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Abstract—Cooperative relays improve reliability and

coverage in wireless networks by providing multiple paths

for data transmission. Relaying will play an essential role

in vehicular networks at higher frequency bands, where

mobility and frequent signal blockages cause link outages.

To ensure connectivity in a relay-aided vehicular network,

the relay selection policy should be designed to efficiently

find unblocked relays. Inspired by recent advances in

beam management in mobile millimeter wave (mmWave)

networks, this paper address the question: how can the
best relay be selected with minimal overhead from beam
management? In this regard, we formulate a sequential

decision problem to jointly optimize relay selection and

beam management. We propose a joint relay selection and

beam management policy based on deep reinforcement

learning (DRL) using the Markov property of beam in-

dices and beam measurements. The proposed DRL-based

algorithm learns time-varying thresholds that adapt to the

dynamic channel conditions and traffic patterns. Numeri-

cal experiments demonstrate that the proposed algorithm

outperforms baselines without prior channel knowledge.

Moreover, the DRL-based algorithm can maintain high

spectral efficiency under fast-varying channels.

Keywords—mmWave MIMO, 3GPP NR V2X, relay se-

lection, deep reinforcement learning

I. INTRODUCTION

MmWave multiple-input multiple-output (MIMO)
communication is a key technology for sensor data shar-
ing to support automation in transportation systems [1].
Data sharing between self-driving vehicles can increase
the safety of autonomous driving by enabling exchanges
of traffic conditions and collision warnings. Safety-
critical automated driving applications may require a
maximum communication delay of tens-of-milliseconds
to prevent catastrophic accidents [2]. Communication at
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gigabit-per-second data rates will be pivotal to trans-
mit high-resolution data, either raw or processed, from
sources such as cameras and radars [3], [4]. MmWave
MIMO systems can meet the data rate requirements of
vehicular networks with beamforming by taking advan-
tage of wide bandwidth communication between 30 and
300 GHz.

Unfortunately, high mobility and frequent blockages
in mmWave vehicular networks create a lack of link
resilience that may disrupt automotive applications [5].
High mobility systems are subject to fast fading chan-
nels, Doppler effects, and frequent handovers. Block-
ages due to mobile obstacles such as cars can induce
shadowing losses up to 30-40 dB [6], while blockages
due to static objects such as large buildings may result
in penetration losses of 40-80 dB [7]. Issues stemming
from mobility and blockage can deteriorate the system
throughput, and these challenges must be addressed to
enable the success of mmWave MIMO networks [8].

Link vulnerability due to mobility can be partially
overcome with careful beam management. Though
Doppler frequencies are high at mmWave, directional
beamforming reduces the effect of Doppler spread by
restricting the range of Doppler frequency shifts accord-
ing to the received beam directions [9]. While narrow
beamwidths can mitigate Doppler spread, narrow code-
books increase the training overhead of exhaustive and
hierarchical beam alignment methods. Although prior
research has proposed fast beam adaptation in vehicular
networks, which addresses the beam alignment overhead
[10]–[12], most of this work has only considered cellular
networks and one-hop transmission links between base
stations and vehicles. Few studies have addressed beam
alignment overhead in the context of vehicular networks
with multi-hop links, despite the benefits of connected
vehicles on cooperative decision making such as lane
changing and deceleration/acceleration [13].

Multi-hop communication, enabled by relaying, can
enhance link connectivity by providing multiple trans-
mission paths that can be leveraged to avoid link block-
ages. In this context, recent studies have shown that a
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proper selection of unblocked relays can maintain stable
data rates with low latency and drop rates [14]–[17].
Recent work on relay selection, however, either has
approximated the beamforming gain using an ideal direc-
tional antenna pattern [14]–[16] or assumed the overhead
from beam alignment is negligible [17]. Because of
this, prior research on relay selection has not accounted
for the overhead or the beamforming gain after beam
alignment when switching relays.

While a variety of solutions have addressed beam
management and relay selection in mmWave MIMO
vehicular networks separately [10], [15], [17], [18], the
extension to the joint formulation of beam management
and relay selection is nontrivial. Beam alignment is
needed to establish a robust link when switching to
a new relay. The training overhead required for beam
alignment, however, may outweigh the benefit of the
new relay over the present link. Therefore, we develop a
DRL-based algorithm that chooses between when to se-
lect new relays and when to perform beam management.

DRL is an online learning method that has been
successfully applied to many communication applica-
tions, such as network access, caching, and connectiv-
ity preservation [19]. In mmWave vehicular networks,
DRL has been used for resource allocation and radio
access to enhance throughput while maintaining data
security [20]. DRL resolves the exploration-exploitation
tradeoff, which appears in many control layer tasks
such as dynamic beam selection [10], power allocation
[15], and handover [21]. DRL enjoys small control
overhead by adaptively balancing between testing new
control actions versus choosing the actions deemed to
have the maximum expected return according to prior
actions deployed. The benefits of DRL make it a suitable
approach for solving the joint beam management and
relay selection problem.

In this paper, we propose a DRL algorithm for joint
relay selection and beam management that uses beam
measurements, which are the rate estimates fed back
from the receiver to the transmitter, to decide when to
switch relays and when to perform beam alignment. We
presume the available relays, which can change over
time due to the varying network topology, are identified
and at most a two-hop link is allowed. We also assume
the communication nodes employ Orthogonal Frequency
Division Multiplexing (OFDM), an analog MIMO ar-
chitecture, codebook-based beamforming, and that the
beam measurements are fed back to the transmitter
without quantization or overhead. The feedback may
be available through a dedicated channel in the sub-6
GHz frequency range or may be sent on the reverse link
with reduced coding and spreading. The choice of relay
selection or beam management is made by comparing the
rate feedback from beam measurements to two adaptive

thresholds determined by the algorithm. One thresh-
old determines whether to keep or switch the current
link, which includes both the direct and indirect links
through relays. The other threshold decides between data
transmission and beam management, including initial
access, beam tracking, and data transmission [22]. The
DRL-based policy uses the best known relay until the
performance degrades under the learned threshold, in
which case the policy tries out other relays according
to beam management procedure. We summarize our
contributions as follows:

1) We formulate a joint relay selection and beam man-
agement problem for mmWave MIMO vehicular
networks that accounts for the effect of the beam
management overhead on the cumulative spectral
efficiency. We devise a sequential decision-making
model of the joint relay selection and beam man-
agement problem, reducing the state space by em-
ploying codebook-based beamforming.

2) We propose a DRL-based algorithm to solve the
joint relay selection and beam management prob-
lem. The proposed algorithm uses the spectral ef-
ficiency feedback from the receiver to learn two
thresholds, where one threshold corresponds to re-
lay selection and the other to beam management.

3) We demonstrate the numerical performance be-
tween the proposed algorithm versus a baseline with
prior knowledge on the channel. The heuristic se-
lects fixed thresholds based on an offline simulation
instead of using the DRL algorithm. Note that the
heuristic is analgous to the threshold-based relay
selection previously studied for cellular device-to-
device networks [23]. The proposed algorithm is
able to outperform the heuristic approach even with-
out the prior knowledge of the channel. Further, we
analyze the impact of various system, channel, and
beam management parameters on the performance.
We find that the proposed DRL-based policy is
especially beneficial over baselines under dense
vehicular networks with highly-variant channels.

