
Hardware-Accelerated Band-Power Feature
Extraction for Supervised Learning on a Tactile

Embedded System
Beiimbet Sarsekeyev, Joshua Osborne, Ahmad Patooghy, Olcay Kursun

Department of Computer Science, University of Central Arkansas, Conway, AR, 72035
bsarsekeyev1@cub.uca.edu, josborne@cub.uca.edu, apatooghy@uca.edu, okursun@uca.edu

Abstract—Real-time and energy efficient signal feature extrac-
tion have become increasingly important for machine-learning-
enabled smart sensor systems in mobile and Edge applications.
As considerable scientific and technological efforts have been
devoted to developing tactile sensing with prospective applications
in many fields, such as smart prosthetics, remote palpation, and
robotic surgery with the sense of touch; in this paper, we develop
a parallel hardware-software signal feature extraction method
and apply it to a dataset of tactile texture classification. Being
easily parallelizable, a set of passband-power feature extraction
blocks compute signal power in various passbands and can
be clock gated for accuracy-energy trade-offs controlled by a
proposed feature summarization algorithm. Our experimental
results on the tactile dataset have shown that the proposed
method works at high levels of parallelization and realtimeness,
performs with lower computational complexity, and achieves
accuracy levels comparable to those of convolutional neural
networks.

Index Terms—Machine Learning, Feature Extraction, Energy
Efficiency, Embedded Systems, Edge.

I. INTRODUCTION

Machine-learning-enabled smart sensor systems have been
increasingly used with applications ranging from prosthetics
to telemedicine and assistive devices [1], [2]. Ultimately,
such systems must process the noisy and multidimensional
sensor data from various modalities under different response
functions in real-time to detect patterns of interest and make
inference using machine learning classifiers. Real-time data
processing has become an increasingly important area of
study as we have seen the large-scale implementation of
machine learning and Edge devices in both corporate and
user-based sectors. In order to decrease overall latency and
energy-consumption, these mobile and Edge systems need
real-time feature extraction methods that can be easily im-
plemented in parallel hardware and support dynamic control
of the resolution of the features by enabling/disabling them
in runtime. In this paper, we have built upon the existing
framework of the Cumulative Multi-Bandpower (CMB) fea-
ture extraction method. This memory-less, low-cost feature
extraction method may be used in embedded systems to

achieve highly accurate inferences when used as input by
machine learning classifiers in embedded/Edge applications.
To demonstrate the effectiveness of the CMB method, in [2],
a tactile dataset was collected in [2]. The dataset was used
to explore the tactile perception of the material properties in
real-time using embedded systems, a recently popular task for
achieving dexterous object manipulation in fields of robotics,
prosthetics, and augmented reality [3]–[6]. On this dataset,
the serial CMB algorithm was shown to perform with high
accuracy and realtimeness [2]. The algorithm extracted CMB
features serially as in Algorithm 1 and fed the feature vector
to various pretrained classifiers for inference. The system used
Random forests [7], [8], once trained, were easy to deploy
on low-cost embedded boards for inference as they can be
expressed by a set of simple if-then rules in code. It was shown
that low-cost, highly accurate, and real-time tactile texture
classification can be achieved on embedded systems using an
ensemble of sensors, efficient feature extraction methods, and
simple machine learning classifiers.

We improve the CMB method by designing a parallel
computational structure that increases its throughput. Our
parallel design supports energy efficiency by applying a feature
selection/summarization algorithm that controls to reduce the
number of features to be computed (in parallel). The feature
summarization algorithm can decrease the number of CMB
features computed via a histogram operation. The classifier
predictions using fewer passband power features uses less
computations and energy but can achieve nearly the same
levels of accuracy in the inference of the class-labels. Starting
with a large enough passbands, this approach can be used to
cut down the number of passbands to find an effective balance
between energy efficiency and classification accuracy. In an
effort to improve this algorithm for embedded systems, this
paper looks to discuss:
• Optimizing the CMB feature extraction algorithm for par-

allel processing on the co-designed hardware accelerator;
• Designing histogram based feature summarization al-

gorithm for fusing CMB features for dynamic energy

conservation;
• Application of the convolutional neural networks to the

tactile dataset for determining an accuracy baseline with-
out taking into account any resource constraints.

