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Abstract—Beam codebooks are a recent feature to en-
able high dimension multiple-input multiple-output in
5G. Codebooks comprised of customizable beamforming
weights can be used to transmit reference signals and aid
the channel state information (CSI) acquisition process.
Codebooks are also used for quantizing feedback follow-
ing CSI measurement. In this paper, we unify the beam
management stages—codebook design, beam sweeping, feed-
back, and data transmission—-to characterize the impact
of codebooks throughout the process. We then design a
neural network to find codebooks that improve the overall
system performance. The proposed neural network is built
on translating codebook and feedback knowledge into a
consistent beamspace basis similar to a virtual channel
model to generate initial access codebooks. This beamspace
codebook algorithm is designed to directly integrate with
current 5G beam management standards without changing
the feedback format or requiring additional side infor-
mation. Our simulations show that the neural network
codebooks improve over traditional codebooks, even in
dispersive sub-6GHz environments. We further use our
framework to evaluate CSI feedback formats with regard
to multi-user spectral efficiency. Our results suggest that
optimizing codebook performance can provide valuable
performance improvements, but optimizing the feedback
configuration is also important in sub-6GHz bands.

I. INTRODUCTION

Fifth-generation (5G) cellular systems have adopted a
beam-based approach for multiple-input multiple-output
(MIMO) communications. In such systems, broadcast
control signals are beamformed to provide array gain [1].
This helps increase coverage and meet link budgets at
high carrier frequencies. While the motivation for beam-
based systems was to provide array gain in millimeter-
wave (mmWave) frequency bands, the same framework
is also used at low frequencies. Unfortunately, optimiza-
tion of the beamforming framework, and subsequent
feedback strategies, has not been extensively investigated
for sub-6GHz multi-user MIMO (MU-MIMO), despite
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the importance of low- and mid-band MIMO in current
and anticipated future standards [2].

Codebook-based beam management is a framework for
beamforming and feedback that enables transmitting
beamformed reference signals and multiple forms of CSI
acquisition [1]. Unprecoded reference signals were used
up through 4G LTE Release 14 because multi-antenna
beamforming was not needed to achieve higher signal-
to-noise ratio (SNR) for synchronization and channel
estimation [3]. Beamformed control signals have become
a necessity in mmWave bands as a result of the increas-
ing bandwidths (which reduce the SNR with constant
transmit power) and shrinking antennas sizes—resulting
in pre-beamformed SNR on the order of —15dB or less
[4]. By beamforming the control and reference signals,
receivers obtain more accurate synchronization and chan-
nel measurements.

The process of obtaining CSI at the transmitter involves
multiple steps and codebooks to balance the overhead,
latency, and accuracy of the CSI [5], [6]. To begin the
process, the base station (BS) transmits a synchroniza-
tion signal block (SSB) with a beamformer selected from
a codebook (SSB codebook) that enables synchroniza-
tion and random access. The SSB codebook is typically
small and all of the codewords in the codebook are used
during each SSB period. The user equipment (UE) will
provide a small amount of feedback to conclude the
initial access that includes a beam selection from the
SSB codebook. The BS will use this information to select
a subset of beamformers from a large codebook, different
from the SSB codebook, for transmitting channel state
information reference signals (CSI-RS). The relationship
between these two codebooks can be understood from
the perspective of a hierarchical beam search [7]. The
CSI-RS enable hybrid beam training by providing mul-
tiple precise beams for analog beam training—often re-
ferred to as beam refinement—and pilots for digital chan-
nel estimation. The UE will provide an in-depth packet
of feedback following CSI-RS transmission that includes
the CSI-RS codebook beamformer selection as well as
information based on the channel estimation. While the
first iterations of beam management used wide and nar-



row discrete Fourier transform (DFT) beamformers [4],
there is no requirement that the beamformers be “wide”
and “narrow” for the SSB and CSI-RS codebooks. In
fact, the codebooks can be arbitrary since the UEs do
not need knowledge of the beamformers during initial
access, beam refinement, or even data transmission.

While the SSB and CSI-RS codebooks can be arbitrary,
the codebook used for quantizing the feedback (FB code-
book) is precisely defined depending on the format (type-
I, type-1I). The FB codebook is specific for BS and UE
array geometries so that the CSI can be represented and
fed back as indices corresponding to a known codebook
at the BS and UE. It is not strictly necessary that even the
feedback codebook is used when reciprocity exists, as
reciprocity between the uplink and downlink channel can
be exploited in time-division-duplexing systems. Feed-
back from downlink training is still beneficial in these
systems, however, due to asynchronous link budgets
[8] or when the number of transmitting and receiving
antennas on a UE is not equal [9].

In our work, we unify the two stages of codebook de-
sign with the feedback framework and MU-MIMO data
transmission to achieve better network performance. To
demonstrate the applicability of our work we present a
system-level evaluation of the beam management frame-
work in sub-6GHz bands. Our contributions in this
manuscript are summarized as follows

« First, we precisely describe the beam management
and CSI type-II feedback approach for 5G net-
works. This is the first work that unifies the beam
management stages—codebook design, beam train-
ing, feedback, and data transmission—into a joint,
MU-MIMO system model. We explain how the
various codebooks are used, what is specified in
the standards versus left up to implementations, and
provide an efficient implementation for feedback
quantization in CSI type-II.

« Second, we present a novel neural network architec-
ture, Beamspace-Codex (BSC), and feedback pro-
cessing technique for SSB codebook generation. We
constrain the system to follow 5G beam manage-
ment timing which presents a significant constraint
for dynamic SSB and CSI-RS codebook generation.
To mitigate this constraint, the SSB codebook is
dynamically generated—which is manageable at the
SSB periodicity—and the CSI-RS codebook is deter-
mined as a precomputed DFT decomposition of the
SSB codebook. With this integration, we join the
arbitrary codebooks learned via deep learning with
the feedback quantization technique to facilitate a
hierarchical beam search that improves the beam
management process used in 5G new radio (NR).

o Third, we present the results of an extensive eval-

uation of our proposed method with benchmark
DFT codebooks and CSI-based eigen-beamforming
solutions using various levels of feedback and over-
head. We show that our proposed solution achieves
significant performance improvements, extends to
different user numbers, and does not need to be
relearned for new array sizes. We also show that
MU-MIMO performance is dramatically limited by
the quantization resolution techniques in low-band
5G. In contrast, the frequency selectivity and re-
source allocation have little impact in the current
framework and scattering environment.

There is significant work on beam training and beam
alignment. Here we review a set of relevant prior work
relating to machine learning and beam training. In [10], a
gradient-optimization approach, not using deep learning,
is shown to be successful in aiding the beam search
process with respect to maximizing the SNR in 60GHz
personal networks. Another approach using classical
data-driven techniques is presented in [11] for vehicular
networks based on historical beam training results. While
the codebooks and algorithms are relatively straightfor-
ward, the idea of “learning” an efficient codebook from
site-specific data is a cornerstone of many modern beam
alignment techniques [12]-[14]. These papers [10]-[14]
all focus on mmWave channels and often exploit the
sparsity of such environments to aid the beam train-
ing process. Furthermore, all of these papers focus ex-
clusively on beam alignment with standard orthogonal
codebooks like DFT and phase-shifted codebooks. While
DFT codebooks are sensible for certain array geometries
and limited scattering environments at mmWave bands,
these codebooks do not necessarily work well in rich
scattering. Furthermore, none of these papers consider a
MIMO format with multiple UE antennas and streams
of data. In this paper, we consider a full MU-MIMO
OFDM system in a rich scattering environment and use
dynamic codebooks.