Relevant studies on relay selection include [12], [14],
[16], [24]–[26], which focus on the effective system
throughput affected by time overhead. For example, the
work in [12] addressed packet overhead and proposed
to minimize the average delay of successfully deliv-
ered packets. The work in [14] characterized latency in
mmWave vehicular networks as the sum of transmission
delay and alignment delay. The work in [16] followed the
latency characterization in [14] to maximize the effective
rate assuming zero rate is achievable during beam align-
ment. The beam alignment delay throughout [12], [14],
[16], though, is dependent only on the beamwidth. Our
work uses the number of training beams and a practical
5G new radio (NR) beam alignment procedure [22] to
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calculate the overhead induced by both initial access and
tracking. In [24],an overhead constraint is formulated as
a bound on the total broadcasting and relaying time. The
overhead has been measured in prior studies on buffer-
aided relay selection using the queue length [25] and
packet retransmissions [26]. The overhead in [24]–[26]
does not incorporate the beamforming overhead. Our
work penalizes latency due to excessive beam training
by assuming exhaustive beam sweeping.

DRL has previously been applied for relay selection
in wireless communication networks [15], [17], [27].
In vehicular networks, DRL has also been applied for
simultaneous power level allocation and relay selection.
In the line of this work, deep Q-learning (DQL) was
used in [15] for discrete power allocation to minimize
the transmission latency. A deep deterministic policy
gradient (DDPG) algorithm for continuous power level
allocation to maximize the communication success rate
was investigated in [17]. Our paper addresses beam
management overhead, where transmit power is fully
devoted to a selected relay according to the beam mea-
surement feedback. In this context, [15] and [17] are
complementary to our work. In [27], DRL is applied for
relay selection in wireless sensor networks with static
nodes using a utility function defined by the system
throughput and power usage. Our paper includes mobile
nodes in a dynamic mmWave wideband channel and
also accounts for the beam training overhead. Our paper
also applies DRL with beam measurements as the states
instead of the channel matrices, which can greatly reduce
the runtime because of the smaller state space that
facilitates learning. Other online learning algorithms that
have been applied to the relay selection problem include
the multi-armed bandit framework [28], [29]. Notably,
fast beam alignment algorithms based on bandits can ex-
ploit environmental awareness [10], sparsity of mmWave
channels [18], and correlation structure among beams
[11]. Our work assumes exhaustive beam sweeping as in
[22], and we leave the extension to more sophisticated
beam alignment algorithms for future work.

The rest of the paper is structured as follows. In
Section II, we present the system model used to represent
the mmWave MIMO vehicular network. In Section III,
we formulate the joint relay selection and beam manage-
ment problem. In Section IV, we develop a DRL-based
algorithm to solve the joint relay selection and mode
selection problem. In Section V, we numerically evaluate
the proposed algorithm compared to baselines with prior
knowledge of the channel. Finally, we conclude the paper
in Section VI.

We use the following notation throughout this paper:
A is a matrix, a is a vector, a is a scalar, and A is a
set. We denote aT the transpose of a, a⇤ the conjugate
transpose, and kak the 2-norm. We denote dae the ceiling

1 Transmitter

2 Relay

3 Receiver

4 Mobileblockages

Fig. 1. Snapshot illustration of an example system model consisting
of four types of vehicles; i) the blue vehicle is the transmitter, ii)
the yellow vehicle is an available relay, iii) the orange vehicle is the
receiver, and iv) the purple vehicles are mobile blockages. Two-sided
arrows indicate vehicular links; solid green links are unblocked and
dashed red links are blocked.

function. We denote rx the gradient with respect to a
variable x. A scalar random variable a ⇠ D follows
distribution D. We denote the Gaussian distribution
N (a, b) and the complex Gaussian distribution NC(a, b)
with mean a and variance b.

II. SYSTEM MODEL

In this section, we describe the system model repre-
senting a mmWave vehicular network with V2V commu-
nication. We first provide a generic view of the network
and beam management procedure in Section II-A. We
then describe the signal model in Section II-B. We
outline the beam management procedure in Section II-C.

A. Network model

Consider an OFDM-based mmWave vehicular net-
work as shown in Fig. 1. The transmitter generates data
traffic requested by the receiver, where other vehicles
serve as potential relays. The transmitter selects one of
two modes, beam alignment or data transmission, for
each OFDM frame over the subcarriers and time. We
assume the transmitter sends pilots during beam align-
ment and symbols during data transmission. Whenever
the mode is beam alignment, the transmitter performs
beam training to send pilots for MBA discrete time
slots to establish the transmitter-to-receiver (TX-RX)
link. Otherwise, the transmitter sends data symbols to
a single receiver via the TX-RX link for MDT discrete
time slots. The sequence of modes can be consecutive
beam alignments, consecutive data transmissions, or al-
ternating with an arbitrary number of consecutive modes.

Nearby vehicles can degrade the link quality by block-
ing the direct TX-RX path. We assume the transmitter
has already discovered a fixed number NREL of nearby
relay nodes, given as the set of indices {0, 1, . . . , NREL}
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where index 0 denotes the direct TX-RX link. Given the
indices, the transmitter can establish a two-hop indirect

TX-RX V2V link via the transmitter-to-relay (TX-REL)
and relay-to-receiver (REL-RX) V2V links to overcome
the blockage of the direct path.

B. Signal model

We describe the signal model from the transmitter to
the receiver under the data transmission mode. The signal
model also applies to other one-hop communication
links, such as the TX-REL and REL-RX link. The signal
model also applies to the beam alignment mode, with the
difference that a pilot signal is communicated instead of
a data symbol [22].

We assume an analog beamforming OFDM-MIMO
architecture at both the transmitter and receiver. Hybrid
and digital architectures allow sweeping over multiple
beams simultaneously at the cost of higher energy con-
sumption [22]. Under the analog architecture, the trans-
mitter and receiver communicate via a single data stream.
The transmitter consists of NTX antennas communicating
with a receiver with NRX antennas. We denote fRF[m] the
NTX ⇥ 1 complex RF beamformer vector and wRF[m]
the NRX ⇥ 1 complex RF combiner vector at time
slot m. We assume frequency flat RF precoder and
combiners, such that fRF[m] and wRF[m] are constant
over subcarriers, as in [30]. We assume that the power
constraints kfRF[m]k2 = 1 and kwRF[m]k2 = 1, for all
m, on the beamforming vectors fRF[m] and wRF[m]. No
other hardware-related constraints are assumed.

We assume a time-varying frequency-selective channel
between the transmitter and the receiver. Let us denote
K as the number of subcarriers and k = 1, . . . ,K
as the subcarrier index. We denote the NRX ⇥ NTX
channel matrix as H[k,m] between the transmitter and
the receiver for each k = 1, . . . ,K. The channels used
throughout the paper consist of the TX-RX channel
HTX!RX[k,m], TX-REL channel HTX!REL[k,m], and
REL-RX channel HREL!RX[k,m], where we omit the
subscripts unless needed. We further assume the channel
matrix H[k,m] models the small-scale fading, while the
averaged received power denoted by G[m] represents the
large-scale fading [31]. Let us also denote the NRX⇥1 in-
dependently and identically distributed (IID) NC(0,�2

n )
noise vector by n. Then, at subcarrier k and time slot m,
given the complex scalar s[k,m] of transmitted symbols
such that E[|s[k,m]|2] = 1, the processed received signal
at subcarrier k and time slot m is [32]

y[k,m] =
p
G[m]w⇤

RF[m]H[k,m]fRF[m]s[k,m] (1)
+w

⇤
RF[m]n[k,m].

