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Abstract—This letter focuses on the optimal allocation of
multi-stage attacks with the uncertainty in attacker’s inten-
tion. We model the attack planning problem using a Markov
decision process and characterize the uncertainty in the
attacker’s intention using a finite set of reward functions—
each reward represents a type of attacker. Based on this
modeling, we employ the paradigm of the worst-case abso-
lute regret minimization from robust game theory and
develop mixed-integer linear program (MILP) formulations
for solving the worst-case regret minimizing sensor allo-
cation strategies for two classes of attack-defend interac-
tions: one where the defender and attacker engage in a
zero-sum game and another where they engage in a non-
zero-sum game. We demonstrate the effectiveness of our
algorithm using a stochastic gridworld example.

Index Terms—Markov process, game theory,
optimization.

I. INTRODUCTION

W ITH the increasing severity of cyber- and physical-
attacks, developing effective proactive defense aims to

enable early detection of attacks by strategically allocating
sensors/intrusion detectors. However, this task is complicated
by the fact that attackers often have varying objectives and
intentions. This letter studies the design of a robust proac-
tive sensor allocation, given the uncertainty in the objective
or the intention of the attacker. Our approach is motivated by
real-world cyber security incidents, where defenders have lim-
ited monitoring resources and must deal with attackers with
different objectives, ranging from using a botnet to interrupt
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services with a DDoS attack, distributing malware to steal
sensitive data, or privilege escalation attacks (see [18], a report
on recent cyber security incidents).

We formulate the attack planning problem as a Markov
decision process (MDP) and enable the defender to allocate
intrusion detectors, called sensors in this context, to detect
the presence of an attack. The sensor allocation modifies the
transition function of the attack MDP. Specifically, when a
state is allocated with a sensor, it becomes a sink/absorbing
state, as the attack terminates once a sensor state is reached.
Therefore, the goal of designing an optimal sensor alloca-
tion is to modify the transition function of the attack MDP
such that the attacker’s value can be minimized given the
best response attack strategy. The sensor allocation problem in
attack graphs [4] is closely related to Stochastic Stackelberg
Game (SSG) [16]. In an SSG, the defender/leader commits
to a strategy first to protect a set of targets with limited
resources, while the attacker/follower selects the best response
attack strategy to the defender’s strategy. Related to SSG
for sensor allocation, Li et al. [6] developed a mixed-integer
linear program (MILP) formulation for solving joint allo-
cation of detectors and stealthy sensors that minimizes the
attacker’s probability of success. Sengupta et al. [14] mod-
eled the attacker-defender interaction using a normal-form
game and proposed a mixed strategy for the defender to ran-
domize intrusion detectors. Besides the security game, other
resource allocation problems have been extensively studied.
These include distributing preventive resources to contain the
spreading process [9] in a network; allocating sensors for
maximizing coverage [7]. The main difference is that in game-
theoretic resource allocation, the decision maker’s objective
function is a function of the allocated resource and the best
response of the attacker, which can be influenced by how the
sensors are allocated.

Traditional Stackelberg security games assume that the
defender knows the attacker’s payoff function, which is often
not the case. To address this, researchers have studied robust
defense design from the perspective of robust optimization [1].
In [10], the authors considered robust Stackelberg equilib-
ria in normal form games where the uncertainty comes from
multiple ε-optimal best responses from the follower. In [17],
the authors used an MDP to model the attack planning problem
and employed robust optimization to design a moving target
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defense (MTD) policy that is robust to a finite uncertainty set
of attack strategies. In [5], the authors introduced a robust
Stackelberg equilibrium that maximizes the leader’s payoff
given the worst-case realization of the follower’s payoff in
a deterministic sequential game in which each player selects a
distribution over action sequences. The uncertainty is assumed
to lie within a bounded interval on the follower’s payoff.

Similar to [5], we also investigate the problem of robust
defense when the defender has incomplete knowledge about
the attacker’s payoffs, modeled as a finite set of attacker’s
types. Each type is associated with a unique reward function
that describes the attack objective. We consider robust sensor
allocation with the solution of the worst-case absolute regret
minimization [11].

The proposed Worst-Case Absolute Regret Minimization for
Sensor Allocation (WCARM-SA) solution informs a regret-
averse defender to choose a strategy that leads to a small regret
once he realizes what would have been the best decision if he
knew the attacker’s type. As shown in operations research, the
WCARM-SA solutions are often less conservative solutions
compared to those by robust optimization [11], [13].

