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Private Facial Prediagnosis as an Edge Service
for Parkinson’s DBS Treatment Valuation
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Abstract—Facial phenotyping for medical prediagnosis
has recently been successfully exploited as a novel way for
the preclinical assessment of a range of rare genetic dis-
eases, where facial biometrics is revealed to have rich links
to underlying genetic or medical causes. In this paper, we
aim to extend this facial prediagnosis technology for a more
general disease, Parkinson’s Diseases (PD), and proposed
an Artificial-Intelligence-of-Things (AIoT) edge-oriented
privacy-preserving facial prediagnosis framework to ana-
lyze the treatment of Deep Brain Stimulation (DBS) on PD
patients. In the proposed framework, a novel edge-based
privacy-preserving framework is proposed to implement
private deep facial diagnosis as a service over an AIoT-
oriented information theoretically secure multi-party com-
munication scheme, while data privacy has been a primary
concern toward a wider exploitation of Electronic Health
and Medical Records (EHR/EMR) over cloud-based medical
services. In our experiments with a collected facial dataset
from PD patients, for the first time, we proved that facial
patterns could be used to evaluate the facial difference
of PD patients undergoing DBS treatment. We further im-
plemented a privacy-preserving information theoretical se-
cure deep facial prediagnosis framework that can achieve
the same accuracy as the non-encrypted one, showing
the potential of our facial prediagnosis as a trustworthy
edge service for grading the severity of PD in patients.
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I. INTRODUCTION

FACIAL diagnosis dates back to 2000 years ago in Tradi-
tional ChineseMedicine (TCM) practice [1], [2]. Recently,

scientists have shown that facial phenotyping [3]–[8] can be
used to diagnose accurately over 200 rare genetic diseases,
reviving this ancient technology as a new method potentially
for diagnosing a wide range of diseases. In addition to applying
to rare diseases, facial prediagnosis may have a potential to
be applied to many common illnesses. In this paper, we will
look into the quantifiable modelling on facial prediagnosis of
Parkinson’s disease (PD) [9]–[14], while it has been widely
reported that PD has an apparent impact on the faces of PD
patients, like many other neurodegenerative diseases [11], [12].
PD can affect natural facial expressions in addition to gross

motor skills. This phenomenon, called “facial-masking” (hy-
pomimia) [12], is a common sign of early PD, arising prior
to major motor and non-motor symptoms. This is due to a
reduction of automatic and controlled expressive movement of
facial musculature, creating an appearance of apathy, social
disengagement or compromised cognitive status. Such facial
symptoms can have significant negative effects onmental health,
as it distorts the perceived emotional responses of the individual
[11], which can lead to misinterpretation by friends, family and
the public. Hence, via facial diagnosis, we can expect that a
robust computational model can capture subtle variations
of facial features, establish quantifiable evidence and mea-
sure/predict the developmental stages of Parkinson’s Diseases.
Unlike other senescent diseases, PD is featured by two distinct

issues [10]. First, there is no cure for Parkinson’s diseases.
However, early detection can help the adoption of an early
intervention to slow down the PD progress. Second, there is
no test for Parkinson’s diagnosis, making it hard to identify PD
at its early stages. Though we can find evidences from EEG or
MRI scanning at a developed stage, it is often too late. Instead,
Parkinson’s diagnosis [10] is often based on the examination by
a well-trained expert on tremor at rest, rigidity, slowness and
loss of spontaneous movement, a characteristic way of walking,
a frozen smile on face, etc. While such visually observable
symptoms can be captured by AI-powered video-based facial
analysis, in this work, to save the precious time of doctors,
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Fig. 1. Facial images of a PD patient before and after Deep Brain
Stimulation treatment.

nurses and care staff from examining mass communities, we
aim to develop AI-based facial diagnosis for PD.
Parkinson’s Diseases [9]–[14] is a heterogeneous disease (no

case being exactly the same), with motor symptoms including
tremor, rigidity, bradykinesia, dyskinesia (drug-induced), and
non-motor symptoms, including dementia, anxiety, depression,
sleep dysfunction, psychosis, persistent pain, delirium, gam-
bling compulsion etc. At the early developmental stage, these
symptoms are subtle and occasional. Via automated facial diag-
nosis, individuals in a range of settings can be monitored and
diagnosed quickly and scored on the risk of potential phenotypes
of PDs for doctors/caregivers to consider social interventions
and palliative therapies. Facial diagnosis [1]–[8] can provide a
cost-effective staff-free automated diagnosis platform via 24/7
real-time online surveillance of patients in care with no waiting
time. Potentially, it will enable early diagnosis for preventive
treatments over a large population in care and help provide ac-
curate phenotyping for timely precision medicine or treatment.
To enable facial prediagnosis for PD analysis, there are two
challenges that need to overcome:

1) First, we need proof-of-concept experiments to show
that facial images can be practically used to classify PD
patients with suitable accuracy.

2) Secondly, due to privacy issues, the facial biometrics of
patients need to be restricted to private use instead of
circulating over Internet servers, and a privacy-preserved
framework is needed for automated facial diagnosis ser-
vices over cloud-based networks.