Note that these normalizations imply that the signal-to-
noise-ratio (SNR) prior to beamforming is G[m]/�2

n .

As the performance metric, we use the instantaneous
spectral efficiency [31] averaged over the subcarriers

S(fRF[m],wRF[m],H[k,m]) =
1

K

KX

k=1

log2

✓
1 +

G[m]

�2
n

⇥|w⇤
RF[m]H[k,m]fRF[m]|2

◆
. (2)

The receiver can measure the instantaneous spectral
efficiency and feed back the beam measurement to the
transmitter, as discussed in Section II-C.

C. Beam management procedure

In this section, we outline the codebook-based beam
management procedure. We follow a general approach as
in commercial mmWave systems like IEEE 802.11ad and
5G. We assume the transmitter and receiver use beams
from beam codebooks. We further assume the system
employs a feedback mechanism to estimate the spectral
efficiency. For simplicity, we assume the feedback is
perfect with no quantization and no additional overhead
is induced from the feedback procedure. When the
receiver successfully decodes one or more successful
transmissions, it feeds back the beam measurement to
the transmitter. Otherwise, it feeds back a beam mea-
surement of zero to the transmitter. Note that this is is
analogous to the automatic repeat-request (ARQ) used
in 802.11 standards.

We describe the overall duration of the beam align-
ment procedure, which is a dominant factor in the
beam management overhead. The beam alignment is per-
formed by iterating over predefined beams to aggregate
the beam measurements and select the best beam. Each
iteration is controlled by synchronization signal (SS)
bursts, where a single SS burst consists of multiple SS
blocks [22]. Denoting NSS as the number of SS blocks
per burst, the system can examine NSS pairs of beams
when exchanging a single SS burst. Whenever a single
SS burst is exchanged, the next SS burst is exchanged
after MSS time slots, which we denote as the periodicity
of SS bursts. When beam alignment starts at time m,
the first beam pair in the SS burst is exchanged at
time m + dMSS/NSSe, the second beam pair at time
m + 2dMSS/NSSe, continuing up to the last beam pair
at time m+NSSdMSS/NSSe. The duration of the beam
alignment period depends on the number of beam pairs
that should be examined, which can be categorized into
four cases depending on the mode and the number of
hops. The mode can be either initial access or beam
tracking. The direct link has one hop, and the indirect
link has two hops. While we acknowledge the possibility
of simultaneously training the beam of the TX-RX link
and TX-REL link, it will require the transmitter to allow
multi-user access. Furthermore, when the receiver and
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the relay have different codebook size, the synchro-
nization between the direct link and the indirect may
be nontrivial. For the scope of the paper, we assume
beam training is performed for single link to analyze
the beam alignment period in the worst-case scenario.
Let us denote the transmitter codebook with size Nc
as F = {f1, f2, . . . , fNc}, and similarly the receiver
codebook as W and nth relay codebook as Gn. For initial
access via direct link, the duration of beam alignment
can be expressed as

MIA,direct = MSS

⇠
|F| · |W|

NSS

⇡
, (3)

due to the exhaustive beam sweeping over F ⇥W . Let
us denote NBT as the number of best beams fed back to
the transmitter from the receiver during beam tracking.
Unlike in initial access where |F|· |W| beams are swept,
only NBT << |F| · |W| beams are processed in beam
tracking. The duration of the beam alignment period for
beam tracking via direct link is

MBT,direct = MSS

⇠
NBT

NSS

⇡
. (4)

For simplicity, let us assume perfect time synchroniza-
tion between the transmitter and the relay. Then, the
duration of the beam alignment procedure is

MIA,indirect = MSS

⇠
|F| · |Gn|

NSS

⇡
+MSS

⇠
|Gn| · |W|

NSS

⇡
,(5)

for initial access via indirect link and

MBT,direct = 2MSS

⇠
NBT

NSS

⇡
, (6)

for beam tracking. Although the indirect link has a longer
beam alignment period than the direct link, the effective
spectral efficiency accounting the beamforming overhead
may be higher due to blockage of the direct link.

During beam alignment, the transmitter and the re-
ceiver search for the best transmit and receive beam pair
that maximizes SNR [22]. Due to the exhaustive beam
sweeping procedure, beam indices are swept sequentially
over time. Let us denote the time slot when codebook
indices (iF , iW) are being swept as

md(iF , iW) =

⇠
Nc(iF � 1) + iW

NSS

⇡
, (7)

where the subscript d shows the delay due to beam
sweeping is accounted. When beam alignment ends at
time slot m, the system obtains the beamforming vectors

(fd,iF [m],wd,iW [m]) = argmax
iF2F,iW2W

S(fiF [m], (8)

wiW [m],HTX!RX[m�MBA +md(iF , iW)]),

and the achievable spectral efficiency is given by

STX!RX,0,p[m] =
1

K

KX

k=1

log2

✓
1 +

G[m]

�2
n

⇥
����w

⇤
d,iW [m]HTX!RX[k,m]fd,iF [m]

����
2◆

, (9)

where the subscript 0 indicates using the direct link. The
subscript p indicates no measurement error is included.

To incorporate measurement error, we express the
beam measurement assuming the system uses MMSE
estimator for the effective channel under a rectangular
Doppler spectrum as in [31, Sec. 4.8]. As the MMSE
estimator can be obtained in terms of the ratio of pilots
per symbol transmission, we count the number of pilots
over time and frequency frames between data transmis-
sion modes. For every block between data transmission
modes, in this context, we denote the varying ratio of
pilots as � and the total number of OFDM frames as
Nb. Then, the MMSE can be written as

MMSE =
1

1 + �NbSNR
, (10)

and the effective SNR as

SNReff =
SNR(1�MMSE)
1 + SNR · MMSE

. (11)

The estimated spectral efficiency, fed back from the
receiver to the transmitter as a beam measurement, is

STX!RX,0[m] =
1

K

KX

k=1

log2

✓
1 + SNReff

⇥
����w

⇤
d,iW [m]HTX!RX[k,m]fd,iF [m]

����
2◆

, (12)

when the symbol is being sent at time slot m and
zero during beam management. We similarly define the
estimated spectral efficiency STX!REL,n and SREL!RX,n

through TX-REL and REL-RX link. For STX!REL,n,
the codebook pair (F ,W) is replaced by (F ,Gn)
and the channel HTX!RX[m] with HTX!REL,n[m].
For SREL!RX,n, the codebook pair (F ,W) is re-
placed by (Gn,W) and the channel HTX!RX[m] with
HREL!RX,n[m]. We replace the subscript 0 with n for
the TX-REL and the REL-RX link to indicate using the
nth link. The overall spectral efficiency of the two-hop
indirect path is

STX!RX,n[m] =
STX!REL,n[m]SREL!RX,n[m]

STX!REL,n[m] + SREL!RX,n[m]
,(13)

following the optimal time resource allocation for
decode-and-forward relaying as in [33]. The beam mea-
surement of the TX-REL and REL-RX link may be
individually available to the transmitter via the reverse
feedback channels.
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III. FORMULATING THE JOINT RELAY SELECTION
AND BEAM MANAGEMENT PROBLEM

In this section, we formulate the joint relay selection
and beam management problem for the mmWave MIMO
vehicular network from the perspective of sequential
decision theory. Based on this formulation, we discuss
how to choose actions for each time steps. To do this,
we devise a Markov Decision Process (MDP), which is
a well-studied model for sequential decision making.

