
Abstract  Atmospheric rivers (ARs) are filaments of enhanced horizontal moisture transport in the 
atmosphere. Due to their prominent role in the meridional moisture transport and regional weather extremes, 
ARs have been studied extensively in recent years. Yet, the representations of ARs and their associated 
precipitation on a global scale remains largely unknown. In this study, we developed an AR detection algorithm 
specifically for satellite observations using moisture and the geostrophic winds derived from 3D geopotential 
height field from the combined retrievals of the Atmospheric Infrared Sounder and the Advanced Microwave 
Sounding Unit on NASA Aqua satellite. This algorithm enables us to develop the first global AR catalog 
based solely on satellite observations. The satellite-based AR catalog is then combined with the satellite-based 
precipitation (Integrated Muti-SatellitE Retrievals for GPM) to evaluate the representations of ARs and 
AR-induced precipitation in reanalysis products. Our results show that the spreads in AR frequency and AR 
length distribution are generally small across data sets, while the spread in AR width is relatively larger. 
Reanalysis products are found to consistently underestimate both mean and extreme AR-related precipitation. 
However, all reanalyses tend to precipitate too often under AR conditions, especially over low latitude regions. 
This finding is consistent with the “drizzling” bias which has plagued generations of climate models. Overall, 
the findings of this study can help to improve the representations of ARs and associated precipitation in 
reanalyses and climate models.

Plain Language Summary  Atmospheric rivers (ARs) are filaments of enhanced horizontal 
moisture transport in the atmosphere. These weather systems are responsible for most of the poleward 
atmospheric moisture transport over midlatitudes and can cause extreme precipitation around the world. For 
a long time, researchers relied heavily on reanalysis products to study ARs. Albeit incorporating information 
from observations, reanalyses are produced by numerical models and thus should not be treated as real 
observations. In this study, for the first time, we developed a near global AR detection algorithm specially for 
satellite observations. Unlike previous AR detection algorithms designed for satellite observations, which were 
applicable to mean moisture content and on regional scales, our algorithm utilizes both the moisture field and 
wind information from satellite observations. Our algorithm can thus better characterize the transport nature 
of the detected ARs. Using both the developed algorithm and NASA satellite observations, we developed 
the first satellite-based near global AR catalog. This satellite-based AR catalog together with NASA satellite 
precipitation product was then used to evaluate how well major reanalyses represent ARs and their associated 
precipitation. We found that reanalyses generally perform well in representing the AR occurrence frequency 
and length, but show relatively larger uncertainty in representing the AR width. In reanalyses, ARs produce 
precipitation that is both too weak and too frequent. Our findings can help to improve the representation of ARs 
and associated precipitation in reanalyses and climate models. As the quality of satellite observations continues 
to improve, the methodology presented here can be applied to other satellite observations to develop higher 
resolution or higher frequency AR statistics.
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1.  Introduction
Characterized as filaments of enhanced moisture transport in the atmosphere, atmospheric rivers (ARs) play a 
critical role in the global hydrological cycle. Despite only covering a very small fraction of the Earth's circum-
ference, on average ARs contribute to >90% of the poleward moisture transport over midlatitudes (Zhu & 
Newell, 1998). At the regional scale, depending on their strength and duration, ARs can exert either beneficial 
or detrimental impacts upon landfall (Eiras-Barca et al., 2021; Ralph et al., 2019). It has been shown that ARs 
are important freshwater suppliers to many coastal regions around the world and can serve as effective drought 
busters (Dettinger, 2013; Dettinger et al., 2011; Guan et al., 2010; Rutz & Steenburgh, 2012; Viale et al., 2018). 
For example, it has been estimated that up to half of the annual precipitation over California is delivered by 
ARs (Dettinger et al., 2011). Meanwhile, intense ARs making landfall usually lead to a wide range of weather 
hazards, such as wind and precipitation extremes, and flooding (X. Chen et al., 2018; Henn et al., 2020; J. Kim 
et al., 2018; Lamjiri et al., 2017; Lavers & Villarini, 2013; W. Ma, Norris, & Chen, 2020; Paltan et al., 2017; 
Ralph et al., 2006; Waliser & Guan, 2017). In recent years, there are an increasing number of studies on ARs' role 
in sea ice variability (Hegyi & Taylor, 2018; Wang et al., 2020; Woods & Caballero, 2016; Zhang et al., 2023) 
and ice shelf stability (Djoumna & Holland, 2021; Mattingly et al., 2018; Wille et al., 2019, 2022), extending the 
understanding of AR impacts beyond midlatitude areas.