Our contribution can be summarized as:
• We develop WCARM-SA methods to solve robust sen-

sor allocation problems in zero-sum and non-zero-sum
attack-defend interactions with uncertainty in the attack
intention, described by a finite set of possible attacker’s
reward functions. We demonstrate that the WCARM-SA
can be formulated as MILP problems for both cases.

• We leverage the zero-sum property to develop efficient
solution for the WCARM-SA for the zero-sum case.

• We validate the effectiveness of our proposed approach
through experiments with attack motion planning prob-
lems in stochastic gridworld environments.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notations: Let R denote the set of real numbers and R
n the

set of real n-vectors. The vector of all ones is represented as 1.
The notation zi refers to the i-th component of a vector z ∈ R

n

or to the i-th element of a sequence z1, z2, . . ., which will be
clarified by the context. The set of probability distributions
over a finite set Z is denoted as Dist(Z).

We begin by presenting an attack MDP that captures an
attacker’s planning problem.

Attack Planning Problem: The attack planning problem is
modeled as an attack MDP M = (S, A, P, ν, γ, R), where S
is a set of states (nodes in the attack graph) including a spe-
cial absorbing/sink state ssink, A is a set of attack actions,
P : S ×A → Dist(S) is a probabilistic transition function such
that P(s′|s, a) is the probability of reaching state s′ given action
a being taken at state s, ν ∈ Dist(S) is the initial state distri-
bution, γ ∈ (0, 1] is a discount factor, and R : S × A → R is
the attacker’s reward function such that R(s, a) is the reward
received by the attacker for taking action a in state s. The
attacker’s objective is to maximize the total discounted rewards
in the attack MDP. For concrete examples of attack graphs
generated from network vulnerabilities, readers are directed
to [4] and [6].

We consider Markovian policies because it suffices to search
in Markovian policies for an optimal policy in the attack
MDP [12]. Given a Markovian policy π : S → Dist(A), the

attacker’s value function Vπ
2 : S → R is defined as

Vπ
2 (s) = Eπ

[ ∞∑
k=0

γ kR(sk, π(sk))|s0 = s

]
,

where Eπ is the expectation and sk is the k-th state in the
Markov chain induced from the MDP M under the policy
π , starting from state s. The attacker’s value given the initial
distribution μ is Vπ

2 (μ) = ∑
s∈S μ(s)Vπ

2 (s).
Defender’s incomplete information: The defender knows the

dynamics in the attack MDP. However, the defender does not
know the exact reward function of the attacker; rather, the
defender is only aware that the attacker can fall into one attack
type at any given time. Different attacker types only differ in
their reward function in the attack MDP and share the same
states, actions, transition function, initial distribution, and dis-
count factor. Specifically, let T = {1, . . . , N} be the attacker’s
type space. Let Ri : S × A → R be the reward function for
attacker type i.

Defender’s countermeasures: To detect an ongoing attack,
the defender is capable of allocating sensors to a subset U ⊂ S
of states in the MDP M. The attack will be terminated immedi-
ately once the attacker reaches a state monitored by the sensor
(assuming the sensor’s false negative rate is 0).1 However, the
defender’s sensor allocation is constrained. Specifically, we
consider a sensor allocation as a Boolean vector �x ∈ {0, 1}|S|.
If �x(s) = 1, then the state s ∈ U is allocated with a sen-
sor. A valid allocation �x needs to satisfy �x(s) = 0 for any
s ∈ S \ U because only states in U can be monitored. In addi-
tion, the number of sensors cannot exceed a given integer k,
i.e., 1T�x ≤ k.

We state the problem informally as follows.
Problem 1: In the attack planning modeled as the MDP M

with uncertainty in the attacker’s type, how to robustly allocate
limited sensors with respect to the defense objective?

III. MAIN RESULTS

First, it is observed that a sensor allocation changes the
transition function of the attack MDP as follows.

Definition 1 (Attack MDP Equipped With Sensors): Given
a sensor allocation �x and the original attack MDP M =
(S, A, P, ν, γ, R), the attack MDP under �x is the MDP

M(�x) =
(

S, A, P�x, ν, γ, R
)
,

where S, A, ν, γ, R are identical to those in M, and P�x is
defined as

P�x(s′|s, a) =
⎧⎨
⎩

1, �x(s) = 1, s′ = ssink,

0, �x(s) = 1, s′ 
= ssink,

P(s′|s, a), �x(s) = 0.