In another line of related work, algorithms have been
proposed that design beamformers or codebooks [7],
[13], [15]-[20]. Hierarchical codebooks and the asso-
ciated design process were proposed in [7], [15], [16]
which separated the beam training into multiple stages
of wide-beam and narrow-beam codebooks. A similar
strategy was adopted by 5G using the SSB and CSI-
RS codebooks and plays an important role in systems
designed for 5G deployment. Deep learning was applied
to the task in [17], which uses deep reinforcement learn-
ing to design broadcast beam patterns. While designed
for small-scale MIMO, the results suggest that arbitrary
learned beam patterns can be an effective way to initiate
communication in broadband networks. A supervised
and an unsupervised learning approach were presented in



[18], which showed promising results when used to de-
sign beamforming vectors from channel measurements.
These results were based on a simplified channel model,
though, and perfect CSI was assumed at the BS. Re-
cently, a deep, federated, reinforcement learning strategy
was proposed [13] that jointly trained a beam manage-
ment model over a network using user location infor-
mation. The focus was on deciding which sectors would
be active, thereby narrowing the “codebook,” although
the paper ignores all beamforming besides sector-level
association and large-scale pathloss. Another paper con-
sidered the task of learning probing beams [19], which is
one of the only papers to consider both the SSB and CSI-
RS codebooks. The results show significant gains can
be achieved over a basic hierarchical search, although
perfect CSI is assumed to be available for training and
the channels are assumed to be narrowband. The results
from [19] provide motivation for researching realistic
deep learning codebook methods. In our previous work
we designed a neural network for SSB codebook genera-
tion in narrowband channels as well but trained using an
angular representation of the channel [20]. The results,
however, did not extend well to wideband systems and
did not consider the impact that the SSB codebook has
on system-level performance. In this investigation, we
now model wideband channels and fully incorporate the
entire beam management and data transmission into our
evaluation.

An important part of the 5G beam management frame-
work is the connection between beam training and feed-
back. An enhanced CSI feedback strategy was proposed
for full-dimension MIMO [3] in 4G Release 13 which
is based on a linear combination of DFT codewords.
This strategy is very similar to the type-II feedback
format introduced in 5G Release 15. One key difference
is that the initial idea assumed the users must know
the beamforming vector used during pilot transmission,
which was not adopted into the standards. CSI type-
I, which is primarily for SU-MIMO, was investigated
with UE location [21], and as an indicator for beam-
forming vector selection [22]. These works are focused
on single-user data transmission, however, and do not
consider multi-stream precoding. There has also been
growing interest in using machine learning to design or
modify the feedback [23]-[25]. All those works [23]-
[25] assume that both the network and the users can
share models for encoding and decoding the feedback,
which is not supported or easily introduced into network
operation. In this paper, we do not use deep learning to
change the feedback methods. Instead, we characterize
the relationship and limitations the feedback and beam
management strategy have on MU-MIMO performance.

Notation: A is a matrix, a and {a[i]}; are column

vectors and a, A denote scalars. AT, A, A*, and Af

represent the transpose, conjugate, conjugate transpose,
and psuedo-inverse of A. A[k, /] denotes the entry of A
in the k™ row and the /M column. The same meaning
is also associated with Ay . Similarly, A[:, k] refers
to the k™ column of A. Unspecified norm equations
are ||al|, = a*a for vectors and the Frobenius norm
Al = \/Tr(AA*) for matrices. Superscripts with
text font are used to describe a variable, while italic font
is used for exponentiation. We make use of the disjoint
operator A \ « to describe the matrix (or vector) A
excluding the subset (or element) c. The operator E[]
is used for the expectation of a random variable. Due to
the notational complexity of MU-MIMO with OFDM,
we will always use w to refer to a specific UE, ¢ as
a specific time, k£ as a specific frequency resource, and
ny/n, to refer to a specific transmit or receive antenna.

The remainder of our paper is organized as follows. First,
we introduce the system model beginning from an arbi-
trary MU-MIMO OFDM channel and continuing through
the SSB and CSI-RS beam management processes. We
conclude this section with a description of the channel
estimation, propose a fast feedback determination algo-
rithm, and define the data transmission stage. Next, we
introduce the beamspace observation and neural network
architecture that form the second contribution of our
work. In the final sections, we present the simulation
setup and evaluate the various codebooks and feedback
formats to address the lack of prior work when it comes
to codebooks and CSI formats in sub-6GHz 5G NR.

II. SYSTEM MODEL

We begin the investigation with an overview of the
channel definition and assumptions before introducing
the beam management steps including SSB transmission,
CSI-RS transmission, feedback, and downlink data trans-
mission, as shown in Figure 1. Throughout this paper,
we will limit the system configuration to a single cell
with multiple UEs each equipped with multiple antennas
and all arrays are fully digital and single-polarization.
While the inclusion of multiple cells is more realistic,
the impact of multi-cell interference on beam training
and feedback can be mitigated with limited coordination
between nearby cells, although the interference is under-
estimated as a result of the lack of interfering BS. The
use of single-polarized arrays is also a simplification,
although during beam training the second polarization
is not significantly different for the system operation.
We will investigate multiple BS deployments with dual-
polarized arrays in future work.

A. MU-MIMO channel model

We model the system so that it is representative of real-
world conditions to evaluate performance in a realistic
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Fig. 1. Beamforming codewords are used to transmit reference signals for synchronization from the SSB codebook. Based on the SSB report,
additional reference signals are beamformed using the CSI-RS codebook for channel estimation by the UEs. Using the CSI-RS report, the BS
can design a precoder that attempts to maximize the spectral efficiency. The proposed BSC algorithm updates the SSB codebook, which in turn

affects the CSI-RS codebook and feedback.

beam training scenario for sub-6GHz massive MIMO.
We do not explicitly specify TDD or FDD because this
work does not rely on channel reciprocity. In addition,
the channel will always be handled in the frequency
domain as the multi-user downlink OFDM channel, how-
ever, we do not assume any specific channel model at this
point. The OFDM MU-MIMO channel is defined for U
users, over 1" time slots, and K subcarriers between each
of the Ny receive antennas and Nt transmit antennas as
H € CUXTXEXNexNr Note that we can generate this
channel model using a clustered channel model as typi-
cally done by QuaDRiGa [26], 3GPP, and other raytrac-
ing or statistical models with the array response vectors
aN(e) _ LN[L 6j7rcos€7 ej27rcos€7 . ej(Nfl)ﬂ'cose]T_
Defining the time and frequency responses for every
antenna pair is critical to accurately model the beam
training process with specific resource elements allocated
for pilots (reference signals) and data. With this setup
in mind, a generic received signal model for signal s
transmitted with precoder/beamformer F and received
with a combiner W over a band of subcarriers K is
U-1
Diw=> Fpikspin )

p=0

1
Yutk = —=—==Wu i (HyrxDep + Nyer). (2)
VEKN-
T

The noise IN has entries with zero mean and variance
according to the thermal noise and the noise figure of

the receiver. During the next subsections, we will specify
how W, F,,, and s,, are used during the SSB, CSI-RS,
and data transmission stages. We will assume throughout
the paper that all beamformers are normalized according
. 2
to a per-symbol power constraint, i.e. ||F||“ = Nr. In the
SSB and CSI-RS stages, F is selected from one or more
codebooks that play critical roles in beam management.