The rest of this paper is organized as follows. Section
II presents the serial CMB algorithm. Section III discusses
the details of the proposed parallelization and feature fusion
algorithm. We present and discuss our experimental results in
Section IV, where we implement the proposed mechanism on a
prototypical embedded system for tactile signal classification.
Finally, Section V concludes the paper.

II. REVIEW OF THE CMB FEATURE EXTRACTION

METHOD

CMB was introduced in [2] with the promise of real-time
use of signal feature extraction in embedded systems. It has
a light computational load that makes it particularly useful
for embedded applications. Its formulation using Parseval’s
theorem for extracting frequency/power based features in time
domain makes it useful real-time operation. Parseval’s theorem
[9] states that the total energy (thus, average power) of a
signal can be calculated either using the amplitudes in the
time domain or spectral power in the frequency domain. The
CMB method works by employing exponential smoothing with
different smoothing factors to the input sensor readings to
create a bank of signals smoothened at different levels (leading
to multiple versions of the original signal with different
frequency passbands/cut-offs). Applying Parseval’s theorem to
these signals in real-time allows us to compute the power in
their respective frequency bandwidths.

Let x[n] denote the discrete readings obtained from a sensor
at time step t. Based on Parseval’s relation, the average energy
of a signal recording, x[n], can be determined either by adding
up the energy of the signal per each sample (i.e.,

∑
| x[n] |2)

at the time domain, or by taking the energy of signal in the
frequency domain as summation of | X(jω) |2 /2π as shown
in Eq. 1.

+∞∑
t=−∞

| x[n] |2= 1

2π

∫
2π

| X(jω) |2 dω (1)

Parseval’s theorem (Eq. 1) states that the total energy (thus,
average power) of a signal can be calculated either using the
amplitudes in the time domain or spectral power in the fre-
quency domain. More specifically, summing power-per-sample
across time (i.e. sum of the squares of the amplitudes of the
data samples) is another way of computing the total spectral
power across frequency (Eq. 2). Therefore, the theorem offers
a mechanism for staying in the time domain yet being able
to do useful feature extraction in the frequency domain [9].
With this mechanism for real-time computation of the average

power, P [n], at time step t as the streaming samples of a given
signal, x[n] are received (Eq. 2).

P [0] = x[0]2

P [n] =
1

t+ 1

[
n× P [n− 1] + x[n]2

]
, t > 0

(2)

Combining Parseval’s theorem with the exponential smooth-
ing [9] offers an efficient approach for computing a running
average estimate for the power (Eq. 3), where α is a smoothing
factor (e.g. α = 0.1).

P [0]← x[0]2

P [n]← αx[n]2 + (1− α)P [n− 1], t > 0
(3)

To obtain different passbands of x[n], we apply exponential
smoothing:

Sαk [n] = (1− αk)× Sαk [n− 1] + αk × x[n] (4)

for a set of K smoothing factor values, 1 = α0 > α1 >

... > αk > ... > αK > 0, for k = 1, ...,K. Using
lower smoothing factors, αk, computes low-pass filters with
lower cut-off frequencies (i.e. lower values of αk actually
increase the level of smoothing. The computation performs
the following assignment:

Sαk ← (1− αk)× Sαk + αk × x[n] (5)

The Sαk array can then utilize Parseval’s theorem to sum
corresponding squares of these values such that narrower
bands of frequencies are computed for continually-averaging
power distributions. Let Fαk denote the (average power)
feature extracted for a given alpha value as in Eq. 6:

Fαk [n] =
1

n

∑
i

|Sαk [i]|2 (6)

Note that we can avoid buffering Fαk [n] values and again
use exponential smoothing to calculate the sum of power-per-
sample, Sαk2, as shown below:

Fαk ← (1− β)× Fαk + β × |Sαk |2 (7)

To make the CMB features DC-offset and scaling invariant,
in [2] a simple normalization was applied to Fαk features that
yielded the so-called normalized Rαk features sensitive only
to frequency variations [2]:

Fαk [n] =
∑
i

|Sαk [i]− x[i]|2, k = 1, ...,K (8)

Rαk =
Fαk

Fα1
, k = 1, ...,K (9)

III. PROPOSED HARDWARE ACCELERATED CMB FEATURE

EXTRACTION METHOD: ECO-CMB

In this section, we propose a variation of the CMB feature
extraction method co-designed with the parallelized hardware
accelerator that we present to compute these features. The
proposed method improves the accuracy of the original CMB
features and allows CMB to be used in an adaptive energy-
efficient setting; hence the name Eco-CMB. In this section,
we first present our hardware accelerator architecture that
can be used to compute either CMB or Eco-CMB features
(passband power features) in parallel in realtime. The design
of the architecture supports energy-savings by clock-gating
under-utilized computing modules. Then we present the Eco-
CMB algorithm that can use the full set or a subset of the
passbands but still manage to sustain the accuracy of the
classifier pretrained with the full set of passbands.

A. Hardware Accelerator Architecture

There has been an increasing demand for hardware acceler-
ation in ML-enabled smart sensor systems. Parallel structure
designs enable real-time processing of sensor readings in
embedded systems. In intelligent embedded systems, where
the data from sensors are collected in regular intervals and
continually, custom hardware design can take advantage of
inherent parallelism to deal with computational complexity of
ML algorithms.

The serial/iterative CMB feature extraction algorithm given
in Algorithm 1 supports a straightforward paralellization using
hardware acceleration. Both time and space complexities of the
serial CMB feature extraction algorithm (per sensor) are linear
in K, O(K), where K is the number of cumulative bands
used by CMB. Using multiple sensors, the complexity of the
algorithm is O(Z × K), where Z is the number of sensors
(for example a 3D-accelerometer has Z = 3 displacement
readings). Fast Fourier Transform (FFT), on the other hand,
has O(nlogn) time complexity and O(n) space complexity
per sensor, where n is the length of the FFT-window with
n. Especially when the sampling rate is high (i.e. n � K),
it becomes inefficient to buffer such a long window for the
streaming input data. Although FFT features can lead to
higher accuracy when using a single sensor, it is typical to
combine features extracted from multiple sensors that closes
this accuracy gap while allowing the use of real-time memory-
less feature extraction algorithms like CMB.

Parallelization of CMB allows starting the feature extractor
with a large number, K, of passbands without increasing
the time needed to compute the set of K features of CMB.
However, this leads to increased energy consumption and it
requires the use of a smart mechanism to reduce K, if a
smaller K value does not lead to large fluctuations at the
output (prediction of the class-labels). The parallel CMB

Algorithm 1 Cumulative Multi-Bandpower (CMB) feature
extraction algorithm for a system with Z sensors and K
passbands per sensor.

for (sensor z ← 1 to Z) do
x = data[z]

Each sensorz uses its own α[0..K], S[0..K], F [0..K], β
for (k ← 0 to K) do

S[k]← (1− α[k])× S[k] + α[k]× x
if (k == 0) then

F [k]← (1− β)× F [k] + β × x2
else

F [k]← (1− β)× F [k] + β × |S[k]− x|2
R[k]← F [k]/F [1]

end
end

end

feature computation can utilize such enable/disable control
signals to achieve energy efficiency along with the parallelized
high accuracy computations. The CMB hardware accelerator
takes advantages of parallel computations needed to compute
different Fαk and Sαk values for various smoothing factors
αk. In fact, the accelerator implements K+1 parallel modules
M0,M2, ...,MK each of which is capable of performing basic
math operations to compute 7 in parallel. This results in K+1

times speedup in feature extraction. It is important to note that
in our studies we have found out that the feature extraction
is the bottleneck in computations, not the subsequent infer-
ence by the machine learning classifier (e.g. a random forest
classifier).