To allocate sensors with uncertainty in the attacker’s type,
we employ a solution of robust game [11], [15], called
worst-case absolute regret minimization, which optimizes the
performance of a decision variable, �x in our context, with
respect to the “worst-case regret” that might be experienced
when comparing �x to the best decision that should have been
made given the attacker’s type i is known. Next, we discuss

1Please see the long version (https://arxiv.org/abs/2304.05962) for how to
deal with sensors with nonzero false negative rates.
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two approaches to solve worst-case regret minimizing sensor
allocations given i) Zero-sum attack-defend game: For each
attack type i, the defender’s value in M(�x) is the negation of
the attacker i’s value. ii) Non-zero-sum attack-defend game:
Regardless of the attacker’s type, the defender’s value in M(�x)
is defined by evaluating the attacker’s strategy with respect to
a defender’s cost function C : S×A → R. The defender’s goal
is to minimize the total discounted costs respecting C incurred
by the attacker’s strategy.

A. Worst-Case Regret Minimization in Zero-Sum Game

In the zero-sum case, it is first noted that the optimal sensor
allocation �xi for attacker’s type i can be obtained by solving
the following optimization problem:

�xi = arg min
�x∈X

max
π

Vπ
2,i(ν; �x).

where Vπ
2,i(ν; �x) is attacker i’s value given attack strategy π in

the MDP M(�x) and the attacker i’s reward Ri. The optimal sen-
sor allocation problem can be formulated as an MILP (see [6]).
As a result, the WCARM-SA problem is formulated as:

(WCARM-SA) minimize�x∈X max
i∈T

(
V2,i(�x) − V2,i(�xi)

)
where V2,i(�z) = maxπ Vπ

2,i(ν,�z) for z = �x, �xi. That is, the
attacker always chooses the optimal strategy in MDP M(�x).
The difference V2,i(�x) − V2,i(�xi) measures the regret of the
defender for choosing �x instead of �xi when the attacker is type
i. The regret is always non-negative for any sensor allocation
decision �x ∈ X because �xi = arg min�x V2,i(�x).

Because �xi is pre-computed for each attacker type, the
quantity V2,i(�xi) is a constant, denoted by vi for clarity. The
optimization problem is then written as:

minimize�x∈X max
i∈T

(
V2,i(�x) − vi

)
,

which is a robust optimization problem. The following lemma
shows how the robust optimization problem can be reformu-
lated as an MILP.

Lemma 1: The worst-case absolute regret minimization
problem for robust sensor allocation in a zero-sum game is
equivalent to the following optimization problem:

min.
y,�x∈X

y (1)

s.t. y ≥ V2,i(�x) − vi,∀i ∈ T , (2)

V2,i(�x) =
∑
s∈S

ν(s)V2,i(s; �x),∀i ∈ T , (3)

V2,i(s; �x) ≥ Ri(s, a) + γ
∑

s′
P�x(s′|s, a

)
V2,i

(
s′; �x),

∀s ∈ S,∀a ∈ A,∀i ∈ T , (4)

1T�x ≤ k. (5)

Proof: For attacker type i and a sensor design �x, the optimal
attacker’s value vector, denoted V∗

2,i(�x) ∈ R
|S| satisfies the

Bellman optimality condition: For all s ∈ S,

V∗
2,i(s, �x) = max

a∈A

(
Ri(s, a) + γ

∑
s′∈S

P�x(s′|s, a)V∗
2,i(s

′; �x)
)

.

Based on the linear program formulation of dynamic
programming [2], any vector V2,i(�x) satisfying the set of

constraints in (4) is an upper bound on the V∗
2,i(�x), for

all s ∈ S element-wise. Therefore,
∑

s∈S ν(s)V2,i(s; �x) ≥∑
s∈S ν(s)V∗

2,i(s; �x). Constraints (2), (3), and (4) together
enforce y ≥ maxi∈T (

∑
s∈S ν(s) V2,i(s; �x) − vi) ≥

maxi∈T (V∗
2,i(ν; �x) − vi).