B. Codebooks

Communication protocols employ codebooks in many
different ways for beam training, feedback represen-
tations, information quantization, and more. Generally,
codebooks are understood as an ordered set of ele-
ments called codewords. Throughout this work on beam
management, codewords will correspond to a vector of
complex values and we will treat codebooks as matri-
ces to simplify notation in later steps. There are three
codebooks that we will reference and directly impact
beam management: a codebook of beamforming vec-
tors for SSB transmission (SSB codebook), a codebook
for beamforming CSI-RS transmissions (CSI-RS code-
book), and a codebook for feedback quantization (FB
codebook). The sizes of the codebooks are based on
the supported usage for each one. The SSB codebook
BSSB ¢ CNeXLmax hag L.« codewords which is between
1 and 64 depending on the carrier frequency [1]. The
number of logical ports, Np, determines the digital pre-
coding dimension and is equal to Nx Ny in a fully digital
array. The CSI-RS codebook BESIRS ¢ CNexN g at



least the same size, where NV is typically large but only
a small subset of beamformers is selected to be used in
one period. The FB codebook BPFT ¢ CNexNxOulNyOy
is an oversampled DFT codebook with horizontal and
vertical oversampling factors Oy and Oy. Previously,
4G used a feedback codebook based upon predefined
matrices called CSI type-I precoding matrix indicator
(PMI). 5G augmented the feedback to include type-II
PMI which corresponds to a set of directional array
responses with amplitude and phase combining factors.
Each of these codebooks is designed to serve different
purposes, although there are many inter-relationships that
make designing and evaluating codebooks challenging.

Designing codebooks for 5G is challenging because each
codebook serves a complementary role with the others
for obtaining CSI. Codebook design in the physical layer
is often incorrectly treated as a one-dimensional problem
focused on maximizing the received power. Beamform-
ing codebooks affect subsequent system operations that
impact the overall data transmission. For example, it may
be assumed that the beamforming, feedback, and data
transmission all use the same codebook, but such a sim-
plification is not required or realistic. We consider such
a scenario in our simulation results in Figure 5(b), but
the performance is significantly worse than traditional,
complementary codebooks. This motivates bringing to-
gether the various codebooks and beam management into
a multi-step system model.

C. SSB transmission and reception

Initial access is used in mobile networks to obtain limited
channel information, achieve synchronization, and set
up random access procedures. In 5G NR, a cell may
initiate the initial access period at regular intervals of
{5, 10, 20, 40, 80, 160} ms [6], to control the periodicity
a UE must be active (not in power-saving mode) and
provide feedback to the network. During this period,
the cell will transmit SSBs that contain primary and
secondary synchronization signals (PSS, SSS) as well as
demodulation reference signals (DMRS) [6]. These SSBs
are beamformed using a specific beamforming vector
selected from BSSE and associated with a beam index.
Each SSB is transmitted sequentially in time, using 20
contiguous resource blocks. This is a much smaller band-
width than the downlink data transmission and is a key
limitation of relying on SSB feedback to obtain CSI in
frequency-selective channels. Furthermore, the resource
allocation of SSBs is essentially fixed to assist new users
with joining a network. Depending on the cell carrier
frequency and subcarrier spacing, a cell may transmit up
t0 Lmax = {1,4, 8,64} beams in a period, and all cells
must transmit at least one beam. During transmission, the
UE will measure the Reference Signal Received Power
(RSRP) and report the measurement using the random

access channel slot corresponding to the index of the
beam with the highest RSRP. This way the BS knows
how strong the signal was and to which of the SSB
codebook’s codewords it corresponds.

The SSB is transmitted over a band of Kgsg frequency
resources at times T; ssp for the i" SSB using beam-
former f; € BSSB. While transmitting the reference
signal the rest of the band is still available for data
transmission, so the system power is shared over all K
resource blocks. In total, all L,,x SSBs are transmitted
from the codebook BSSB. During SSB reception, the
generic received signal model from (2) is modified to
account for the single data stream

ssB, _ 1 «
ywt,k \/Ki]\ﬁfwu’t"k (Hu,t,kfzSt,k + Nu,t,k) . (3)
In mmWave bands, it is common that w is also deter-
mined through beam training. In sub-6GHz bands, the
receiver instead uses antenna selection or simply the first
antenna for power saving [27]. With the received signal
model (3) in mind, we now define an important quantity
provided as feedback during initial access, the RSRP.

D. Reference signal receive power

RSRP is one of the primary metrics that the receiver
will measure during initial access for determining the
channel quality. The BS will use the RSRP feedback
to determine the strength of the signal, the initial code
rate to be used, and what CSI-RS beamformers should
be employed at the next iteration. The RSRP measures
the received power during a given reference signal (SSB
or CSI-RS). In the SSB case, the DMRS, known at the
transmitter and receiver, is a pilot signal used for RSRP
measurement and decoding the master information block
provided in the SSB. We will assume antenna selection
for the n, € {0,..Ng — 1} antenna during SSB reception,
but because it is fully digital the UE can determine
the antenna selection after receiving the full SSB and
selecting the strongest receive branch. The RSRP is then

) 1
Yotk = T Hurfiste + Nug 4

RSRP;, = max > ) Hyzssfk

k€Kpwmrs t€T; pMRrs
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Note that (5) is for a specific UE (u) and SSB (i), so the
total SSB information aggregated at the BS is comprised
of the strongest RSRP and corresponding SSB index
(SSBRI) for each of the UEs, denoted as (p,m), and
defined as

U-—1
p= {maxRSRP;, } (©6)

U-1
m = {argr_nax RSRP; ,, } . (7)

u=0



It is worth noting that the actual SSBRI is not transmitted
by the users; the random access slot that the UE responds
during will correspond to a specific SSBRI. This is an
efficient way to reduce the amount of feedback, allow the
BS to perform receive combining for the UE feedback,
and still share the necessary information.

E. CSI-RS transmission and reception

Beam refinement is the second step of the hierarchical
beam management process that is used to obtain better
beam alignment and enable wideband channel estima-
tion. Beam refinement is done through the transmission
of CSI-RS which is an encompassing term used for
the reference pilots, the beamformed reference signal,
and the logical ports that the pilots are sent on. In
contrast to SSB signals, CSI-RS are extremely flexible
with many combinations of time and frequency resources
allocatable. There are some limitations on how often
CSI-RS can be transmitted, but the default periodicity a
UE expects when joining the network is 80ms and the
symbols must span a larger bandwidth than the SSB—
at least 24 resource blocks and up to the entire band-
width should contain CSI-RS symbols for a measurement
report. Furthermore, CSI-RS are also transmitted both
periodically and aperiodically to assist beam tracking
with highly mobile users. All told, the beam refinement
stage requires more resources than initial access, which
is why a hierarchical beam search is used to limit the
number of CSI-RS processes needed to achieve a strong
connection.