In this paper, taking the PD treatment via Deep Brain Stim-
ulation (DBS) as our case study, we aim to develop a private
IoT-based facial prediagnosis framework to evaluate the facial
difference of DBS treatment on patients by comparing facial
biometrics before and after DBS.
Fig. 1 shows the sample facial images of a patient before and

afterDBS treatment, respectively. Facial images are deformable,
and key features are subtle to discriminate. Cross-subject classi-
fication becomes more challenging particularly, when the train-
ing dataset consists of totally different subjects from the test
dataset. Although there are reports that links facial features to
PDs [11], [12], up to now it has not been certain if we can use
facial images to grade the severity of PD patients via machine
learning. In this paper, we will prove this concept using a deep
learning based framework.
The scenario of cloud-based automated facial prediagnosis

can be depicted in Fig. 2. The face photo of a patient can

Fig. 2. Facial Prediagnosis over 5G AIoT edge service.

be collected at an Artificial-Intelligence-of-Thing (AIoT) edge
device such as a mobile phone, and the face photo is then sent to
the server of the service provider. Due to privacy concerns and
legislation, patients (or hospitals) may not allow their electronic
health or medical records (EHR or EMR) to upload to a server
in an external business. Hence, a privacy-aware framework is
then required for the purpose of commercialized facial diagnosis
services to offer a widely accessible platform for point-of-care
(POC) AIoT end users.
To address the privacy issue in medical prediagnosis, it has

been reported to utilize Partial Homomorphic Encryption(PHE)
to implement privacy-preserving algorithms such as Support
VectorMachine[19] orNaïveBayesianClassification[15]. How-
ever, the implementation of deep neural networks (DNNs) via
PHE is yet not applied to medical prediagnosis, while DNNs
have nonlinear activation functions that cannot be directly
mapped to the encryption domain.
In our proposed solution,wewill aim to exploit themulti-party

communication architecture and propose an information theo-
retical secure framework for privacy-preserving deep learning
based facial prediagnosis. Our novel contributions in this work
include three key aspects, as detailed below:

1) A novel PD prediagnosis method: Our work presents a
novel preclinical assessmentmethod on PD via facial pre-
diagnosis that achievedgood accuracy in our experiments,
implying a great value of facial prediagnosis for further
exploitation on medical purposes.

2) Novel information-theoretical secure implementation:
We implemented a novel AIoT-based framework for
privacy-preserving deep learning based facial diagnosis,
which is information theoretical secure and achieved the
equivalent accuracy in comparison with the original non-
privacy-preserving facial diagnosis algorithm.

3) Clinical trial: we present our experiments with 52 PD
patients before and after Deep Brain Stimulation (DBS),
which offers a valuable medical trial from our report.

We implemented our initial demo with a PHE library and
validated our implementation as the proof-of-concept on a video
datasets of 52 PD patients who received the DBS treatments.
Our experiments show an accuracy over 95% on discriminating
facial features before and after treatment. In comparison, it was
reported EEG-based prediagnosis [45] has an accuracy of 85%.



JIANG et al.: PRIVATE FACIAL PREDIAGNOSIS AS AN EDGE SERVICE FOR PARKINSON’S DBS TREATMENT VALUATION 2705

TABLE I
COMPARISON OF FHE AND PHE ALGORITHMS

The remainder of the paper is organized as follows. Section 2
reviews the existing relevant work. Section 3 gives background
on PHE and describes its implementation. Section 4 presents the
proposed AIoT-based privacy-preserving deep learning frame-
work. SectionV shows the experimental results. Finally, Section
VI concludes the paper.

II. PRELIMINARY ON PRIVATE MACHINE LEARNING

To protect the privacy of shared data over the Internet, it
has been widely researched to use various encryption methods
[15]–[30] to secure the data under various hostile or curious
conditions. While privacy can be mostly assured by a sophisti-
cated encryption scheme, the data services that need to carry out
various computations on the data cannot work due to the encryp-
tion. To solve this issue, homomorphic encryption schemes have
become a popular way to protect the private data while enabling
computation, such as machine learning, to operate on encrypted
data.
Partial Homomorphic Encryption, as its name suggests, can

maintain only some homomorphic features in its encryption,
while full homomorphic encryption is expected to be able to
carry out all equivalation arithmetic operations in its encrypted
domain. Typical PHE algorithms include Pallier, ELGamel, and
RSA [21]. Well known FHE libraries include SEAL, HElib and
TFHE [20]. Table I gives a comparison of several existing open
encryption algorithms. We can see that division and comparison
are not yet available in PHE or FHE algorithms. Unlike FHE
algorithms, PHE algorithms cannot support bitwise operation,
exponentiation, negation, and add/subtract with plain texts.
Although PHE does not provide all operations to implement

deep learning in the encrypted domain, in this paper, we will
demonstrate a new scheme to fulfill the privacy-preserving deep
learning without resorting to expensive FHE ones. By taking
the Pallier cryptosystem as our encryption method, we will
show a full implementation of privacy-preserving deep neural
networks using PHE based on an AIoT framework. The reasons
for choosing PHE instead of Full Homomorphic Encryption
(FHE) include: 1) PHEhas been applied formedical applications
for years [15∼19] and is relatively mature with much lower
costs; 2) It is less compute-intensive than full homomorphic
encryption (FHE) [19]–[21] and thus easier to deploy on AIoT
devices; 3) PHE based machine learning has recently been