The transmitter aims to maximize the data rate by
selecting the best relay and beam at each time slot. We
say that the transmitter needs to decide actions A[m]
for each time slot. The actions consist of a chosen relay
index n[m] 2 {0, 1, . . . , NREL} and a beam management
mode nmode[m] 2 {0, 1} which dictates whether to
perform beam alignment or data transmission. We set
nmode = 1 to indicate data transmission and nmode = 0
to indicate beam alignment.

The optimal set of actions are selected to maximize
the running average of the spectral efficiency over M
time slots. We assume a finite M to ensure the sum
of spectral efficiency is bounded, as in other sequntial
decision formulations in wireless applications [19]. We
use a binary variable c(A[m]) to express the effect of the
actions on the spectral efficiency. We set c(A[m]) = 1
when the action is data transmission and c(A[m]) = 0
when the action is beam alignment. Then, the optimiza-
tion problem for maximizing the cumulative spectral
efficiency can be written as

max
{a[m]}

MX

m=1

NRELX

n=0

✓
c(A[m])STX!RX,n[m]

◆
. (14)

We first analyze a genie-aided policy to approach
(14). At time slot m, suppose the achievable spectral
efficiency STX!RX,n[m] is known for all n. In this case,
the optimal solution aOPT[m] of (14) is selecting the relay
index n[m] = argmaxn STX!RX,n[m] with the mode
nmode[m] = 1. Note that the value obtained by aOPT is
the expected upper bound of the system’s performance.

The system is limited from achieving the performance
of the genie-aided policy due to the tradeoff between
the performance obtained from frequent beam alignment
versus frequent data transmission. On one hand, frequent
beam alignment is necessary due to the fast varying
channel. On the other hand, frequent data transmission
is required to realize the spectral efficiency. The tradeoff
can be also explained in terms of the objective in (14).
Frequent beam alignment can improve the accuracy of
rate feedback leading to a higher STX!RX,n[m] at the ex-
pense of the coefficient set to c(A[m]) = 0. Conversely,
frequent data transmission can achieve the coefficient
c(A[m]) = 1 at the cost of a lower STX!RX,n[m] due to
beam misalignment.

The system can address the performance tradeoff
between beam alignment versus data transmission using
sequential decision theory. Following the approach taken
in sequential decision making formulations in wireless
communication applications [19], we assume an MDP
as the learning model for (14). The three components
that must be specified in an MDP are the states, actions,
and the reward:

1) States: The system state of interest is determined by
the channel realizations. In codebook-based directional
beamforming, the beam indices (9) and measurements
(12) can substitute the channel information [34]. Accord-
ingly, we define the link vector of the communication
link via the nth relay as

bn[m] = [iF,OPT[m], iGn,OPT[m], STX!REL,n[m]] .(15)

The state can then be represented as

T [m] = {b0[m], . . . ,bNREL [m]}, (16)

which consists of the link vectors for all relay indices.
We emphasize that the state keeps track of the beam
management procedure. The system only updates the
link vector of the relay index used in the most recent
beam management procedure. We further detail the up-
date criterion of the state in Algorithm 1.

2) Actions: The action of the transmitter is the deci-
sion variable in the optimization problem (14). Though
discrete actions can be used, continuous actions are
often preferred in wireless applications due to scalability
[19]. We follow this approach and defer the readers to
Section IV-A for the specification of the action.

3) Reward: The reward is designed to maximize the
objective in (14), which can be represented as

r(T [m],A[m]) =
NRELX

n=0

✓
c(A[m])STX!RX,n[m]

◆
.(17)

Note that we follow the typical approach of choosing the
reward as the objective at time index m [19].

IV. POLICY DESIGN FOR JOINT RELAY SELECTION
AND BEAM MANAGEMENT

In this section, we develop algorithms to solve the
joint relay selection and beam management in mmWave
MIMO vehicular networks. We develop a DRL-based
algorithm based on a pure threshold policy [23], [35].
In Section IV-A, we first describe a threshold-based
heuristic (Algorithm 1) with fixed ⌧relay and ⌧mode that
determine the relay index and mode. We then specify the
proposed DRL-based policy, as in Algorithm 2, which
applies DRL based on a policy gradient approach to learn
the thresholds and solve the joint relay selection and
beam management in Section IV-B.
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A. Threshold-based heuristic

Threshold-based policies with one threshold have been
studied for relay selection [23], [35]. One threshold is
sufficient for relay selection, as it can represent one
of two behaviors: to either keep the relay or switch.
For example, the receiver may switch relays if the
estimated received SNR of the current link is below that
of the best relay and hold otherwise [35]. With more
behaviors to model, however, additional thresholds may
be required. For example, threshold-based policies for
data transmission through a Gilbert-Eilliot channel often
required two separate thresholds to determine to whether
send data, wait, or measure the channel [36].

We follow the threshold-based policies as in [36] to
use thresholds as actions. Two continuous thresholds
⌧relay and ⌧mode are defined such that the action can be
represented as

A[m] = {⌧relay, ⌧mode}. (18)

The transmitter compares the rate feedback in (12) to the
thresholds and then chooses one of the following three
behaviors: optimistic, opportunistic, and pessimistic ac-
tion. When the transmitter is optimistic, believing that
the channel is in an unblocked state with high achievable
spectral efficiency, it keeps both the relay index and
mode. When the transmitter is opportunistic, believing
that the channel is in an unblocked state but with a
low achievable spectral efficiency, it keeps the relay
index but sets the mode to beam tracking. When the
transmitter is pessimistic, believing the channel is in a
blocked state, it changes the relay index and also sets
the mode to beam alignment. We assume ⌧relay < ⌧mode
due to the rate of blocked channels being worse than
that of the unblocked and bad channels. The belief
of the transmitter regarding the channel is determined
by the beam measurements in (12). For a given beam
measurement S of the current link, the transmitter takes
the optimistic action if S > ⌧mode, the opportunistic
action if ⌧mode > S > ⌧relay, or the pessimistic action
if ⌧relay > S.

The pseudocode of the proposed threshold-based
heuristic is given in Algorithm 1. The algorithm requires
the thresholds ⌧relay and ⌧mode as fixed inputs. The algo-
rithm is similar to a state transition matrix. It takes n[m],
mode nmode[m], and link vectors b0[m], . . . ,bNREL [m]
at the mth time slot to obtain T [m + 1]. Due to the
duration of beam management, the algorithm may need
to continue the mode nmode[m] over multiple time slots.
To do this, the algorithm tracks how long the current
beam management mode has lasted using mBA[m] and
mDT[m]. The variable mBA[m] can be thought as the
number of beam indices swept in the current beam
alignment mode (7). The variable mDT[m] relates to

the number of time slots spent in the current data
transmission. At the end of each beam management
mode, when mBA = MBA or mDT = MDT, the algorithm
updates the relay index and beam management mode
depending on the transmitter’s belief of the channel.