Once a BS receives the SSB feedback for a new user, it
can attempt to gather more precise CSI through channel
state information reference signals. The CSI-RS (and
associated CSI-RS beamformers FCSIRS) are used for
refined channel estimation, although the estimation is
performed on the beamformed channel H, FSRS rather
than the physical channel. This enables larger hybrid ar-
rays and improves the SNR for more accurate estimation.
Readers are encouraged to review [5], [6], [9] for more
details of CSI-RS. The BS can use the SSB feedback
to determine and transmit a set of CSI-RS signals with
beamformers that are intended to further increase the
RSRP compared to the SSB.

The design of CSI-RS codebooks has been studied to
some degree, but DFT beams are common [3], [13], [28]
(and references therein). Often, it is assumed that the set
of beamformers is selected from the same codebook as
the codebook used for feedback, which is specified as an
oversampled DFT codebook. There is no specification or
need for the SSB or CSI-RS codebooks to be DFT code-
books, although using DFT beamformers during CSI-RS
has advantages related to fast and efficient processing.
For example, the CSI-RS beamformers can be efficiently

selected as the largest DFT components of the SSB
beamformers. We will assume the CSI-RS codebook,
BOSIRS s comprised of Nx NyOyOy oversampled DFT
vectors throughout this paper, although additional inves-
tigations into joint SSB-CSI-RS codebook algorithms
are planned in future work. The selection of the CSI-
RS beams from SSB decomposition is further refined in
Section III.

The CSI-RS process involves transmitting a set of pi-
lots s on the Np ports along with FPcg; beamform-
ers FOSIRS  —  (gFes ¢ BOSIRS chogen by the
serving BS to improve the UE channel estimation
SNR for the effective channel. The beamformers are
used during non-overlapping time-frequency resources
(TCSl KOS, with the aggregate set of beamformers
corresponding to what we define as FCSI'RS| Each CSI-
RS allocation will have at least Pcsy OFDM resource
elements allocated for channel estimation in one resource
block and only one CSI-RS beam is active for a given
resource to allow for a similar, interference-free beam
selection as the SSB process. This is done by setting all
other CSI-RS resources and ports to be zero-power CSI-
RS except the active one for the specified resources. In
a dual-polarized system, the two polarizations are trans-
mitted together to estimate a co-polarization factor that
would be fed back during CSI reporting. The whole CSI-
RS process is allocated over NRB resource blocks, which
is a configurable parameter to use wider bandwidths and
noise averaging during channel estimation. The beam
reception and selection process is identical to the RSRP
and SSB selection in the previous subsection. For more
information on the CSI-RS beam and port allocation
please see [3] and references therein. At this stage, the
entire UE antenna array is active and the UE can Eerform

Hﬁfl) based
on the estimated beamformed channel and appropriately
normalized. The estimated SNR at the receiver is

DD

keKcsi, t€Tcsi,.

. . . . Z _
maximum ratio comblmng Wu,t,k = (

1 [t
NrE[|[Nu,, kll ]
®)
Note that the noise power E[[|N, ; x||*] can be estimated
using zero-power CSI-RS resources. The SNR can be
reported during feedback, although one of the most im-
portant aspects of the SNR is how the channel estimation
(and subsequent feedback) is impacted. For the next part
of this section, we will focus on a single user v with

SNR corresponding to the channel estimation SNR for
the beamformed channel (H, ; ,FESIRS).

SNR, = max —

ce Pest K

E Channel estimation

Channel estimation accuracy depends on the number
of pilot symbols and the received SNR of the pilots.



The algorithm for UE channel estimation is not defined
in the specification and is not critical for our system-
level analysis. For simplicity, we will assume channel
estimation via a simple least squares algorithm so that
only knowledge of the pilots is required. Now, we
motivate the inclusion of channel estimation in beam
management by considering the relationship between the
channel estimation error, the codebook-dependent-SNR,
and the number of pilot resources Npijois. The resulting
mean squared error (MSE) of the channel estimate is
[29, section 3.7]

MSE = m 9
Nt

Therefore, we can see that a primary feature of the beam
management process is to enable more accurate channel
estimation by beamforming the reference pilot signals. It
might seem that the overhead of using multiple beams is
wasted given that the number of pilots could alternatively
be increased according to (9). The issue with such logic
is that: 1) it assumes that the signal is always detectable
over the noise floor, which is not necessarily the case
for non-beamformed signals and 2) the beamforming can
provide a gain on the order of 20dB or more, yet that
would require 100 times more pilot symbols, far larger
than the number of beams used.

Calculating the estimated effective channel, ﬁf‘, which
may not be frequency selective, is the first step in de-
termining the precoder matrix information (PMI), which
is one of the quantized CSI elements provided during
feedback. The PMI can correspond to different aspects
of the estimated channel because it is left to operator
implementation as part of the PMI selection procedure.
For example, the user could provide PMI according to
its desired beamformers (calculated via singular value
decomposition of HF). The BS could then use this
information to beamform to a given user and null steer
[30] the beams for other users. This puts the majority of
the computational burden, however, on the UE. Instead,
we follow models similar to [31] where the user provides
PMI corresponding to the effective channel estimate,
rather than the SVD of the effective channel estimate.
This way the BS handles most of the computation,
channel reconstruction, and precoder determination.

G. CSI feedback and reconstruction

We will focus on CSI type-II feedback (Release 16),
as our feedback baseline, which is intended for MU-
MIMO with up to 2 layers per user [27], and is also
compliant with Release 17. Although not presented here,
codebooks can also be used for SU-MIMO feedback; we
use this form of feedback when comparing against the
SU-MIMO results in Section IV. The UE quantizes the
channel estimate according to the FB codebook for a

specified Lcsr beams per rank up to the rank indicator,
which is the maximum supported MIMO rank, R. A
straightforward method for selecting the PMI would be
to exhaustively try every possible combination of Lcg;
beams from the codebook and select the best one (ac-
cording to some metric) as typically done in open source
packages [32]. This is a significant computational burden
on UEs for large Lcgsr due to the combinatorial growth of
the search space. We propose using the orthogonality of
DFT codebooks to reduce the computational complexity
compared to exhaustively searching.