Figure 1 shows the architecture of the proposed accelerator
hardware. The goal of the proposed accelerator is to enhance
the classification efficiency in terms of throughput and energy
consumption. The accelerator consists of K + 1 computing
modules (Mk) to calculate Fαk features, 0 ≤ k ≤ K. As
shown in Figure 1, each block of the accelerator consists of
two floating point multipliers, a floating point adder, and a
local buffer to keep the feature value. Module-based parallel
execution (MBPE) processing allows initial operations to be
performed in a continuous, non-sequential fashion, meaning
that real-time sensor data may be gathered at much faster
rates without the need for a storage-based buffer or queue.
This method also decreases system-wide signal latency. Fur-
thermore, by decreasing overall run times for feature extraction
as well as eliminating need for significant buffering solutions,
MBPE decreases total power draw on the system.

The control unit of each module decides if the module
should work or clock-gated. If the module is in the working
mode, the control unit applies the appropriate clock signals to
the multipliers and the adder modules to lead the required

float
multiplier

�

float
multiplier

1 −�

float

adder

r
e
g

control unit

float
multiplier

�%

�[�]

float
multiplier

1 −�%

�+
,
[�

−
1]

float

adder

r
e
g

control unit

mul-clk adder-clk load

�+,[�]

�+,[�]

�
+ ,
[�

−
1]

mul-clk adder-clk load

M0
M1

MK

�.

�[�]

�%

�/

… .

… .

�+,[�]

�+0[�]

�+�[�]

… .

Architecture of module M1

done done

c0 c1 … cK

to be written by ML

control vector

�%

�%

done done

Fig. 1: The architecture of MPBE hardware accelerator is capable of computing CMB features in parallel.

floating point multiplication/addition operations. As the in-
put data, intermediate variables computed and the features
extracted are all represented in IEEE single precision, we
need to have the hardware accelerator working with higher
frequency than that of data reading to keep up with the input
data stream. We have setup the hardware accelerator’s clock
50x the frequency of input data. This give the accelerator
enough time to perform floating point operations.

The hardware accelerator saves energy in two ways. First,
if the input data is the same as previous data, the control
unit will not trigger the clock signal for the multiplier/adder
components; not being clocked means that all internal nets
of these components will be protected from unnecessary
signal activities, which in turn significantly reduces switching
energy consumption. The second energy saving method works
in a higher level i.e., the K + 1 parallel modules of the
accelerator can be controlled via a vector of control signals
C = [c0, c1, c2, ..., cK]. If ck is ′1′ the module will work;
otherwise the control unit will again clock-gate the module
and accordingly the multiplier/adder components will not see
unnecessary signal activities. The ck control signals will be
asserted by the machine learning structure for real-time regu-
lation. The MBPE hardware will input these control signals
to enable corresponding Mk blocks denoted by the subset
A = [α0, α1, α2, ..., αK]. Our investigations to synthesize
the proposed MBPE hardware accelerator show that each of
the parallel computing modules, (Mk), would need hardware
resources less than 2K CLBs and 900 DFFs when synthesized
on Xilinx Virtex-5 5VFX200TFF1738 FPGA [10].