Most AR studies have treated reanalysis products as observations (DeFlorio et al., 2019; Guan & Waliser, 2017; 
Massoud et al., 2019). Yet, reanalyses are not obtained by direct observations but produced by models which 
are constrained by observations through data assimilation. Since reanalyses are model-based “observations,” it 
is expected that each reanalysis would have its own biases intrinsic to the model used to produce it, especially 
over the regions where the observation networks are sparse (e.g., Guan et al., 2020). However, most AR studies, 
which use reanalyses as observations, usually assume that ARs in reanalyses are representative of the true obser-
vation. Given the inherent errors of the models used to produce these reanalyses, such an assumption needs to be 
justified. So far, studies on the intercomparison between reanalyses and observations of the AR representations 
are very limited, which reduces our confidence in the ability of reanalyses in representing ARs. By evaluating 
six AR events in reanalyses against aircraft observations, Ralph et al. (2012) concluded that Climate Forecast 
System Reanalysis (CFSR) (Saha et al., 2010), Modern-Era Retrospective analysis for Research and Applica-
tions (MERRA) (Rienecker et al., 2011) and European Centre for Medium-Range Weather Forecasts (ECMWF) 
interim reanalysis (ERAI) (Dee et al., 2011) exhibit comparable skills in representing the characteristics of these 
six ARs. These three reanalyses also have better performance compared to National Centers for Environmen-
tal Prediction (NCEP)-National Center for Atmospheric Research (NCAR) Reanalysis I (NCEP R1) (Kalnay 
et al., 1996), Tropospheric Chemistry Reanalysis (TCR) (Miyazaki et al., 2012), and North American Regional 
Reanalysis (NARR) (Mesinger et al., 2006). Expanding the sample size to 21 AR events, Guan et al. (2018) found 
that, compared to dropsonde observations, ERAI and MERRA, Version 2 (MERRA-2) (Gelaro et al., 2017) have 
a mean error of −2% and −8% in AR width, respectively, and +3% and −1% in total integrated water vapor 
transport (IVT), respectively. Using MERRA-2, ECMWF Reanalysis Version 5 (ERA5) (Hersbach et al., 2020) 
and Japanese 55-year Reanalysis (JRA-55) (Kobayashi et al., 2015), a recent study from the Atmospheric River 
Tracking Method Intercomparison Project (ARTMIP) (Shields et al., 2018) found that ARs tend to get detected 
more frequently in MERRA-2 due to its higher climatological IVT and also noted that ARs in ERA5 tend to be 
narrower due to its finer spatial resolution (Collow et al., 2022). It is immediately apparent that the above studies 
either evaluate AR representations in reanalyses using a small sample of observations over a limited area, or 
evaluate uncertainty in AR representations based on intercomparison between a few reanalyses themselves. In 
addition, these studies have only examined the representation of basic AR characteristics, such as AR frequency 
and intensity, in reanalyses, leaving AR-induced precipitation in reanalyses largely unexplored.