First, we define the oversampled DFT codebook BPFT
beginning with the (non-oversampled) DFT codebook for
a uniform linear array Uy defined in the same way as
e.g. [33]. Then we can define a diagonal oversampling
matrix Do n for an oversampling O and N elements as

Doy = diag (1, o(—8%), ...,e(—mng’“)) . (10)
Then, the oversampled DFT codebook Bp n € CN*ON
for a one-dimensional array is constructed using matrix
powers of Do n

Bo.n = [D) yUn,DonUy, ... Dy Ux]. (11)

Finally, the UPA oversampling codebook can be defined
as the kronecker product of the Nx and Ny dimensions

BDFT c CNXNYXOHNXOVNY' (12)

= BOH,NX & BOVJVY

With the FB codebook defined in (12), the PMI selection
procedure can begin. The UE first calculates the inner
product for all beams from the oversampled codebook
BPFT and selects the first beam (and by association the
oversampling basis) as

C — I_/IFBDFT c (CNRXN)(OHNYOV (13)

Qo = argmax |C| (14)

where the argmax is determined from the absolute value
of all elements of C and the resulting )y is an index
corresponding to oversampling powers (o x and Qo y
in the Nx and Ny directions. Because (non-oversampled)
DFT beams are orthogonal, the PMI can be calculated
iteratively by selecting the first beam from the entire
oversampled codebook BPFT, reducing the codebook to
just the orthogonal subset, and selecting the beams from
the subset. The orthogonal subset can be understood as
the kronecker product of the oversampling-shifted DFT
codebooks

Bono o = Dt 3 Uny @ DA% Uy (15)

With the orthogonal subset, the next step is to select
the Lcsy beam indices Q € Zf“XLCS‘ and combining
coefficients A € CNexLesi

Cortho = HFanorlho,Qo S (CNXNY (16)



Q.. = (Lcsi)- argmax [Cortho| V' 1y (17)

iAnr = Cortho [Qn,] v Ny (18)
A,

A, = L YV n,. (19)

Aln,, argmax |A,,|]

First, the orthogonal beams are “evaluated” in (16), then
we make use of the k- argmax operation defined as the k
indices for the k largest values in (17) to select the L¢g;
beam indices. Finally, the combining coefficients are
calculated as the complex values of the beam products
(18) and normalized according to the largest magnitude
coefficient (19). The oversampling basis Qo x, Qo,y is
reported back in the PMI so that the overall beam
selections can be reconstructed at the BS.

The CSI report contains the CSI-RS indicator (CRI)
which is the strong CSI-RS beamforming codeword,
the rank of the PMI, the RSRP or SNR, and the PMI
feedback beam indices Q, as well as 4 bit amplitude and
8-PSK phase values. The amplitude and phase values
come from A which are the corresponding complex
values for each [n,,£],¢ € Lcs feedback beam. There is
an additional overhead reduction step in the specification
where instead of indexing each element of Q from the
entire codebook, the set of indices is translated to one
of the (1\2‘(15\:‘{) combinations and one index correspond-
ing to the oversampling factors of the strongest index
(Qo,x,Qo,y) is used. In this paper, we will ignore
the amplitude and phase quantization (assuming perfect
amplitude and phase knowledge) to focus on the effects
of the codebooks, SNR, and feedback. The CSI report
can also contain both wideband and narrowband compo-
nents for a degree of frequency selective precoding. The
number of narrowband components (termed subbands in
3GPP nomenclature) is small, at most Sg = 8 in FR1,
to mitigate the growing feedback and complexity. All of
the previous and subsequent steps are defined for Sg =
1, but extending to frequency selective feedback and
precoding is straightforward. Release 16 also supports
enhanced type-1I codebooks, which slightly modify the
number of bits for various PMI fields as well as adding
frequency domain compression via inverse DFT basis
vectors. We investigate how the amount of feedback
(Lcs1, Sp) impacts performance in Section IV.

H. MU-MIMO data transmission

After the CSI-RS period, the BS must determine the
precoder that serves a group of users, often with the goal
of maximizing the sum rate or proportional fair rate.
Until this stage, all of the downlink transmissions have
been multi-cast in the sense that the same pilots and data
are intended for all users. Therefore, there is no interfer-
ence assuming a well-designed OFDM cyclic prefix and
subcarrier spacing is used with accurate synchronization.

In contrast, the downlink data transmission carries differ-
ent data for each user, resulting in interference between
data streams. The remainder of this section outlines the
channel reconstruction process, precoder selection, and
achievable spectral efficiency in the downlink channel.

First, because the feedback is type-II, the BS can re-
construct the PMI (corresponding to the beamformed
channel estimate here) with the corresponding complex
scaling A as

Lesi—1

> Al 0BT Qu] Vone (20)
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HF[n,] =

Then, assuming the beamformers were well-chosen such
that FCSIRS g right-invertible, channel reconstruction
can be performed successfully. We reintroduce the UE
notation here to allow for aggregating all user channels
in subsequent steps by

H, = H,FF} . 1)

In the case of DFT beams, this process simply becomes
an IDFT operation [3], which is significantly more ef-
ficient than the matrix inverse of an Np X Np matrix.
The efficiency at this step is critical to quickly using the
feedback to serve users and is one reason we will tailor
our algorithm to integrate with a DFT codebook for CSI-
RS. Aggregating the results for each user, the BS obtains

the downlink channel estimate H € CU*NrxNe

~
~

H=|Hy,H,,. Hy, (22)
The BS can design the precoders for the set of estimated
channels using any form of precoding. To reasonably
evaluate the system we will assume a regularized zero
forcing (RZF) precoder is used with regularization deter-
mined to minimize the signal-to-leakage noise ratio [29,
section 9.9]. The RZF precoder for each user is

F (Zf];ol H,H, + UNT]E[Ni,t,kDﬂﬁu

u = PN PP (23)
H(Z:i_ol H;H; + UNT]E[NZ,t,k})lH"H

It is assumed all precoders are appropriately normalized

to 4/ % to maintain the same total power. The noise fac-

tor, E[Nf k) can be estimated based on the RSRP/SNR
reported and the bandwidth of the downlink signal. The
UE will also perform a combining strategy based on the
previously determined rank. In this work, we will assume
an LMMSE receiver is used to maximize the signal-to-
interference noise ratio (SINR) for any precoder, using
the embedded DMRS to determine the combined channel
and precoder. The resulting SINR at resource element
(t, k) for a given user u and layer r with equal power



allocation per user is obtained as

U-1 -1
Lutr = ( Z Hy o FF7H o+ UNTE[NZ,U@])
i=0

(24)

| FH, L
K1- FZ[:v T]Hz,t,kI%tkHu,@kFu[:a T] .
(25)

SINR,, ¢ kr =

While the SINR expression (25) appears complicated, it
is a simplified ratio between the signal power for the
data stream (u,r) versus the interference power of all
other streams. The SINR at this step is not calculated in
a physical system, but it is necessary for evaluating the
achievable spectral efficiency.

Finally, the most critical metric in the wireless network
is the sum SE or sum rate when applied to a specific
bandwidth. A fairness constraint can also be applied,
however, we have not specified any form of scheduling
so we are most interested in maximizing the sum spectral
efficiency. Assuming Gaussian signaling and treating
interference as Gaussian noise, the achievable spectral
efficiency, SE, ¢, is

K—-1R—-1

SEui =y > 10gy(1+SINRy ;).
k=0 r=0

(26)

In the final post-processing, we consider the effec-
tive sum SE (ESSE), which accounts for the overhead
due to beam training by removing the corresponding
time/frequency resources due to training and feedback
of the beam management system (7pm, Kpm) from the
spectral efficiency calculation

U-1 R—-1
ESSE= Y Y ) logy(1+SINRy k). (27)

u=0 tQTBM r=0
k¢ Kpm
With this goal and the beam management framework in
mind, we can now define the beamspace processing and
machine learning codebook design algorithm.