successfully utilized on facial images [22]–[25]. Hence, a PHE
based privacy-preserving deep learning framework is a rational
choice for our facial prediagnosis application.
There have been a number of reported applications of privacy-

preserving machine learning [15]–[30]. The majority of these
are developed for distributed setting where different parties hold
parts of the training database and securely train a common classi-
fier without each party needing to disclose its own training data
to other parties. Recently, Pallier encryption has been applied
successfully for facial classification using classic linear machine
learningmethods [22]–[25] such as SVM,LDA, etc. In ourwork,
we aim to utilize deep learning for our facial diagnosis service,
because deep learning has achieved greater robustness and better
accuracy in pattern classification [3], [6]–[8].
There have been reports of various FHE based deep learning

implementations [20], [31]–[35]. However, it is yet challenging
to implement the nonlinear functions in neurons since FHE
is fundamentally based on linearization lattice. As shown in
Table I, current FHE methods cannot yet cope with divide and
compare [20]. Its implementation of exponention is based on the
repeating squaring algorithm, which causes extra computational
complexity and accuracy concerns, and can be applied only to
positive number exponentiation [20]. Due to the complexity,
most reported implementations assumes the linear approxima-
tion of nonlinear functions, with no guarantee of the control
of extra errors [29]–[33]. On the other side, PHE is relatively
less compute-intensive [22]–[24]. Hence, in our application to
PD, we choose PHE to implement a lightweight framework for
privacy-preserving deep learning.
While the current trend is to provide AI-enabled medical

diagnosis as a service [15], [16], [18], [19], [21], the needs to
preserve the privacy of the data comeswith data sharing over dis-
tributed systems, cloud-based services, 5G/6G communication,
Internet-of-Things, etc. There are many reported frameworks
to try to meet the various needs. In [29], the encrypted data
from clients are decrypted on the server side before feeding
into the deep neural networks and the final results are encrypted
before sending back to clients. However, this implies the server
can know the client’s private data with no privacy protection,
though it may be secure to third parties in the communication
nodes. In [33], the encryption is performed partially on the lay-
ers of deep neural networks. However, asymmetric encryption,
although data is hidden from each other, lacks robustness due to
the exposure of public keys, leaving it vulnerable if sufficient
attempts are made, particularly when the emerging quantum
computing becomes available [36]–[38]. Hence, these proposed
schemes over multi-party communication will not be secure in
the information theoretical sense.
In this work, we are concerned with facial diagnosis over

AIoT services. When patients or hospitals send their data over
to the commercial service provider, they may not want to risk
compromising the privacy of their patients. On the other side,
the service provider wants to keep their learned model safe,
and does not want to be exposed to an end user. Hence an
information theoretically secure scheme is required for such
automated medical data services.
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Encrypted facial recognition has been implemented with
many algorithms [22]–[25]. Privacy-preserving data classifica-
tion algorithms suitable for a client-server model were studied
in [39]–[41]. The client-server model substantially reduces the
computational and communication overhead at the client since
it needs to interact with only one server compared to a more
distributed setting. Outsourcing the clinical decision support
system to a third-party server without violating the client’s
privacy was studied in [15]–[19], [21]–[24], [28]–[35].
In this paper, in contrast to these previous works, we propose

a lightweight privacy-preserving medical diagnosis protocol
based on encrypted deep learning over an information theoret-
ically secured AIoT framework. We will demonstrate that our
proposed facial diagnosis framework achieves the desired pri-
vacy requirements without degrading the classification perfor-
mance, and the computational and communication complexity
are under control.

III. PRIVACY-PRESERVING DNN IMPLEMENTATION

Considering the scenario that AIoT users send their encrypted
facial images to the automated medical diagnosis server hosted
by a commercial service provider, we need to find a robust
privacy-preserving scheme to guarantee data privacy in the
system. To achieve this, as detailed in the above sections, we
choose thePaillier cryptosystemas our encryption engine,which
is partially homomorphic.

A. The Paillier Cryptosystem

Typical PHE algorithms [21]–[24] include Unpadded RSA,
ElGamal encryption, Goldwasser–Micali cryptosystem, Be-
naloh cryptosystem,Paillier cryptosystem, etc. ThePaillier cryp-
tosystem [24] is an additive homomorphic encryption method.
The Paillier cryptosystem, invented by and named after Pascal
Paillier in 1999, is a probabilistic asymmetric algorithm for
public key cryptography. The problem of computing nth residue
classes is known to be computationally difficult. The decisional
composite residuosity assumption is the intractability hypothesis
upon which this cryptosystem is based.
Like most other RSA-like algorithms, the Paillier encryption

needs a pair of keys, namely public and private keys. The keys
are generated via the process below:

1) Public keys: Choose two large prime numbers p and
q randomly and independently of each other such that:
gcd(pq, (p− 1)(q − 1)) = 1. Compute n= pq and λ =
lcm(p-1, q-1).

