

¹ **Journal Name:** *Ecosphere*

² **Title:** Community context mediates effects of pollinator loss on seed production

³ **Short Title:** Community context in ecosystem function

⁴ **Authors:** K.C. Arrowsmith (1, 2, 3, *), Victoria A. Reynolds (2, 3, 4), Heather M. Briggs (2, 5, 6), and

⁵ Berry J. Brosi (1, 2, 3)

⁶ **Author Affiliations:**

⁷ 1. Department of Biology, University of Washington, Seattle, Washington 98195 USA

⁸ 2. Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224 USA

⁹ 3. Department of Environmental Sciences, Emory University, Atlanta, Georgia 30322 USA

¹⁰ 4. Department of Planning and Environment, New South Wales Government, Parramatta, New South
¹¹ Wales Australia

¹² 5. College of Science, University of Utah, Salt Lake City, Utah 84112 USA

¹³ 6. Department of Environmental Studies, University of California, Santa Cruz, California 95064 USA

¹⁴ * Corresponding author: kcarrows@uw.edu

¹⁵ **Keywords:** biodiversity ecosystem function, pollination, floral fidelity, trait matching, multi-trophic inter-
¹⁶ actions, competition, facilitation

¹⁷ **Data accessibility statement:** Data and code for this project are available from Zenodo:

¹⁸ <http://doi.org/10.5281/zenodo.7865389>.

19 1 Abstract

20 A critical goal for ecologists is understanding how ongoing local and global species losses will affect
21 ecosystem functions and services. Diversity-functioning relationships, which are well characterized in
22 primary producer communities, are much less consistently predictable for ecosystem functions involving
23 two or more trophic levels, particularly in situations where multiple species in one trophic level impact
24 functional outcomes at another trophic level. This is particularly relevant to pollination functioning, given
25 ongoing pollinator declines and the value of understanding pollination functioning for single plant species
26 like crops or threatened plants. We used spatially replicated, controlled single-pollinator-species removal
27 experiments to assess how changes in bumble bee species richness impacted the production of fertilized
28 seeds in a perennial herb — *Delphinium barbeyi* — in the Rocky Mountains of Colorado, USA. To improve
29 predictability, we also assessed how traits and abundances in the plant and bumble bee communities were
30 related to *D. barbeyi* reproductive success. We hypothesized that trait-matching between pollinator
31 proboscis length and *D. barbeyi*'s nectar spurs would produce a greater number of fertilized seeds, while
32 morphological similarity within the floral community would dilute pollination services. We found that the
33 effects of pollinator removal differed depending on the behavioral patterns of pollinators and compositional
34 features of the plant and pollinator communities. While pollinator floral fidelity generally increased *D.*
35 *barbeyi* seed production, that positive effect was primarily evident when more than half of the *Bombus*
36 community was experimentally removed. Similarly, communities comprising primarily long-tongued bees
37 were most beneficial to *D. barbeyi* seed production in tandem with a strong removal. Finally, we observed
38 contrasting effects of morphological similarity in the plant community, with evidence of both competition
39 and facilitation among plants. These results offer an example of the complex dynamics underlying
40 ecosystem function in multi-trophic systems and demonstrate that community context can impact
41 diversity-functioning relationships between trophic levels.

42 2 Introduction

43 Biodiversity positively influences many key biological functions, underscoring concerns about the
44 functional impacts of ongoing local and global extinctions (Hooper et al., 2005; Cardinale et al., 2012).
45 Dozens of experiments have confirmed relationships between biodiversity and ecosystem functioning
46 (“BEF”), particularly in primary producer communities involved in functions like biomass production or
47 carbon fixation, to name just two examples (Tilman et al., 2014). However, the evidence for BEF
48 relationships is much more ambiguous for ecosystem functions that are mediated across two or more
49 trophic levels, such as predation, pollination, and seed dispersal (Sih et al., 1998; Casula et al., 2006; Loy
50 and Brosi, 2022). For example, in multi-predator/single-prey studies, increased predator richness may
51 positively or negatively impact the biomass of a target prey species, depending on other properties of the
52 system in which these interactions take place (Sih et al., 1998; Casula et al., 2006). Thus, there remains a
53 need to understand what factors shape how biodiversity in one trophic level affects the functional
54 responses in a single species at another trophic level.

55 Plant-pollinator communities represent one system in which the question of BEF patterns across
56 trophic levels is particularly important. Insect pollinators, which facilitate reproduction in a vast majority
57 of flowering plants, are experiencing widespread population declines (Kremen et al., 2002; Potts et al.,
58 2010). Yet BEF studies examining the effects of pollinator losses in these systems have yielded
59 contradictory results (Brosi and Briggs, 2013; Hallett et al., 2017), limiting ecologists’ ability to predict
60 how global patterns of pollinator loss will impact ecosystem function. Removal experiments involving a
61 single pollinator species have shown negative impacts on pollination in some systems (Brosi and Briggs,
62 2013) but not in others (Hallett et al., 2017), indicating that functional relationships in these systems
63 could be mediated by more than simply species richness. Indeed, while numerical metrics of biodiversity
64 like pollinator richness and abundance are likely to play major roles in pollination function (Tilman et al.,
65 2014; Winfree et al., 2015), functional traits within both plant and pollinator communities may also affect
66 the BEF dynamics in these systems (Hooper et al., 2005; McGill et al., 2006). For instance trait-matching
67 (or mismatching) is likely to incentivize some plant-pollinator interactions—like pollinators with long
68 tongues visiting flowers with deep corolla tubes—and limit others (Stang et al., 2009; Garibaldi et al.,
69 2015; Peralta et al., 2020). In this case, successful pollination may rely less on the total abundance of

70 pollinators in a community than on the relative abundance of pollinators morphologically adapted to
71 forage upon these morphologically distinct flowers (Inouye, 1980). Since species richness is likely to
72 interact with several other elements of community composition at both trophic levels involved, it is crucial
73 for future multi-trophic studies of BEF patterns to go beyond investigating species richness *per se* and to
74 instead understand how functional trait distributions in all relevant trophic levels modify the functional
75 effects of biodiversity.

76 In this study, we examined how plant-pollinator community dynamics influenced the relationship
77 between removals of single bumble bee species (*Bombus* sp.) and pollination services in a target plant
78 species (*Delphinium barbeyi*, Ranunculaceae). We conducted short-term, single-species removal
79 experiments with four of the 11 *Bombus* species present in our study area, precluding identity effects that
80 would arise from consistently removing the same pollinator species. We repeated this experiment over
81 three summers, with true spatial replication across our experimental units. We generally hypothesized
82 that the proportion of specific traits in the plant and pollinator communities, as well as the relative
83 abundance of individuals within each guild, mediated the effects of pollinator removal on plant
84 reproductive function (number of fertilized seeds produced). Specifically, we expected that (i) pollinator
85 community composition that promoted visitation to *D. barbeyi* (high *Bombus* abundance, high proportion
86 of long-tongued bees) would increase the production of viable seeds by this focal plant; (ii) pollinator
87 foraging behavior that promoted conspecific pollen transfer (floral fidelity) would also increase seed
88 production; and (iii) morphological similarity between our focal plant species and other flowers in the
89 community would dilute floral visitation and overall reproduction in our focal plant throughout our
90 experiment via interspecific competition.