III. BEAMSPACE-CODEX

In this section, we present the Beamspace-Codex which
is a neural network architecture and processing setup
that is used to generate the SSB codebooks, with con-
siderations for joint SSB-CSI-RS codebook design left
to future work. We start by introducing the beamspace
observation that provides a consistent basis for a learning
algorithm using dynamic codebooks. We then present the
supervised learning formulation that enables convergent
and dynamic codebooks. Finally, we define the neural
network architecture that enables learning the underlying
relationship between the beamspace observation and the
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Fig. 2. A timing diagram of the process for codebook learning and
evaluation. The AI/ML engine provides new codebooks at each SSB
interval for the BS. At each CSI-RS period, the BS transmits pilots
using the CSI-RS codebook, which is determined based on the SSB
codebook and feedback. The CSI-RS feedback is used to determine
the precoder used for data transmission.
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SSB codebook. The full methodology—processing, archi-
tecture, training, and evaluation—is critical to integrating
wireless domain knowledge and physical structure into
the learning algorithm.

One of the primary steps in designing an appropriate
neural network is formulating the input-output relation-
ship to be conducive and consistent for learning. There
are two problems with neural networks within the con-
text of 5G beam management. First, the SSBRI feedback
corresponds to a beamformer from a codebook that was
used previously, which does not provide a consistent
representation or meaning with dynamic codebooks. Sec-
ond, the number of users is not constant within a cell,
so the size of the feedback and data dimension changes
over time. Although there are specific ways to overcome
dynamic data sizes, it often requires sacrificing hardware
optimizations and impedes inference and training times.

We begin by transforming the codebook into the
beamspace domain. The beamspace is an angular rep-
resentation corresponding to the array factor evaluated
over a range of directions [34] that has been shown
to be beneficial for learning in similar settings [23].
This ensures that regardless of the specific beamforming
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Fig. 3. A depiction of the BSC pre-processing, neural architecture, and post-processing. The feedback is converted to an angular representation
(beamspace) and the strongest directions are identified based on the feedback reported. The neural network jointly processes the SSB feedback
and beamspace representation to produce a new beamspace codebook that is then converted back to complex beamforming coefficients. This
format brings together the various codebooks to a consistent input dimensionality even with varying numbers of users or even antenna sizes.

codeword, or even physical antenna dimension, the input
from a set of previous beamformers represents a consis-
tent two-dimensional grid of projections. First, we define
an angular transformation matrix for antenna size N, and
N,,, angular directions as a series of array responses

1
Oy, = —[0,1,...,N,,, — 1] (28)
iy
Un, n,, = [an,(60),...an, (On,,-1)].  (29)

The beamspace conversion for N,y azimuth directions
and IV, elevation direction is calculated as

FENXXNY) — [Bgil\sfx,i, ceny B?JS{R—I)NXZNXNY,Z'] (30)
BSC _ y7* (NxxNy) ;
Oi = UNXgNIOFi UNYyNyO VZ' (31)

The codebook must be reshaped from a vector of size
Nt to the planar dimensions Nx x Ny in (30) before
the beamspace conversion in (31) that produces the
beamspace observation, OBSC. Note that the beamspace
conversion is a reversible operation, so we also train
the network to predict the beamspace of the desired
output, rather than direct beamforming coefficients. The
predicted beamformers are obtained in post-processing,
and the computational complexity can be controlled by
changing the observation sizes N o and Nyg. In addition
to the angular representation, the input is also concate-
nated with the feedback corresponding to the number of
users reporting each beam and the sum RSRP. We can
express this using the notation 1. to refer to a vector
with all O entries except the indices where the subscript
is true contain a 1 and resulting in the input

O™ = {[O%i], ) Lmi> L]}

With the pre/post-processing defined, we can now ex-

(32)

plain the supervised learning environment and desired
outputs used for training.

Supervised learning provides many advantages over un-
supervised or reinforcement learning when there is a
desired output compared to just a black-box metric. The
task of determining beamforming vectors that maximize
the power to a set of users has an optimal solution if
CSl is available via singular value decomposition (SVD)
beamforming. To that end, we assume a dataset of chan-
nels has been built up or simulated to allow for offline
training, although our site-specific results in Section IV
suggest that transferring a learned model between sites
is still more effective than DFT codebooks. Then, the
solution to maximize the power received for a user is
the right singular vectors (RSV) of the SVD of the
channel [4]. In the MU-MIMO OFDM case, this means
calculating the RSVs corresponding to the L,.x strongest
singular values of all users, assuming perfect CSI is
available during the training stage. CSI is not available in
a realistic system, however, we train the neural network
to learn the mapping from the initial beamspace to the
RSV beamspace without CSI.

Additionally, the timing of the beams is important and
each beam has a specified set of resources on which to
be transmitted. We must sacrifice the time relationship
of the data, however, to build a true supervised setting.
In particular, we do not use information from the past
SSB feedback beyond the previous step. This limitation
removes the capability of using historical data as inputs
but significantly improves convergence compared to a
reinforcement learning setting. The process is restricted
to a two-step relationship where we include the pre-
vious codebook and feedback to help design the next



codebook. We now have a supervised framework and
pre/post-processing step that converts the previous code-
book and RSV codebook to the beamspace domain. The
final component of the Beamspace-Codex is the neural
architecture that facilitates efficient learning.

Determining the best neural network architecture is of-
ten challenging even with hyperparameter tuning and
an intuitive understanding of the problem. Using the
beamspace conversion, the problem can roughly be seen
as a translation task from the initial beamspace to the
RSV beamspace. It is not necessarily obvious how the
limited feedback information could be used to recover
the RSV codebook. There is some underlying informa-
tion available, however, by the selection of one beam
over Ly, — 1 other options. Additionally, the environ-
ment and user densities follow a pattern that is also pos-
sible to exploit. At the same time, the inputs and outputs
are similar to an image of the angular directions of trans-
mitted power. Therefore, we considered traditional ar-
chitectures (fully-connected networks), image-based ar-
chitectures (convolutional and diffusion [35] networks),
and translation-based architectures (transformers [36]
and autoencoders). Although the problem has many sim-
ilarities with both vision and translation problems, state-
of-the-art architectures were not necessarily best under
reasonable computational limits i.e. 24GB of VRAM and
5ms inference time. Throughout our testing, the fully
connected architecture was typically better performing,
however, with sufficient hyperparameter tuning we found
convolutional networks had the potential to capture and
learn the beamforming codebook more effectively while
being computationally efficient.

We propose a multi-layer convolutional network with
pooling and dropout comprised of with parameters and
sizes determined through Bayesian hyperparameter tun-
ing and defined in Table I. A comparison of model
architectures is shown in Figure 7 within Section V. The
model is trained using an Adam optimizer [37] with early
stopping and cosine learning rate decay. Training is per-
formed with a 550, 000 sample training dataset following
the setup in Section V with validation and test sets
each from an unseen portion of the data corresponding
to 160,000 and 80,000 samples respectively. Gradients
are determined by the partial derivative of the cosine
distance (deos(a, b) = 1—a*b/(||a|| ||b]|) [25])) between
the RSV beamspace and the neural network-predicted
beamspace for each neural network weight. The choice
of the loss function is critical for performance. For
example, the same network architectures trained on mean
squared error results in significantly worse (> 5dB) per-
formance due to focusing on the pixel-wise magnitude.
In comparison, the cosine distance focuses on the relative
magnitude or direction of the RSV beamspace.