B. Eco-CMB Feature Extraction/Summarization Algorithm

The DC-offset and scaling invariant CMB features that are
called the normalized Rαk features in [2]. However, due to
the computation in time domain using the quadratic terms
negatively affect the invariances of these features especially in
the presence of low frequencies. That is, simple classifiers like

Conv-1 (with d/4 features) + ReLU + Max-pool

Conv-2 (with d/2 features) + ReLU + Max-pool

Conv-3 (with d features) + ReLU + Max-pool

Global Average Pooling

Softmax

Texture signals from the accelerometer (2-sec windows)

Predicted Class

Texture signals from the accelerometer (2

Fig. 2: The CNN architecture used in the experiments (three-
convolutional CNN is shown as the representative). While the
size of the receptive fields of the neurons double from one
convolutional area to the next, we doubled the number of
feature maps (e.g. for the 3-layer CNN, we used 25, 50, and
100 neurons in the first, second, and third layers, respectively.

K-Nearest Neighbor (KNN) [11] does not work well with the
unnormalized or normalized CMB features because two short
windows cropped from a long recording of a particular class
may have very different R features. Therefore, we propose to
further normalize the R features by the standard deviation of
the window:

Ecoαk =
Rαk

sx
, k = 2, ...,K (10)

sx =
1

n

∑
i

(x[i]−mx)
2 (11)

mx =
1

n

∑
i

x[i] (12)

Note that we omitted Rα1 feature (for k=1), because it is
always equal to 1 by Eq. 9. Also note that Eco-CMB features
can also be approximated by:

Ecoαk =
Rαk

√
Fα1

, k = 2, ...,K (13)

The advantage of Eco-CMB features is the proposed nor-
malization not only improves the accuracy of complex clas-
sifiers but also significantly improves the accuracy of simple
classifiers such as KNN, making them feasible options for
the embedded applications, which also allows simple re-
training on the embedded board. Complex classifiers such as
multi-layer perceptrons or random forests, in their training,
can handle dealing with the dynamic range of the signal-
windows (cropped from longer recordings as in [2]) used as
the training/test examples but their training algorithms are
more difficult to be implemented on the embedded board as
opposed to just using them pretrained (having them trained
offline) for simply making inference on the test examples on
the embedded system. In other words, adding new examples
or new classes to update/re-train a random forest or a neural
network may require the training to be performed from scratch,
which may not be feasible on the embedded system (or the full
dataset may not be available). When its accuracy is improved,
on the other hand, the simplicity of KNN makes it a very good
option as the classifier on the embedded system because it does
not require any training: New training examples with their
associated class-labels can be simply be stored in the memory
of the embedded board to continue the training process.

Finally, we take a histogram of the Eco-CMB features by
dividing the range of Eco-CMB features into equisized bins
and return the values of the probability density function at
the bins normalized such that the integral over the range is
1. For the range of the bins of the histogram, we use the min
and max value of Eco-CMB features in the dataset. The use
of the histogram achieves normalization of the length of the
feature vector; that is, whether we use K Eco-CMB features
or K/2 (or less) features, the histogram always produces the
same length feature vector (equal to the number of the bins;
e.g. 10). Therefore, a pretrained classifier (on the full set
of K Eco-CMB features can still be utilized on the test set
even when a smaller subset of Eco-CMB feature values are
computed for energy-savings because the histogram of this
smaller set of Eco-CMB features will have the same number
of bins.

Texture 1: fabric-1

Texture 2: aluminum film

Texture 3: fabric-2

Texture 4: fabric-3 Texture 5: moquette-1

Texture 6: moquette-2

Texture 9: sticky fabricTexture 8: sticky fabric-5

Texture 10: sparkle paper-1

Texture 12: toy-tire rubber

Texture 7: fabric-4

Texture 11: sparkle paper-2

Fig. 3: The twelve texture classes available in the CMB tactile
dataset.