For an arbitrary �x, let r(�x) = argmaxi∈T (V∗
2,i(ν; �x) − vi),

that is, the r(�x) is the attacker type for which the defender’s
regret of using �x is the largest among the regret for all
attacker’s types. Then we have y ≥ maxi∈T (V∗

2,i(ν; �x) − vi) =
V∗

r(�x)(ν; �x)−vr(�x). Because vr(�x) is a constant once r(�x) is deter-
mined, minimizing y is equivalent to minimizing the upper
bound of Vr(�x)(ν; �x) and thus y = V∗

r(�x)(ν; �x) − vr(�x). The
optimization problem is then min�x(V∗

r(�x)(ν; �x) − vr(�x)), which
is equivalent to the WCARM-SA formulation.

It is noted that the optimization problem in (1) is nonlin-
ear because the transition function P�x depends on the decision
variable �x and the constraints in (4) include product terms
between the transition probabilities with the other variable
V2,i(s, �x). We show how to transform the nonlinear program
into an MILP next.

By the definition of P�x in (2), the term∑
s′ P�x(s′|s, a)V2,i(s′; �x) in (5) satisfies∑

s′
P�x(s′|s, a)V2,i(s

′; �x)

=
{

V2,i(ssink; �x), �x(s) = 1,∑
s′ P(s′|s, a)V2,i(s′; �x), �x(s) = 0

=
∑

s′
P(s′|s, a)V2,i(s

′; �x)(1 − �x(s)) + V2(ssink; �x)�x(s)

=
∑

s′
P(s′|s, a)V2,i(s

′; �x)(1 − �x(s)),

where the last equality is implied by V2(ssink; �x) = 0. Define

W2,i(s, s′) = V2,i(s′; �x)(1 − �x(s)) =
{

V2,i(s′; �x), �x(s) = 0,

0, �x(s) = 1.
(6)

Using the big-M method [3], Eq. (6) can be expressed equiv-
alently as affine inequalities (in �x, V2,i, and W2,i)

W2,i(s, s′) ≤ M(1 − �x(s)), (7)

W2,i(s, s′) ≥ m(1 − �x(s)), (8)

W2,i(s, s′) − V2,i(s
′; �x) ≤ M�x(s), (9)

W2,i(s, s′) − V2,i(s
′; �x) ≥ m�x(s). (10)

with proper choices of constants M > 0 and m < 0. For
example, let M be the upper bound on the total rewards and
m be the negation of the upper bound on the total rewards.

B. Worst-Case Regret Minimization in Non-Zero-Sum
Game

Next, we consider the scenario where the defender aims to
minimize her cost function C : S × A → R, which maps a
state and an attack action to a cost penalty that measures the
loss incurred by the attacker’s action. Because the penalty is
not necessarily the negation of the attack reward, the attack-
defend game is non-zero-sum. For a single type of attacker,
we formulate the problem as a Stackelberg game as follows.
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Definition 2: For a single type of attacker whose attack
MDP is M = (S, A, P, μ, γ, R), and the defender’s capabil-
ity of allocating sensors, an SSG is formulated as a tuple
G = (S, A1, A2,P, ν, γ, R1, R2), where

• S, ν, γ are the same components in the attack MDP M
for states, initial distribution, and discount factor.

• A1 = {0, 1} is the defender/leader’s action set. Action 0
for not allocating a sensor, 1 for allocating a sensor.

• A2 = A is the attacker/follower’s actions.
• P(s′|s, a1, a2) is the probability of reaching state s′ given

action a1, a2 being taken by the defender and the attacker
at state s. For a state s ∈ S, a defender’s action a1 ∈ A1
and an attacker’s action a2 ∈ A2, let

P(s′|s, a1, a2) =
⎧⎨
⎩

1, a1 = 1, s′ = ssink,

0, a1 = 1, s′ 
= ssink,

P(s′|s, a2), a1 = 0.

• R1 : S × A1 × A2 → R (resp. R2 : S × A1 × A2 → R) is
the leader(resp. follower)’s reward function, defined with
the defender’s cost C (resp. the attacker’s reward R):

R1(s, a1, a2) =
{

0, a1 = 1,

−C(s, a2), a1 = 0,

R2(s, a1, a2) =
{

0, a1 = 1,

R(s, a2), a1 = 0.