2) Select a random integer g ∈ Z∗
n2 , and calculate the mod-

ular multiplicative inverse:

µ = mod

(
n

mod (gλ, n2)− 1
, n

)
(1)

Here the division gives the integral quotient.
With the above two steps, the generated public keys are

{n, g} and the private keys are {λ, µ}.
After keys are produced, the encryption step will be decided

by public keys only. Assuming t is the message to encrypted and
satisfies 0≤t<n, and r is a random number and satisfies 0≤r<n

and r ∈ Z∗
n, the cipher text can be obtained as:

c = [[t|r]] = mod
(
gtrn, n2

)
and c ∈ Z∗

n2 (2)

Here, ∗ denotes the encryption. The random number r will
make the Paillier encryption as non-deterministic. Every time
with the same keys, the same text t will have different cipher
text c.
Inversely, the decipher step will be based on the private keys,

and

t = 〈c〉 = mod

(
mod

(
cλ, n2

)− 1

n
µ, n

)
(3)

Here, 〈∗〉 denotes decryption in this paper. As it can be
seen pointed out by Paillier in 1999 [21], decryption here is
“essentially one exponentiation modulo n2”.

B. Homomorphic Properties

A notable feature of the Paillier cryptosystem is its homo-
morphic properties along with its non-deterministic encryption.
The Pallier encryption function is additively homomorphic, and
the product of two ciphertexts will decrypt to the sum of their
corresponding plaintexts,

[[t1 + t2]] = mod
(
[[t1|r1]] · [[t2|r]]2, n2

)
(4)

With the above equation, we can easily obtain the sum of two
encrypted numbers without deciphering them.
Besides the additive homomorphic property, the encrypted

numbers in the Paillier cryptosystemcan implement the negation
homomorphic property as,

[[t1 × t2]] = mod
(
[[t1]]

t2 , n2
)

(5)

Here, it is noted that t2 must be in its original value. Given the
Paillier encryptions of two messages there is no known way to
compute an encryption of the product of these messages without
knowing the private key.
Based on the above partial multiplicative homomorphic prop-

erty, the encrypted numbers in the Pallier cryptosystem can
implement a form of the negation homomorphic property,

[[−t1]] = mod
(
[[t1]]

−1, n2
)

(6)

This is particularly useful since in artificial neurons we have
negative weights and bias.
Sometimes we may need to add the ciphertext with a plain

text, which could be done simply by,

[[t1]] + [[t2]] = t1 +mod
(
[[1]]−t2 , n2

)
(7)

Here, a plaintext is encoded by taking advantage of the ci-
phertext [[1]] and Eq. (5), without knowing the encryption keys
(including public keys).

C. Encrypted Faces

Consider a pattern or image consisting ofW×H pixels, where
each pixel is represented by its intensity value xi. Using Eq.
[2], we can then obtain the encrypted big integer zi = [[xi]] for
each pixel. Normalizing {zi} by n2, we can obtain the whole
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Fig. 3. Encrypted digital patterns.

encrypted images shown in Fig. 3. The original images are on
the left, and the corresponding encrypted patterns are visualized
on the right.
As we can observe from Fig. 3, the encrypted patterns are no

longer visually identifiable, though each pattern contains exactly
the sameamount of information as the original images.However,
without knowing the keys, no one can decipher the patterns.
Hence, data security and privacy can be safely guaranteed, unlike
other alternative arrangements inmany private learningmethods
[15]–[19] that may compromise the security over shared keys
between multiple parties.

D. Encrypted Neurons Without Keys

Artificial neurons are a simplifiedmodel of biological neurons
that contain multiple synaptic inputs and one axon output. The
model of an artificial neuron consists of a weighted-sum process
that can be described as,

yj =
K∑
i=1

wixi + bj (8)

where xi are the input signals and yj is the summation result that
will be capped by an activation process, typically the sigmoid
function,

zj =
1

1− e−yj
(9)

zj denotes the final output from the j-th neuron in a layer.
If we have encrypted inputs [[xi]] , then the addition process

in the above neuron model will be described as,

[[yj ]]=

[[
K∑
i=1

wixi + bj

]]
=mod

([[
K∑
i=1

wixi

]]
· [[bj ]] , n2

)

= mod

((
K∏
i=1

[[wixi]]

)
· [[bj ]] , n2

)

= mod

((
K∏
i=1

[[xi]]
wi

)
· [[bj ]] , n2

)
(10)

Hence, the calculation can be easily carried out directy on the
encrypted inputs. Here, we may need to encrypt the bias value
in the learned neuron model. To make it simple, we can take

Fig. 4. An encryption based private deep neural network running in a
server communicating with AIoT edge clients.

advantage of Eq. (5) and obtain,

[[bj ]] = [[1× bj ]] = mod
(
[[1]]bj , n2

)
(11)

Hence, we do not need any encryption keys to fulfil the above
calculation if the big integer value of [[1]] is given.
The calculation of the activation function in Eq. (9) on en-

crypted data is a great challenge because it needs to carry out
divisions and exponentiations in the encrypted domain. Some
attempts adopting various linear approximation have been re-
ported [34], [35]. However, these approximationsmay introduce
unexpected errors. Similarly, the implementation of softmax
functions on encrypted data suffers from similar difficulties.
In this paper, we provide an AIoT-based solution to this

challenge in privacy-preserving deep learning. Fig. 4 shows its
schematic view. While the learned model is stored in the server
in a layer-wise structure, the activation functions are computed
via queries to the AIoT clients in a distributed computing frame-
work, and the computational load is shared by the server and the
clients. More details can be found in the following section.