91 **3 Methods**

92 **3.1 Study system**

93 We conducted this study over three years (2011, 2013, 2014) in subalpine meadows surrounding the
94 Rocky Mountain Biological Laboratory, (38°57.5'N, 106°59.3'W, 2,900 m above sea level), Gunnison
95 National Forest, Colorado, United States. We replicated our experiment over 14 sampling events
96 distributed across 13 unique sites, with sites separated by at least 1km to ensure independence of the

97 pollinator communities (Darvill et al., 2004; Knight et al., 2005). To maintain independence in our data,
98 we sampled each site only once during this study, with the exception of one location that we sampled in
99 both 2011 and 2014. At each site, we established a 20-m by 20-m plot that contained comparable densities
100 of target flowers throughout the study system (Broosi and Briggs, 2013).

101 To estimate reproductive success, we counted the production of fertilized ovules (seed production) by
102 *Delphinium barbeyi* (Ranunculaceae), a common perennial wildflower in the Rocky Mountains that is
103 visited by a wide range of bumble bee (Hymenoptera: Apidae: *Bombus*) pollinators. *D. barbeyi* is notable
104 for its long nectar spur (10 – 18mm, Warnock, 1993), which generally results in a high abundance of visits
105 by pollinators with long proboscises like *Bombus* (Inouye, 1980; Pyke, 1982). Previous work in this system
106 has confirmed that nearly all *Bombus* species in the region, including those with relatively shorter
107 proboscises, visit *D. barbeyi* (Inouye, 1978; Broosi and Briggs, 2013).

108 **3.2 Field data collection**

109 **3.2.1 Assessment of seed production**

110 Prior to each sampling event, we selected 30 focal *D. barbeyi* individuals at which we would assess
111 seed production. We randomly assigned half of these individuals to the control period and the other half
112 to the manipulation. Approximately two days prior to the control survey at each site, we covered racemes
113 of immature floral buds on all focal plants with pollinator exclusion bags to prevent pollination outside of
114 the study period. Then at the beginning of each study period, we removed the pollinator exclusion bags
115 on the assigned half of mature *D. barbeyi* flowers. After four hours, during which our focal individuals
116 were exposed to insect pollinators, we re-bagged the flowers and allowed any fertilized ovules to mature
117 without further pollination. We harvested mature fruits from bagged flowers 7–15 days after the study
118 period and counted the developing seeds produced in each fruit to estimate the reproductive function of
119 each flower during its assigned study period.

120 **3.2.2 *Bombus* removal manipulations**

121 Each of our 14 sampling events comprised two 4-hour study periods. First, we established a control
122 period during which we allowed pollinators to forage without intervention. During this control period, we

123 performed baseline surveys of *Bombus* richness and abundance via timed aerial netting within our 20-m by
124 20-m plot. Two days after each control period, we performed a manipulation in which we
125 non-destructively removed all individuals of the bumble bee species deemed most abundant from these
126 baseline community compositional surveys. To achieve this removal, we performed targeted aerial netting
127 of every individual of the selected species present in our plot (Inouye, 1978). We kept these removed
128 bumble bees alive in vials in a cooler until the end of the study period, at which time we released them
129 (Brosi and Briggs, 2013). Once we had not observed any individuals of the target *Bombus* species in our
130 plot for one hour, we removed pollinator exclusion bags from our focal *D. barbeyi* individuals and
131 commenced the 4-hour study period. During this study period, field personnel patrolled the perimeter of
132 the plot and removed any individuals of the target *Bombus* species that were seen entering the area, and
133 also repeated surveys of the remaining *Bombus* richness and abundance.

134 **3.2.3 Floral morphological similarity**

135 In order to assess the composition of the floral community around our focal *D. barbeyi* individuals for
136 each sampling event, we surveyed the species identity and number of flowers for each plant in bloom along
137 two 1-m by 20-m transects (Brosi and Briggs, 2013). We then calculated the proportion of the floral
138 community that overlapped with *D. barbeyi* on two morphological characteristics — color (blue/violet)
139 and corolla length (10 – 18mm) (Warnock, 1993). We selected these two characteristics because we
140 expected them to influence the rate of bumble bee visitation to *D. barbeyi* compared to other plants at
141 each site.

142 **3.2.4 Pollinator traits and floral fidelity**

143 We observed the foraging patterns of individual bumble bees during each study period in order to
144 assess how our manipulation affected the number and fidelity of visits to *D. barbeyi*. We followed
145 individual bumble bees foraging within our plots until they either reached 100 foraging visits or left the
146 perimeter of the study area. We recorded a foraging event each time a bumble bee interacted with the
147 reproductive organs (anther or stigma) of a flower. We then calculated floral fidelity as a binary trait for
148 each bee, with an individual considered faithful when all of its visits were made to the same floral species.

149 Because the morphology of *D. barbeyi* allows long-tongued bees to more efficiently obtain its nectar

150 (Inouye, 1980), we assessed the proportional distribution of this trait in the pollinator communities that
151 we surveyed during each study period. We then calculated the percent of each *Bombus* community that
152 was considered “long-tongued,” using accepted expert descriptions (Inouye, 1977; Colla et al., 2011; Koch
153 et al., 2012; Williams et al., 2014).

154 **3.3 Data analysis**

155 We conducted all analyses in the statistical software R (R Core Team, 2021). A fully reproducible R
156 markdown report of our analyses is included in the supplementary material.

157 **3.3.1 Relationship between manipulation and *Bombus* community composition**

158 Our experimental manipulation involved the removal of the most abundant *Bombus* species from each
159 site. We assessed whether this removal significantly altered the total *Bombus* abundance and proportion of
160 long-tongued bees across our study system, since such results could have influenced the effects of our
161 experimental removal. To test for an effect of our manipulation on total *Bombus* abundance, we ran a
162 generalized linear mixed effects model (GLMM) with negative binomial errors using *Bombus* abundance as
163 the response variable, the strength of our removal as a fixed effect, and site and year as a random
164 intercepts. To test for an effect of our manipulation on the distribution of tongue-lengths in our
165 community, we used a similar GLMM, but with the proportion of long-tongued bees as our response
166 variable and binomial errors.

167 **3.3.2 Model selection and averaging**

168 To identify the determinants of seed production in *D. barbeyi*, we used an Akaike information
169 criterion (AIC) model selection framework that tested each combination of fixed effects to identify the best
170 set of variables to describe our observed data. Multi-model inference is an effective tool through which a
171 range of likely ecological processes can be assessed simultaneously (Johnson and Omland, 2004; Symonds
172 and Moussalli, 2011). We used this analytical framework because multiple combinations of community
173 ecological factors could affect our outcome of interest — in this case, the production of fertilized *D.*
174 *barbeyi* seeds. A traditional hypothesis-testing approach would only determine whether a fixed set of
175 explanatory variables significantly affected our response variable, effectively testing our ability to build an

176 *a priori* prediction of the relevant ecological processes in this system. Rather than testing a specific
177 hypothesis, this model selection approach allowed us to evaluate the relevance of a range of community
178 ecological variables on the production of fertilized ovules and build a more robust understanding of the
179 most important ecological processes governing this outcome.

