, 0

)∥∥∥∥2

2

− 1

2σ

(
‖x‖22 + ‖y‖22

)
+
σ

2

∥∥∥u− v +
1

σ
y
∥∥∥2

2
,

(9)

for σ > 0 and a primal variable (x, y) ∈ Rm × Rn; here max is a componentwise notation,
and (9) is obtained by the completion of squares. The ALM for solving (D) contains two
steps (7) and (8), and its algorithmic framework is given in Algorithm 1. The second step
(8) is to update the Lagrange multipliers:

xk+1 = xk + σk∇xLσk(uk+1, vk+1;xk, yk) = max
( σk
n
L>vk+1 − σk1m + xk, 0

)
,

yk+1 = yk + σk∇yLσk(uk+1, vk+1;xk, yk) = yk + σk(u
k+1 − vk+1).

The first expression for updating x follows from Rockafellar (1976, (1.8)), which can be
obtained through the explicit computation of the gradient ∇xLσk . The major computa-
tional cost in Algorithm 1 is to solve the ALM subproblem (7). Fortunately, the ALM
subproblem can be transformed into an unconstrained minimization problem of a continu-
ously differentiable objective function, as detailed in Section 2.1. It is worth noting that the
gradient of this objective function is semismooth. This observation motivates us to employ
a semismooth Newton method to solve the ALM subproblem (Li et al., 2018a,b; Zhang
et al., 2020). It will exploit the special structure of the generalized Hessian of (9).

Algorithm 1: An augmented Lagrangian method for solving (D)

Input : Data matrix L ∈ Rn×m; initial points x0 ∈ Rm, y0 ∈ Rn; penalty
parameter σ0 > 0; tolerance ε ≥ 0; ALM subproblem tolerance ε′k ≥ 0
satisfying

∑
k≥0 ε

′
k < +∞; parameters for solving ALM subproblem

η̄ ∈ (0, 1), τ ∈ (0, 1], µ ∈ (0, 1/2), β ∈ (0, 1).
Output: xk, an approximate solution to (6).

1 for k = 0, 1, 2, . . . do

2 (uk+1, vk+1) = SSN(L, xk, yk, σk,
ε′2k
2σk

, η̄, τ, µ, β,0n);
// Solve ALM subproblem (7) via Algorithm 2

3 if KKT residual ≤ ε then
4 stop; // Stop if the KKT residual (42) is no more than ε

5 xk+1 = max
( σk
n
L>vk+1 − σk1m + xk, 0

)
;

6 yk+1 = yk + σk(u
k+1 − vk+1);

7 Choose new penalty parameter σk+1 ∈ [σk,+∞);

Finally, as suggested by one referee, there is an alternative approach to developing
an ALM for solving (D). This approach introduces nonnegative slack variables to handle
the inequality constraint and applies the “conventional” ALM used for equality-constrained
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problems; see e.g., Nocedal and Wright (2006, Chapter 17.3). We investigate this possibility
in D and show that the alternative approach to developing ALM is equivalent to the ALM
proposed in this section.

2.1 Semismooth Newton method for the ALM subproblem

To design the semismooth Newton method for solving the ALM subproblem, we first elim-
inate the variable u and transform the subproblem into a tractable continuously differen-
tiable problem. To describe our approach we first review some basic concepts from convex
analysis; see Appendix A.1.

Let f : Rn → (−∞,+∞] be a proper closed convex function. Parametrized by a scalar
σ > 0, the Moreau-Yosida regularization of f (also called Moreau envelope of f) and the
(single-valued) proximal mapping of f at x ∈ Rn are respectively defined as

Mσ
f (x) := min

z∈Rn

{
f(z) +

σ

2
‖z − x‖22

}
and Proxσf (x) := argmin

z∈Rn

{
f(z) +

σ

2
‖z − x‖22

}
.

By dropping out the constant term 1
2σ (‖x‖22 + ‖y‖22) in (9), we can write the ALM

subproblem minu,v Lσk(u, v;xk, yk) as

min
u,v∈Rn

{
h(u) +

σk
2

∥∥∥∥max

(
1

n
L>v − 1m +

1

σk
xk, 0

)∥∥∥∥2

2

+
σk
2

∥∥∥∥u− v +
1

σk
yk
∥∥∥∥2

2

}
. (10)

Note that the minimization in (10) with respect to u is achieved at u∗ := Proxσkh (v−σ−1
k yk)

for any given v. Substituting u∗ back into (10) yields

min
v∈Rn

{
σk
2

∥∥∥∥max

(
1

n
L>v − 1m +

1

σk
xk, 0

)∥∥∥∥2

2

+Mσk
h (v − σ−1

k yk)

}
.

The above observation indicates that the ALM subproblem (7) can be achieved by a se-
quential update of v and u in the following way:

vk+1 ≈ argmin
v∈Rn

{
φk(v) :=

σk
2

∥∥∥∥max

(
1

n
L>v − 1m +

1

σk
xk, 0

)∥∥∥∥2

2

+Mσk
h (v − σ−1

k yk)

}
,

uk+1 = Proxσkh (vk+1 − σ−1
k yk).

Therefore, the ALM subproblem is transformed into a tractable continuously differentiable
problem minv φk(v) since φk is convex and continuously differentiable, as both the squared
max function ‖max(•, 0)‖2 and the Moreau envelope Mσk

h are continuously differentiable.
As we know, to minimize a convex differentiable function, it suffices to set its gradient to
zero. Therefore, we solve the problem minv φk(v) via finding the solution of the following
equation:

∇φk(v) =
σk
n
Lmax

(
1

n
L>v − 1m +

1

σk
xk, 0

)
+σk

(
v − 1

σk
yk − Proxσkh

(
v − 1

σk
yk
))

= 0,

(11)
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where the gradient of the Moreau envelope Mσk
h is obtained via (33) in the Appendix.

Following the ALM discussed in the previous subsection, it is clear that the cornerstone
of Algorithm 1 is the fast and scalable computation of (11). Due to the nonsmoothness of
the componentwise max operation on the left side of (11), the classical Newton method for
solving a smooth nonlinear equation may not be applicable here. Fortunately, the gradient
∇φk is a so-called semismooth function (see Appendix A.1), in fact piecewise smooth, so
that one may apply the semismooth Newton (see e.g., Facchinei and Pang (2007)) method
to solve (11). It turns out that the nonsmoothness of this gradient equation is the key
reason that our ALM is scalable.

The semismooth Newton method is a generalization of the classical Newton method
for solving semismooth equations (Kojima and Shindo, 1986; Kummer, 1988; Qi and Sun,
1993). The basic idea of the former method is that for a semismooth function F : Rn → Rm,
one can still approximate F (x) locally at any given point x̄ ∈ Rn by a linear mapping
F (x̄) + V (x − x̄) with residual o(‖x − x̄‖), where instead of taking V = JF (x̄) as in the
smooth case, we set V to be an arbitrary Clarke generalized Jacobian in the set ∂F (x); see
Appendix A.1 for a review of these concepts.

Now, coming back to problem (11), the Clarke generalized Jacobian of the piecewise
linear function Fmax(x) = Fmax(x1, . . . , xm) := (max(x1, 0), . . . ,max(xm, 0)) for x ∈ Rm is
given by

∂Fmax(x) = {Diag(d) : di = 1 if xi > 0; di ∈ [0, 1] if xi = 0, and di = 0 if xi < 0, ∀ i} .
(12)

Equipped with this Clarke generalized Jacobian, we can consider the following set-valued
mapping as the collection of generalized Hessians of the function φk:

∂2φk(v) =

{
σk

[ 1

n2
LSL>+In −∇Proxσkh

(
v − yk

σk

)
︸ ︷︷ ︸

denoted Dk

]
: S ∈ ∂Fmax

(
1

n
L>v − 1m +

xk

σk

)}
.

(13)
Two critical remarks on the set of generalized Hessians are in order. One, by noticing that

Proxσh(y) =
1

2
Diag

(
y1 +

√
y2

1 + 4/(σn), . . . , yn +
√
y2
n + 4/(σn)

)
,

∇Proxσh(y) =
1

2
In +

1

2
Diag

(
y1/
√
y2

1 + 4/(σn), . . . , yn/
√
y2
n + 4/(σn)

)
,

we get that Dk in (13) is an n × n positive definite diagonal matrix. Two, one can derive
from (12) that each S ∈ ∂Fmax

(
L>v/n− 1m + xk/σk

)
is an m ×m diagonal matrix with

either 0 or 1 in the diagonal entries. Let s := |{i : Sii = 1}|, which represents the number
of ones in S. Notably, while s depends on the current iterate xk, v, and parameter σk, we
have observed that it eventually aligns with the sparsity of the solution x. It is worth noting
that if the dual variable v is feasible (which it generally is near the optimal solution), then
1
nL
>v ≤ 1m. Consequently, the number of positive entries in max( 1

nL
>v−1m +σk

−1xk, 0 )
cannot exceed the number of positive entries in xk. As the primal solution x is usually sparse
and the sequence xk gradually converges to x, one may expect that s will be relatively small
during the semismooth Newton iterations, especially as we approach the optimal solution.

10
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In fact, eventually s aligns with the sparsity of the solution x. The above two facts together
indicate that the elements in ∂2φk(v) are always positive definite and potentially have sparse
structures — this is referred to as second-order sparsity. When ∂2φk(v) consists of more
than one matrix, we always take the sparsest one in our implementation.

The detailed steps of the semismooth Newton method for minv φk(v) (i.e., solving
∇φk(v) = 0 in (11)) is presented in Algorithm 2. Similar to the Newton method for solving
smooth nonlinear equations, the semismooth Newton method with the unit step length only
works locally near the solution. In order to make sure that the overall algorithm converges,
we adopt the standard line search strategy in the second step of Algorithm 2 as the search
direction computed from the first step of Algorithm 2 is always a descent direction of the ob-
jective function φk; for details see Facchinei and Pang (2007, Section 8.3.3). We shall prove
the convergence and the superlinear convergence rate of the generated sequence {v t}t≥1 in
the next subsection.

Algorithm 2: SSN(L, xk, yk, σk, ε, η̄, τ, µ, β, v
0): A semismooth Newton method

for ALM subproblem

Input : Data matrix L ∈ Rn×m; current iterate xk ∈ Rm, yk ∈ Rn; penalty
parameter σk > 0; tolerance ε ≥ 0; η̄ ∈ (0, 1), τ ∈ (0, 1] (parameters for
inexactness of the linear system); µ ∈ (0, 1/2), β ∈ (0, 1) (parameters for
backtracking line search); initial point v0 ∈ Rn.