IV. AIOT-BASED INFORMATION THEORETICAL SECURE DEEP

FACIAL DIAGNOSIS

With the PHE-enabled encrypted neurons, we can then imple-
ment a given neural network layer by layer. Details are described
below, based on our proposed AIoT-oriented secure framework.

A. Overall Framework

The overall framework of our proposed AIoT-based facial
diagnosis is detailed in the diagram in Fig. 5. The central
medical service with well-trained deep neural networks resides
on a cloud-based Honest-But-Curious (HBC) server, and AIoT
edge clients can upload their encrypted data to the server.
The encrypted data is then processed in a layer-wise mode
through deep neural networks, and each layer is followed
by the activation through the communication with the AIoT
clients, as shown in the architecture in Fig. 4. The server



2708 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 6, JUNE 2022

Fig. 5. Schematic view of the proposed privacy-protected client-server
framework for AIoT edge services.

List I. Algorithms of the proposed framework.
Algorithm 1 AIoT Client
Inputs :

(1) Sample pair D1 and D2 for diagnosis
(2) Client ID uid and password pwd
(3) Server queries with cmd and Xl

Procedure :
1: setup bit length Bl and and float point length Fl
2: setup communication with server using uid and pwd
3: loop over D1 & D2:
4: create public & private keys of Pallier cryptosystem
5: encrypt Dk and 1, send to the diagnosis server
6: wait for the returned data from server: (cmd, Xl)
7: if cmd is “sigmoid”
8: calculate sigm( 〈Xl〉 ), encrypt & send to server
9: if cmd is “softmax”
10: calculate softm( 〈Xl〉 ), encrypt & send to server
11: if cmd is “results”
12: decrypt Xl, Rk = 〈Xl〉;
13: end loop
14: Compare the scores R1 and R2:
15: if R1 > R2:if R1 > R2: D1 is before and D2 is after

DBS;
15: else:else: D2 is before and D1 is after DBS;
16: close the communication & return

may host many requests from different AIoT clients in cor-
responding sessions, as far as it can handle by its computing
capability.
The detailed algorithms for the AIoT clients and the facial

diagnosis server are listed in List I. In an AIoT server, the
Pallier cryptosystem is set up to encrypt the query data for
privacy protection. The encrypted data is then sent to the server
side for medical diagnosis. The server will then carry out the
computation in a layer-wise mode, and at each layer, will send
the tentative outputs from each layer back to the client for the
computation of activation or softmax, which needs both division
and exponential operations. Once the computation at the server
side reaches the last layer of deep neural networks, the final result
will be sent back to the client and the communication session
will be terminated.
In this framework, the server can maintain multiple sessions

with different clients, as far as multi-threading is allowed on

Algorithm 2: Keyless Private Facial Diagnosis.
Inputs :

(1) Client lists with IDs and Passwords
(2) Pretrained weights wij and bias bj
(3) From client: Query data [[Dk]] and [[1]]

Procedure :
1: Setup DNNs with weights wij and bias bj;
2: wait for the client request:
3: verify user and setup the session;
4: wait for the client data [[Dk]] and [[1]]:
5: loop over layers of the diagnosis DNN:
6: calculate [[yj ]] in layer-wise;
7: shuffle [[yj ]] over j randomly;
8: calculate [[zj ]] by querying the client (sigmoid);
9: end loop
10: calculate [[rj ]] by querying the client (softmax);
11: send the final results back to the client
12: close the session
13: return to step 2

the cloud server. It is worth noting that all keys (both public and
private) are kept only on the client itself, and the computation
at the server side is keyless and only needs an encrypted big
integer [[1]].

B. Proposed AIoT Edge Service

As shown in Fig. 5, the proposed AIoT medical diagnosis
framework is based on two-party communication in its computa-
tion. Though a server can host many clients, the communication
session is based on a client with a communication channel to the
server. Hence, there is a need to look into the data privacy issue
of the two-party secure computation.

1) Privacy With Information Theoretical Security: An algo-
rithm is defined as information-theoretically secure if its security
is proved to match with the derived concept from information
theory. The information-theoretical security in communication
was termed by Shannon to prove that the one-time pad system
achieves perfect security subject to the following two conditions
[42]:

1) the key which randomizes the data should be random and
should be used only once;

2) the key length should be at least as long as the length of
the data.