180 After detecting overdispersion in our data, we built our global model using a GLMM following a
181 zero-inflated negative binomial distribution using the *glmmTMB* package for R (Magnusson et al., 2017).
182 We included the number of fertilized ovules collected from each *D. barbeyi* carpel in our models as the
183 response variable. Each *D. barbeyi* flower typically contains three carpels, which resulted in an average of
184 three distinct seed counts per flower. Our fixed effects included strength of our experimental
185 manipulation—measured as the proportion of the total pollinator community that we manually
186 removed—and a series of metrics describing community composition and trait values for both the plant
187 and pollinator communities (Table 1). For the plant community, we included the relative abundance of our
188 focal plant at each site (PD) and the proportion of the floral community that shared one of two
189 morphological traits—color (CL) and corolla length (CR)—with *D. barbeyi*. For the pollinator community,
190 we included the total abundance of bumble bees (BA), the proportion of the bumble bees in each
191 community observed engaging in faithful foraging behavior (i.e., visiting only a single plant species; MF),
192 and the relative abundance of long-tongued bumble bees (PL), which we expected to engage in
193 trait-matching with the long corolla spurs of *D. barbeyi*. Since we hypothesized that the experimental
194 *Bombus* removal could have had indirect effects via alteration to the pollinator community, as shown by
195 Inouye (1978), we also examined pairwise interactions between each fixed effect associated with the
196 pollinator community and our manipulation. We included site, *D. barbeyi* plant, and *D. barbeyi* flower as
197 nested random intercepts and year as a separate crossed random intercepts.

198 We compared the AIC values from models created from every combination of fixed effects that
199 successfully converged. Since our model selection did not yield a single obvious “best” model, we then
200 averaged the coefficients estimated by all models with $\Delta AIC < 2$ (Grueber et al., 2011; Symonds and
201 Moussalli, 2011; Dormann et al., 2018) to draw general conclusions about the effect plant and pollinator
202 community composition on *D. barbeyi* seed production.

203

4 Results

204

4.1 Overview of *Bombus* removal experiment

205 Over three study years and 14 paired control/manipulation survey periods, we counted 6,816
206 developing *D. barbeyi* seeds (control: 3,016; manipulation: 3,800) from 679 flowers (334; 345) on 439
207 unique plants (218; 221). Based on relative abundance during each control period, we removed four
208 different species of bumble bees (*B. appositus*, *B. flavifrons*, *B. kirbiellus*, *B. nevadensis*; Table 2). As
209 expected, the removal of the most abundant pollinator species resulted in a significant ($p < 0.001$)
210 reduction in *Bombus* abundance when averaged across all sites (control: 66.7 ± 52.9 individuals;
211 manipulation: 53.4 ± 30.1 individuals). For 11 of the 14 manipulation periods, the bumble bee species
212 removed was a long-tongued species (i.e., all removals except for *B. flavifrons*); however, our manipulation
213 did not have a statistically significant effect on the relative abundance of long-tongued bees across
214 communities ($p = 0.76$). Though hummingbirds are common pollinators of *D. barbeyi* (?), we observed no
215 hummingbird visits during any of our study periods, likely in response to researcher presence in the plots.

216

4.2 Model selection and averaging

217 Model selection yielded 16 models within our threshold range of $\Delta AIC < 2$ (Table 3). Because there
218 was no clear best model from this workflow, we performed model averaging on all 16 models using equal
219 weights for all models (Dormann et al., 2018). This workflow yielded the average model coefficients shown
220 in Table 4. All seven main effects and four of the six interactions were included in one or more models in
221 the best set. The two interaction terms that were dropped were the interaction between the removal and
222 color-similarity (PR:CL) and the interaction between the removal and corolla-length similarity (PR:CR).
223 For the main effects, each was present in at least half (8/16) of the best models, while for the interactions,
224 each was present in at least two of the best models. Two fixed effects, both related to the plant
225 community, were present in every model in the set of best models; these were the proportion of the
226 community with flower colors (CL) and corolla lengths (CR) similar to *D. barbeyi*.

227 After model averaging, our model predicted seed production values for one manipulation period that
228 were more than three times higher than any other survey period. To check whether some element of this
229 site was abnormal and could have skewed our results, we repeated our model selection and averaging

230 protocol with this site (both control and manipulation surveys) removed. This analysis yielded coefficients
231 that were consistent with the model including all sites and plots that were nearly identical, so we chose to
232 report our findings with all 14 sites included.

233 **4.2.1 Effect of *Bombus* removal**

234 Contrary to our expectations, our model predicted an increase in the production of fertilized *D.*
235 *barbeyi* seeds in response to our *Bombus* removal manipulation. Additionally, all three metrics describing
236 *Bombus* community composition interacted with the manipulation to influence the production of fertilized
237 ovules, though the effect of that manipulation generally depended on the relative abundance of the
238 *Bombus* species that we removed. For sites at which the removed bumble bee species represented less than
239 half of the overall *Bombus* community, all three variables related to pollinator community composition had
240 modest negative impacts on the production of *D. barbeyi* seeds that were largely similar to the effects of
241 each variable in the control setting. However, for sites at which more than half of the total bumble bee
242 community was removed in our manipulation, we see dramatically different relationships between all three
243 variables and the production of fertilized seeds (Figure 1). In these high-removal settings, overall *Bombus*
244 abundance had a steeply negative effect, while the proportion of long-tongued bees and pollinator floral
245 fidelity both had steeply positive effects (Figures 2, 3).

246 **4.2.2 *Bombus* community composition**

247 In addition to the interactive effects with *Bombus* removal described in the previous paragraph, all
248 three of our pollinator community compositional variables were also identified as important additive
249 predictors of *D. barbeyi* seed production. Pollinator floral fidelity exhibited a positive effect on *D. barbeyi*
250 seed production consistent with previous work in this system (Brosi and Briggs, 2013). However, two other
251 elements of the pollinator community that we also expected to be positively related to *D. barbeyi*
252 reproduction did not show such effects in predictions by our averaged model. The total number of bumble
253 bees in a community and the proportion of those bumble bees that were categorized as “long-tongued”
254 both had negative effects on the production of fertilized seeds in our target plant when assessed as main
255 effects.

256 **4.2.3 Plant community composition**

257 Unsurprisingly, *D. barbeyi* in communities with a higher relative abundance of conspecifics predicted a
258 higher number of fertilized seeds. We also saw an interaction between our experimental manipulation and
259 the relative abundance of *D. barbeyi*, though this interaction was consistent with the overall positive effect
260 of these conspecific flowers in the community. Specifically, sites at which more than half of the *Bombus*
261 community was removed experienced the strongest benefit from high *D. barbeyi* relative abundance,
262 though this variable was also beneficial in the control.

263 Morphological similarity between *D. barbeyi* and the rest of the floral community had contrasting
264 effects on *D. barbeyi* seed production. *D. barbeyi* yielded more fertilized seeds in communities with a high
265 proportion of flowers with similar corolla lengths, but fewer in communities with a high proportion of
266 similarly colored flowers. This finding partially contradicted our expectation that floral similarity would
267 result in lower reproductive function due to increased heterospecific pollen transfer as pollinators visit
268 different species of flowers with similar morphological traits.

269 **5 Discussion**

270 In order to link ongoing biodiversity losses to likely functional outcomes in a way that reflects
271 real-world dynamics—particularly for ecosystem functions that cross trophic levels—ecologists must
272 integrate BEF theory and community ecology. In this study, we do so by examining how the plant and
273 pollinator communities influenced the production of fertilized seeds in a focal plant species—*D.*
274 *barbeyi*—following the experimental removal of a single *Bombus* species. Our model offers compelling
275 evidence that the effect of a single species removal on *D. barbeyi* reproduction occurs via changes to the
276 behavior and composition of the pollinator community. Three major sets of results stand out from our
277 analysis. First, we found that some elements of pollinator community composition likely influenced the
278 effect of our single-pollinator-species removals on the production of fertilized *D. barbeyi* seeds. Second, we
279 identified patterns in pollinator foraging behavior that also affected reproductive function in this focal
280 plant species. Finally, we found that the plant community exerted both competitive and facilitative effects
281 on *D. barbeyi* reproduction, likely via access to insect pollinators that can transfer conspecific pollen.
282 These findings demonstrate that the relationship between biodiversity and ecosystem function is not

283 always easy to predict and can be influenced by community dynamics in important and unexpected ways.