Output: (u t, v t), an approximate solution to (7).
1 for t = 0, 1, 2, . . . do
2 if ‖∇φk(v t)‖2 > ε then
3 stop;

4 Choose Ht ∈ ∂2φk(v
t) via (13);

5 Compute a search direction d t by (approximately) solving the linear system

Ht d = −∇φk(v t) (14)

such that ‖Ht d
t +∇φk(v t)‖2 ≤ min(η̄, ‖∇φk(v t)‖1+τ

2 );
6 αt = 1;
7 while φk(v

t + αt d
t) > φk(v

t) + µαt〈∇φk(v t), d t〉 do
8 αt = βαt; // backtracking line search

9 v t+1 = v t + αt d
t;

10 u t := Proxσkh (v t − σ−1
k yk);

2.2 Convergence results for the ALM and the semismooth Newton method

We now provide convergence guarantees and rates for both the ALM and the semismooth
Newton method. Let (ū, v̄) be an optimal solution of (D), i.e., there exists (x̄, ȳ) ∈ Rn+m

11
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such that the following Karush-Kuhn-Tucker (KKT) optimality conditions hold: Lx̄ = ȳ, x̄ ≥ 0,
( 1

n
L>v̄ − 1m

)>
x̄ = 0,

1

n
L>v̄ ≤ 1m,

ū− v̄ = 0, and ūi > 0, ūiȳi = 1, for i = 1, . . . , n.
(15)

In the seminal work of Rockafellar (1976), the global convergence and the asymptotically
superlinear convergence rate of the ALM for solving convex problems were derived under
the following two stopping criteria:

Lσk(uk+1, vk+1;xk, yk)− inf
u,v∈Rn

Lσk(u, v;xk, yk) ≤
ε2
k

2σk
, (S1)

Lσk(uk+1, vk+1;xk, yk)− inf
u,v∈Rn

Lσk(u, v;xk, yk) ≤
η2
k

2σk
‖(xk+1, yk+1)− (xk, yk)‖22, (S2)

where {εk}k≥0 and {ηk}k≥0 are two prescribed positive summable sequences satisfying

max

( ∞∑
k=0

εk,

∞∑
k=0

ηk

)
< +∞. (16)

The positiveness of εk and ηk allows for inexact computation of the ALM subproblems. In
practice, one may choose εk = ηk = β−k for some β > 1. Under (S1) we will show (in
Proposition 1 below) that the sequence {(xk, yk)}k≥1 is convergent. This further implies
that limk→∞ ‖(xk+1, yk+1) − (xk, yk)‖2 = 0 so that the stopping criterion (S2) is in fact
stronger than (S1). This stronger criterion yields a convergence rate for {(xk, yk)}k≥1 (see
Proposition 2).

Notice that the Slater condition trivially holds for problem (P) by taking xj = 1/m for
all j = 1, . . . ,m so that a KKT solution (ū, v̄, x̄, ȳ) (satisfying the KKT conditions (15))
always exists; see Bertsekas (2016, Proposition 4.3.9). The following proposition regarding
the global convergence of the sequence generated by the ALM is a consequence of Rockafellar
(1976, Theorem 4).

Proposition 1 Let {σk}k≥0 be a nondecreasing positive sequence converging to σ∞ ≤ ∞.
Let {(uk, vk, xk, yk)}k≥1 be the sequence generated by Algorithm 1 with each subproblem
satisfying the stopping criterion (S1). Then the primal sequence {(xk, yk)}k≥1 converges to
a solution (x̄, ȳ) that solves problem (P).

Next we discuss the convergence rate of the ALM. Recall that a sequence
{wk}k≥1 in Rn is said to converge to w̄ (with wk 6= w̄ for all k) superlinearly if
limk→∞ ‖wk+1 − w̄‖2/‖wk − w̄‖2 = 0. The superlinear convergence rate of the ALM has
been extensively studied in the existing literature since the pioneering work of Powell (1969).
For convex nonlinear programming, the convergence rate of {(xk, yk)}k≥1 can be derived
under the so-called quadratic growth condition of problem (D) (Rockafellar, 1976; Cui et al.,
2017). Recall that h(·) is the objective function of the dual problem defined in (D). Let
(ū, v̄) be the optimal solution of (D), which must be unique since h is strictly convex and
ū = v̄ due to the constraints. The quadratic growth condition of problem (D) pertains

12
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to the existence of a positive scalar κ and a neighborhood N of (ū, v̄) such that for any
dual feasible solution (u, v) ∈ N , satisfying 1

nL
>v ≤ 1m and u = v, the following inequality

holds:
h(u) ≥ h(ū) + κ

(
‖u− ū‖22 + ‖v − v̄‖22

)
. (17)

We show in the next result (see Appendix B.1 for a proof) that problem (D) satisfies this
requirement, and thus the ALM for solving (D) has superlinear convergence rate.

Proposition 2 Let {σk}k≥0 be a nondecreasing positive sequence converging to σ∞ ≤ ∞.
Let {(uk, vk, xk, yk)}k≥1 be the sequence generated by Algorithm 1 with each subproblem
satisfying the stopping criterion (S2), and (x̄, ȳ) be the optimal solution of (P). Then
either the algorithm converges in finite steps, or

‖(xk+1, yk+1)− (x̄, ȳ)‖2
‖(xk, yk)− (x̄, ȳ)‖2

≤

 κ√
κ2 + σ2

k

+ ηk

 (1− ηk)−1.

The above proposition states that when the ALM subproblem is solved approximately under
criterion (S2), the sequence (xk, yk) converges to an optimal pair (x̄, ȳ) at a linear rate

(κ/
√
κ2 + σ2

k + ηk)(1− ηk)−1. Since ηk → 0 due to (16) and σk > 0, we know that the rate

(κ/
√
κ2 + σ2

k + ηk)(1− ηk)−1 is smaller than 1 when k is sufficiently large. In addition, as

σk → σ∞ as k →∞, the rate eventually converges to κ/
√
κ2 + σ2

∞. It is, roughly speaking,
inversely proportional to σ∞ if σ∞ is large. If σ∞ = ∞, the convergence is superlinear.
This is the reason that we say the ALM has asymptotically superlinear convergence rate.

Notice that in Algorithm 2, the semismooth Newton method is terminated when the
condition ‖∇φk(v t)‖2 ≤ ε is met at some point v t, whereas in Propositions 1 and 2, the
convergence and rate of convergence hold under the criteria (S1) and (S2). In fact, it has
been established by Cui et al. (2019) that these latter two criteria, which are based on the
function values, can be implied by the former condition based on the norm of the gradient.

Finally, we provide the global convergence and the local convergence rate of the semis-
mooth Newton method (Algorithm 2) discussed in Section 2.1. These are standard results
and one may consult the monograph Facchinei and Pang (2007, Chapters 7 and 8) for the
detailed proofs.

Proposition 3 Let {v t}t≥1 be the sequence generated by Algorithm 2. Then {v t}t≥1 con-
verges globally to the unique solution v∗ of (11). Furthermore, the convergence rate is
superlinear, i.e., limt→∞ ‖v t+1 − v∗‖2/‖v t − v∗‖2 = 0.

2.3 Comparison of the computational cost for second-order methods

In this subsection, we compare the computational cost per iteration for three second-order
methods for solving (6): our semismooth Newton based ALM, the interior point method
(implemented in the REBayes package (Koenker and Gu, 2017)) and the SQP method
(implemented in mixsqp (Kim et al., 2020)).

Semismooth Newton based ALM. The most expensive step in our ALM is to find the
semismooth Newton direction from the linear system (14). It follows from the expression
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of ∂2φk(v) in (13) that the linear equation (14) takes the following abstract form:(
D + LSL>

)
d = rhs, (18)

where D is an n× n positive definite diagonal matrix, S is an m×m diagonal matrix with
diagonal entries being either 0 or 1, and rhs is a given vector in Rn. Denote J := {i : Sii =
1} and

s := |J |, the cardinality of the set J, (19)

and write LJ ∈ Rn×s as the sub-matrix of L with columns in J . Based on the special
diagonal structure of S, one have that

D + LSL> = D + LJL
>
J .

Therefore, the cost of evaluating the generalized Hessian matrix once via D + LJL
>
J is

O(n2s). When s < n, one can also solve (18) via the following Sherman-Morrison-Woodbury
formula:

(D + LJL
>
J )−1 = D−1 −D−1LJ(Is + L>JD

−1LJ)−1L>JD
−1.

Therefore, it suffices to solve a reduced linear system with the coefficient matrix being
Is + L>JD

−1LJ ∈ Rs×s. The cost of computing Is + L>JD
−1LJ is O(ns2), which is smaller

than the direct evaluation of the Hessian matrix when s < n. Notice that for both cases,
the computational cost for solving the linear equation (18) is independent of m.

Each gradient evaluation ∇φk(·) needs O(nm) operations due to the multiplications of
L and L> with vectors; see (11). Since the number of gradient evaluations is the total
number of semismooth Newton iterations for all ALM subproblems, one may expect that
such evaluations do not need to be done many times.

In fact, we can also incorporate a low-rank approximation of L, as in the mixsqp solver
(see (21) below), if the rank of L is indeed small to further reduce the computational cost
of our gradient evaluations. With such techniques, the cost of each gradient evaluation is
O((n+m)k+ min(n,m)2), where k is the numerical rank of the matrix L. In addition, the
cost of each Hessian evaluation is reduced to O(nmin(k, s)2). In practice, we have noticed
that our second-order sparsity s tends to be relatively small, and the reduction in cost
from O(ns2) (when s < n) to O(nmin(k, s)2), achieved by the low-rank approximation, is
typically modest. Therefore, we have chosen not to implement the low-rank approximation
of L when computing Hessian matrices in our ALM.

Interior point method. We have found from the source code of REBayes (Koenker and
Gu, 2017) that it calls the exponential cone optimization4 in MOSEK to solve (D). In fact,
problem (D) can be formulated equivalently as the following exponential cone optimization
problem:

minimize
t,u∈Rn

− 1

n

n∑
i=1

ti

subject to
1

n
L>u ≤ 1m, (ti, ui, 1) ∈ Kexp, i = 1, . . . , n,

(20)

4. https://docs.mosek.com/modeling-cookbook/expo.html
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where Kexp := closure{(x, y, z) ∈ R3 | z > 0, y ≥ z exp(x/z)} is the nonsymmetric exponen-
tial cone studied by Chares (2009); here closure(·) denotes the closure of a convex set. It is
well known that the interior point method for (20) generally relies on a logarithmically ho-
mogeneous self-concordant barrier (LHSCB) (and its conjugate barrier) of the exponential
cone (and its dual cone). Notice that the constraints of problem (20) involves n numbers
of exponential cones. From Yuan (2017, Proposition 1.2.4), we can see that the cost of
computing the gradient and Hessian of LHSCBs for all these exponential cones is O(n).
The most expensive step in the interior point method is to find a search direction of a linear
system (e.g., Yuan (2017, (2.2)), Dahl and Andersen (2022, (4))) for the central path. In
particular, the Schur complement equation (e.g., Yuan (2017, (2.13))) of the linear system
involves computing L>g and L>HL, where g ∈ Rn and H ∈ Rn×n are associated with the
gradient and Hessian of the LHSCB. The cost of computing L>g and L>HL is O(nm) and
O(n2m) respectively.