In this SSG, the defender/leader decides the sensor allo-
cation, which determines the transition function P . The
attacker/follower decides on the best response to maximize his
reward. The reward function is understood as follows: When
the defender allocates a sensor to state s (i.e., a1 = 1), the
attack terminates in that state, and no further costs/rewards
will be incurred for either player. Otherwise (i.e., a1 = 0),
the attacker continues to reach the next state with action a2,
and both the defender and the attacker receive a reward of
−C(s, a2) and R(s, a2), respectively. In this formulated SSG,
both the defender and the attacker aim to maximize their
respective total discounted rewards.

Since sensors cannot be moved once allocated, we restrict
the defender’s strategy to be deterministic and memoryless.
Given a fixed sensor allocation, the best response attack strat-
egy can also be deterministic. For a strategy profile (π1, π2)–a
tuple of the defender’s strategy π1 : S → A1 and π2 : S → A2,
the defender’s value function V1 is defined as

V1(s;π1, π2) = E(π1,π2)

[ ∞∑
k=0

γ kR1(sk, π1(sk), π2(sk))|s0 = s

]
,

where the expectation is taken in the Markov chain induced
from G given the strategy profile (π1, π2).

For the non-zero-sum case, the WCARM-SA problem takes
the following form:

(WCARM-SA)minimizeπ1 max
i∈T

(
V1,i(ν, π i

1) − V1,i(ν, π1)
)
,

where V1,i(ν, π i
1) is the defender’s value given both the

defender and the attacker committing to the Stackelberg equi-
librium in the SSG G (Def. 2) where the attacker’s reward R2
is defined based on the reward function of attack type i. The
Stackelberg equilibrium can be solved with methods in [19],
with a modification that constrains the defender’s strategy to
be deterministic. The regret V1,i(ν, π i

1)− V1,i(ν, π1) measures

the defender’s regret in using strategy π1 against attacker i to
the defender’s best strategy π i

1 that should have been employed
when playing against attacker i.

To find π∗
1 that minimizes the worst-case regret, we intro-

duce a decision variable y and rewrite the optimization
problem as follows:

min.
π1

y (11)

s.t. y ≥ V1,i(ν, π i
1) − V1,i(ν, π1),∀i ∈ T , (12)

where V1,i(ν, π i
1) is a constant and is denoted by v̄1,i.

We extend the MILP formulation in [19] and get the follow-
ing mixed-integer nonlinear program (MINLP) formulation to
solve the WCARM-SA problem:

min
π1,{V1,i,π

i
2,V2,i|i∈T }

y (13a)

subject to:

y ≥ v̄1,i −
∑
s∈S

ν(s)V1,i(s), ∀i ∈ T , (13b)

π1(a1 | s) ∈ {0, 1}, ∀s ∈ S, a1 ∈ {0, 1}, (13c)∑
a1∈{0,1}

π1(a1 | s) = 1 ∀s ∈ S, (13d)

π i
2(a2 | s) ∈ {0, 1}, ∀i ∈ T , s ∈ S, a2 ∈ A, (13e)∑

a2∈A

π i
2(a2 | s) = 1, ∀i ∈ T , s ∈ S, (13f)

∑
s∈S

π1(1|s) ≤ k, (13g)

The following constraints hold ∀ i ∈ T , s ∈ S, a2 ∈ A2:(
π i

2(a2 | s) − 1
)
Z ≤ V1,i(s) − R̃i

1(s, π1, a2)

≤ (
1 − π i

2(a2 | s)
)
Z, (13h)

0 ≤ V2,i(s) − R̃i
2(s, π1, a2) ≤ (

1 − π i
2(a2 | s)

)
Z, (13i)

where R̃i
1(s, π1, a2) = ∑

a1∈{0,1} π1(a1|s)(R1(s, a1, a2) +
γ
∑

s′ P(s′|s, a1, a2)V1,i(s′)) represents the defender’s
expected value from state s given the sensor allocation
π1 and attacker’s action a2 from state s, and the function
R̃i

2(s, π1, a2) is defined for the attacker analogously by
substituting the defender’s reward and value of the next state
with the attacker’s. Z is a large constant number, which can
be the upper bound on the absolute value of total rewards.