284 5.1 Pollinator community composition

285 The composition of the bumble bee community impacted *D. barbeyi* reproduction, though these
286 impacts did not follow our initial hypotheses. We had hypothesized that access to pollinators represented
287 an important limitation on *D. barbeyi* reproduction and thus, that a community with more bumble bees
288 would support a higher plant reproductive success. However, our averaged model predicted a *negative*
289 effect of *Bombus* abundance on the production of fertilized *D. barbeyi* seeds. While this negative
290 relationship was consistent across our study, it was steepest in our “high” removal scenario in which 50%
291 or more of the overall bumble bee community was removed (Figure 1). Since we found a significant
292 negative correlation between our manipulation and *Bombus* abundance, we believe that these negative
293 trends are largely reflective of our removal. However, if correlation between these variables was the only
294 driver of this effect, we would expect that our model selection would have simplified the output to include
295 only one of these two variables. In addition, if the effects of our manipulation on bumble bee abundance
296 were the primary driver of the results on seed production, we would expect to see a different pattern of
297 abundance when examining only the data from the control state of each site (solid, dark gray line in
298 Figure 1). Those data, however, are also consistent with a negative relationship of bumble bee abundance
299 on seed production, albeit with a relatively small negative slope. Thus, while we expect that correlation
300 with our manipulation explains a portion of the surprising effect of *Bombus* abundance, we presume that
301 there are other biological processes also underlying this finding that we do not understand.

302 We also expected that trait-matching between long-tongued bumble bees and *D. barbeyi*’s nectar
303 spurs would make the presence of these bees in a community an important predictor of reproductive
304 function for this focal species. We were again surprised to see that this was not consistently true and that
305 the proportion of long-tongued bees was only strongly beneficial under high-removal scenarios (Figure 2).
306 This disparity in functional importance for long-tongued bees could have some relationship to the ability
307 for shorter-tongued species to obtain nectar from these flowers if reduced visitation events allowed nectar
308 to collect in the spurs (Inouye, 1978). Thus, visitation by non-long-tongued species could depend on the
309 overall reduction in pollinators due to our manipulation, which could reasonably have varied depending on
310 the strength of those removals.

311 The divergent effects of pollinator community composition in low- and high-removal scenarios are
312 interesting as they suggest that the morphological traits and relative abundance of a pollinator jointly
313 contribute to its functional role in a community. When a numerically dominant pollinator is removed from
314 the community, we see that the functional role that is lost is best filled by long-tongued bees. However, in
315 more even communities where the removed bee species represents less than half of the total community,
316 long-tongued bees do not have such an important functional role. Frameworks for understanding BEF
317 relationships that solely focus on functional traits or numerical abundance may therefore overlook
318 important information about how community dynamics shape interspecific interactions.

319 **5.2 Pollinator foraging behavior**

320 In addition to having access to a pool of abundant and morphologically suitable pollinators, plant
321 reproduction also requires these pollinators to engage in conspecific pollen transfer. Our model emphasizes
322 the importance of pollinator foraging behavior—specifically floral fidelity—in promoting pollen transfer
323 between plants of the same species. Floral fidelity has been previously identified as an important
324 component of plant reproductive success in the context of plant-pollinator interactions (Amaya-Márquez,
325 2009; Brosi and Briggs, 2013; Brosi, 2016). Our work here is consistent with that past work, with our
326 averaged model predicting a positive effect of site-level floral fidelity. Interestingly, the effect of floral
327 fidelity is only strongly evident in our high-removal scenario (Figure 3). This result suggests that
328 pollinator behaviors that support plant reproduction, like high floral fidelity, could functionally
329 compensate for negative compositional effects, such as the loss of *Bombus* abundance caused by our
330 experimental removal.

331 At five of our seven “high-removal” sites, *D. barbeyi* produced more fertilized ovules during the
332 manipulation than they did in the control. Interestingly, these included the three sites with the highest
333 seed production during the control period, which indicates that these unexpected trends could have been
334 driven by other site-level variables that promoted the transfer or germination of conspecific pollen. For
335 instance, environmental conditions like soil chemistry or precipitation could have influenced the success of
336 *D. barbeyi* seed fertilization in such a way that overcame the loss of pollinators and floral fidelity at these
337 sites. Other elements of both the plant and pollinator communities also likely influenced these seed
338 production trends, as evidenced by our model selection results. Thus, we take these initial findings as

339 evidence that plant reproductive function cannot be solely determined by pollinator loss or floral fidelity
340 and must be considered in the context of other community-level trends.

341 **5.3 Competition and facilitation in the plant community**

342 Our model contains evidence of both competitive and facilitative interactions within the plant
343 communities that we studied. We expected that morphological similarity within the floral community
344 would promote competition among flowers for insect pollinators that are attracted to those traits. By
345 potentially attracting the same pollinators, we surmised that morphological similarity would increase the
346 likelihood of heterospecific pollen transfer and thus, reduce ovule fertilization in our focal *D. barbeyi*
347 individuals. Indeed, we observed a negative relationship between color similarity and *D. barbeyi* seed
348 production that was consistent with our expectation of interspecific competition within the plant
349 community. While many bees are attracted to blue/violet flowers (Briscoe and Chittka, 2001), they may
350 not discriminate well between flowers of the same color. Pollinators may switch floral partners more
351 frequently in the presence of equally attractive, similarly colored flowers and thus increase the chances for
352 heterospecific pollen transfer throughout this floral community. However, we observed more fertilized *D.*
353 *barbeyi* seeds at sites with a large proportion of other flowers with long corolla lengths, which contradicted
354 our expectation of intraspecific competition on this axis of morphological similarity. Rather than
355 competing for pollen vectors, plants in this community with similar corolla lengths may facilitate
356 pollination of co-flowering individuals. Complex floral morphology like *D. barbeyi*'s long nectar spur may
357 signal increased quantity and quality of floral rewards (Krishna and Keasar, 2018). On the community
358 level, the prevalence of such a trait across multiple plant species may therefore appear more rewarding to
359 pollinators, resulting in facilitation via the attraction of more pollinators to this community (Ghazoul,
360 2006; Hegland et al., 2009). Pollinators attracted by this trait might also be better suited to forage upon
361 these flowers and through this form of trait-based environmental filtering, provide more consistent pollen
362 transfer services between conspecific individuals (Messier et al., 2010).

363 For these traits to truly facilitate plant reproduction, they must not only increase access to pollinators
364 but also increase the overall transfer of conspecific pollen. Because we see a stronger positive effect of
365 corolla-length similarity than we see a negative effect of color (via a larger model coefficient, in variables
366 that are similarly scaled), we suspect that in this plant community facilitation plays a stronger role in

367 plant reproductive function. Specifically, the cost of heterospecific pollen transfer from pollinators
368 switching partners within a pool of similarly colored flowers may be outweighed by the benefits of
369 increased visitation by pollinators that are well suited to transfer pollen between flowers with long corolla
370 tubes (Peter and Johnson, 2008; Wei et al., 2021). Pollinators could also discriminate between
371 similar-shaped flowers along another niche axis, like a flower's nutrient profile or display size, which would
372 increase the likelihood of conspecific pollen transfer. These results also potentially indicate that
373 pollination in this system is more limited by the availability of pollen vectors (pollinators) than of
374 appropriate pollen donors (conspecific plants), which may limit the negative impact of conspecific pollen
375 loss by unfaithful pollinators.