SQP. For the SQP method implemented in the mixsqp solver (Kim et al., 2020), the
gradient g and Hessian H for each SQP subproblem are given by

g = − 1

n
L>d+ 1m and H =

1

n
L>diag(d)2L,

where d = (1/(Lx)1, · · · , 1/(Lx)n)> ∈ Rn for some given x ∈ Rm. Recall that L is an
n × m matrix. The cost of naively computing the gradient and Hessian is O(nm) and
O(nm2) respectively. In the solver mixsqp, when the matrix L is numerically rank deficient,
say rank ≈ k, then the matrix L can be approximated by the following truncated QR
decomposition (if m ≤ n):

L ≈ QRP>, with Q ∈ Rn×k, R ∈ Rk×m, P ∈ Rm×m. (21)

The cost of computing the gradient and Hessian in mixsqp then reduces to O((n + m)k +
min(n,m)2) and O((n+m)k2 +m2k) respectively.

gradient Hessian

IPM O(nm) O(n2m)

ALM - full L O(nm) O(nsmin(n, s))
ALM - rank k approx. of L O((n+m)k + min(n,m)2) O(nmin(k, s)2)

mixsqp - full L O(nm) O(nm2)
mixsqp - rank k approx. of L O((n+m)k + min(n,m)2) O((n+m)k2 +m2k)

Table 1: Computational cost of ALM, interior point method (IPM), and mixsqp for evaluating the
gradient and Hessian. The term “full L” represents the cost of plain evaluation of the gradient and
Hessian, while the term “rank k approx. of L” lists the reduced cost with the low-rank approximation
of L as in (21). Here, n denotes the number of data points, m denotes the number of grid points, s
represents the second-order sparsity (19), k denotes the numerical rank of L (21).

The main comparison results are given in Table 1. The cost of each Hessian evaluation
in the ALM is O(nsmin(n, s)). As elaborated in Section 2.1, eventually the second-order
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sparsity s is closely tied to the sparsity of the solution x. As we know, the solution x is
usually very sparse (Koenker and Gu, 2017; Polyanskiy and Wu, 2020). In most situations,
we have s� n and the Hessian evaluation of the ALM requires O(ns2) operations. This is
a substantial reduction compared to the O(nm2) cost of each Hessian evaluation in mixsqp

when the matrix L is no longer numerically low rank. The table shows how the second-order
sparsity helps to reduce the computational burden in our approach.

3. Denoising via optimal transport

In this section we consider the Gaussian location mixture model (1) and present new denois-
ing estimands defined through a matching idea (via the theory of optimal transport (Vil-
lani, 2003, 2009)). To motivate our proposal, let us first describe the rationale behind (4).
The problem of denoising the observed Yi’s can be formally described using the following
Bayesian framework. It is known that if the goal is to minimize the expected squared error
Bayes risk

E
[
‖ϑ(Yi)− θi‖22

]
≡
∫ ∫

‖ϑ(y)− θ‖22 φΣi(y − θ) dG∗(θ) dy (22)

over all measurable functions ϑ : Rd → Rd, where θi ∼ G∗ and Yi | θi ∼ N (θi,Σi), then the
best estimator for θi is the oracle posterior mean

ϑ∗(Yi) := E[θi | Yi]. (23)

In empirical Bayes, given an estimate Ĝn of the unknown prior G∗, one imitates the op-
timal Bayesian analysis and estimates the oracle posterior means by the empirical Bayes
estimates (4); see e.g., Jiang and Zhang (2009), Efron (2019). Although this is a natural
strategy which has been studied extensively in the literature, there are a few drawbacks of
this plug-in approach:

Figure 3: Plots of the raw data (in blue) with n = 5, 000 in d = 2, the corresponding empirical

Bayes estimates (in red), the true G∗ (in black), and Ĝn (in black dots) obtained from our ALM.
Here half of the true signals θi ∈ Rd are drawn uniformly at random from each of the two concentric
circles of radii 2 and 6 respectively (centered at (0, 0) ∈ R2), and Yi | θi ∼ N (θi, I2) for i = 1, . . . , n.

Observe that some of the empirical Bayes estimates θ̂i’s are far from the support of G∗ (and Ĝn).

(1) The oracle posterior mean ϑ∗(Yi) in (23) and the empirical Bayes estimates in (4) are
not necessarily lying “close” to the support of G∗ (say S ⊂ Rd). In fact, if the goal is
to estimate θi ∼ G∗, it is reasonable to restrict ϑ(·) in (22) to all estimators such that
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ϑ(Yi) is distributed (approximately) as G∗. To illustrate this phenomenon suppose that
G∗ has structure (e.g., the θi’s are supported on a lower dimensional manifold S, or G∗ is
discrete with few atoms which corresponds to the clustering problem); see e.g., Figure 3.
The empirical Bayes estimator θ̂i in (4), may not necessarily, in general, lie “close” to the
set S (see the red points in the middle panel of Figure 3). Thus, if the emphasis is on
estimating θi’s focussing on recovering the support S, the estimates θ̂i’s are not necessarily
ideal.
(2) It is worth noting that although we call θ̂i’s as natural estimates of θi, they are not
consistent estimates, in the sense that generally, θ̂i does not converge (e.g., in probability)
to θi.

To motivate our alternative approach, first suppose that Σi ≡ Σ for all i = 1, . . . , n and
that the θi’s are known up to a permutation, i.e., the empirical distribution

Gn :=
1

n

n∑
i=1

δθi (24)

of the θi’s is known. Then, it seems natural to associate Yi to a θj by solving the matching
(optimization) problem: minσ:[n]→[n]

1
n

∑n
i=1 ‖Yi − θσ(i)‖2, where σ = (σ(1), . . . , σ(n)) is a

permutation of [n] := {1, . . . , n}. In other words, we match the data points Yi’s to the θj ’s
such that the average cost of the matching is smallest. Letting νn := 1

n

∑n
i=1 δYi denote the

empirical distribution of the observed Yi’s, this matching problem can be formulated as an
optimal transport (OT) problem (see Appendix A.2 for a brief introduction):

min
T :T#νn=Gn

1

n

n∑
i=1

‖Yi − T (Yi)‖22 (25)

where the above minimization is over all maps T such that T#νn = Gn which means that T
transports the distribution of νn to Gn, i.e., T : {Y1, . . . , Yn} → {θ1, . . . , θn} is a bijection.
Note that (25) can be viewed as an assignment problem for which algorithms with worst
case complexity O(n3) are available in the literature (see e.g., Munkres (1957), Bertsekas
(1988)). It is known that the minimum value of the above objective matches the Wasserstein
(squared) distance between νn and Gn.

Problem (25) can be cast in the population setting by considering (cf. (22))

min
T#ν=G∗

E
[
‖Y − T (Y )‖22

]
≡ min

π∈Π(ν,G∗)

∫
‖y − θ‖2 dπ(y, θ) =: W 2

2 (ν,G∗) (26)

over all functions T : Rd → Rd such that T #ν = G∗, which means that T transports
ν — the marginal distribution of Y — to G∗, i.e., T (Y ) ∼ G∗ where Y ∼ ν. The right
side of (26) involves minimization over Π(ν,G∗) — the class of all joint distributions π
with marginals ν and G∗, and gives the equivalence5 of Monge’s problem and Kantorovich’s
relaxation (Villani, 2003, 2009).

Suppose that T ∗ is the optimal solution to (26); i.e., T ∗ is the OT map such that
T ∗#ν = G∗. It is known from the theory of OT that such a T ∗ exists, is unique a.e.,

5. In this case Monge’s problem is equivalent to Kantorovich’s relaxation as the reference distribution ν is
absolutely continuous.
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and can be expressed as the gradient of a convex function; see e.g., Villani (2003), Villani
(2009). Then,

θ̃i := T ∗(Yi), for i = 1, . . . , n, (27)

could be considered as a natural denoising target for Yi. Observe that, by (26), we have
θ̃1, . . . , θ̃n are i.i.d. G∗ (compare this with the fact that θ1, . . . , θn are also i.i.d. G∗). Further,
the new estimand θ̃i is related to Yi directly through the map T ∗ via (27). One can think
of θ̃i ∼ G∗ as the “closest” (in the sense of distributions) to Yi ∼ ν. In the following we will
consider estimation of θ̃1, . . . , θ̃n as defined in (27).

In order to estimate our new denoising targets θ̃1, . . . , θ̃n we first need to estimate T ∗,
defined via (26). A natural plug-in approach here would be to replace ν and G∗ in (26) with
νn (the empirical distribution of Y1, . . . , Yn) and Ĝn (see (3)). Thus, we solve the linear
program

min
π∈Π(νn,Ĝn)

∫
‖y − θ‖2 dπ(y, θ) ≡W 2

2 (νn, Ĝn). (28)

As Ĝn has finite support (see Soloff et al. (2021)), and νn is a discrete distribution, the
optimal coupling in (28) can be represented by a matrix π̂ = ((π̂ij))n×k̂ which has marginals

νn and Ĝn; here we suppose that Ĝn =
∑k̂

j=1 α̂jδâj , where â1, . . . , âk̂ ∈ Rd and α̂j ’s are
positive weights summing up to 1. To obtain a transport map from this joint coupling π̂
we can use the idea of barycentric projection (see Deb et al. (2021)) and define

T̂n(Yi) := Eπ̂[θ | Yi] = n

k̂∑
j=1

π̂ij âj , (29)

as an estimator of θ̃i ≡ T ∗(Yi). As Ĝn is a discrete distribution with much fewer atoms
than n, most of the Yi’s will be essentially transported to one element in Ĝn; see the right
panel of Figure 3. Thus the estimates T̂n(Yi) will essentially lie in the support of Ĝn; this
rectifies the drawbacks of the empirical Bayes approach outlined at the beginning of this
section.

In the following result (proved in Appendix B.2) we show that our proposed estimand
θ̃i ≡ T ∗(Yi), in (27), can be consistently estimated by the estimator T̂n(Yi) defined in (29).
In fact, the above result provides a finite sample bound on the rate of convergence of T̂n in
average (squared) Euclidean norm.

Theorem 4 Suppose that we have data from (1) where Σi ≡ Σ for all i = 1, . . . , n, and
Σ is a d × d positive definite matrix with minimum eigenvalue σ > 0. Suppose that the
denoising estimands θ̃i’s are defined via (27) where T ∗ = ∇ψ with ψ : Rd → R being a
convex function. We assume that ψ is λ-strongly convex6 and L-smooth7, for λ, L > 0,
and that G∗ is compactly supported, i.e., G∗([−M,M ]d) = 1, for some M > 0. Then there
is a function n(d, σ,M) and a constant Cd,σ > 0 such that, for all sample sizes n with
n ≥ n(d, σ,M), with probability at least 1− 4d

n8 ,

1

n

n∑
i=1

‖T̂n(Yi)− θ̃i‖22 ≤ Cd,σ
L

λ

1

log n
. (30)

6. Strong convexity here refers to ψ(z) ≥ ψ(x) +∇ψ(x)>(z − x) + λ
2
‖x− z‖2, for all x, z ∈ Rd.

7. By L-smoothness we mean: ψ(z) ≤ ψ(x) +∇ψ(x)>(z − x) + L
2
‖x− z‖2, for all x, z ∈ Rd.
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Our proof technique for Theorem 4 first relates the left-hand side of (30) to W 2
2 (Gn, Ĝn)

— the deconvolution error in the Wasserstein metric (see Deb et al. (2021), Manole et al.
(2021)). It is well known that the smoothness of the Gaussian errors makes the deconvo-
lution problem difficult; in fact, the logarithmic rate is minimax optimal for deconvolution
with Gaussian errors (see e.g., Dedecker and Michel (2013), Soloff et al. (2021)).