If any algorithm randomizes its parameter and satisfies the
above conditions, its parameters cannot be unmasked by an
adversary even when the adversary has unlimited computing
power. In this case, the system is guaranteed to have information
theoretical security. If for example both the plain text and the
random ciphertext have 1024 bits, the prior probability (proba-
bility for a particular ciphertext out of 21024 possible ciphertexts)
and posterior probability (probability of inferring/mapping a
ciphertext in a random domain to a plaintext domain) are equal,
and there is no advantage for an adversary to get higher posterior
probability than prior probability.
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In the following sections, we will analyze whether our algo-
rithm inList I is vulnerable to anyprivacy leakage.Our algorithm
is based on two party computation over the AIoT scheme.
As defined by Goldreich [43], privacy for secure two-party
computation will be achieved if a secure two-party protocol
cannot reveal more information to a semi-honest party than the
information that can be inferred by looking at that party’s input
and output. To verify whether the proposed AIoT computation
satisfies the privacy definition, we will show the inputs and
outputs to and from the client and server, respectively, in the
algorithm in List I, and identify what is already known to the
client and the server. Following this, if we can prove that nothing
else can be inferred other than the known input and output with
higher posterior probability than prior probability, the proposed
algorithm in List I then satisfieswith the privacy definition based
on information theory.
The ultimate aim for the client is to keep the test image and

the classification result away from the server while the server
wants to keep the classificationmodel parameters away from the
client. In the communication, the client sends only the encrypted
messages to the server with no public keys. From these inputs,
the server knows only the size of the test image and the length
of encrypted data. This is not a privacy leakage since the server
knows the size of the images when training the classifier.

2) Privacy-Preserving Secure Computation At Edge: The
overall framework needs its computation to be based on secure
operations in both AIoT clients and the server. An honest-but-
curious server/client follows the protocol and takes no actions
beyond those of an honest server/client. In the proposed frame-
work, let us assume the client knows a vector (data) a and sends
its ciphertext [[a]] to the server. The whole system will expect
the ciphertext is unbreakable in both the server and any third
party. Since the encrypted DNNs at the server side need neither
private keys nor public keys, the security of the client data in
the proposed AIoT-oriented keyless medical diagnosis system
is therefore guaranteed, though asymmetric encryption can be
breakable if public keys are available [39], [40].
The proposed two-party AIoT protocol in List I is

information-theoretically secure i.e., the server cannot infer the
plaintexts in the client’s input vector [[a]] and the client will only
learn the final result but not the model parameters in the server.
To validate the security we consider both the client and server

are honest-but-curious (HBC) i.e., they will follow the proce-
dures but try to learn about each other’s inputs, intermediate
values and results. We will then demonstrate that the algorithm
in List I is information-theoretically secure for the following two
cases in 3) and 4).

3) Honest-But-Curious AIoT-oriented Server: The server
computes the results in their encrypted form. Each layer per-
forms a weighted summation, as shown in Eq.(8) and (10). The
HBC client sends its encrypted data to the server, and the server
computes the weighted sum outputs and shuffle them via one
time pad, and send them back to the client for the computation.
Because the inputs and the outputs are shuffled each time using
different one-time pads (step 7 in algorithm 2, List I), the client
cannot accumulate the knowledge to solve wij and bj in Eq.(8).
Hence, there is no privacy leak on model parameters such as

weights and bias values in layers, and the communication from
the server to the client is perfectly information theoretical secure
in term of the server’s private model.

4) Honest-But-Curious AIoT-oriented Server: The main pur-
pose in the proposed framework is to protect the data privacy of
the individual client from the public medical diagnosis server. In
List I, a client encrypts its data and sends the data to the server,
and the server carries out its computation on encrypted data only,
and return the encrypted result back to the client, which implies
that only the client can know the final results via decryption.
However, as has been suspected [36], [37], asymmetric en-

cryption itself may not be information theoretical secure, since
the factorization of a large prime number can be solved via some
algorithms [36] in limited time, if the public keys can be known.
However, in our proposed algorithms in List I, neither private
keys nor public keys are shared with the server. The curious
server cannot infer the keys simply from the ciphertext.
It is worth noting that in the proposed scheme, the encryption

of 1 needs to be sent to the server. Considering t = 1, we have

c1 = [[1|r]] = mod
(
grn, n2

)
, and c ∈ Z∗

n2 (12)

and,

1 = 〈c1 〉 = mod

(
mod

(
cλ, n2

)− 1

n
µ, n

)
(13)

In the above equations, g, r, n, c and λ are all unknown
to the server side, and these parameters are changed every
time based on one time pad strategy. Hence, the server cannot
accumulate more knowledge about the encryption parameters
from the next ciphertext, and the private data from the client
will be information theoretical secure to the server side.

C. Information Theoretical Security in Our Framework

It is noted that though the computation is split between the
AIoT edge side and the cloud server side, the computation is
information secure and neither side can infer from the data for
more than necessary information. In the server side, the model
weights and biaswill not be learned by an edge user because they
are randomly shuffled every time in the step 7 in the algorithm 2
in List I. Meanwhile, both public and private keys are unknown
to the server side, and therefore a user’s own data will not be
exposed to the service provider via some cracking algorithms
such as Shor’s algorithm [36]. Therefore, information theoretical
security is guaranteed in both edge client and cloud server sides
by our novel implementation.