376 **5.4 Future Directions**

377 As our experiments were conducted at the scale of individual days, we are limited in our ability to
378 draw conclusions about the long-term effects of species loss on ecosystem function. Though our short-term
379 approach had several notable advantages, particularly in ensuring nearly equivalent floral resources
380 between control and manipulation states, facilitating non-destructive bumble bee removals, and allowing
381 us to conduct multiple true replicates over each season, our conclusions could be strengthened by future
382 single-species removal experiments conducted at longer timescales. We also focused our experiment on a
383 single target plant species, which limits our ability to extend our conclusions to other flowering plants in
384 this or other communities. Though the limitations of time and effort likely preclude the inclusion of every
385 flowering plant at a site in such a study, an expanded experiment that examines the effect of pollinator
386 removal on a subset of plants known to compete for pollinator visitation could provide valuable insight
387 into how community context impacts BEF relationships in plant-pollinator communities.

388 **6 Conclusion**

389 Biodiversity loss is eroding the economic, social, and biological functions of ecosystems on a global
390 scale (Cardinale et al., 2012; Oliver et al., 2015,?). Many important ecosystem functions and services are
391 driven by relationships in which species richness at one trophic level impacts functional outcomes in other
392 trophic levels. However, previous work on such systems has yielded inconsistent diversity-functioning

393 relationships. We show here that in a study system comprising a single plant species visited by multiple
394 pollinator species, single pollinator species removals (with the identity of that removed species changing
395 among replicates) have negative functional impacts on seed production in our focal plant via the effect of
396 this removal on the plant and pollinator communities. This work underscores the need to understand how
397 community context interacts with diversity to mediate biodiversity-ecosystem functioning relationships.

398 7 Acknowledgements

399 We thank L. Anderson, J. Brokaw, T. Lamperty, F. Oviedo, R. Perenyi, L. Thomas, and K. Webster
400 for field assistance; C. Morozumi and X. Loy for analytical support; C. Cappelo, R. Codsi, M. Hu, F.
401 Knuth, D. Perkel, and M. Steele-Ogus for comments on the manuscript; and D. Inouye and one
402 anonymous reviewer for peer review. The Rocky Mountain Biological Laboratory staff, especially J.
403 Reithel and I. Billick, provided key research and logistical support. This material is based upon work
404 supported by the National Science Foundation Graduate Research Fellowship Program under Grant No.
405 DGE-2140004 (K.C.A.). This work was funded by US National Science Foundation Grants DEB-1120572
406 and DEB-2129759 (to B.J.B.) and DBI1034780, OIA-0963529, and DBI-0753774 (to I. Billick), the Rocky
407 Mountain Biological Laboratory (B.J.B. and H.M.B.), Emory University (B.J.B.), and University of
408 California, Santa Cruz (H.M.B.).

409 8 Conflict of Interest Statement

410 The authors declare no conflict of interest.

411 References

412 Amaya-Márquez, M. (2009, December). Floral constancy in bees: a revision of theories and a comparison
413 with other pollinators. *Revista Colombiana de Entomología* 35(2), 206–216.

414 Briscoe, A. D. and L. Chittka (2001). The evolution of color vision in insects. *Annual Review of
415 Entomology* 46(1), 471–510.

416 Brosi, B. J. (2016). Pollinator specialization: from the individual to the community. *New
417 Phytologist* 210(4), 1190–1194.

418 Brosi, B. J. and H. M. Briggs (2013, August). Single pollinator species losses reduce floral fidelity and
419 plant reproductive function. *Proceedings of the National Academy of Sciences* 110(32), 13044–13048.

420 Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, et al. (2012).
421 Biodiversity loss and its impact on humanity. *Nature* 486(7401), 59–67.

422 Casula, P., A. Wilby, and M. B. Thomas (2006). Understanding biodiversity effects on prey in
423 multi-enemy systems. *Ecology Letters* 9(9), 995–1004.

424 Colla, S., L. Richardson, and P. H. Williams (2011). *Bumble bees of the eastern United States*. USDA
425 Forest Service and the Pollinator Partnership.

426 Darvill, B., M. E. Knight, and D. Goulson (2004). Use of genetic markers to quantify bumblebee foraging
427 range and nest density. *Oikos* 107(3), 471–478.

428 Dormann, C. F., J. M. Calabrese, G. Guillera-Arroita, E. Matechou, V. Bahn, K. Bartoń, C. M. Beale,
429 et al. (2018). Model averaging in ecology: a review of Bayesian, information-theoretic, and tactical
430 approaches for predictive inference. *Ecological Monographs* 88(4), 485–504.

431 Garibaldi, L. A., I. Bartomeus, R. Bommarco, A. M. Klein, S. A. Cunningham, M. A. Aizen, V. Boreux,
432 et al. (2015). Trait matching of flower visitors and crops predicts fruit set better than trait diversity.
433 *Journal of Applied Ecology* 52(6), 1436–1444.

434 Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. *Journal of Ecology* 94(2), 295–304.

435 Grueber, C. E., S. Nakagawa, R. J. Laws, and I. G. Jamieson (2011). Multimodel inference in ecology and
436 evolution: challenges and solutions. *Journal of Evolutionary Biology* 24(4), 699–711.

437 Hallett, A. C., R. J. Mitchell, E. R. Chamberlain, and J. D. Karron (2017, May). Pollination success
438 following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators.
439 *AoB PLANTS* 9(3), plx020.

440 Hegland, S. J., J.-A. Grytnes, and Ø. Totland (2009, July). The relative importance of positive and
441 negative interactions for pollinator attraction in a plant community. *Ecological Research* 24(4), 929–936.

442 Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, et al. (2005).
443 Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. *Ecological
444 Monographs* 75(1), 3–35.

445 Inouye, D. (1977). Species structure of bumblebee communities in North America and Europe. In *The
446 Role of Arthropods in Forest Ecosystems*, pp. 35–40. Springer Berlin Heidelberg.

447 Inouye, D. W. (1978, July). Resource partitioning in bumblebees: Experimental studies of foraging
448 behavior resource partitioning in bumblebees: Experimental studies of foraging behavior. *Ecology* 59(4),
449 672–678.

450 Inouye, D. W. (1980). The effect of proboscis and corolla tube lengths on patterns and rates of flower
451 visitation by bumblebees. *Oecologia* 45(2), 197–201.

452 Johnson, J. B. and K. S. Omland (2004, February). Model selection in ecology and evolution. *Trends in
453 Ecology & Evolution* 19(2), 101–108.

454 Knight, M. E., A. P. Martin, S. Bishop, J. L. Osborne, R. J. Hale, R. A. Sanderson, and D. Goulson
455 (2005). An interspecific comparison of foraging range and nest density of four bumblebee (*Bombus*)
456 species. *Molecular Ecology* 14(6), 1811–1820.

457 Koch, J., J. Strange, and P. H. Williams (2012). *Bumble bees of the western United States*. USDA Forest
458 Service and the Pollinator Partnership.