IV. DATA GENERATION SETUP

We require an accurate channel simulator coupled with
a flexible framework that retains the timing of the 5G
beam training process to fairly evaluate the performance
of ML-designed codebooks. We integrate the channel
generation from QuaDRiGa [26] with a post-processing
suite that enables an initial access scenario, beamspace
generation, codebook determination, and evaluation of
the network performance after accounting for beam
management overhead. QuaDRiGa generates channels
through a stochastic process with additional features
for spatial consistency, correlations, and spherical wave
modeling. In our simulations, we simulate 200 users
scattered over a BS sector site. The BS is equipped with
an Nx = 4, Ny = 8 planar array using a 3GPP 3D
antenna model with half-wavelength spacing. Each user
has Ng = 4 antennas all tuned for a 3.5GHz carrier
frequency as might be found in modern UEs which
are typically capable of 4 layer MIMO [38]. 10% of
users are given a vehicular mobility pattern such that
they travel along a roadway through the center of the
cell with speeds normally distributed with mean 25m/s
and variance 5m/s. The remaining users are uniformly
scattered within 450m and travel in any direction with
speeds uniformly drawn from an interval of [0, 3Jm/s.
Channel distributions follow a 3GPP urban macrocell
environment and channels are sampled over a bandwidth
of 100MHz every 1ms for 2s. A large number of users
are simulated to build up a database that is spatially
and environmentally consistent. In the final section of
the results, we address how the model generalizes to a
new setting with different environmental parameters and
different roadway locations.

Once the channels are generated, post-processing is nec-
essary to produce a realistic setting and build up the
algorithm’s datasets. The initial access procedure starts
by randomly selecting a number of active users (uni-
formly between [4, 12]) and gathering the corresponding
channels and time slots from the channel set. Then
uniformly randomly selecting L,,x DFT beams for the
‘prior’ codebook and calculating the RSV codebook. The
codebooks are converted to beamspace representations
and stored in a dataset along with the SSB feedback
from a subset of the active users where each active
user is assigned an 80% probability of its feedback
being included. This represents an initial access channel
where not all users are previously known and introduces
an additional regularization term into our algorithm to
prevent over-focusing on known users. It is assumed that
UEs use antenna selection for the RSRP reception during
the SSB process, digital combining for CSI-RS, and
LMMSE combining during data transmission as defined
in the system model.



TABLE I
BEAMSPACE-CODEX NETWORK PARAMETERS

Layer Primary Parameter | Activation Output Dimension
Conv+Max Pool 128 Filters ReLU [(Nzo +2)/2] x [(Nyo +2)/2] x 128
Conv+Max Pool 96 Filters ReLU [(Ngo 4+ 2)/4] % [(Nyo +2)/4] x 96

Dropout 0.3 Rate [(Ngo + 2)/4] % [(Nyo +2)/4] x 96
Conv 320 Filters ReLU [(Ngo +2)/4] x [(Nyo +2)/4] x 320
Flatten ([(Nao + 2/4) ([(Nyo + 2)/41)(320)
Dropout 0.5 Rate ([(Nzo +2)/41)([(Nyo + 2)/4])(320)
Fully Conn. 2N40NyoLmax Neurons 2N0NyoLmax
Reshape Nzo X Nyo X 2Lmax

V. SIMULATION RESULTS

It is critical to extensively evaluate a neural network
model to fairly represent and compare it against tra-
ditional methods. In our previous work [39], we have
considered a learning threshold as a minimal condition
for determining if meaningful relationships have been
learned by the network. In realistic wireless channels,
such settings are much harder to characterize, so we
instead benchmark the performance against industry-
standard DFT techniques and RSV codebooks assum-
ing CSI were known perfectly. RSV codebooks identify
the upper-performance limits (with respect to RSRP-
maximizing) and DFT codebooks identify the minimal
performance needed to justify moving beyond traditional
codebooks. We then use our simulation framework to
better understand how the various codebooks and type-
IT CSI feedback parameters affect network performance.

A. RSRP and SNR

The RSRP is a basic metric that can be used to directly
demonstrate the ability of the neural network to output
a valuable SSB codebook. Following the SSB process,
we also highlight the performance that the dynamic
codebook provides when selecting CSI-RS beams as a
decomposition of the SSB codebook. While these two
metrics—RSRP and SNR-do not ultimately character-
ize the network performance as a result of the code-
book algorithm, they do provide meaningful insight into
the performance of various codebook methods. Figure
4(a) shows the empirical cumulative distribution func-
tion (CDF) of the RSRP reported using various code-
book/beamforming methods compared to our proposed
BSC algorithm. Without any beamforming, more than
50% of users would be below the minimum RSRP for
signal detection, which is often around —120dBm. It
can also be seen that the proposed codebook does not
negatively impact worst-case users, with about 10% of
users falling under the sensitivity threshold compared to

over 20% of users with DFT codebooks. To showcase
the extensibility of the proposed BSC algorithm, we
also include results using Nt = 16 antennas without
changing the model, preprocessing, or retraining. The
performance is unchanged and actually improves versus
the ideal RSV results, even though the network was
trained with data from a larger number of antennas. This
presents a significant advantage for network operators
that can immediately deploy different antenna arrays
without retraining or gathering new data.

The SSB codebooks are decomposed into CSI-RS code-
books in Figure 4(b), where we see the RSV codebook
is not consistently the best SSB codebook when directly
decomposed into CSI-RS codebooks, although the de-
composed BSC is not universally better than decom-
posed DFT codebooks either. We can understand this as
a result of the rich scattering environment that causes the
RSV to not effectively decompose into a small number of
incoherent DFT components. While RSV beamformers
maximize the received power for a user with perfect
CSI, this maximization is based on the signal coherently
combining and is not well-represented by a narrow DFT
beam. From these results, we can see that the BSC algo-
rithm is advantageous compared to traditional methods,
but we also see that restricting the CSI-RS codebook to
oversampled DFT beams is a significant limitation.

B. CSI-RS reporting

In this subsection, we provide an in-depth evaluation of
the CSI-RS process without BSC codebooks. We evalu-
ate performance based on the effective downlink SE after
overhead due to beam training, uplink feedback, and
an additional signaling overhead factor of 10%. Uplink
feedback is assumed to be the only resource allocated
for uplink transmission, and we assume a worst-case
scenario where users transmit with MCSO from Table
5.1.3.1-1 [27]. User selection during the data phase is
performed based only on the knowledge at the BS by
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Fig. 4. Two plots of the codebook performance measuring (a) SSB-RSRP during 5000 random active user groups and (b) the sliding window
average SNR during CSI-RS reception. During the SSB stage, each of the codebooks is used directly, and then in (b) the SSB codebooks are
decomposed to form the active CSI-RS codebook subset. Non-beamformed transmission presents a significant loss in performance shown by
the “gain of BF” arrow, while the learned BSC codebook shows gains of over 3dB compared to traditional DFT beams. BSC also seamlessly
applies to smaller Nt with the dotted lines showing the relative performance vs RSV actually improving with less antennas than trained with.
While RSV beamforming is an upper bound on the RSRP, the DFT decomposition of an RSV codebook is not necessarily SNR-maximizing

due to multipath propagation.

first estimating the sum spectral efficiency achieved with
the imperfect CSI for all users. The best estimated SE
combination is selected and used until the next SSB
cycle. Such a format is naturally suboptimal, even with
perfect CSI, due to a lack of rank and power adaption.
User selection is not the focus of this investigation, so
we only use an exhaustive search over the reconstructed
channel knowledge available at the BS to provide a rea-
sonable scheduling algorithm. The SE is also compared
with rank-1 non-PMI beamforming where RZF is not
employed, the channel is not estimated, and the only
feedback is obtained from the CRI, with user selection
and precoder determination simply being the CSI-RS
beamforming codewords with the strongest reported user
RSRP. This is often an envisioned strategy for sparse
mmWave channels with low-latency feedback but is not
assumed to be effective in sub-6GHz channels due to the
rich scattering environment.