The constraints in (13) are explained as follows:
Constraint (13b) enforces y to be the worst-case regret.
Constraint (13c) and (13d) enforce the defender takes a deter-
ministic strategy, constraint (13e), (13f) enforce attacker takes
a deterministic strategy. Constraint (13g) enforces the defender
can not allocate more than k sensors. Constraint (13h) enforces
that when the attacker i takes action a2, the defender’s value at
that state V1,i(s) should equal the expected value R̃i

1(s, π1, a2)

of defender against attacker i who takes action a2 at state s.
When the attacker does not take action a2, the constraint is
non-binding. This set of constraints obtain V1,i(s) by evaluat-
ing strategy π1 at the state s against the attacker’s best response
for π1. Constraint (13i) enforces that when the attacker i
takes action a2, his value V2,i(s) should be the same as his
expected value R̃i

2(s, π1, a2) given that action a2. When a2 is
not taken at s, the attacker’s value V2,i(s) should be greater
than the expected value R̃i

2(s, π1, a2) due to the fact that
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V2,i(s) = maxa2 R̃i
2(s, π1, a2). By enforcing this constraint,

we can ensure V2,i is the attacker’s value given the defender’s
strategy π1 and the attacker’s best response to π1.

Lemma 2: The worst-case absolute regret minimization
solution for robust sensor allocation in the non-zero-sum
attack-defender game is equivalent to the solution of (13).

The proof is similar to that of Lemma 1 and can
be found in the long version.2 The key insight is that
constraints (13b), (13i) and(13h) together enforce y ≥
maxi∈T (v̄1,i−∑s∈S ν(s)V1,i(s)) where V1,i(·) is the defender’s
value given the best response of attacker type i (enforced
by (13h)).

The above formulation is nonlinear due to the interaction
between the integer variable π1 and the continuous variable
V1,i in R̃i

1 (R̃i
2 analogously). But since the integer variable is

binary, we can use McCormick Relaxation [8] to reformulate
MINLP into MILP. To do so, let’s introduce new variables
for the defender: for i ∈ T , s ∈ S, a1 ∈ {0, 1}, a2 ∈ A2, define
wa1,a2

s,i = π1(a1|s)∑s′ P(s′|s, a1, a2)V1,i(s′). Analogously let
za1,a2

s,i be defined for the attacker.
We then replace R̃i

1(s, π1, a2) in (13h) with∑
a1∈{0,1}(π1(a1|s)R1(s, a1, a2) + γ wa1,a2

s,i ) and add the
following constraints: ∀i ∈ T , s ∈ S, a1 ∈ {0, 1}, a2 ∈ A:

wa1,a2
s,i ≥

∑
s′∈S

P
(
s′|s, a1, a2

)
V1,i

(
s′)− Z(1 − π1(a1|s)),

wa1,a2
s,i ≤

∑
s′∈S

P
(
s′|s, a1, a2

)
V1,i

(
s′)+ Z(1 − π1(a1|s)),

−Z · π1(a1|s) ≤ wa1,a2
s,i ≤ Z · π1(a1|s).

We replace R̃i
2(s, π1, a2) in (13i) and add constraints for za1,a2

s,i
analogously. For both zero-sum and non-zero-sum cases, the
formulated MILP can be solved using the Gurobi Solver.

Remark 1: If different attackers have different transition
functions Pi, then their corresponding transition functions are
used in Constraints (4) for the zero-sum case and in defining
R̃i

1(s, π1, a2) and R̃i
2(s, π1, a2) for the non-zero-sum case.

Complexity analysis: Solving an MILP is NP-complete
and its runtime complexity depends on the number of con-
straints and integer variables. In the non-zero-sum case, the
number of integer variables required for the WCARM-SA is
O(|S| × |A2| × |T |). The number of constraints is O(|S| ×
|A1| × |A2| × |T |). For the zero-sum case, the number
of integer variables and constraints is O(|S|) and O(|S| ×
|A2| × |T |) respectively. While the WCARM-SA solution
for the non-zero-sum case can be applied to the zero-sum
case, the zero-sum case formulation in Section III-A is more
efficient.

IV. EXPERIMENTS

We used an 8 × 8 gridworld environment, depicted in
Figure 1, to demonstrate our solutions. A state is denoted by
(row, col). There are two types of attackers with the same ini-
tial state distribution. Both attackers have a 70% probability
of starting from state (2, 0) and a 30% probability of start-
ing from state (6, 0). Each attacker can move in one of four
compass directions. When given the action “N”, the attacker
enters the intended cell with a 1−2α probability, and enters the

2https://arxiv.org/abs/2304.05962

Fig. 1. The 8 × 8 Gridworld Example.