459 Kremen, C., N. M. Williams, and R. W. Thorp (2002, December). Crop pollination from native bees at
460 risk from agricultural intensification. *Proceedings of the National Academy of Sciences* 99(26),
461 16812–16816.

462 Krishna, S. and T. Keasar (2018, June). Morphological complexity as a floral signal: from perception by
463 insect pollinators to co-evolutionary implications. *International Journal of Molecular Sciences* 19(6),
464 1681.

465 Loy, X. and B. J. Brosi (2022). The effects of pollinator diversity on pollination function. *Ecology* 103(4),
466 e3631.

467 Magnusson, A., H. Skaug, A. Nielsen, C. Berg, K. Kristensen, M. Maechler, K. van Benthem, B. Bolker,
468 M. Brooks, and M. M. Brooks (2017). Package ‘glmmTMB’. *R Package Version 0.2. 0.*

469 McGill, B., B. Enquist, E. Weiher, and M. Westoby (2006, April). Rebuilding community ecology from
470 functional traits. *Trends in Ecology & Evolution* 21(4), 178–185.

471 Messier, J., B. J. McGill, and M. J. Lechowicz (2010, May). How do traits vary across ecological scales? A
472 case for trait-based ecology: How do traits vary across ecological scales? *Ecology Letters* 13(7), 838–848.

473 Oliver, T. H., M. S. Heard, N. J. B. Isaac, D. B. Roy, D. Procter, F. Eigenbrod, R. Freckleton, et al.
474 (2015, November). Biodiversity and resilience of ecosystem functions. *Trends in Ecology &*
475 *Evolution* 30(11), 673–684.

476 Oliver, T. H., N. J. B. Isaac, T. A. August, B. A. Woodcock, D. B. Roy, and J. M. Bullock (2015,
477 December). Declining resilience of ecosystem functions under biodiversity loss. *Nature*
478 *Communications* 6(1), 10122.

479 Peralta, G., D. P. Vázquez, N. P. Chacoff, S. B. Lomáscolo, G. L. W. Perry, and J. M. Tylianakis (2020).
480 Trait matching and phenological overlap increase the spatio-temporal stability and functionality of
481 plant–pollinator interactions. *Ecology Letters* 23(7), 1107–1116.

482 Peter, C. I. and S. D. Johnson (2008). Mimics and magnets: the importance of color and ecological
483 facilitation in floral deception. *Ecology* 89(6), 1583–1595.

484 Potts, S. G., J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E. Kunin (2010, June).
485 Global pollinator declines: trends, impacts and drivers. *Trends in Ecology & Evolution* 25(6), 345–353.

486 Pyke, G. H. (1982). Local geographic distributions of bumblebees near Crested Butte, Colorado:
487 competition and community structure. *Ecology* 63(2), 555–573.

488 R Core Team (2021). *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R
489 Foundation for Statistical Computing.

490 Sih, A., G. Englund, and D. Wooster (1998, September). Emergent impacts of multiple predators on prey.
491 *Trends in Ecology & Evolution* 13(9), 350–355.

492 Stang, M., P. G. L. Klinkhamer, N. M. Waser, I. Stang, and E. van der Meijden (2009, June). Size-specific
493 interaction patterns and size matching in a plant–pollinator interaction web. *Annals of Botany* 103(9),
494 1459–1469.

495 Symonds, M. R. E. and A. Moussalli (2011, January). A brief guide to model selection, multimodel
496 inference and model averaging in behavioural ecology using Akaike’s information criterion. *Behavioral
497 Ecology and Sociobiology* 65(1), 13–21.

498 Tilman, D., F. Isbell, and J. M. Cowles (2014, November). Biodiversity and ecosystem functioning.
499 *Annual Review of Ecology, Evolution, and Systematics* 45(1), 471–493.

500 Warnock, M. J. (1993). *Flora of North America: Volume 3: Magnoliophyta: Magnoliidae and
501 Hamamelidae*, Chapter *Delphinium barbeyi*. Oxford University Press on Demand.

502 Wei, N., R. L. Kaczorowski, G. Arceo-Gómez, E. M. O’Neill, R. A. Hayes, and T.-L. Ashman (2021,
503 September). Pollinators contribute to the maintenance of flowering plant diversity. *Nature* 597(7878),
504 688–692.

505 Williams, P. H., R. W. Thorp, L. L. Richardson, and S. R. Colla (2014). *Bumble Bees of North America:
506 an Identification Guide*. Princeton, NJ: Princeton University Press.

507 Winfree, R., J. W. Fox, N. M. Williams, J. R. Reilly, and D. P. Cariveau (2015). Abundance of common
508 species, not species richness, drives delivery of a real-world ecosystem service. *Ecology Letters* 18(7),
509 626–635.

Category	Variable Code	Variable description
Experimental	PR	Proportion of the <i>Bombus</i> community removed by our manipulation
Pollinator	BA	<i>Bombus</i> abundance, scaled to center at 3
Pollinator	PL	Proportion of the <i>Bombus</i> community with a long tongue
Pollinator	MF	Proportion of the pollinator community exhibiting floral fidelity during foraging surveys
Plant	PD	Relative abundance of <i>D. barbeyi</i> flowers
Plant	CL	Proportion of the floral community with the same color as <i>D. barbeyi</i> flowers (blue/violet)
Plant	CR	Proportion of the floral community with a mean corolla length that overlaps with the range for <i>D. barbeyi</i> nectar spurs (10 – 18mm)
Interaction	PR:BA	Interaction between the experimental removal and <i>Bombus</i> abundance
Interaction	PR:PL	Interaction between the experimental removal and the proportion of long-tongued bees in the community
Interaction	PR:MF	Interaction between the experimental removal and floral fidelity
Interaction	PR:PD	Interaction between the experimental removal and the relative abundance of <i>D. barbeyi</i>
Interaction	PR:CL	Interaction between the experimental removal and the proportion of the community with color similarity
Interaction	PR:CR	Interaction between the experimental removal and the proportion of the community with corolla-length similarity

Table 1: Description of fixed effects included in the model selection framework.

Site	Year	PD	PR	Species Removed	Tongue
Brush Creek Fork	2011	0.57	0.52	Bombus appositus	long
Deer Creek Gate 2	2011	0.14	0.36	Bombus nevadensis	long
Gothic Road Grate.2011	2011	0.17	0.46	Bombus appositus	long
Gothic Town	2011	0.44	0.30	Bombus appositus	long
Teocali View	2011	0.19	0.38	Bombus nevadensis	long
Back of Baldy Bend	2013	0.04	0.50	Bombus flavifrons	medium
Emerald Lake 2	2013	0.07	0.49	Bombus kirbiellus	long
Gothic Road 2	2013	0.09	0.60	Bombus appositus	long
Judd Falls TH 2	2013	0.19	0.48	Bombus flavifrons	medium
Past Rustlers	2013	0.17	0.43	Bombus flavifrons	medium
Brush Creek Sign	2014	0.48	0.66	Bombus appositus	long
Cold Springs Ranch	2014	0.71	0.62	Bombus appositus	long
Emerald Lake	2014	0.16	0.53	Bombus kirbiellus	long
Gothic Road Grate.2014	2014	0.23	0.52	Bombus appositus	long

Table 2: Summary of *Bombus* removal and *D. barbeyi* relative abundance by site. Tongue categories were long (4 species), medium (5 species), and short (2 species).