Algorithm 1 Threshold-based heuristic for joint relay
selection and beam management problem

1: Input: Threshold ⌧mode on mode selection, threshold
⌧relay on relay selection, current time slot index m,
current relay index n[m], current mode nmode[m],
and current link vectors b0[m], . . . ,bNREL [m]

2: if nmode[m] = 0 then % Beam alignment
3: S[m] = 0
4: if mBA[m] < MBA[m] then

5: nmode[m+ 1] = 0
6: Update mBA[m+ 1] = mBA[m] + 1
7: else

8: Update link vector bn[m][m + 1] according to
(9)

9: nmode[m] = 1
10: mBA[m+ 1] = 1
11: end if

12: else % Data transmission
13: Set measured spectral efficiency S[m] according

to bn[m][m]
14: if mDT[m] < MDT then

15: nmode[m+ 1] = 1
16: Update mDT[m+ 1] = mDT[m] + 1
17: else

18: if S[m] < ⌧relay then

19: n[m+ 1] = argmaxn 6=n[m] STX!RX,n[m]
20: nmode[m] = 0
21: else if S[m] < ⌧mode then

22: nmode[m] = 0
23: end if

24: mDT[m+ 1] = 1
25: end if

26: end if

27: Output: relay index n[m + 1], mode nmode[m + 1],
link vectors b0[m+1], . . . ,bM [m+1], and measured
spectral efficiency S[m]

To deploy the threshold-based heuristic, the thresholds
⌧relay and ⌧mode are required as inputs. In practice, test
results over varying ⌧relay and ⌧mode may be compared to
choose the thresholds that provide the highest spectral
efficiency. Considering dense vehicular networks with
complex and dynamic traffic patterns, the thresholds
need to be computed efficiently both in terms of data and
time resources [10]. We apply DRL to find the thresholds
with short training time and without offline data.
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B. Learning algorithm

DRL algorithms aim to find the sequence of actions
that maximize the cumulative reward by training neural
networks through trial-and-error. At each iteration an
action is determined according to the output of the neural
networks. The action is deployed on the environment
resulting in a reward. The reward is then used to update
the weights of neural networks to output the next action.

The following fundamental aspects are involved in the
design of the DRL algorithms: the policy µ and the Q-
function Q. The policy is a mapping from the state space
to the action space, such that A = µ(T ). The aim of
DRL is typically formulated as finding the best policy.
The Q-function Q(T ,A) is a measure of the expected re-
ward from a state-action pair followed by the state-action
pairs induced by the optimal policy. The Q-function
Q(T ,A) is often useful for policy search problems due
to two properties: it provides a straightforward way to
find the optimal policy µOPT(s) = argmaxa Q(T ,A),
and it can be computed with Bellman updates [37].

We use DDPG [38], which is a DRL algorithm that
trains both the policy and Q with neural networks, to
solve the joint relay selection and beam management
problem. It trains an actor ✓A,ON that takes states as
inputs and actions as outputs. The actor network ac-
cordingly yields the policy µ✓A,ON . DDPG also trains
a critic ✓C,ON that takes state-action pairs as inputs
and Q values as outputs. The critic network represents
the Q-function Q(·|✓C,ON). For stable learning, DDPG
reserves the delayed copy of ✓A,ON and ✓C,ON as the
target networks ✓A,TAR and ✓C,TAR.

DDPG is a suitable algorithm for the joint relay
selection and beam management, as in other wireless
applications, due to its fast convergence and capability of
handling continuous action spaces [19]. We introduce the
updating rule for the neural networks in DDPG. Let us
denote the replay buffer as D. Each element in the replay
buffer is a tuple consisting of state, action, reward, and
successor state. The tuple (T [m],A[m], r[m], T [m+1])
is denoted as a trajectory, referring to the deployment
history. A B-element minibatch, which consist of trajec-
tories randomly sampled with replacement from D, is
used for updating the online actor and critic networks.
Specifically, ✓C,ON is updated by minimizing the loss

L =
1

B

X

m0

✓
(r[m0]

+�Q(T [m0 + 1], µ✓A,TAR(T [m0 + 1])|✓C,TAR)

�Q(T [m0],A[m0]|✓C,ON))
2

◆
. (19)

The sampled policy gradient of ✓A,ON is given as
X

m0

1

B

✓
rAQ(T ,A|✓C,ON)|T =T [m0],A=µ✓A,ON (T [m0])

⇥r✓A,ONµ✓A,ON(T )|T =T [m0]

◆
. (20)

The target networks are slowly updated from the online
networks with parameter ⌘ << 1

✓A,TAR  ⌘✓A,ON + (1� ⌘)✓A,TAR, (21)
✓C,TAR  ⌘✓C,ON + (1� ⌘)✓C,TAR.

Typically, ⌘ controls the variance of the target networks.
Implementing DDPG for joint relay selection and

beam management, the following steps are repeated for
the time slots m = 1, . . . ,M :

1) Select the thresholds ⌧relay[m] and ⌧mode[m] ac-
cording to the online actor network ✓A,TAR and
exploration noise distribution N , where the default
exploration noise is the Ornstein-Uhlenbeck noise.

2) Deploy Algorithm 1 with the inputs ⌧relay[m],
⌧mode[m], b0[m], . . . ,bNREL [m], I[m], n[m], and
nmode[m]. As a result, obtain the successive b0[m+
1], . . . ,bNREL [m+ 1], n[m+ 1], nmode[m+ 1], and
S[m].

3) Append the current state action pair to the succes-
sor state and reward pair to accumulate transition
(T [m],A[m], r[m], T [m+ 1]) in replay buffer D.

4) Update the online actor and critic networks ✓A,ON
and ✓C,ON according to (19) and (20).

5) Update the target actor and critic networks ✓A,TAR
and ✓C,TAR with respect to (22).

We note the algorithm implementation can be optimized
to run within a single time slot by leveraging processer
units with high clock speed and field-programmable gate
array (FPGA) as discussed in [13]. The pseudocode for
Algorithm 2 is also given.