The size of the CSI-RS codebook is related to the
channel estimation SNR because larger CSI-RS code-
books, made of orthogonal DFT beamformers, will re-
sult in equivalent or higher SNR compared to smaller
codebooks with the same channels and feedback. We
characterize the performance of larger or smaller CSI-RS
codebooks in Figure 5(a). Although the estimation SNR
will always improve with a larger codebook, there is also
a modest amount of overhead with larger Pcgy so that
there is little spectral efficiency gain beyond Pcgy > 8.

In the next comparison, the feedback quantization is
evaluated by modifying the parameter Lcgy in type-II
formats. We can see from Fig. 5(b) that higher resolu-
tion feedback is beneficial, with the effective spectral
efficiency exceeding 2 times higher when the resolution
is improved from Lcsy = 1 to Lest = 32. From
there on, the other parameters—CSI-RS resource block
allocation (NRB) and the number of frequency selec-
tive resources (Sg)—are less influential compared to the
quantization resolution. The modest performance gains
achieved with multiple frequency selective precoders and
larger downlink CSI-RS resource usage are offset by
the increasing overhead resulting in negligible or even
performance loss. Joining the information from Figures
5(a)-6(a), a good balance of feedback and performance
can be achieved with a setting of L¢csr = 32, Sg = 1,
NRB = 24, Pcs; = 8. It is important to note that
the current 5G Release 16, even with enhanced type-
II feedback, only supports Lcsi <= 6, which means
most situations will only yield about 1.5 times higher
effective spectral efficiency relative to SU-MIMO and
nearly equivalent performance to the non-PMI beam-
forming using only SSB codebooks. Perhaps even more
surprising is that using a single CSI-RS beam (FPcs; = 1)
has less degradation than using L¢cs; = 8 feedback beams
per rank, relative to the best performance. This suggests
that feedback limitations are more likely to restrict MU-
MIMO performance in sub-6GHz systems compared to
codebook optimization or accurate channel estimation.
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are shown by solid lines and Non-PMI refers to rank 1 beamforming using the CRI. SU-MIMO does not include multipath feedback so only a
single SU-MIMO result is shown in (b). Other parameters are set to Lcsy = 32 for (a), Pcsi = 16 for (b), Sp = 1, NRB = 24.
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Fig. 6. A comparison of the effective spectral efficiency with different numbers of frequency selective precoders Sp and varying the number of
resource blocks (NRB) per Sg. It is assumed that Lcs; = 32, Pest = 16, NRB = 24 xSp in (a) and Sg = 1 in (b). While increasing the number of
resource blocks, therefore increasing the number of pilots, also increases the channel estimation performance, the rising feedback overhead causes
the performance to decrease in (b). In comparison, the number of Sg increases the overhead linearly, yet the performance is essentially equivalent
in (a). Therefore we see that frequency selective feedback and beamforming is not necessarily advantageous when overhead is accounted for.

C. Neural architectures

Looking at the BSC neural network, it remains to be
determined whether the proposed architecture is a good
choice of neural network for the problem. Although
the beamspace inputs are more closely aligned with
an image-processing task, where convolutional neural
networks (CNN) are advantageous, we found that per-
formance varied significantly and hyperparameter tuning

was critical. We believe this is due to the lack of shift-
equivariance which is a core learning bias of CNNs. For
example, if a region of the beamspace that is “active” is
shifted, does not necessarily mean that the RSV code-
book will shift in a similar way. This is especially true
because the beamspace does not include newly-active
UEs, similar to an initial access scenario. Therefore
appropriate regularization via parameter tuning is nec-
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Fig. 7. A comparison of the RSRP performance of classic neural
architectures—multilayer perception (MLP), convolutional autoencoder
(AE)-within the beamspace framework. It can be seen that although
the architectures have comparable results, the BSC architecture based
on CNNs is the best choice for learning beamspace features.

essary. Figure 7 shows the proposed BSC network out-
performing different architectures trained with the same
data, optimization strategy, and comparable execution
time by about 1dB on average.

D. Site generalization

Up to now, we have used a test set of data drawn from
the same statistical environment as the training set. While
a network operator will likely gather data for a specific
site, here we examine the impact of testing on a new
distribution of data. We simulate a new environment
with completely different user distributions and mobility
patterns. Now 50% of users are vehicular with roadways
defined in new locations and a new stochastic realization
of the channel environment. In Figure 8 the agnostic
(orange) data is obtained without updating the model,
whereas the fine-tuned data (blue) shows the results after
we allow for 60s of retraining on data from the new
environment. Our time limit is arbitrary and could ulti-
mately be orders of magnitude shorter than the timescale
a network operator might use to update the model, but
corresponds to approximately 1% of the training time
used in our setup for a balance of fine-tuning and gen-
eralization. Figure 8 shows the performance in the new
environment (agnostic) is noticeably worse relative to
the RSV. The performance loss is improved during fine-
tuning, especially for the lowest 10% of users.

VI. CONCLUSION

In this paper, we presented a novel framework for learn-
ing dynamic codebooks for sub-6GHz 5G NR. We set up
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Fig. 8. Histogram representing the performance delta between BSC
and RSV codebooks in the agnostic setting and after fine-tuning. It can
be seen that the worst-case differences are resolved and in some cases
(when more users are present than SSB beams) the RSV codebook can
be outperformed based on the higher proportion of the blue columns
to the right of the orange columns.

a system with multiple UEs each equipped with a uni-
form linear array to receive from a BS with a fully digital
planar array. We simulate realistic sub-6GHz channels
using QuaDRiGa and build a post-processing framework
for evaluating the system performance of SSB and CSI-
RS codebooks and feedback. Using this framework we
address two questions related to codebook performance
in 5G: 1) Can machine learning design more effective
SSB codebooks? 2) How should feedback be configured
in sub-6GHz environments?

We first proposed a codebook transformation based on
beamspace projections that allowed for efficiently and
consistently representing SSB codebooks in a format
conducive to learning. This beamspace representation
can circumvent challenges with dynamic user numbers,
changing codebooks, and even deploying across different
array sizes. Using the beamspace as a translation tool,
we designed a neural architecture, Beamspace-Codex, to
output new codebooks from SSB feedback. The proposed
method directly integrates with current 5G standards and
improves SSB RSRP by 2-3dB on average. We also show
that only 1% of the training compute budget is needed
for retraining in new environments to significantly im-
prove the worst-case performance. Secondly, we found
that the PMI quantization resolution, determined by the
number of feedback DFT beams, is a limiting factor



in the performance of MU-MIMO in current standards.
In future work, we will introduce machine learning
throughout the beam management process.
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