ID	AIC	delta	PR	BA	PL	MF	PD	CL	CR	PR:BA	PR:PL	PR:MF	PR:PD
1	6317.69	0.00		-0.29	-1.1		0.18	-0.45	1.46			3.72	
2	6317.99	0.30	3.39	-0.12	-1.52	3.44	0.51	-0.63	1.78	-3.77			
3	6318.00	0.31		-0.17	-1.64	2.58	0.58	-0.67	1.70				
4	6318.27	0.58	3.19			2.89		-0.49	1.58	-3.95			
5	6318.55	0.86	5.73	0.06	-3.01	3.65	1.96	-0.83	1.99	-4.9			-4.79
6	6318.71	1.02		-0.16	-1.8	2.77	0.57	-0.49	1.73		4.18		
7	6318.73	1.04		-0.3	-1.19		0.13	-0.27	1.47		4.06		
8	6318.88	1.19		-0.16	-2.45		1.46	-0.67	1.62			5.84	-3.99
9	6319.14	1.45	3.51		-1.49	3.38		-1.01	1.80	-3.94			
10	6319.28	1.59	3.35	-0.14	-1.38	3.2		-0.83	1.77	-3.79			
11	6319.44	1.75				2.1		-0.61	1.50	-3.62			
12	6319.50	1.81	3.07	-0.31	-0.69		-0.04	-0.37	1.46	-4.11			
13	6319.53	1.84		-0.19	-1.48	2.33		-0.90	1.68				
14	6319.54	1.85	2.97	-0.22		2.63		-0.25	1.55	-3.72			
15	6319.66	1.97	3.53		-1.62	3.59	0.53	-0.78	1.81	-3.9			
16	6319.68	1.99		-0.07	-2.74	2.32	1.64	-0.84	1.80				-3.42

Table 3: Model selection output for models with $\Delta AIC < 2$. Variable names as in Table 1.

Variable	Estimate	Std.Error	Adjusted.SE	z-value	p-value
Intercept	-0.98	1.86	1.86	0.53	0.60
PR	1.74	2.01	2.01	0.87	0.39
BA	-0.13	0.28	0.28	0.49	0.63
PL	-1.34	1.37	1.37	0.98	0.33
MF	2.12	1.88	1.88	1.13	0.26
PD	0.45	1.00	1.00	0.44	0.66
CL	-0.61	1.14	1.14	0.54	0.59
CR	1.66	0.53	0.53	3.13	0.00
PR:BA	-3.86	0.98	0.98	3.94	0.00
PR:PL	0.53	1.43	1.43	0.37	0.71
PR:MF	1.63	2.24	2.24	0.73	0.47
PR:PD	-0.66	1.86	1.86	0.35	0.73

Table 4: Summary of model averaged from $16 \Delta AIC < 2$ models. Variable names as in Table 1.

510 **Figure 1:** Effect of total *Bombus* abundance predicted by our averaged model. Points represent the mean
511 for each survey period and bars represent 95% confidence intervals. Manipulation is plotted in the “high”
512 bin if half or more of the overall *Bombus* community was removed and in the “low” bin if less than half
513 was removed.

514 **Figure 2:** Effect of the proportion of the *Bombus* community categorized as “long-tongued,” per expert
515 descriptions. Points represent the mean for each survey period and bars represent 95% confidence
516 intervals. Manipulation is plotted in the “high” bin if half or more of the overall *Bombus* community was
517 removed and in the “low” bin if less than half was removed.

518 **Figure 3:** Effect of pollinator floral fidelity, averaged across all *Bombus* observed during the represented
519 study period. Points represent the mean for each survey period and bars represent 95% confidence
520 intervals. Manipulation is plotted in the “high” bin if half or more of the overall *Bombus* community was
521 removed and in the “low” bin if less than half was removed.

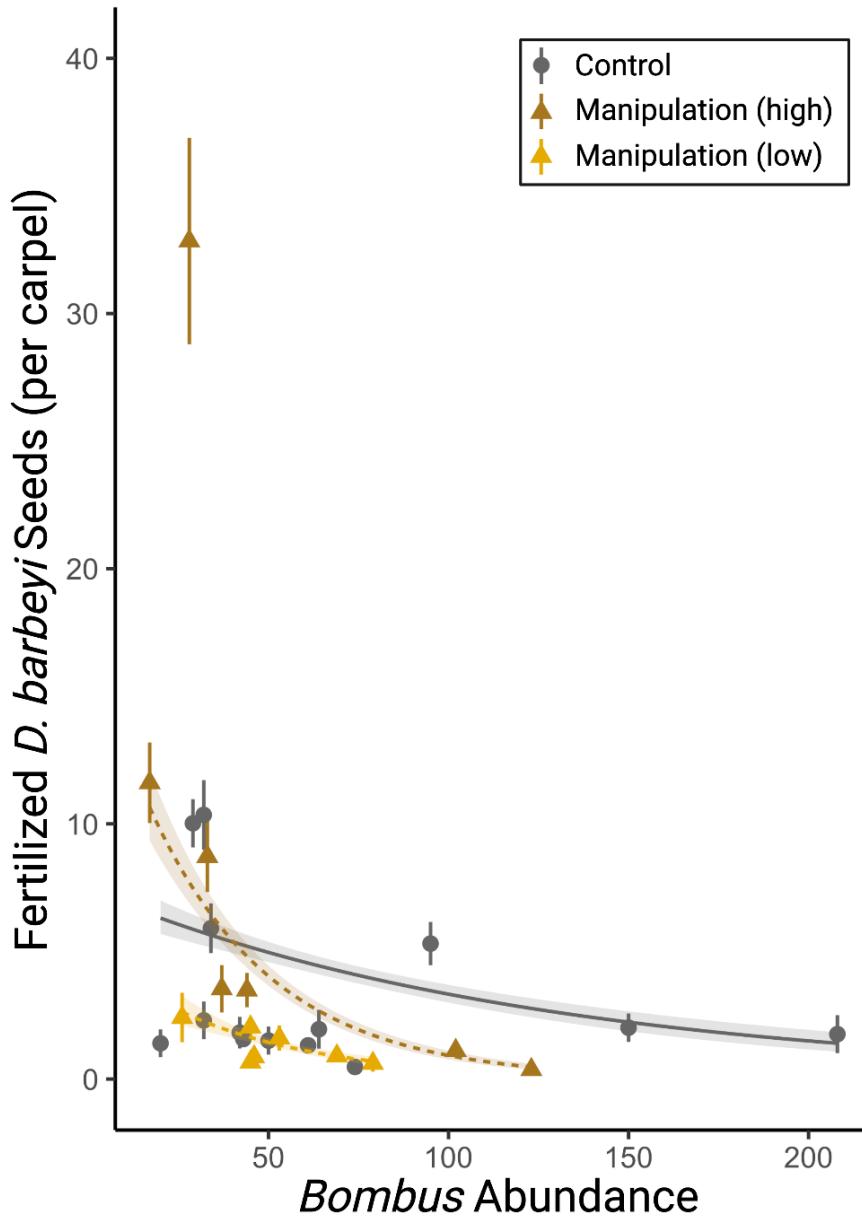


Figure 1: Effect of total *Bombus* abundance predicted by our averaged model. Points represent the mean for each survey period and bars represent 95% confidence intervals. Manipulation is plotted in the “high” bin if half or more of the overall *Bombus* community was removed and in the “low” bin if less than half was removed.