We provide Fig. 2 to illustrate Algorithm 2 focusing
on the connection to Algorithm 1. The overall aim of
Algorithm 2 is to train a DDPG agent that outputs
threshold-based action A[m] = {⌧relay[m], ⌧mode[m]}
taking state T [m] = {b0[m], . . . ,bNREL [m]} based
on link vectors as the input. Algorithm 1 takes the
threshold-based action A[m] = {⌧relay[m], ⌧mode[m]} and
T [m] = {b0[m], . . . ,bNREL [m]} as inputs to output the
updated link vectors {b0[m+1], . . . ,bNREL [m+1]}. The
role of Algorithm 1 is analogous to an environment,
as the updated link vectors are the successor state
T [m+1] = {b0[m+1], . . . ,bNREL [m+1]} conditioned
on that the beam management procedure has completed
at time m + 1 and the reward is STX!REL,n[m][m].
The termination of the beam management procedure is
checked by by comparing mBA[m] to MBA[m] when
nmode = 0 and comparing mDT[m] to MDT[m] when
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Algorithm 2 DRL-based joint relay selection and beam
management strategy

1: Input: Length M of decision horizon, set
{0, 1, . . . , NREL} of relays, minibatch sample size
B, replay buffer D, exploration noise distribution
N , length MBA of beam alignment period

2: Randomly initialize online critic network
Q(s, a|✓C,ON) and online actor network µ(s|✓A,ON)
with ✓C,ON and ✓A,ON

3: Initialize target critic network ✓C,TAR  ✓C,ON and
target actor network ✓A,TAR  ✓A,ON

4: for m = 1, . . . ,M do

5: Select action a[m] = {⌧relay[m], ⌧mode[m]} ac-
cording to the current online actor network and
exploration noise distribution N

6: Deploy Algorithm 1 with inputs ⌧relay[m],
⌧mode[m], n[m], nmode[m], link vectors
b0[m], . . . ,bM [m], and MBA[m].

7: Compute reward r[m] = S from Algorithm 1
8: Update n[m + 1] and nmode[m + 1] from output

of Algorithm 1
9: Get s[m+ 1] from updated link vectors

10: Store transition (s[m], a[m], r[m], s[m+1]) in D
11: Sample random minibatch of B transitions from

D
12: Update the online critic network by minimizing

the loss (19)
13: Update the online actor network by policy gradi-

ent (20)
14: Update the target networks from the online net-

works according to (22)
15: end for

Fig. 2. Flowchart of the proposed DRL-based joint relay selection
and beam management algorithm. The threshold-based heuristic (Al-
gorithm 1) serves as the environment in each iteration.

nmode = 1. When Algorithm 1 outputs a successor state,
the transition (T [m],A[m], r[m], T [m+1]) is stored in
the experience replay. The experience replay is used to
sample minibatches to train the DDPG agent.

V. EXPERIMENTAL RESULTS

In this section, we present the numerical evaluation
of the proposed DRL-based algorithm for joint relay
selection and beam management problem in a mmWave
MIMO vehicular network. We describe the simulation
setup and the relevant parameters in Section V-A. We use
two scenarios, one to focus on the line-of-sight (LOS)
channel and the other to capture non-LOS (NLOS) paths
in vehicular networks. We detail the baseline policies and
the performance metric in Section V-B. We provide the
numerical results on the LOS scenario in Section V-C.
We then give the numerical results on the more realistic
scenario with NLOS paths in Section V-D.

A. Simulation setup

We simulate a mmWave MIMO vehicular network
using two scenarios. The first scenario only considers
a LOS channel with two relay nodes available to the
transmitter. The second scenario uses channels calculated
from vehicle trajectory data based on Simulator of Urban
Mobility (SUMO) [39]. The first scenario represents a
conceptual deployment for mobile mmWave networks. It
is used to analyze the effect of system parameters, such
as angular spread �a, on the spectral efficiency. The sec-
ond scenario represents a more realistic deployment of
mmWave vehicular networks to evaluate vehicle param-
eters, such as vehicle density, on the spectral efficiency.
The simulation parameters used for both scenarios, as
shown in Table I, are summarized as follows:

1) Antenna array and codebook: For simplicity of
exposition, we focus on a case with uniform linear arrays
(ULAs) at the transmitter and receiver, but it can be
readily extended to other array geometry and multiple
panels. Denoting � the steering angle and � the carrier
wavelength, the array response vector for a N -element
ULA is given as

a(�)

=
1p
N

h
1, e�j⇡ cos(�), . . . , e�j(N�1)⇡ cos(�)

iT
. (22)

We select a codebook structure that equally partitions the
angular domain [0,⇡]. The codebook vectors are given
as fiF = a(⇡iF/NTX), for iF = 0, 1, . . . , NTX � 1 and
similarly for the receiver codebook W and the nth relay
codebook Gn over n 2 {0, 1, . . . , NREL}.

2) Channel model: We use a time-varying geometric
channel composed of L[m] paths as in [40]. For the `th
path, we denote ↵`[m] as the complex path gain, �`,A[m]
as the angle of arrival (AOA), �`,D[m] as the angle of
departure (AOD), at(·) as the transmit array vector, and
ar(·) as the receive array vector. To further express the
wideband channel, we apply the delay-d channel model
denoting the path delay as ⌧`, the bandlimited pulse
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TABLE I
TABLE OF THE NOTATIONS, PARAMETERS, AND VALUES USED IN BOTH SCENARIOS, UNLESS MENTIONED OTHERWISE.

Notation Simulation parameter Parameter value
NREL Number of candidate relays 2
NTX Number of transmitter antennas 16
NRX Number of receiver antennas 16
�p Complex path gain spread 0.005
�a Angular spread 0.5
NBL Number of time slots in a blockage 100
Ts Symbol time 1/1760 µs
MSS Number of time slots of a single SS burst 1
NSS Number of SS blocks in single burst 64
pu!b Transition probability from blocked state to unblocked state 0.01
pb!u Transition probability from unblocked state to blocked state 0.99
qb Steady-state probability for the blocked state 0.01
K Number of subcarriers 256

shaping filter as p(·), the symbol period as Ts, and the
delay tap length as Nd [41]. We select K = 256 sub-
carriers. We additionally denote the blockage coefficient
as cBL,`[m]. We follow the assumption that the antenna
array is mounted on top of the vehicles [2]. The channel
matrix at subcarrier k and time slot m can be expressed
as

H[k,m] =

L[m]X

`=1

cBL,`[m]↵`[m]
Nd�1X

d=0

✓
p(dTs � ⌧`)

⇥e�j 2⇡k
K ar(�`,A[m])a⇤t (�`,D[m])

◆
. (23)

We assume that the complex path gain, AOA, and AOD
evolves according to a first order Gauss-Markov equation
with angular spread �a and complex path gain spread �p,
as in [40, Eq. 7].

3) Beam management and algorithm initialization:

We apply beam management with MSS = 1 and
NSS = 64. We assume the transmitter initially uses the
direct link and performs initial access. We accordingly
initialize the relay index as n[1] = 0 and the mode
as nmode[1] = 0. We initialize the link vectors as
b[1] = {1, 1, 0, . . . , 1, 1, 0}. We use the minimal time
needed for a single data transmission, out of the possibly
consecutive data transmissions, as the unit time. Specifi-
cally, we set MDT = 1 to focus on the ratio between the
beam alignment period and the data transmission period.

B. Performance metrics and baseline policies

We use the ensemble average spectral efficiency to
track the performance metric. We approximate the en-
semble mean by averaging over 1,000 identically dis-
tributed channel samples. For the performance of the
DRL-based policy, we measure the average of the last 20

iterations out of the M = 200 total iterations to represent
the converged reward.

We use OpenAI Gym [42] as the environment tem-
plate with Python TensorFlow. An implementation of
our method is available on our github page [43], to
implement the proposed learning algorithm based on
policy gradients. We compare the proposed method to
three baseline policies:

1) Genie-aided policy: This algorithm has perfect
knowledge of the channel. Subsequently, this pol-
icy chooses the data transmission action with the
correct relay index and the best beam indices.
Therefore, the performance achieved by the genie-
aided policy is the expected upper bound of the
system.