4. Numerical experiments

In this section we illustrate the efficiency and scalability of our semismooth Newton based
ALM via numerical experiments on both simulated and real data. We compare the ALM
with the state-of-the-art R package mixsqp (Kim et al., 2020)8, and the R package REBayes

(Koenker and Gu, 2017). The KWDual function in the latter package solves the dual formu-
lation (D) by an interior point method using the commercial solver MOSEK (Andersen and
Andersen, 2000).

All numerical experiments of our algorithm were performed in Matlab (version 9.11) on
a Windows workstation (32-core, Intel Xeon Gold 6226R @ 2.90GHz, 128 GB of RAM),
except explicitly mentioned otherwise. The R package mixsqp and the KWDual function in
the R package REBayes were called in R 4.1.2. The KWDual function used version 9.3 of the
MOSEK optimization library. Our methods implemented in Matlab and the relevant codes,
including simulation experiments, are available at https://github.com/YangjingZhang/

Dual-ALM-for-NPMLE.
Due to space constraints, in Appendix C.1 we provide a detailed discussion on the stop-

ping criteria and implementation details of the methods used in our numerical experiments.
In Appendix C.2, we conduct preliminary experiments comparing our method to first-order
methods (e.g., a projected gradient method and a limited-memory projected quasi-Newton
method). It provides insights into why we have excluded first-order methods from our main
comparison.

4.1 One-dimensional synthetic data

We first present the numerical results on several one-dimensional synthetic data sets. The
main purpose of these experiments is to show the efficiency and scalability of our ALM in
terms of n (the number of observations) and m (the number of support points).

Example 1. We replicate the simulation experiment conducted in Brown and Greenshtein
(2009), Jiang and Zhang (2009), Johnstone and Silverman (2004). Consider n independent
observations where Yi ∼ N (θi, 1), with each θi taking the value 0 or ν with the proportion
of ν being τ = 0.5%n, 5%n, or 50%n. We use equally spaced support points on the interval
[mini Yi,maxi Yi] for a given number of grid points m.

In Table 2, we report the numerical performance of our ALM, mixsqp and REBayes for
relatively small-size instances with n = 1, 000 and m = 500 (averaged over 10 replications).
It can be seen from Table 2 that our ALM outperforms the other two methods for all
instances — the ALM is the fastest algorithm which also produces the smallest KKT residual
(given in (42)). From the last column “relative objective value” of Table 2, we can see that
the three methods yield satisfactory solutions of comparable quality.

8. The source code is available at https://github.com/stephenslab/mixsqp.
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τ ν Time (in sec) Residual Relative objective value

ALM mixsqp REBayes ALM mixsqp REBayes ALM mixsqp REBayes

5

3 0.1 20.6 0.7 4.2e-07 3.4e-06 2.6e-05 6.1e-09 1.2e-07 0
4 0.1 24.0 0.6 3.8e-07 2.2e-05 2.8e-05 4.8e-09 7.9e-07 0
5 0.1 25.0 0.8 6.2e-07 1.5e-05 1.5e-05 1.9e-08 1.2e-06 0
7 0.1 13.0 0.7 4.9e-07 3.3e-03 6.0e-05 1.8e-08 5.5e-06 0

50

3 0.1 21.8 0.6 5.3e-07 6.7e-05 1.6e-05 1.6e-08 1.3e-06 0
4 0.1 21.7 0.6 4.1e-07 1.8e-04 1.8e-05 1.6e-08 5.1e-06 0
5 0.1 21.4 0.5 6.2e-07 2.5e-04 1.2e-05 1.2e-08 2.5e-06 0
7 0.1 17.6 0.7 4.5e-07 3.4e-05 1.6e-05 0 1.9e-06 6.8e-10

500

3 0.1 20.2 0.5 6.2e-07 2.5e-05 2.8e-05 0 1.1e-06 6.3e-10
4 0.1 20.2 0.5 4.9e-07 3.4e-03 2.5e-05 5.9e-10 6.2e-06 0
5 0.1 21.0 0.6 4.1e-07 1.6e-05 3.1e-05 0 1.2e-06 9.1e-09
7 0.1 17.3 0.6 4.6e-07 4.8e-05 3.5e-05 0 1.7e-06 4.1e-09

Table 2: Comparison between ALM, mixsqp, and REBayes for Example 1 with n = 1, 000 and
m = 500 (averaged over 10 replications). The column “Relative objective value” is in terms of the
negative log-likelihood value l = − 1

n

∑n
i=1 log(

∑m
j=1 Lijxj). It represents l−l∗

1+|l∗| , where l∗ is the

smallest value among the three methods and l is the value for a particular method.

τ ν Time (in sec) Residual Relative objective value

ALM REBayes ALM REBayes ALM REBayes

50

3 3.9 107.8 5.0e-07 4.6e-05 4.1e-09 0
4 3.8 99.2 6.7e-07 4.1e-05 4.5e-09 0
5 3.7 103.6 4.8e-07 2.2e-05 1.3e-08 0
7 3.7 115.8 6.0e-07 7.7e-05 1.6e-08 0

500

3 3.7 112.9 6.0e-07 1.7e-04 1.4e-08 0
4 3.8 103.6 5.6e-07 1.4e-04 8.0e-09 0
5 4.1 117.2 5.3e-07 9.2e-05 6.5e-09 0
7 4.0 132.8 6.1e-07 4.1e-05 6.9e-09 0

5000

3 3.4 90.6 7.0e-07 3.3e-05 1.7e-08 0
4 3.4 89.4 7.0e-07 3.1e-04 0 2.5e-10
5 3.6 105.5 7.4e-07 3.5e-05 1.5e-08 0
7 3.4 183.8 7.3e-07 4.1e-05 0 1.6e-09

Table 3: Comparison between ALM and REBayes for Example 1 with n = 10, 000 and m = 5, 000
(averaged over 10 replications).

In order to illustrate the scalability of our ALM, we further repeat the experiment on
large instances with n = 10, 000 and m = 5, 000. The corresponding results are recorded
in Table 3. We do not include the results for mixsqp here since it takes an excessively
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long time for problems of this scale (where m > 1, 000). Here for one particular instance
with n = 10, 000 and m = 5, 000, mixsqp took approximately 7 hours to complete 10 SQP
iterations. However, it still failed to converge (with a residual exceeding 10−2). As shown
in Table 3, the computational time of our ALM for each instance is less than 5 seconds,
which is about 20 times faster than REBayes. In fact, about 3 seconds of our ALM are spent
for the one-time computation of a low-rank approximation of the matrix L; the rest of the
computation (including the computation of the gradients and the generalized Hessians as
well as solving the semismooth Newton equations) is completed in 1 second.

Example 2. We replicate the experiment conducted in Kim et al. (2020), where 50%,
20%, and 30% of the observations {Yi}ni=1 are draw independently from N (0, 1), t4, and
t6 distributions respectively. Here tν denotes Student’s t-distribution with ν degrees of
freedom. As the observed data can be modeled as a Gaussian scale mixture, we find Ĝn by
solving a mixture problem of the form

∑m
j=1 xjgj , xj ≥ 0,

∑m
j=1 xj = 1, where gj is the

density of N (0, σ2
j ) for some given σj , j = 1, . . . ,m. Following Kim et al. (2020), we select

the grid values {σ2
1, . . . , σ

2
m} by the method in Stephens (2017).

We test the scalability of the ALM, mixsqp and REBayes for different values
of n and m, and the results are shown in Figure 4. On the left panel, we con-
sider m ∈ {400, 600, 800} and n ∈ ceil{103, 103.3, 103.6, 104, 104.3, 104.6, 105, 105.3, 105.6}.
We consider even larger instances with n ∈ {4 × 104, 7 × 104, 105} and m ∈
ceil{102, 102.2, 102.4, 102.6, 102.8, 103, 103.2, 103.4, 103.6, 103.8, 104} on the right panel of Fig-
ure 4. We found that when m > 1, 000, mixsqp usually fails to solve the instances within
100 iterations under the stopping criterion ε = 10−6; as a result, we have not included the
results for mixsqp when m > 1, 000 in the plot. Although the REBayes solver is able to
solve most instances, it takes about 100 times more computational time compared to our
ALM. In particular, for the largest test instance with n = 105 and m = 104, it only takes
the ALM about 80 seconds to get a highly accurate solution. However, REBayes failed
to solve this instance. In addition, to assess the quality of the solutions produced by the
compared methods, we present the KKT residual (given in (42)) plotted against n and m in
Figure 8 in the Appendix. Figures 4 and 8 reveal that our algorithm consistently achieves
more accurate solutions, characterized by smaller KKT residuals, compared to the other
two methods. Furthermore, our algorithm achieves this while requiring less computational
time. Furthermore, the performance of all the methods remains consistently stable across
various replications. Refer to Figure 9 in Appendix C.3 for a plot depicting the average
computational times, along with error bars indicating the standard deviation across 10
replications.

4.2 Two-dimensional astronomy data

We analyze two astronomy data sets obtained from Gaia-TGAS (Brown et al., 2016) and
APOGEE (Majewski et al., 2017).

Data set 1 (Gaia-TGAS). We first consider the astronomy data Gaia-TGAS (Brown
et al., 2016) that has been studied in Anderson et al. (2018), where the extreme deconvolu-
tion algorithm (Bovy et al., 2011) was used to estimate the true parallax and photometry
of every star. This data set contains n = 1, 363, 432 observations {Yi}ni=1 ⊂ R2, which
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Figure 4: Computational time (in seconds) of the ALM, mixsqp, and REBayes with changing n and
m for Example 2 (averaged over 10 replications).

can be modeled as a Gaussian location mixture with d = 2 where Yi is assumed to have
density fG∗,Σi with a known diagonal covariance matrix Σi; see (2). We plot the raw data

{Yi}ni=1, the empirical Bayes estimates {θ̂i}ni=1, the initial grid, and the estimated prior Ĝn
in Figure 5. With such a large n ≈ 106, we found that mixsqp can only handle this problem
with small m, up to several hundreds. Thus, in Figure 5(a), we use 30×30 grid points (i.e.,
m = 900) when solving it by mixsqp. In contrast, we display in Figure 5(b) the solution
obtained from our ALM with 100 × 100 grid points. We can see from the empirical Bayes
estimates given by mixsqp in Figure 5(a) that the 30 × 30 grid points are not fine enough
to denoise this data properly. In contrast, the empirical Bayes estimates obtained by ALM
in Figure 5(b) show more shrinkage overall. One can easily see the benefits of working with
a large m here — with denser grid points we are able to obtain sharper denoised estimates
that reveal finer details of the CMD9. Note that REBayes for the Gaia-TGAS data with
n ≈ 106 and m = 104 takes an excessively long time. To demonstrate the performance of
REBayes, we conducted an experiment using a subsample of the original data with a size
of n = 100, 000 and a selection of m = 104 grid points. Our ALM took approximately 3
minutes, resulting in an empirical Bayes plot in Figure 5(c). On the other hand, applying
REBayes to the same subsampled data took approximately 80 minutes. The resulting em-
pirical Bayes plot produced by REBayes was indistinguishable from that of ALM (given in
the (1,2) subplot of Figure 5(c)). The residuals (defined in (42)) of the solution x returned
by ALM and REBayes are 3.2 × 10−6 and 8.4 × 10−5, respectively. We also observed that
the solution y of problem (P) returned by ALM and REBayes are nearly the same (the
difference, measured by the ‖ · ‖2 norm, is 8.2× 10−6).