TABLE I
REWARD FUNCTIONS OF TWO ATTACKERS AND THE COST FUNCTION

OF THE DEFENDER (FOR THE NON-ZERO-SUM CASE)

neighboring cells, which are the west and east cells, with prob-
ability α. In our experiment, we set α = 0.1. If the attacker
moves into the buildings or the boundary, he remains in the
previous cell. The environment contains three final states, each
with a different value for the attackers. The attackers only
receive a reward when they reach these final states. Table I
lists the rewards for the attackers.

First, we consider the worst-case regret minimization in
the zero-sum case. We change the number of sensors the
defender can allocate to evaluate how sensor numbers affect
the defender’s value. As shown in Figure 2, the attacker’s
expected value decreases when the sensor number increases.

In the case where only two sensors can be allocated, we
compare the robust sensor allocation �x∗ with the optimal allo-
cation strategies �x1 and �x2 against attacker types 1 and 2,
respectively. When the defender knows the attacker’s type,
�x1 yields a value of 5.96 for attacker 1 and �x2 yields a
value of 6.56 for attacker 2. However, when the defender
does not know the attacker’s type and implements �x∗, the
values become 6.12 and 7.04 for attackers 1 and 2, respec-
tively. In this case, the defender’s worst-case absolute regret
is max(6.12 − 5.96, 7.04 − 6.56) = 0.48.

Using �x1 against attacker 2 results in a regret of 0.89, while
using �x2 against attacker 1 results in a regret of 1.49. In both
cases, the worst-case regret is higher than that of �x∗, indicating
the advantage of the WCARM-SA method. The WCARM-SA
sensor allocations for different numbers of sensors are listed
in Table II as well as the defender’s worst-case regret under
the robust policy. When 4 sensors are allocated, �x1 = �x2 =
�x∗ = (1, 5), (2, 5), (5, 5), (7, 5) and the defender’s worst-case
regret y = 0. An attacker is prevented from reaching any final
state with probability 1.

Moving on to the non-zero-sum case, the defender now
receives a penalty when the attacker reaches the goal state,
and the cost function for the defender is listed in Table I.
The sensor allocation strategies for the non-zero-sum cases,
as well as the defender’s worst-case regret under the robust
policy, can be found in Table III. Noted that the worst-case
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TABLE II
SENSOR ALLOCATION IN THE ZERO-SUM CASE. �xi IS THE OPTIMAL

DEFENDER POLICY AGAINST ATTACKER TYPE i ∈ {1, 2}

Fig. 2. The attacker’s expected value for zero-sum case.

TABLE III
SENSOR ALLOCATION IN THE NON-ZERO-SUM CASE. �xi IS THE

OPTIMAL DEFENDER POLICY AGAINST ATTACKER TYPE i ∈ {1, 2}

Fig. 3. The defender’s expected value.

regret is not indicative of the effectiveness of sensor alloca-
tions, that is, a small regret does not necessarily mean a large
value for the defender. Thus, Figure 3 demonstrates that the
defender’s expected value increases as the number of sensors
increases. From Fig. 3, it is observed that when two sen-
sors are deployed, the worst-case regret is the largest for both
attackers.

Similar to the zero-sum case, when 4 sensors can be allo-
cated, �x1 = �x2 = �x∗ = (1, 5), (2, 5), (5, 5), (7, 5) and the
defender’s worst-case regret y = 0.

The experiments are conducted on a Windows 10 machine
with Intel i7-11700k CPU and 32 GB RAM. The compu-
tation time for robust sensor allocations in the zero-sum
cases is less than 1 second. For non-zero-sum cases, it takes
from 77 sec to 3 hours to solve given increasing sensor
numbers.

V. CONCLUSION

We develop robust sensor allocation methods in probabilis-
tic attack planning problems using worst-case absolute regret
minimization from robust game theory. We demonstrated
that both robust zero-sum and non-zero-sum sensor alloca-
tion problems can be formulated as MILPs. Our approach
is suitable for a wide range of safety-critical scenarios that
involve constructing probabilistic attack graphs from known
network vulnerabilities. Future work could focus on devel-
oping more efficient and approximate solutions for robust
sensor allocations in non-zero-sum games. Additionally, the
solution concept for robust games can be extended to design
moving target defenses that randomize network topologies and
the integrated design of sensor allocation and moving target
defense.
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