2) Algorithm 1 with optimal threshold: This algo-
rithm applies Algorithm 1 with the optimal thresh-
olds ⌧OPT

relay and ⌧OPT
mode, where ⌧OPT

relay and ⌧OPT
mode are found

by exhaustively searching over ⌧relay and ⌧mode; we
return the best result from the tests with varying
⌧mode and ⌧relay from 0 up to ⌧max where ⌧max is the
99% percentile of the achievable spectral efficiency.

3) Direct policy: This algorithm chooses an action in
each iteration following the genie-aided policy and
expect the relay index fixed to zero. This policy
represents the expected performance using suitable
beam tracking and alignment without the aid of
available relays.

C. Numerical evaluation with LOS channels

In this section, we provide the experimental results for
the scenario that only considers LOS channels between
the vehicles. We observe the change in spectral efficiency
when varying system parameters including the transmit
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SNR, complex path gain spread �p, angular spread �a,
codebook size Nc, beam management parameters NSS,
MSS, and blockage parameter qb.

We assume that the time-varying blockage model of
the LOS channel scenario can be described by a Markov
chain, as in [44]. The blockage model consists of two
states indicating the path being blocked or unblocked.
We denote the transition probabilities pb!u from blocked
to unblocked state and pu!b from unblocked to blocked
state. The transition probabilities determine the steady-
state distribution of the two states. Denoting qu the
steady-state probability of the unblocked state and qb
the steady-state probability of the blocked state, qu =

pb!u
pb!u+pu!b

and qb = pu!b
pb!u+pu!b

. We apply the blockage
model along with the evolution of the time-varying
propagation channel in (23), assuming stationarity in
the joint process of channel and blockage. We assume
that a state transition in the blockage model takes NBL
time slots. Typically, NBL >> 1 since the duration of
a blockage is much longer than the symbol period [44].
For each path `, cBL,`[m] = 1 for NBL time slots if the
state transits to the unblocked state. If the state transits
to the blocked state, cBL,`[m] = 0 for NBL time slots.

In Fig. 3 we illustrate the average spectral efficiency
versus SNR, ranging over �20 dB to 10 dB under
the parameters specified in Table I. Fig. 3 shows that
the proposed learning-based relay selection algorithm
achieves spectral efficiency surpassing Algorithm 1 and
the direct policy. This implies that the DRL-based policy
is accurately choosing relay indexes to overcome the
blockage of the direct LOS path. Furthermore, the DRL-
based policy using ✏-greedy method efficiently balances
the tradeoff between spectral efficiency gain from fre-
quent beam alignment and loss from beam management
overhead. When compared to Algorithm 1 using relays,
the DRL-based policy achieves non-negligible spectral
efficiency increase due to resolving the tradeoff.

Fig. 4 illustrates the performance of the policies per
channel parameters, complex path gain spread �p and
angular spread �a. Low �p and high �a translates to a
fast-varying system with complex traffic; the noise term
becomes dominant in the recurrence relations of complex
path gain, AOA, and AOD. For fixed SNR at 0 dB, we
vary �p and �a within [0, 1]. We fix the angular spread to
0.5 when varying �p and we fix the standard deviation of
complex path gain noise to 0.005 when varying �a. The
DRL-based policy outperforms the baselines for varying
�p and �a. We observe interesting behaviors for specific
�p and �a regimes. For instance, the DRL-based policy
gain more performance per decreased �p compared to the
baselines. This indicates that the DRL-based policy may
be further enhanced with power allocation designs that
address variant complex path gain. The performance of
the DRL-based policy is resilient against increasing �a
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Fig. 3. Average spectral efficiency vs. transmit SNR for (i) the genie-
aided policy, (ii) the DRL-based policy, (iii) the relay selection heuristic
with optimal threshold, and (iv) the policy that only use the direct link.
Allowing the use of relays improve spectral efficiency overcoming the
blockage of LOS path. Relay selection based on DRL further increases
spectral efficiency over random selection by balancing exploration and
exploitation with ✏-greedy method.

compared to that of the baselines. This implies that the
DRL-based policy is particularly beneficial under highly-
variant channels.

Fig. 5 shows the impact of codebook size on the
performance of policies. We vary the codebook size for
the transmitter, relay, and receiver from 4 to 64 for the
16-element ULA equipment. We observe that increasing
the codebook size from Nc = 4, all strategies gain
spectral efficiency. This is expected, since it is known
that insufficient quantization of beam angles results in
performance degradation for analog beamforming [45].
At Nc = 16, increasing the codebook size results in a
decrease of spectral efficiency except for the genie-aided
policy. This indicates the spectral efficiency lost in the
beam management procedure dominates the spectral effi-
ciency gain from higher beam angle quantization. Fig. 5
suggests that there is a codebook size that maximizes
the spectral efficiency.

In Fig. 6 we demonstrate the effect of the parameters
related to SS bursts and blocks. We vary the number
NSS of SS blocks per burst in {8, 16, 32, 64} and peri-
odicity MSS of SS bursts in {1, 2, 4, 8, 16}, as in [22].
Fig. 6 shows that the DRL-based policy outperforms
baselines in most cases but it may underperform when
NSS is low or MSS is high. For example, the DRL-
based policy severely lose performance both at NSS = 4
and MSS = 16. Such low performance of the DRL-
based algorithm happens because the increased time slots
required for exploration causes the learning algorithm
to fail to converge. This implies that the DRL-based
policy is sensitive to beam management parameters, but
it works well under practical scenarios.

Fig. 7 illustrates the effect of the blockage parameter.
We vary the steady-probability qb of blocked state in
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Fig. 4. Average spectral efficiency vs. channel parameters (a) complex
path gain spread �p and (b) angular spread �a. The DRL-based policy
achieves more spectral efficiency compared to the baselines under low
complex path gain spread �p. Spectral efficiency achieved by the DRL-
based policy degrades slower as the �a increases compared to that of
the baseline with prior channel knowledge.

{0.0001, 0.001, 0.01, 0.1, 0.5}. For a given qb, we use
a Markov chain representing the blockage model with
transition probabilities set to pu!b = qb and pb!u =
1�pu!b. We simulate the scenario with a high vehicular
density by setting qb = 0.5, low density by setting
qb = 0.01, and negligible density by setting qb < 0.01.
Fig. 7 depicts that DRL-based policy behaves similarly
to the genie-aided policy over the change of qb com-
pared to baselines. Unlike the baselines, the DRL-based
policy can maintain a high spectral efficiency within the
low density regime. This implies that the DRL-based
policy is able to effectively mitigate blockage by jointly
selecting the relay and the mode.