Data set 2 (APOGEE). Our second real data example is taken from the Apache Point
Observatory Galactic Evolution Experiment survey (APOGEE) (Majewski et al., 2017).

9. In particular, we point out that 128 GB of RAM was not enough for solving the ALM problem shown in
Figure 5(b), since the matrix L ∈ R1,363,432×10,000 alone consumes approximately 109 GB of storage. The
results in Figure 5(b) were obtained in Matlab (version 9.5) on a Windows workstation (32-core, Intel
Xeon Gold 6130 CPU @ 2.10 GHz (2 processors), 256 GB of RAM) in approximately 472 minutes.
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(a) mixsqp n ≈ 106, m = 302 (b) ALM n ≈ 106, m = 1002 (c) ALM n = 105, m = 1002

Figure 5: Results for the d = 2 dimensional Gaia-TGAS data obtained from: (a) mixsqp (with
n ≈ 106, m = 302), (b) ALM (with n ≈ 106, m = 1002), (c) ALM (with n = 105, m = 1002). The

number of support points of Ĝn (see the (2,2) subplots) are: (a) 567, (b) 1, 677, (c) 853, where the
size of each support point plotted is proportional to its weight. The run times are: (a) 398 minutes,
(b) 472 minutes, (c) 3 minutes. The KKT residuals are: (a) 7.6×10−3, (b) 3.2×10−6, (c) 3.2×10−6.
With denser grid points we are able to obtain sharper denoised estimates that reveal finer details of
the CMD.

Following the pre-processing in Ratcliffe et al. (2020), the data set contains n = 27, 135
observations in R19.

We first analyze d = 2 features picked from the 19 dimensions. For d = 2 we use
m = 100×100 equally spaced grid points inside the minimum axis-aligned bounding box of
the raw data (i.e., the smallest rectangle that contains all the data points), that is known
to contain all the support points of Ĝn (see Soloff et al. (2021)).

Figure 6: Results for the d = 2 dimensional APOGEE data in the [Mg/Fe]-[Si/Fe] plane with
m = 1002 grid points. The empirical Bayes estimates (2nd plot from left) show strong association

and a manifold-like structure in the upper right region, and the fitted Ĝn is very sparse (3rd plot).
The rightmost plot gives log-likelihood value against the number of grid points.

We first illustrate the performance of our ALM on the 2-dimensional plane [Mg/Fe]-
[Si/Fe]. The first three plots (from the left) in Figure 6 show the raw data {Yi}ni=1 ⊂ R2 for

n = 27, 135, the empirical Bayes estimates {θ̂i}ni=1, and the estimated prior Ĝn. In order to
get a sense of how dense the grid points should be to obtain a good approximation of (3)
for this data set, we plot the log-likelihood value 1

n

∑n
i=1 log

(∑m
j=1 xjφΣi(Yi−µj)

)
against
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the number of grid points m ∈ {252, 502, 752, 1002, 1252, 1502, 1752, 2002}; see the rightmost
plot of Figure 6. We see that the objective value improves a lot as the number of grid
points increases from 25× 25 and attains a plateau near 100× 100. This justifies our choice
of taking a set of 100 × 100 grid points for denoising this data set. We provide additional
two-dimensional plots along with their denoised empirical Bayes estimates (obtained from
a choice of 100× 100 grid points) in Figure 10 in Appendix C.3. In all the examples we see
that the denoised estimates reveal interesting structure not visible in the raw data scatter
plots.

Plane Time (in sec) Residual

ALM REBayes ALM REBayes

[Mg/Fe]-[Si/Fe] 31.9 454.9 1.0e-06 5.9e-05
[Mg/Fe]-[Mn/Fe] 24.4 321.9 5.2e-07 7.0e-05
[C/Fe]-[CI/Fe] 22.7 665.7 2.9e-07 9.3e-05
[Al/Fe]-[Ca/Fe] 23.5 436.8 1.0e-06 1.1e-04
[Ti/Fe]-[Ni/Fe] 19.9 1150.1 6.9e-07 1.2e-04

Table 4: Numerical performance of ALM and REBayes for 5 abundance-abundance data sets (with
d = 2) from the APOGEE survey.

To compare the performance of the ALM and REBayes, we select 5 pairs of features
from the 19 dimensions (plotted in Figures 6 and 10) and run both algorithms. Table 4
shows that for all instances the ALM is faster than REBayes and the solutions returned
by the ALM are more accurate. For this real data set with n = 27, 135 and m = 10, 000,
mixsqp is not applicable. We remind the reader that we have not incorporated a low-rank
approximation of the matrix L here since it does not work well for multivariate data as
mentioned in the Introduction; see Figure 2. Therefore, the second-order sparsity in the
generalized Hessian mostly contributes to the efficiency of our ALM.

5. Conclusion and discussion

In this paper we solve the Lagrangian dual of the optimization problem (6) using a semis-
mooth Newton based augmented Lagrangian method. This approach is highly scalable
(e.g., we can solve problems with n ≈ 106 and m ≈ 104) and it exploits the second-order
sparsity in the generalized Hessian matrix arising in the ALM subproblem. We believe that
this semismooth Newton based ALM approach is a powerful method for solving large scale
optimization problems whose solutions are intrinsically structured sparse (i.e., the solution
itself or a linear transformation of the solution is sparse). In fact, this algorithmic frame-
work has already been shown to be effective for the Lasso problem and its variants; see e.g.,
Li et al. (2018a), Li et al. (2018b), Zhang et al. (2020).

In this paper we have focused our attention on fitting the Gaussian location mixture
model (1). However, the scope of our approach is much more general. In fact, one could
consider the following d-dimensional (d ≥ 1) observation model:

Yi|θi ∼ pi(·|θi), with θi
iid∼ G∗, for i ∈ {1, . . . , n} (31)
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where {pi(·|·)}ni=1 is a sequence of known probability densities and {θi}ni=1 ⊂ Rp (p ≥ 1)
is the sequence of i.i.d. (from G∗) underlying latent parameters. The algorithm developed
in this paper immediately generalizes to this setting as the NPMLE of G∗ in (31) can be
computed similarly. See Example 2 in Section 4.1 where we illustrate this for a scale mixture
of centered Gaussian distributions.

The effectiveness of our ALM in estimating Ĝn and the θ̂i’s (as illustrated via simulations
and theory) shows the power and scope of nonparametric empirical Bayes as a methodology
in multivariate problems. However, when d is large (e.g., d ≥ 10), the NPMLE in (3) can
overfit the data; see Appendix C.4 and Appendix C.5 for a detailed numerical study of this
phenomenon and plausible explanations (see e.g., Figure 14). This leaves open the study of
regularization methods for estimating the unknown G∗ when d is large. We expect this to
be a fruitful direction of future research.

We next discuss on the potential of applying stochastic methods for solving problem (6).
Although the stochastic projected gradient method can theoretically be applied, its effec-
tiveness diminishes as the value of m increases. This is primarily due to the computational
burden associated with computing the gradient of the objective function in (6) for a single i,
not to mention for a batch of i’s. The gradient computation involves evaluating

∑m
j=1 Lijxj ,

making it computationally expensive. The stochastic projected gradient method typically
needs thousands of iterations to achieve a reasonable solution, thus necessitating a large
number of expensive high-dimensional matrix-vector multiplications. In contrast, our semis-
mooth Newton based augmented Lagrangian method requires significantly fewer iterations,
resulting in a reduced number of gradient evaluations. Moreover, the generalized Hessians
in our approach often exhibit sparsity and, in some cases, are computationally more efficient
to compute than gradients.
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Appendix A. Preliminaries

Appendix A.1 Some concepts from convex analysis and optimization

We first introduce some basic notions from convex analysis, including the concept of Moreau-
Yosida regularization of a proper closed convex function. A convex function f : Rn →
[−∞,∞] is said to be proper if f(x) < +∞ for at least one x and f(x) > −∞ for every x.
The convex function f is said to be closed if {x | f(x) ≤ α} is closed for every α ∈ R. Let
f : Rn → (−∞,+∞] be a proper closed convex function. Parametrized by a scalar σ > 0,
the Moreau-Yosida regularization of f (also called the Moreau envelope of f) is defined as

Mσ
f (x) := min

z∈Rn

{
f(z) +

σ

2
‖z − x‖22

}
, x ∈ Rn; (32)
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here ‖ · ‖2 denotes the usual Euclidean norm. The unique optimal solution of (32) for any
given x, denoted as

Proxσf (x) := argmin
z∈Rn

{
f(z) +

σ

2
‖z − x‖22

}
,

is called the proximal point of x associated with f . The corresponding function Proxσf
is called the proximal mapping of f . This regularization is a powerful tool to smooth a
possibly nonsmooth convex function such that its gradient can be computed easily based
on the proximal mapping of the original function. In fact, one important property is that
the Moreau envelope Mσ

f is always continuously differentiable (and convex), regardless of
whether the original function f is smooth or not, and the function Mσ

f has a Lipschitz
gradient given by

∇Mσ
f (x) = σ

[
x− Proxσf (x)

]
, x ∈ Rn. (33)

Interested readers may consult Rockafellar and Wets (2009, Chapter 1.G) for more proper-
ties of the Moreau envelope and the proximal mapping.

Next we introduce the concept of semismoothness starting from some basic vari-
ational analysis. Let F : Rn → Rm be a vector-valued locally Lipschitz continuous
function. It follows from Rademacher’s theorem that F is differentiable almost everywhere.
We can thus define the Clarke generalized Jacobian of F at any x ∈ Rn as ∂F (x) :=
conv

{
limk→∞ JF (xk) | {xk}k≥1 is a sequence of differentiable points of F converging to x

}
,

where JF (x) denotes the Jacobian matrix of F ; here by conv(S) we mean the convex hull
of a given set S. We say F is semismooth at x ∈ Rn if F is directionally differentiable at x
and for any Vh ∈ ∂F (x+ h),

F (x+ h)− F (x)− Vhh = o(‖h‖2) as h→ 0.

Detailed properties of semismooth functions can be found in the monograph by Facchinei
and Pang (2007).

Appendix A.2 Introduction to the theory of optimal transport

We present here some notions and results from the theory of optimal transport that is
relevant for the paper. This material or slight modifications thereof are accessible from
popular monographs and lecture notes on the subject, e.g., Peyré and Cuturi (2019), Villani
(2009), Villani (2003), Santambrogio (2015), McCann and Guillen (2011).

Definition 5 (Push-forward) Let µ and ν be two Borel probability measures on mea-
surable spaces (X ,BX ) and (Y,BY) respectively, and let T be a measurable map from
X to Y. The map T is said to push forward µ to ν, in symbols T#µ = ν, if
T#µ(B) ≡ µ(T−1(B)) = ν(B) for all B ∈ BY .