V. EXPERIMENTS

A. PD DBS Dataset From Youtube

In our experiment, we use a video dataset consisting of 52 PD
patients collected from Youtube online resources. Two video
shots were taken per patient before and after DBS treatment.
From videos, we extract 2345 facial images for our tests, as
shown in Fig. 6. The facial images were cropped from video
shots and resized to 32×32 pixels. The dataset is then split into
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Fig. 6. PD DBS facial dataset and encrypted faces.

two subsets – training dataset and test dataset, each having 26
PD patients.
In our experiments, it is assumed that the training dataset

is owned by the server to train the deep neural networks for
medical diagnosis, and the test dataset is owned as private data
by AIoT clients. The experiments were set up as a cross-subject
facial diagnosis test, while training faces and test faces are from
different subjects/patients. Such cross-subject issues are often
considered more challenging than the same subject tests (such
as recognize a face of a person already in the training dataset).
Our experiments are set up as below. Given two images of a

patient, one from before the DBS treatment and one from after
the treatment, we want to know:

1) Can facial features be used to clearly discriminate which
one is before or after DBS treatment?

2) Can the proposed lightweight PHE-based solution work
properly as an implementation of private deep learning?

3) Can our PHE-based solution achieve an accuracy similar
to its original non-privacy-preserving peer?

To answer the above questions, our experiments are detailed
in the following sections.

B. Facial Diagnosis Using Deep Neural Networks

Although facial expression is known to be associated with
the degree of Parkinson’s, it is yet not used on the evaluation of
DBS treatment. To achieve this purpose, we aim to exploit deep
neural networks to carry out the facial diagnosis on the patients.
In our experiments, our targets is to demonstrate the proposed

PHE based lightweight implementation of deep neural networks
over encrypted data. We choose Deep Autoencoder as our clas-
sifier because it is the first reported method that enlightened the
research on deep learning [44]. Here, we only need the encoder
part, as shown in Fig. 7a, a four layer deep neural network
architecturewith twohidden dense layers. It takes all dimensions
of the data as its inputs, and then reduces the number of neurons
via the propagation from layer to layer, from 1024, 128 to 32.
In our implementation, the input layer has 32×32 = 1024

neurons. The 1st hidden layer has 128 neurons with sigmoid

Fig. 7. Train the deep encoder classifies on the server side.

TABLE II
EVALUATION ON THE CROSS-SUBJECT DATASET

activation, and the 2nd hidden layer has 32 neurons with ReLU
activation. The output layer with softmax activation has two
neurons standing for two classes: before DBS treatment (with
apparent PD symptoms) and after DBS treatment (with little PD
symptoms).
We used the training dataset (facial images of 26 patients)

trained the four layer encoder, and obtained the model parame-
ters. Fig. 7b) shows the convergence of loss rates in the training
process. Here, two training methods were applied, Adam and
RMSProp. We can see the model trained by RMSProp achieved
better accuracy.
Table II shows the valuation on two trained models in term

of accuracy, recall, precision and F1 score based on the output
likelihoods on two classes. We can see the RMSProp based
model achieved a bit better results consistently on all measures.
Hence, we use the RMSProp model as our facial diagnosis
service model.
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Fig. 8. Confusion matrix of the facial diagnosis test.

TABLE III
PREDIAGNOSIS USING FACE VS USING MRI

Fig. 8 shows the confusion matrix of the test results. We can
clearly see that the model achieved a nice accuracy over 95%,
implying that there are sufficiently explicit facial features to
discriminate a PD patient form a recovered patient.
It is worth to note that the diagnosis is based on a single facial

photo instead of long shot videos, and the test subjects are all new
to the trained model. From the test results, we can clearly see the
trained model can explicitly discriminate the faces of patients
before and after DBS treatment, suggesting its potential as an
automated medical diagnosis tool for evaluating the severity of
PD patients.
In Table III, we compared the facial prediagnosis against the

MRI-based prediagnosis in clinical trials.MRI-based preclinical
assessment achieved its accuracy around 85%, as reported by
an Oxford team from their clinical trial with 13 patients. In
comparison, our facial prediagnosis on 52 patients achieved an
initial accuracy around 95.22%. It is also worth to highlight that
unlike the expensive EEG based diagnosis, facial prediagnosis
could be low-cost, non-interrupting, and available 24/7 remotely
with little needs of staff intervention, demonstrating a great
potential as a new prediagnosis tool on PD for medical caring
services.

C. Encrypted Facial Diagnosis Over AIoT Edge

Following the test in the above section, we implemented the
encrypted counterpart of the above facial diagnosis model and
compare the test results on the encrypted test dataset. Here,
a concern issue is about the number of decimal digits that
may scale down the model parameters (weights, bias, etc).
The encrypted data from a client was fed to the encrypted
DNN model on the server side, and we want to examine if the
algorithms in List I can achieve similar accuracy as the original

Fig. 9. Test accuracy over the decimal precision of the encrypted DNN
model parameters.