IV. EXPERIMENTAL EVALUATIONS

To evaluate the performance of the Eco-CMB feature
extraction algorithm for tactile signal processing on Edge
platforms, we first compare its accuracy with convolutional
neural networks (CNNs) [12], [13] without considering re-
source limitations associated with their training/learning. We
trained CNNs with various number of convolutional layers and
number of features in each layer (we used PyTorch library
[14] for implementing the CNN architecture shown in Figure
2). We compared resource-hungry CNNs and CMB features
(CMB featured fed into a simple random forest classifier) on
their application to the tactile dataset from [2]. The dataset
was collected to explore the tactile perception of the material
properties in real-time using embedded systems. The dataset
has 12 texture classes, including sandpapers of various grits,
Velcro strips with various thicknesses, aluminum foil, and
rubber bands of various stickiness as shown in Figure 3 [2].
For each texture, 20 seconds of recordings are available. The
sensors are attached to a probe that rubs against the surface
of a rotating drum covered by the aforementioned textures.
A 3-D accelerometer sensor with 200 Hz sampling rate and
a microphone with 8 KHz sampling rate were used as the
sensors to acquire the vibrotactile signals.

As shown in Table I, CMB accuracies closely match with
those of CNNs with the same number of features. The 3-
convolutional layer CNN, for example, starts with 25 feature
maps, then transforms those to 50 feature maps in the second
convolutional layer, and then finally transforms to 100 feature
maps. The global average pooling layer extracts the final set
of d = 100 features and feed them into the softmax layer for
classification. Using 3-layer CNNs does not yield better results
than 2-layer CNNs because of the high number of parameters
(weights) to optimize on a small dataset. Comparing the
accuracy obtained using 100 CMB features and 2-layer CNN
shows that the CMB method offers the same levels of accuracy
with less resource usage.

As 100 α smoothing factors (between 0 and 1) were used
in [2] for CMB feature extraction, in this work, for Eco-CMB,

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ac
cu

ra
cy

 (%
)

Used stride in feature selection

KNN
RF
MLP

a)

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ac
cu

ra
cy

 (%
)

Used stride in feature selection

KNN
RF
MLP

b)

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ac
cu

ra
cy

 (%
)

Used stride in feature selection

KNN
RF
MLP

c)

Fig. 4: The accuracy of texture classification using the sound recordings as a function of the stride (a bigger stride uses fewer
Eco-CMB features by taking every second, third, forth feature and so on). Panels a, b, and c correspond to using 10, 20, and
30 bins in the histogram that summarizes the Eco-CMB features selected by the strides.

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ac
cu

ra
cy

 (%
)

Used stride in feature selection

KNN
RF
MLP

Fig. 5: The accuracy of texture classification using the 3D
accelerometer sensor recordings as a function of the stride
(reduction in the number of features used for the inference).

we also used K = 100 (for the full set of features). We
reduced the K value as part of the proposed energy-saving
feature. Although evenly spaced smoothing factors were used
in [2], in this work we placed them more appropriately as
follows: (i) As the dataset was collected such that different
sensors cover different frequency ranges, we selected the list
of K = 100 α values for computing the Eco-CMB features
such that they correspond to an evenly spaced set of cut-off
frequencies; (ii) we selected the smoothing factors so that the
cut-off frequencies fall in reasonable ranges (for example, the

TABLE I: Accuracy on the test set using Convolutional Neural
Networks versus the proposed Eco-CMB as a function of
number of features extracted.

Number of
features used (d)

CNN - (number of convolutional layers) CMB features
& Random

Forest CNN-1 CNN-2 CNN-3

d=25 92.7 ± 2.8 91.6 ± 3.8 85.2 ± 3.3 90.5 ± 3.4

d=50 94.8 ± 2.4 92.5 ± 3.9 89.3 ± 4.3 92.3 ± 3.5

d=100 93.8 ± 1.5 95.4 ± 2.6 91.2 ± 5.8 94.6 ± 3.4

d=200 94.3 ± 2.6 96.3 ± 0.8 92.6 ± 2.4 95.3 ± 2.9

microphone has a very high sampling frequency for use in
tactile processing and therefore using α values near 1 would
not lead to passbands with discriminative features). Therefore,
for the 3D accelerometer sensor recordings (X, Y, Z), we used
α values in the range of [0.76..0.05] that corresponds to cut-
offs around [100KHz..2Hz]. For the sound recordings (the S
signal recorded by the microphone), we used α values in the
range of [0.39..0.01] that corresponds to cut-off frequencies
around [800KHz..16Hz].