Definition 6 (Monge’s problem) Let µ and ν be as in the previous definition, and let
c : X × Y → [0,∞) be a measurable function (“cost function”). The optimal transport
problem (Monge’s problem) with µ, ν, and c is given by

inf
T

∫
X
c(x, T (x)) dµ(x) subject to T#µ = ν. (34)

Any minimizer of the above problem is called an optimal transport map.
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The following optimization problem is in general a relaxation of the above problem; under
certain conditions, both problems are equivalent.

Definition 7 (Kantorovich’s problem) Let µ and ν be as in Definition 5, and let c
be a cost function as in Definition 6. Let further Π(µ, ν) denote the set of all couplings
between µ and ν, i.e., probability measures on X × Y whose marginals equal to µ and ν.
The Kantorovich problem is given by the optimization problem

inf
γ∈Π(µ,ν)

∫
X

∫
Y
c(x, y) dγ(x, y).

Any minimizer of the above problem is called an optimal transport plan.

For measures µ and ν on Rd with finite k-th moments (k ≥ 1), i.e.,
∫
‖x‖k dµ(x) <∞ and∫

‖x‖k dν(x) < ∞, the k-Wasserstein distance between µ and ν is defined via the above
Kantorovich problem with cost function c(x, y) = ‖x− y‖k2, i.e.,

Wk(µ, ν) :=

(
inf

γ∈Π(µ,ν)

∫ ∫
‖x− y‖k2 dγ(x, y)

)1/k

.

A celebrated result due to Brenier characterizes optimal transport maps in the sense
of Definition 6 for X = Y = Rd and quadratic cost, i.e., c(x, y) = ‖x − y‖22 and
µ absolutely continuous with respect to the Lebesgue measure. In the sequel, we let
g?(x) := supy∈Rd{y>x − g(y)} denote the Legendre-Fenchel conjugate of a convex func-

tion g : Rd → R ∪ {+∞}.

Theorem 8 (Brenier’s theorem) Suppose that µ and ν are Borel probability measures
on Rd with finite second moments, and suppose further that µ is absolutely continuous
with respect to the Lebesgue measure. Then the optimal transport problem (34) with the
quadratic cost, i.e., c(x, y) = ‖x − y‖22 has a (µ-a.e.) unique minimizer T = ∇ψ for a
convex function ψ : Rd → R ∪ {+∞}. Furthermore, the optimal transport problem and its
Kantorovich relaxation are equivalent in the sense that the optimal coupling in Definition
7 is of the form (id × T )#µ. Moreover, if in addition ν is absolutely continuous, then
∇ψ? is the (ν-a.e.) minimizer of the Monge problem transporting ν to µ, and it holds that
∇ψ? ◦ ∇ψ(x) = x (µ-a.e.), and ∇ψ ◦ ∇ψ?(y) = y (ν-a.e.).

Appendix B. Proofs of main results

Appendix B.1 Proof of Proposition 2

Proof In order to use the general results on the convergence rate of the ALM in Rockafellar
(1976, Theorem 5), we prove that the quadratic growth condition of the dual problem in
(17) holds. Since each entry of the matrix L is nonnegative and each row of L has at least
one nonzero entry, one may obtain from the constraint 1

nL
>v ≤ 1m and the nonnegativity

of v̄ that ‖ū‖∞ = ‖v̄‖∞ < +∞. Therefore, we may assume without loss of generality that
c := sup(u,v)∈N {‖u‖∞, ‖v‖∞} < +∞ so that ∇2h(u) = 1

nDiag( 1
u2i

) ≥ 1
nc2
In for any (u, v) ∈
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N , where In is the n× n identity matrix. It can be derived that for any (u, v) ∈ N that is
feasible to problem (D) of the main paper,

h(u) ≥ h(ū) +∇h(ū)>(u− ū) +
1

nc2
‖u− ū‖22

= h(ū)−
n∑
i=1

1

nūi
(ui − ūi) +

1

nc2
‖u− ū‖22

= h(ū)− 1

n

n∑
i=1

(Li•x̄)(vi − v̄i) +
1

nc2
‖u− ū‖22

≥ h(ū) +
1

nc2
‖u− ū‖22 = h(ū) +

1

2nc2

(
‖u− ū‖22 + ‖v − v̄‖22

)
,

where the last equality and the last inequality follow from the KKT conditions in (15) of
the main paper (from the feasibility of v):

Li•x̄ = ȳi =
1

ūi
,

1

n
v̄>Lx̄ = 1>mx̄, x̄ ≥ 0 and

1

n
L>v ≤ 1m.

Therefore, the quadratic growth condition in (17) of the main paper holds for the dual
problem holds with κ = (2nc2)−1. The asymptotically superlinear convergence rate of the
sequence {(xk, yk)}k≥1 generated by the ALM is now a consequence of Rockafellar (1976,
Theorem 5).

Appendix B.2 Proof of Theorem 4

Proof For notational simplicity, let Gn denote the empirical distribution of
T ∗(Y1), . . . , T ∗(Yn) (note the slight change in notation compared to (24) of our main pa-
per); also, we denote by ‖ · ‖ the usual Euclidean norm (instead of ‖ · ‖2). Consider an
optimal coupling π̂ between νn and Ĝn minimizing (28) of the main paper, and let π̂ij
denote the resulting probability mass that is assigned to Yi and âj , for 1 ≤ i ≤ n, and

1 ≤ j ≤ k̂. Define further πj(Yi) = π̂ijn, for 1 ≤ i ≤ n, and 1 ≤ j ≤ k̂. Accordingly, we

have α̂j = 1
n

∑n
i=1 πj(Yi) =

∫
πj(y) dνn(y), for 1 ≤ j ≤ k̂. Let ψ? denote the Legendre-

Fenchel conjugate of ψ (recall that T ∗ = ∇ψ with ψ : Rd → R being a convex function).
We first bound

∫
ψ?(θ) dĜn(θ)−

∫
ψ?(θ) dGn(θ) as

k̂∑
j=1

α̂jψ
?(âj)−

∫
ψ?(θ) dGn(θ)

=

∫ k̂∑
j=1

πj(y)ψ?(âj) dνn(y)−
∫
ψ?(T ∗(y)) dνn(y)

≥
∫
ψ?
( k̂∑
j=1

πj(y)âj

)
dνn(y)−

∫
ψ?(T ∗(y)) dνn(y)

=

∫
ψ?(T̂n(y)) dνn(y)−

∫
ψ?(T ∗(y)) dνn(y)
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≥
∫
∇ψ?(T ∗(y))>(T̂n(y)− T ∗(y)) dνn(y) +

1

2L

∫
‖T̂n(y)− T ∗(y)‖2 dνn(x),

=

∫
x>(T̂n(y)− T ∗(y)) dνn(y) +

1

2L

∫
‖T̂n(y)− T ∗(y)‖2 dνn(y) (35)

where the two inequalities follow from the convexity of ψ? (by Jensen’s inequality) and the
L-smoothness of ψ, which implies 1

L -strong convexity of its conjugate ψ? (see e.g., Hiriart-
Urruty and Lemaréchal (1993)); the last equality follows from Brenier’s theorem (Theorem
8 in Appendix A.2) in light of which ∇ψ? is the inverse map of ∇ψ. Moreover, W 2

2 (νn, Ĝn)
can be expressed as

n∑
i=1

k̂∑
j=1

‖âj − Yi‖2π̂ij =
k̂∑
j=1

α̂j‖âj‖2 +
1

n

n∑
i=1

‖Yi‖2 − 2
n∑
i=1

k̂∑
j=1

â>j Yiπ̂ij

=

∫
‖θ‖2 dĜn(θ) +

∫
‖y‖2 dνn(y)− 2

n

n∑
i=1

Y >i

( k̂∑
j=1

nπ̂ij âj

)
=

∫
‖θ‖2 dĜn(θ) +

∫
‖y‖2 dνn(y)− 2

∫
y>T̂n(y) dνn(y). (36)

Similarly,

W 2
2 (νn, Gn) =

∫
‖θ‖2 dGn(θ) +

∫
‖y‖2 dνn(y)− 2

∫
y>T ∗(y) dνn(y) (37)

where we note that T ∗ is also the optimal transport map from νn to Gn (as T ∗#νn = Gn
and T ∗ is the gradient of a convex function). Combining (35), (36), (37), we obtain that∫

‖T̂n(y)− T ∗(y)‖2 dνn(y) ≤ L
[
W 2

2 (νn, Ĝn)−W 2
2 (νn, Gn) + 2

∫
ψ?(θ) d(Ĝn −Gn)(θ)

+

∫
‖θ‖2 d(Gn − Ĝn)(θ)

]
. (38)

Let η̂ be an optimal coupling between Gn and Ĝn, and let η = (∇ψ?, id)#η̂ be the push-
forward (cf. Definition 5) of the coupling η̂; note that η has the two marginals to ∇ψ?#Gn =
νn and id#Ĝn = Ĝn, where we have used that ∇ψ?(T ∗(Yi)) = Yi, 1 ≤ i ≤ n, by Brenier’s
theorem, with id denoting the identity map.

Accordingly, by the definition of the 2-Wasserstein distance in terms of optimal couplings
(cf. Appendix A.2), we obtain that

W 2
2 (νn, Ĝn) ≤

∫
‖y − θ‖2 dη(y, θ) =

∫
‖∇ψ?(ζ)− θ‖2 dη̂(ζ, θ).

Adding and subtracting ζ inside the norm on the right-hand side and expanding the square,
it follows that

W 2
2 (νn, Ĝn) ≤

∫
‖∇ψ?(ζ)− ζ‖2 dGn(ζ) +

∫
‖θ − ζ‖2 dη̂(ζ, θ) + 2

∫
(∇ψ?(ζ)− ζ)>(ζ − θ) dη̂(ζ, θ)

= W 2
2 (Gn, νn) +W 2

2 (Gn, Ĝn) + 2

∫
(∇ψ?(ζ)− ζ)>(ζ − θ) dη̂(ζ, θ), (39)
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where we have used that ∇ψ? is the OT map pushing forward Gn to νn, the definition of
the 2-Wasserstein distance in terms of optimal transport and optimal couplings, and the
definition of η̂ as optimal coupling between Gn and Ĝn.

In order to bound the rightmost term in the preceding display, we use the fact that the
function ψ? is (1/λ)-smooth. This yields

2

∫
∇ψ?(ζ)>(ζ − θ) dη̂(ζ, θ) ≤ 2

∫ {
ψ?(ζ)− ψ?(θ) +

1

2λ
‖ζ − θ‖2

}
dη̂(ζ, θ)

= 2

∫
ψ?(ζ) dGn(ζ)− 2

∫
ψ?(θ) dĜn(θ) +

1

λ
W 2

2 (Gn, Ĝn),

(40)

where we have used the fact that η̂ be an optimal coupling between Gn and Ĝn. Finally,
note that

2

∫
(−ζ)>(ζ − θ) dη̂(ζ, θ) =

∫ {
‖θ‖2 − ‖θ − ζ‖2 − ‖ζ‖2

}
dη̂(ζ, θ)

=

∫
‖θ‖2 dĜn(θ)−

∫
‖ζ‖2 dGn(ζ)−W 2

2 (Gn, Ĝn). (41)

Combining (39), (40), and (41), we obtain that

W 2
2 (νn, Ĝn) ≤W 2

2 (νn, Gn) +
1

λ
W 2

2 (Gn, Ĝn) + 2

∫
ψ?(ζ) dGn(ζ)− 2

∫
ψ?(θ) dĜn(θ)

+

∫
‖θ‖2 dĜn(θ)−

∫
‖ζ‖2 dGn(ζ).