TABLE IV
COMPUTATIONAL TIME VERSUS THE BIT LENGTH ON SERVER AND CLIENT,
MEASURED IN SECONDS AVERAGED PER TEST IMAGE IN OUR EXPERIMENT

non-privacy-preserving model even with a reduced or limited
number of decimal digits.
Fig. 9 shows the comparison of the results of the encrypted

implementation with different decimal precisions. The decimal
precision varies from 1 bit to 10 bit, and we valuated the classi-
fication accuracy on the encrypted data. We can see that when
decimal bits were reduced to 1 bit (2-1 or 0.5), the accuracy was
only 58.33%.When the decimal bits were increased to 7 bits, the
encryption-based model achieved the same accuracy (95.22%)
as its non-privacy preserving original model. Compared with the
length of big integer, 7 bits for decimal digits could be a small
cost for the overall encryption scheme.
Table IV also gives the experimental results on the com-

putational time in the client and the server, respectively, over
various bit lengths of the big integer. Here both client and server
were running on a GPU-powered laptop with 3.6GHz CPU. The
results show that in the same session, most computational work
load (∼95%) was assigned to the server side, which is a benefit
for AIoT end users offered by the service provider. Typically,
the computational time can be linked to the computational
complexity, as analyzed below.

D. Computational Complexity

The computational complexity of the algorithm in List I can
be estimated as the costs of two types of big integer operations:
multiplication operations and modulo exponentiation asCm and
Ce, respectively. Table V list out the estimated complexity of
the proposed schemes for both the server (S) and client (C) with
regards to the number of neurons per layer (m0, m1, etc.) and the
number of synaptic inputs to each neuron (namely the number
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TABLE V
ESTIMATED COMPUTATIONAL COMPLEXITY

TABLE VI
COMMUNICATION COMPLEXITY

of neurons in the previous layer, in the architecture illustrated in
Fig. 4).
In our implementation, the input layer has 32×32 neurons,

layer 1 has 128 neurons, layer 2 has 32 neurons and the final
layer has 2 neurons. Hence, the total computational costs can be
estimated as:
Server side: (1024×128+128×32+32×2)→135232×(Ce

+Cm)
Client side: 2534×Ce+1510×Cm

We can see most computational workload is assigned to the
server side. Assuming Ce ≈ Cm, the ratio of the workload
between the server and a client is 135232/4044 ≈ 36.1, which
implies the server copes with 97% of the total computation. This
theoretical analysis matches well with the experimental results
(∼95%) inTableV.Since the cloud-based server hasmuchbetter
computation resources, such a client-server split is reasonable
for an AIoT edge-oriented framework.
Besides the computation on the cipher texts, the computa-

tional cost on encryption is a constant that is proportional to
the number of pixels per facial photo. In this experiment, each
photo has 32×32 = 1024 pixels. Assuming the encryption on
each pixel has an encryption costCE, the extra computation cost
per facial photo will then be 1024CE.

E. Communication Complexity

We canmeasure the total communication complexity in terms
of data being communicated between the server and client. In
our algorithm, the transferred data between client and server
are all in the form of big integer, such as 1024-bit format, as
detailed in the secure two-party algorithm proposed in List I.
The estimated communication load is summarized in Table VI
based on a layer-wise estimation in term of the communication
costs of a single 1024-bit big integer, CBig.
Similarly, since the input layer has 32×32 neurons, layer 1

has 128 neurons, layer 2 has 32 neurons and the final layer has
2 neurons, the total communication costs can be estimated as:

Server to client: 162×CBig

Client to server: 1184×CBig

In total, the communication bandwidth needs to cope with
1346×CBig = 1346×1024bits = 1.378Mbits. If we process
video streams at 25 frames per seconds, the highest bandwidth
needs to be around 35Mbps. Currently 5G-based AIoT can eas-
ily achieve 100+Mbps. Hence, the communication complexity
in our proposed AIoT framework is achievable even in the case
of considering real-time video streaming, although our facial
diagnosis carries out on single image based classification.

VI. CONCLUSION

In conclusion, we have demonstrated a novel AIoT-oriented
medical diagnosis framework using deep learning and PHE that
can achieve Shannon’s information theoretical security. In our
proposed scheme, the encrypted DNNs at the server side were
implemented without the needs for encryption keys, guaran-
teeing the client data has information theoretical security; the
intermediate results from the server to a client were shuffled
randomly, making the model unknown to the client, too. Hence,
the information theoretical security at both server and client ends
is guaranteed via our proposed framework, showing a promising
merit toward the privacy protection on exploiting EHR/EMR
data for wide medical services.
It is also worth noting that, with the 95.22% accuracy of our

facial prediagnosis model, we verified that facial prediagnosis
could be a valuable medical tool with a potential to evaluate
the severity of PD patients. Consequently, we offered a novel
low-cost method for the preclinical assessment on PD with
an initial proof-of-concept test showing the underlying links
between facial features and PD symptoms. One of our future
tasks is to explicitly expand our deep facial prediagnosis to an
explainable model, to help identify which part of facial features
are linked to the severity of PDs.
Besides, we reported our facial prediagnosis model with a

clinical trial on 52 PD patients before and after DBS treatment,
which could also be valuable and interesting for many medical
researchers, doctors, or clinical consultants. In the future work,
a more clear evaluation on how facial features can be linked
to evaluate the improvement of PD treatments can be further
studied, aiming to bring Explainable AI and Fair AI into this
privacy-sensitive topic [46].
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