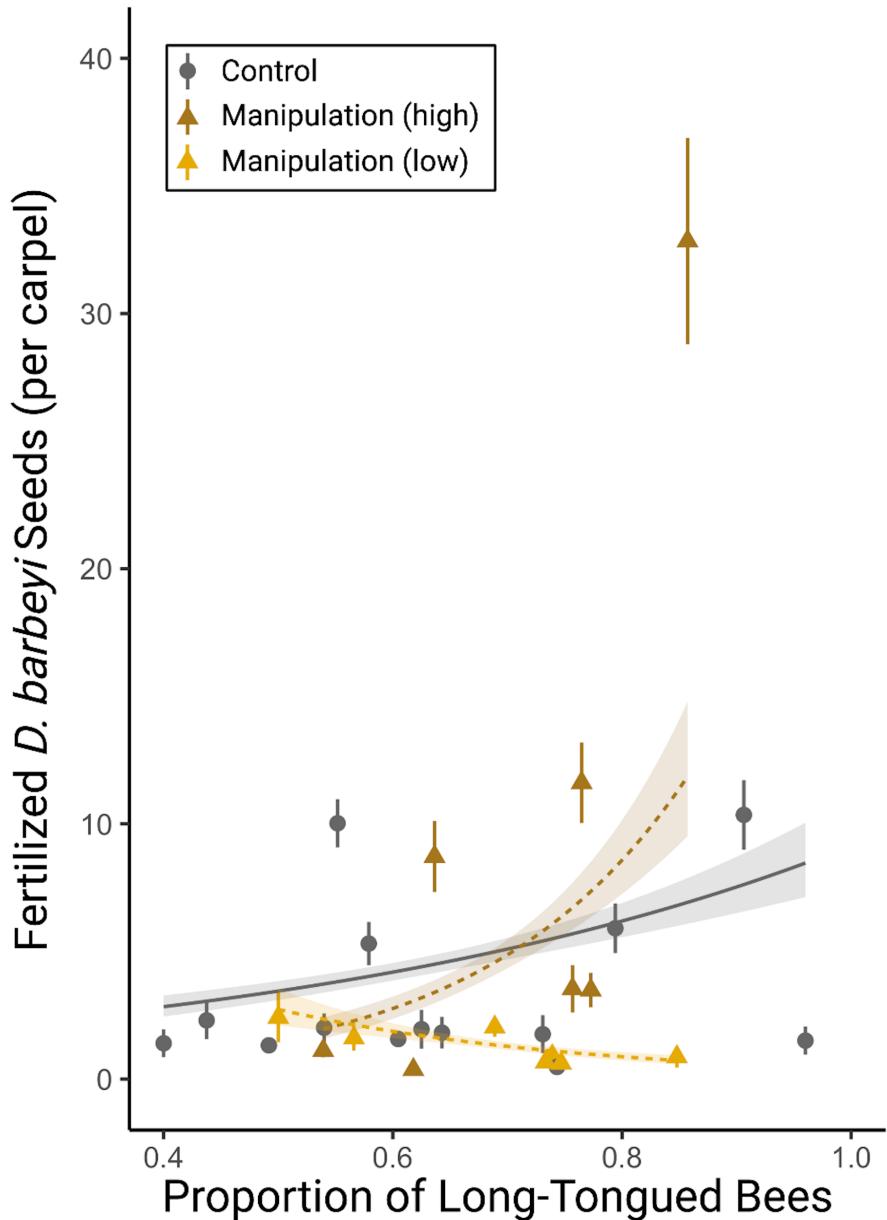


Figure 2: Effect of the proportion of the *Bombus* community categorized as “long-tongued,” per expert descriptions. Points represent the mean for each survey period and bars represent 95% confidence intervals. Manipulation is plotted in the “high” bin if half or more of the overall *Bombus* community was removed and in the “low” bin if less than half was removed.

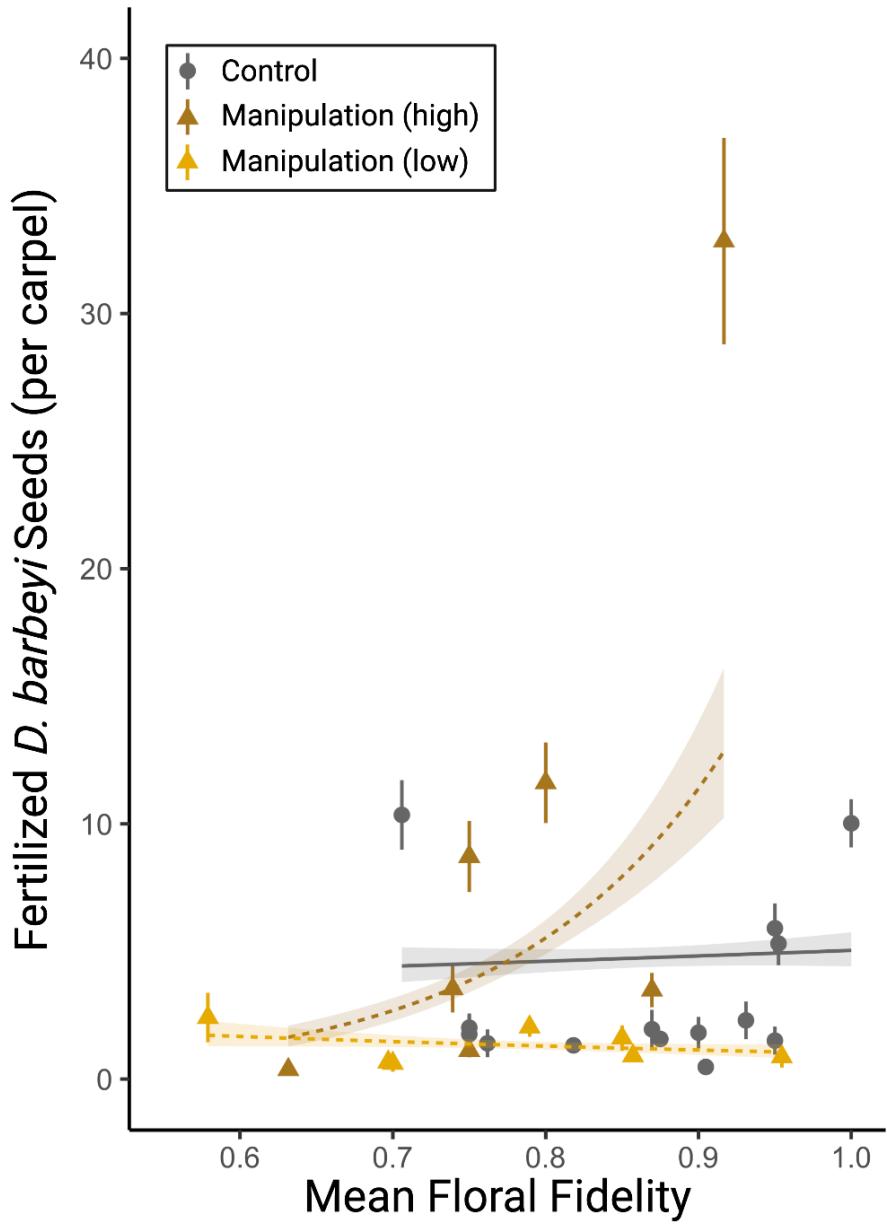


Figure 3: Effect of pollinator floral fidelity, averaged across all *Bombus* observed during the represented study period. Points represent the mean for each survey period and bars represent 95% confidence intervals. Manipulation is plotted in the “high” bin if half or more of the overall *Bombus* community was removed and in the “low” bin if less than half was removed.