Substituting this bound back into (38), we observe that the right-hand side of the display
equals L

λW
2
2 (Gn, Ĝn). The desired result now follows from the above fact in conjunction with

the following result: In Soloff et al. (2021, Theorem 10), it is shown that if G∗([−M,M ]d) =
1, for some M > 0, then there is a function n(d,M) such that, for all sample sizes n with
n ≥ n(d,M),

W 2
2 (G∗, Ĝn) ≤ Cd,σ

1

log n
,

for a constant Cd,σ, with probability at least 1 − 4d
n8 .

Appendix C. Implementation details and additional numerical results

Appendix C.1 Stopping criteria and implementation details

We first give some details of the stopping conditions for each of the competing methods —
our ALM, the mixsqp (Kim et al., 2020) solver, the R package REBayes (Koenker and Gu,
2017). For a given tolerance ε > 0, the mixsqp is terminated if

η1 := max
1≤j≤m

[
1

n
L>•j(1n � Lx)− 1

]
≤ ε,
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where L•j represents the j-th column of L and � denotes the Hadamard division defined as:
x � y = (x1/y1, . . . , xn/yn), for x, y ∈ Rn. For REBayes, we adopt its default termination
condition with the relative tolerance of the dual gap “rtol” being 10−6. We terminate our
semismooth Newton based ALM under the following stricter condition

max(η1, η2) ≤ ε, (42)

which additionally involves the KKT residual defined as

η2 :=

∥∥∥∥x−max

(
x+

1

n
L>(1n � Lx)− 1m, 0

)∥∥∥∥
2

.

In the reported tables and figures, the residual term is computed from max(η1, η2) given in
(42). We say a solution is more accurate if its residual is smaller. Throughout our numerical
experiments, we set ε = 10−6 for our ALM and for mixsqp. In addition, both methods are
also terminated if the number of ALM/SQP iterations reaches 100.

In addition, we make the following remarks on the implementation of our ALM:

(a) To further enhance the scalability of the ALM, we borrow a low-rank approximation
idea from Kim et al. (2020) for reducing the cost of computing the gradient ∇φk(·) in
(11). As shown in Figure 2, the matrix L usually has a lot of singular values close to 0
when d = 1 (although this is not the case for d ≥ 2). In our implementations, the ALM
constructs a low-rank approximation of L for all experiments only in Section 4.1 where
d = 1. However, when d ≥ 2, the ALM does not employ a low-rank approximation of L
since L is no longer approximately low rank. It is important to note that we do not utilize
the low-rank approximation of L when computing the generalized Hessians in our ALM.

(b) The solution of (P) is invariant to scaling each row of L since for any α1, . . . , αn > 0,

n∑
i=1

log (Lx)i =

n∑
i=1

log (Li• x) =

n∑
i=1

log (αi Li• x)−
n∑
i=1

log αi,

where Li• denotes the i-th row of L. Therefore, we assume without loss of generality that
the largest component in each row of L is always 1 by taking αi = 1/(max1≤j≤m Lij).

(c) Based on the KKT optimality conditions in (15), we consider the following initial point
for our ALM:

x0 :=
1

m
1m, y0 := Lx0 =

1

m
L1m, v0 = u0 := 1m � y0.

We find that this initial point works well for the synthetic data sets tested in Section 4.1.
For the more challenging real data sets in Section 4.2, we construct the following initial
point to fully take advantage of the second-order sparsity in the generalized Hessian matrix
appearing in the ALM subproblem:

x0 :=
σ0

2
1m, y0 :=

1

m
L1m, u0 := 1m � y0, v0 := 0n. (43)

Recall from Table 1 that the computational cost of finding the generalized Hessian in our
ALM is O(nsmin(n, s)), where s = {i : Sii 6= 0} is the number of nonzero entries in the
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diagonal matrix S; see (13). The idea behind the above initialization is to make s as small
as possible for the first several ALM iterations (and semismooth Newton sub-iterations).
Starting from the initial point in (43), we have that for the first ALM subproblem (i.e.,
x = x0), it holds that for any dual variable v ∈ Rn,

S ∈ ∂max

(
1

n
L>v − 1m +

1

σ0
x0, 0

)
= ∂max

(
1

n
L>v − 1

2
1m, 0

)
.

Since we set v0 = 0n, it always holds that 1
nL
>v0 − 1

21m ≤ 0 and S can be taken as a zero
matrix for the first semismooth Newton iteration (within the first ALM subproblem). As
the algorithm proceeds, the variable v will deviate from the zero vector gradually, and the
number of violated inequalities in 1

nL
>v − 1

21m ≤ 0 may increase correspondingly. Hence,
the choice of the initial point in (43) would result in a gradually increasing s (from zero)
that helps to reduce the computational cost in the early iterations of the algorithm.

(d) Once we obtain an approximate solution x to problem (P) via the ALM, we renormalize
x (x 7→ x/

∑m
j=1 xj) such that its components add up to one.

(e) We next give the adjustment of the positive scalar σk in the ALM framework. It
follows from Proposition 2 that a larger σk gives rise to a faster local convergence rate

(κ/
√
κ2 + σ2

k + ηk)(1 − ηk)−1. However, when σk is very large, the condition number of

the the generalized Hessian matrix in (13) will be large since the diagonal entries of the
positive definite diagonal matrix Dk will be close to zero. In this case, finding the Newton
direction in (14) may need more conjugate gradient steps. Therefore, we shall consider
the trade-off between the convergence rate of the ALM and the cost of solving the linear
systems in the semismooth Newton method. In our implementation, we set σ0 = 100,
σk+1 =

√
3σk if χk/χk−1 > 0.6, and σk+1 = σk otherwise. Here χk := max(max( 1

nL
>vk −

1m, 0), ‖uk−vk‖/‖uk‖) characterizes the feasibility of (D). Namely, when the improvement
on the feasibility of (D) after one iteration is too small, we increase σk. Next, the sequence
{εk}k≥1 (the same for {ηk}) in the stopping criteria satisfying (16) in the main paper is
chosen as follows: ε0 = 0.5, εk+1 = εk/ς. We set ς = 1.06 if the k-th subproblem has been
solved efficiently within 30 semismooth Newton iterations; otherwise, we set ς = 1. Lastly,
in the semismooth Newton method (Algorithm 2), we set η̄ = 0.1, τ = 0.1, µ = 10−4, and
β = 0.5.

(f) The Newton system (14) can be solved by direct solvers, for example, via computing
the Cholesky factorization of the coefficient matrix, when the size of the coefficient matrix
is moderate (≤ 5, 000). Alternatively, when the dimension of the linear system is large
(> 5, 000), we solve it iteratively by conjugate gradient method.

Appendix C.2 Comparison with first-order methods

First order methods are natural choices for solving large scale problems. In this section,
we conduct preliminary experiments to demonstrate the convergence behaviour of first-
order methods. We compare our ALM with two first-order methods: a projected gradient
method (PG) and a limited-memory projected quasi-Newton method (PQN). The imple-
mentation of these methods was based on the MATLAB codes “minConf SPG.m” and
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“minConf PQN.m” developed by Mark Schimidt, which can be obtained from the follow-
ing link: https://www.cs.ubc.ca/~schmidtm/Software/minConf.html. We conducted
experiments for Example 2 in Section 4.1, with n = 5000 and m = 1000. In Figure 7,
we present the relative objective value, which represents the difference between the log-
likelihood value at the current iterate and the log-likelihood value at the best solution
among the three compared methods, plotted against the running time for the projected
gradient method (PG), the limited-memory projected quasi-Newton method (PQN), and
our proposed ALM. Figure 7 clearly demonstrates that the two first-order methods exhibit
rapid progress during the initial stages of optimization. However, as they approach the
solution, their convergence significantly slows down. This behavior suggests that although
first-order methods can quickly generate approximate solutions with low accuracy, they
usually stagnate after some iterations and cannot make further (substantial) progress. In
contrast, our ALM showcases superior performance, consistently making progress through-
out the optimization process. In particular, our ALM has fast convergence when the iterates
are close to the true solution. These results highlight the advantages of our ALM compared
to first-order methods even in the considered large scale setting.

Here we do not conduct a comprehensive comparison between first-order methods (e.g.,
PG, PQN) and second-order methods (e.g., our proposed ALM). We can still gain the
insights that first-order methods exhibit rapid progress during the initial stages of opti-
mization, whereas second-order methods demonstrate rapid convergence when the iterates
approach the true solution. Consequently, employing first-order methods as an initial warm-
start phase, followed by the subsequent application of second-order methods to achieve
highly accurate solutions, could further accelerate the optimization process. In fact, the
combination of first-order methods and second-order methods is a widely used technique in
the field of optimization; see e.g., Li et al. (2018c), Li et al. (2020, Section 5), Zhang et al.
(2021, Section 4.1.2).
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Figure 7: Relative loglikelihood against time on Example 2 with n = 5000, m = 1000.

Appendix C.3 Additional numerical results

Additional results on Example 2 in Section 4.1 are given in Figures 8 and 9.
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Figure 8: KKT residual (defined in (42)) of the ALM, mixsqp, and REBayes with changing n and
m for Example 2 (averaged over 10 replications).

Figure 9: Mean and standard deviation of computational time (in seconds, in the log scale)
of the ALM, mixsqp, and REBayes with changing n and m = 400 for Example 2 (averaged
over 10 replications).

For APOGEE data, we provide additional two-dimensional abundance-abundance plots
along with their denoised empirical Bayes estimates (obtained from a choice of 100 × 100
grid points) in Figure 10. In all the examples we see that the denoised estimates reveal
interesting structure not visible in the raw data plots. In particular, the empirical Bayes
estimates of the data in the [C/Fe] and [CI/Fe] plane (see the top right plots in Figure 10)
reveal very strong (almost linear) association between the two variables.

Appendix C.4 Performance of the ALM when d ≥ 3

In this subsection, we consider multivariate synthetic data. In this multivariate setting the
discretization of (3) based on equally spaced grid points in a compact region of Rd is no
longer feasible since the number of such grid points grow exponentially in the number of
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Figure 10: Results from 4 abundance-abundance data sets (with d = 2) from the APOGEE survey.
Observe that the denoised estimates reveal interesting structure not visible in the raw data plots.

dimensions d, e.g., m = 100d. Therefore, when d ≥ 3 we simply take all observations as grid
points, i.e., we take m = n and µi = Yi for all i = 1, . . . , n; this approach was advocated
by Lashkari and Golland (2007).