For the histogram of the Eco-CMB, we have found that 20-
30 bins in the histogram are optimal. The number of bins is not
very sensitive; however, it needs to be chosen properly with
respect to the number of classes of interest and how much
precision is needed to achieve good classification accuracy.
In our experiments on the tactile dataset, using fewer than 15
bins loses too much accuracy and using too many bins, greater
than 30, does not lead to increase in the accuracy and it can
even lead to the curse of dimensionality. We used 20 randomly
cropped two-second-long recordings (windows) from each one
of the texture classes for the training set. We used 50 such
windows per class for the test-set. The reason we picked a
relatively small number of training examples is to show that
the proposed embedded system can achieve high accuracy with
a small number of labelled examples.

We trained the classifiers using the training set that has
the full set of features (all K = 100 Eco-CMB features,
corresponding to using all the modules with their enable
control signals set to 1). As the classifiers, we use KNN
(K-Nearest Neighbor using the Euclidean distance and the
number of neighbors is set to 1), Random Forest (with the
default 100 estimators/trees and 50% of the features evaluated
at every decision node), and MLP (multi-layer perceptron
with two hidden layers with 50 units in each layer). All of
these classifiers are implemented in Python using scikit-learn
machine learning library [15]. We varied the number of Eco-
CMB features on the test set, as shown in Fig. 4. The reduction
in the number of Eco-CMB features is performed by taking
strides of i. Every ith feature is selected. In each stride the

enable control signal of the selected feature is set to 1 and
the enables of the other i − 1 modules are set to 0. For
example, if stride is 5, then only K/5 features are selected.
As K = 100 in our experiments, the strides of 15 and 16 for
example end up using different subsets of Eco-CMB features
but they both have only 6 of them. As shown in Figures 4,
5, and 6, using the full set of K features is the best in terms
of accuracy; nevertheless, using a stride of 2, for example,
uses only K/2 = 50 features that can achieve nearly the same
accuracy with energy-efficiency because only the half of the
parallel modules compute their Eco-CMB features.

In our experiments, we found that the random forest clas-
sifier works well using the full set of features (one advantage
of random forests is that they can be simply implemented as a
collection of if-then rules [2], [11] that can be easily translated
to the embedded platform and deployed as the inference
algorithm). MLP also offers a good option because MLP can
be continued the training (a process called online training that
will continue making weight updates [11]). However, when
the number of Eco-CMB features are reduced (in the energy-
saving mode), neither random forests or MLPs worked as well
as KNN did. Using the proposed feature vector (histogram of
the Eco-CMB features) as input, KNN achieves an accurate
classification for the 12 texture classes that can be sustained
at high levels while the number of features are reduced using
larger strides.

V. CONCLUSIONS

In this paper, we co-designed a real-time signal feature
extraction method and its hardware accelerator that compute
these features in parallel. The proposed method/architecture
improves the accuracy and applicability of the CMB (Cumu-
lative Multi-Bandpower) feature extraction method and allows
CMB to be used in an adaptive energy-efficient setting. The
proposed hardware acceleration for real-time energy-efficient
signal feature extraction can be employed in IoT devices with
sensors for processing and classification of streaming inputs.
The CMB feature extraction method works by computing the
passband powers in gradually decreasing cut-off frequencies.
According to the proposed algorithm, after applying normal-
ization and histogram steps to CMB features, a mechanism in
the co-designed hardware accelerator becomes applicable to
enable/disable these parallel modules computing the passband
features. We performed our simulations on a tactile dataset
for texture classification. We showed that using the histogram
approach offers robustness in accuracy against the reductions
in the number of passbands. The highest accuracy and energy
efficiency combination is achieved by the nearest-neighbor
(KNN) classifier. In addition to serving as a pretrained clas-
sifier for inference on the test examples, as a lazy classifier,
KNN offers the most practical mechanism of simply collect-

ing/storing more training examples for the continuation of the
training process on the embedded system implementation.