D. Numerical evaluation on SUMO-generated channel

In this section, we provide the experimental results for
the scenario that represents a more realistic deployment
of a mmWave MIMO vehicular network. We follow
the approach in [46] to generate the channels based on
the time-varying wideband channel (23) and the vehicle
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Fig. 5. Average spectral efficiency vs. transmit SNR for different
codebook sizes. The size of relay and receiver codebook are set to
Nc. Increasing the codebook size from small Nc results an increase
of spectral efficiency due to accurate quantization of the beams. For
high Nc, however, the overhead from beam management dominates
the quantization accuracy leading to a spectral efficiency drop.
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Fig. 6. Average spectral efficiency vs. different beam management
parameters: (a) NSS and (b) MSS. Decreasing NSS and increasing MSS
results in larger overhead spent in initial access and beam tracking.
While the DRL-based policy outperforms the baselines in most NSS
and MSS conditions, it may underperform under extreme overhead.

trajectories from SUMO. We apply a simple ray tracing
method to obtain the number of paths L[m] and blockage
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Fig. 7. Average spectral efficiency vs. different blockage parameter
qb. Various blockage parameters qb 2 {0.0001, 0.001, 0.01, 0.1, 0.5}
are plotted to represent the negligible (qb < 0.01), low (qb = 0.01),
and high (qb = 0.5) traffic densities. The DRL-based policy shows
gradual slope similar to that of genie-aided policy’s, which implies that
it effectively mitigates blockage similar to the optimal policy.

coefficient cBL,`[m] assuming all vehicles have length
of 4.645 m, vehicles can block LOS, and the vehicle
surfaces act as lossless reflectors to create reflected paths.
We calculate the AOA/AOD and path gain assuming the
ray propagation starts at the end of vehicles facing each
other, the angle of the reflected ray by the vehicle surface
is equal to the angle of incident ray, and the path loss
exponent is 2. We report the change in spectral efficiency
when varying system parameters including the transmit
SNR, vehicle density, and average vehicle speed.

In Fig. 8 we show the average spectral efficiency
versus SNR, ranging over �20 dB to 10 dB under the
parameters specified in Table I. We set the traffic density
as 10 vehicles per km and the average vehicle speed
as 80 km/h. Fig. 8 confirms that the proposed DRL-
based relay selection policy outperforms baselines in
a realistic scenario. Compared to Fig. 3, the proposed
DRL algorithm enjoys the model-free aspect and further
improves from Algorithm 1 with fixed threshold.

Fig. 9 illustrates one example of convergence behavior
of the DRL-based policy over the M = 200 iterations.
We choose to show the case of transmit SNR set to 0
dB in Fig. 8. The solid line depicts the average reward
over the channel samples, while the shaded region rep-
resents the standard deviation. The reward staggers up
to iteration 30, from its initial value of 0.23 bps/Hz.
From iteration 30 to 60, we observe a linear increase
in reward. After iteration 70, the algorithm maintains
reward around 2 bps/Hz with decreasing standard de-
viation. Subsequently, we interpret that the algorithm
converges.

Fig. 10 illustrates one example of the threshold adap-
tation by the DRL-based policy over the M = 200
iterations. The dashed line represents the reward obtained
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Fig. 8. Average spectral efficiency vs. transmit SNR for (i) the genie-
aided policy, (ii) the DRL-based policy, (iii) the relay selection heuristic
with optimal threshold, and (iv) the policy that only use the direct link.
Similar to that observed in Fig. 3, the proposed DRL-based policy
improves spectral efficiency over baseline methods.
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Fig. 9. Illustration of the convergence behavior of the proposed
algorithm displaying the average reward and standard deviation over
learning iterations for channel samples. The DRL-based algorithm
converges after 70 iterations with an average reward of around 2 bps/Hz
and decreasing standard deviation.

by the direct policy on a single channel sample, which
represents the LOS channel quality of the direct link.
The solid lines with markers depict the thresholds ⌧relay
and ⌧mode. To categorize the threshold adaptation, we
have divided the LOS channel quality into four regions.
Initially, at iteration 1, the LOS channel quality exceeds
both thresholds, and consecutive data transmission oc-
curs using the direct link. However, at iteration 28, the
LOS channel quality deteriorates, and initial access is
performed via an indirect link. During this initial access,
we observe a drop in ⌧relay and rise in ⌧mode. We interpret
the decreasing ⌧relay to mean that the algorithm expects
lower spectral efficiency of the indirect link compared
to the direct link. The increasing ⌧mode suggests the
algorithm prefers beam alignment unless the measured
spectral efficiency sharply improves. After the low LOS
channel quality is continuously observed for some time,
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Fig. 10. Illustration of the threshold behavior in the proposed DRL-
based policy over a single channel sample. The iterations are catego-
rized into four regions, where the LOS channel quality is 1) optimistic,
2) pessimistic, 3) opportunistic, and 4) optimistic again. The system
performs data transmission, initial access, and beam tracking according
to the threshold adaptation.
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Fig. 11. Average spectral efficiency vs. different vehicle densities.
Overall policies suffer spectral efficiency loss due to the increased
chance of blockage from higher vehicle density. Still, the proposed
DRL-based policy outperforms baselines, especially under dense vehi-
cle networks, by efficiently using the indirect links to avoid the frequent
blockage of the LOS paths.

⌧mode begins to drop, and the algorithm adapts to the
indirect link. At iteration 112, initial access on the direct
link is performed, followed by several beam tracking
iterations throughout iterations 112 and 172. Finally,
consecutive data transmission on the direct link occurs
after iteration 172.

Fig. 11 shows the effect of vehicle density. We vary
the number of vehicles per kilometer from 10 to 50
in the SUMO simulation. We observe a loss spectral
efficiency achieved by the proposed DRL-based policy
as the vehicle density increases. The performance loss of
the DRL-based policy due to the increase in the vehicle
density is minor compared to that of direct policy,
which plummets in the congested case. This indicates
that cooperative relays become more beneficial as the
vehicular networks gets denser.
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Fig. 12. Average spectral efficiency vs. average vehicle speeds. In-
creased mobility, which may decrease the blockage duration, shows an
overall increase in spectral efficiency for all of the considered policies.
The proposed DRL-based policy outperforms baselines, especially
under highly mobile networks.

Fig. 12 depicts the impact of average vehicle speed.
We select the range of vehicle speed from 80 km/h to
120 km/h, following the common highway speed limit
in the United States. The spectral efficiency of all the
policies gradually improves as the average vehicle speed
increases. The performance enhancement may be due
to the decreased blockage duration from the increased
vehicle speed, despite negative factors such as more
frequent beam alignment [47]. Fig. 12 indicates that
the proposed relay selection algorithm is suitable for
vehicular networks, especially under high mobility.

VI. CONCLUSIONS AND FUTURE WORK

Future vehicular networks will benefit from relay
selection algorithms addressing the frequent blockages
induced by dense deployment of mobile nodes. Regard-
ing the higher frequency bands used at 5G at beyond,
sources of overhead should be incorporated in the anal-
ysis of relay selection algorithms. We derived an MDP
and devised a DRL-based algorithm for the spectral
efficiency optimization problem accounting both relay
selection and beam management. We observed that the
spectral efficiency achieved by the proposed method is
greater than that of a fixed threshold policy over different
transmit SNRs. The simulation results show that the
DRL-based algorithm can adapt to fast-varying channels
using beam measurements, which are compared with
thresholds, to determine actions. This indicates the pro-
posed DRL algorithm can be implemented to vehicular
networks to maximize spectral efficiency by exploiting
the time-varying adaptive thresholds. For future work,
we plan to extend our work to fast beam alignment
algorithms and quantized beam measurement feedbacks.
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