We consider the following settings where {θi}ni=1 ⊂ Rd is generated as:

3(a) The first two coordinates of θi ∈ Rd are drawn uniformly at random from the circle
of radius 6 (centered at (0, 0) ∈ R2), and the remaining entries are set to zero;

3(b) Each θi is generated independently from the discrete distribution G∗ = 1
3(δe1 + δe2 +

δe3), where e1 = (0, . . . , 0) ∈ Rd, e2 = (6, 0, 0, . . . , 0) ∈ Rd, and e3 = (0, 6, 0, . . . , 0) ∈
Rd;

3(c) θi = 0 ∈ Rd, for all i = 1, . . . , n.

Given the θi’s, the observed data are generated independently according to Yi ∼ N (θi, Id),
i.e., we consider the homoscedastic setting Σi ≡ Id (for simplicity). We set n = 5, 000 and
the dimension of the problem d is varied within the set {3, 4, . . . , 12}.

Behavior of the empirical Bayes estimates as d increases: We illustrate the results
for data generated from Example 3(a) using our ALM with the grid points chosen as our data
points (here n = m = 5, 000). Figure 11 displays the projected empirical Bayes estimates
onto the first two dimensions and the second and third dimensions for d ∈ {3, 6, 9, 12}. The
plots indicate that the quality of the empirical Bayes estimates deteriorates as d increases.
This phenomenon is also observed on Examples 3(b,c) (see Figure 12) and is intuitively
expected since the task of Gaussian denoising gets more difficult as d grows.

Behavior of Ĝn as d increases: Additionally, we observe from the plots in Figure 11 that
the estimated Ĝn (obtained via our ALM) has more atoms (support points) as d grows. To
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Figure 11: Plots of the projections of the empirical Bayes estimates (in red), the true G∗ (in black),

and Ĝn (in black dots) obtained from our ALM onto 1-2 plane (see columns 1 and 2) and 2-3 plane
(see columns 3 and 4) for data obtained from Example 3(a). The four rows correspond to d = 3, 6, 9
and 12 (from top to bottom). Here we take n = m = 5, 000 and µi = Yi for all i = 1, . . . ,m. Observe
that the quality of the empirical Bayes estimates deteriorates as d increases.

further illustrate this phenomenon we plot (for this data example) the number of atoms,
i.e., the number of nonzero entries of the solution x to problem (6), against the dimension
d in Figure 13(a) and the weights of the atoms in Figure 13(b). In particular, we observe
that when d = 12 about 3,400 atoms (out of 5,000 grid points) have nonzero mass and most
of them (excluding the largest/smallest 200; see Figure 13(b)) have mass approximately
2× 10−4. We claim that the main reason for this behavior of the estimated Ĝn is that the
matrix L in (6) approaches the identity matrix as d increases. This is because the diagonal
entries Lii = φΣi(Yi − µi) = φΣi(0) dominate the off-diagonal entries Lij = φΣi(Yi − µj)
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Figure 12: Plots of the projections of the empirical Bayes estimates (in red) and Ĝn (in black dots)
obtained from our ALM for data obtained from Example 3(c) (see columns 1 and 2) and Example
3(b) (see columns 3 and 4). The four rows correspond to d = 3, 6, 9 and 12 (from top to bottom).
Here we take n = m = 5, 000 and µi = Yi for all j = 1, . . . , n. Observe that the quality of the
empirical Bayes estimates deteriorates as d increases.

(for i 6= j) which are typically much smaller, as most points are far from each other in high
dimensions; see Remark 9 for a more detailed explanation of this phenomenon.

An effective strategy to mitigate this curse of dimensionality: When d ≥ 3, we set
all the diagonal entries of L to zero, but keep all the off-diagonal entries of L intact. This
slight modification of L enhances the performance of the obtained Ĝn and the resulting
empirical Bayes estimates; e.g., when d = 12 the mean squared error (MSE) between θ̂ and
θ, defined as 1

n

∑n
i=1 ‖θ̂i − θi‖22, equals 2.393 with this adjustment whereas MSE = 7.137

without this tweak (see the plots in Figure 11 and compare with Figure 15).
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(a) (b) (c) (d)

Figure 13: (a) The number of atoms of the estimated Ĝn (obtained via our ALM) against the

dimension d; (b) plot of log(x↓i ) for different d, where x↓ consists of the sorted elements of the vector
x in descending order; (c)-(d) depict similar plots when we incorporate Lii = 0, for all i, in our ALM.
All the plots here are obtained from one run from Example 3(a) with n = m = 5, 000. Observe that
there are more atoms with nonzero weights as d grows.
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Figure 14: The plots in the first row show the heatmap of the sub-matrix LJ ,J , obtained from data
from Example 3(a), as d varies in {3, 6, 9, 12} (from left to right). Here J is subsampled randomly
from {1, 2, . . . , n} with |J | = 100. The plots in the first row show that the matrix L is approaching
the identity matrix as d increases. The plots in the second row are obtained after enforcing Lii = 0
for all i.

Remark 9 (Ĝn computed via the ALM as d increases) To explain the behavior of
the estimated Ĝn obtained by the ALM, as d increases, we plot the heatmap of the scaled10

matrix L computed from data obtained from Example 3(a) for d = 3, 6, 9, 12 in the first
row of Figure 14. In the heatmap11, the values of the entries in L are represented by

10. We scale the matrix L such that the maximum entry in each row is one; see Appendix C.1.
11. For better visualization we only show the heatmap of LJ ,J — the submatrix of L with rows and columns

restricted to a randomly sampled index set J ⊆ {1, . . . , 5000} with |J | = 100.
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colors in each square. We can infer from the first row of Figure 14 that the matrix L
is approaching the identity matrix as d increases. This is because the diagonal entries
Lii = φΣi(Yi−µi) = φΣi(0) dominate the off-diagonal entries Lij = φΣi(Yi−µj) (for i 6= j)
which are typically much smaller, as most points are far from each other in high dimensions.
Note that when L = Im, we know that x = 1

m1m is the solution to (6) and thus the number

of support points of Ĝn should be n = m. This explains why the number of atoms of Ĝn is
increasing with d, and each (non-zero) weight is approaching a fixed value; cf. Figure 13(b).

Figure 15: Plots of the projections of the empirical Bayes estimates (in red), the true G∗ (in black),

and Ĝn (in black dots) obtained from our ALM onto 1-2 plane (see columns 1 and 2) and 2-3 plane
(see columns 3 and 4) for data obtained from Example 3(a) where following (44) we enforce Lii = 0,
for all i = 1, . . . , n. The four rows correspond to d = 3, 6, 9 and 12 (from top to bottom). Here we
take n = m = 5, 000 and µi = Yi for all i = 1, . . . , n.
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Appendix C.5 A strategy to mitigate the curse of dimensionality of the ALM

We introduce the following strategy to slightly modify the matrix L for the computation of
the ALM via (6) when d ≥ 3, and the support points are taken to be exactly the data points,
i.e., µi = Yi for i = 1, . . . , n. This modification enhances the performance of the obtained
Ĝn and the resulting empirical Bayes estimates obtained from the ALM. The strategy is to
set all the diagonal entries of L to zero, but keep all the off-diagonal entries of L intact.
Namely, we redefine L as:

Lij =

{
φΣi(Yi − µj), if i 6= j,

0, if i = j.
(44)

This adjustment mitigates the domination of the diagonal entries over the off-diagonal
entries in L when d is large (as can be seen from the plots in the second row of Figure 14).
We found from our extensive simulation experiments that this simple modification can
generally improve the denoising results, especially when d is moderately large (e.g., when d
varies between 5 and 15); see Figure 15 and compare with Figure 11.

This strategy also yields a Ĝn with less support points that provides a better estimator
of G∗; see Figure 13(c)-(d) and Figure 15. We can see from Figure 13(c) that most of the
grid points have zero mass (e.g., only about 600 of the 5,000 grid points have nonzero mass
when d = 12). By comparing Figure 11 and Figure 15, we can see that for small dimensions
(e.g., d = 3) this tweak does not have much effect, whereas for moderate dimensions (e.g.,
d = 12) the effect can be substantial.

Appendix D. Alternative approach to developing ALM

There is an alternative approach to developing an ALM for solving (D). We can intro-
duces nonnegative slack variables to handle the inequality constraint and then apply the
“conventional” ALM used for equality-constrained problems; see e.g., Nocedal and Wright
(2006, Chapter 17.3). Next we show that the alternative approach to developing ALM is
equivalent to our proposed ALM.

We could introduce nonnegative slack variable s ≥ 0 for the inequality constraint as
follows:

minimize
u,v,s

h(u) + δ≥0(s) subject to
1

n
L>v + s = 1m, u− v = 0. (D’)

The “conventional” augmented Lagrangian function for (D’) can be written as follows: for
σ > 0, x ∈ Rm, y ∈ Rn,

L̃σ(u, v, s;x, y) := h(u) + δ≥0(s) + y>(u− v) +
σ

2
‖u− v‖22

+ x>
(

1

n
L>v + s− 1m

)
+
σ

2

∥∥∥∥ 1

n
L>v + s− 1m

∥∥∥∥2

2

. (45)

Here we leave the nonnegativity of the slack variable s in the objective function via an
indicator function δ≥0(s) such that δ≥0(s) = 0 if s ≥ 0 and δ≥0(s) = +∞ otherwise. There
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is a close relationship between the above augmented Lagrangian function L̃σ(u, v, s;x, y)
given by the above (45) and the one Lσ(u, v;x, y) given in (9). In fact we can show that

Lσ(u, v;x, y) = inf
s
L̃σ(u, v, s;x, y)

and the infimum is achieved at s = max(− 1
nL
>v + 1m − 1

σx, 0 ). This can be done by
substituting this expression of s back into (45), resulting in Lσ(u, v;x, y). Using this re-
lationship between the two augmented Lagrangian functions, next we show that the ALM
using L̃σ(u, v, s;x, y) in (45) would be equivalent to the ALM of the main paper (7) and
(8). With L̃σ(u, v, s;x, y) in (45), the iterative framework of the ALM is

(uk+1, vk+1, sk+1) ≈ argmin
u,v∈Rn

L̃σk(u, v, s;xk, yk),

xk+1 = xk + σk

(
1

n
L>vk+1 + sk+1 − 1m

)
yk+1 = yk + σk(u

k+1 − vk+1).

The first step (uk+1, vk+1, sk+1) ≈ argminu,v∈Rn L̃σk(u, v, s;xk, yk) can be computed via

(uk+1, vk+1) ≈ argmin
u,v∈Rn

Lσk(u, v;xk, yk)

sk+1 = max

(
− 1

n
L>vk+1 + 1m −

1

σ
xk, 0

)
.

By substituting the expression for sk+1 into the update of xk+1, we can see that

xk+1 = xk + σk

(
1

n
L>vk+1 + sk+1 − 1m

)
= max

( σk
n
L>vk+1 − σk1m + xk, 0

)
,

which is exactly the update of xk+1 in the ALM of the main paper; see line 5 of Algorithm 1.
Therefore, with either the “conventional” augmented Lagrangian function or the one in (9),
the ALM is essentially the same.
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séminaire de Mathématiques Supérieure (SMS) Montréal, pages 145–180, 2011.

J. Munkres. Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, 5:32–38, 1957.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.
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