ACKNOWLEDGMENT

This work was supported by the Arkansas INBRE program
with a grant from the National Institute of General Medical
Sciences (NIGMS) P20 GM103429 from the National Insti-
tutes of Health and by the DART (Data Analytics That Are
Robust and Trusted) grant from NSF EPSCoR RII Track-1.

REFERENCES

[1] N. Ha, K. Xu, G. Ren, A. Mitchell, and J. Z. Ou, “Machine
learning-enabled smart sensor systems,” Advanced Intelligent
Systems, vol. 2, no. 9, p. 2000063, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000063

[2] O. Kursun and A. Patooghy, “An embedded system for collection and
real-time classification of a tactile dataset,” IEEE Access, vol. 8, pp.
97 462–97 473, 2020.

[3] O. Oballe-Peinado, J. A. Hidalgo-Lopez, J. Castellanos-Ramos, J. A.
Sanchez-Duran, R. Navas-Gonzalez, J. Herran, and F. Vidal-Verdu,
“Fpga-based tactile sensor suite electronics for real-time embedded pro-
cessing,” IEEE Transactions on Industrial Electronics, vol. 64, no. 12,
pp. 9657–9665, 2017.

[4] W. Duchaine, “Why tactile intelligence is the future of robotic grasping,”
in IEEE Spectrum Automaton. IEEE, 2016.

[5] C. Chi, X. Sun, N. Xue, T. Li, and C. Liu, “Recent progress in
technologies for tactile sensors,” Sensors, vol. 18, no. 4, p. 948, 2018.

[6] A. Moringen, W. Aswolinkiy, G. Buscher, G. Walck, R. Haschke, and
H. Ritter, “Modeling target-distractor discrimination for haptic search
in a 3d environment,” in 2018 7th IEEE International Conference on
Biomedical Robotics and Biomechatronics (BIOROB), Aug 2018, pp.
845–852.

[7] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
Journal of Machine Learning Research, vol. 15, pp. 3133–3181, 2014.
[Online]. Available: http://jmlr.org/papers/v15/delgado14a.html

[8] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[9] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems
(2nd Ed.). USA: Prentice-Hall, Inc., 1996.

[10] M. Al-Ashrafy, A. Salem, and W. Anis, “An efficient implementation
of floating point multiplier,” in 2011 Saudi International Electronics,
Communications and Photonics Conference (SIECPC), 2011, pp. 1–5.

[11] E. Alpaydin, Introduction to Machine Learning, Third Edition. The
MIT Press, Cambridge, 2014.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
Cambridge, 2016.

[13] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep learn-
ing: A review,” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–21, 2019.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–
8035, [Online documentation for the transforms package is available
at: https://pytorch.org/docs/stable/torchvision/transforms.html].

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12N
um

be
r o

f e
xa

m
pl

es
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 7 Class 8 Class 9 Class 10 Class 11 Class 12
a)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12N
um

be
r o

f e
xa

m
pl

es

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 7 Class 8 Class 9 Class 10 Class 11 Class 12
b)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12N
um

be
r o

f e
xa

m
pl

es

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 7 Class 8 Class 9 Class 10 Class 11 Class 12
c)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12N
um

be
r o

f e
xa

m
pl

es

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 7 Class 8 Class 9 Class 10 Class 11 Class 12
d)

Fig. 6: Confusion matrix visualizations for the classification using the sound recordings. Panels a to d correspond to strides of
1, 5, 10, and 20, respectively. Each panel shows the number of examples correctly classified in each class (with 50 examples
per class).