Besides reanalyses, satellite observations have also been frequently used to characterize ARs and their associ-
ated precipitation (Arabzadeh et al., 2020; Behrangi et al., 2016; Cannon et al., 2017, 2020; Guan et al., 2010; 
Matrosov, 2013; Neiman, Ralph, Wick, Kuo, et al., 2008; Neiman, Ralph, Wick, Lundquist, et al., 2008; Ralph 
et al., 2004; Wick et al., 2013). Integrated water vapor (IWV) from the Special Sensor Microwave Imager (SSM/I) 
(Hollinger et al., 1990) has been instrumental since early studies of ARs. For example, by compositing the IWV 
from SSM/I of 312 AR events over the eastern North Pacific, Ralph et al. (2004) established the IWV AR thresh-
old and found that, on average, the IWV magnitude and width of a typical AR is about 2.81 cm and 388 km, 
respectively. Focusing on landfalling ARs along western North America from 1997 to 2005, Neiman, Ralph, 
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Wick, Lundquist, et al. (2008) used the IWV from SSM/I to investigate AR seasonality and landfall orientation. 
They found that warm season ARs tend to occur in the North while cool season ARs tend to occur in the South. 
Winter landfalling ARs tend to extend northeastward from the tropical eastern Pacific while summer landfalling 
ARs tend to be more zonally oriented. Building on these studies, an automated AR detection method using satel-
lite IWV was introduced in Wick et al. (2013). Besides AR characteristics, AR-induced precipitation has also 
been studied using satellite observations. For example, using radar reflectivity profiles from the Global Precip-
itation Measurement Dual-Frequency Precipitation Radar (GPM-DPR), Cannon et al. (2020) showed that both 
stratiform and convective precipitation is abundant in ARs, and that AR-induced precipitation is usually triggered 
by forced ascent in the vicinity of a cold front in frontogenetic environments. While these satellite-based studies 
have improved our understanding of ARs in observations, most of these studies focused on ARs occurring over 
the eastern North Pacific, and a global satellite-based AR study is lacking. Second, since 3D satellite observed 
wind field is currently not available, these studies usually detect ARs by adopting a simple IWV threshold of 
2 cm and requiring the detected object to be longer than 2,000 km and narrower than 1,000 km (Neiman, Ralph, 
Wick, Kuo, et al., 2008; Ralph et al., 2004; Wick et al., 2013). However, ARs are defined as enhanced moisture 
transport in the atmosphere (AMS Glossary of Meteorology, 2017). Detecting ARs using only the moisture field 
would inevitably run the risk of detecting filamentary features which resemble ARs, but are associated with weak 
moisture transport due to stagnant weather conditions. Furthermore, variability in ARs at different time scales 
can be controlled by the variabilities in both circulation and moisture (Gao et al., 2015; W. Ma & Chen, 2022; W. 
Ma, Chen, & Guan, 2020; Ma et al., 2021; Payne et al., 2020; Zhang et al., 2021). For example, at the interannual 
time scale, it has been shown that AR variability is predominantly controlled by the circulation variability (W. 
Ma & Chen, 2022). But at the decadal time scale, either the circulation variability (Z. Ma, Xu, et al., 2020) or the 
moisture variability (Zhang et al., 2021) can dominate the AR variability. Using only IWV in the AR detection 
can generate AR variability which only reflects the variability in the moisture field and thus fails to capture the 
variability in the circulation field. Therefore, further improvements are needed to incorporate the wind compo-
nent into the AR Detection Tool (ARDT) for satellite observations.

Given the limitations in the previous AR studies discussed above, the goals of this study are threefold: (a) 
improve previous ARDT for satellite observations by incorporating satellite-based wind information, (b) perform 
a comprehensive intercomparison of AR representations between seven reanalyses, which are commonly used in 
AR community, and satellite observation, (c) evaluate AR precipitation in reanalyses against precipitation from 
satellite observation. The structure of this paper is organized as follows. Section 2 describes the reanalyses and 
satellite data used, as well as the approach used to detect ARs in satellite data. Main results will be presented in 
Section 3. A brief conclusion and discussion are provided in Section 4.

2.  Data and Methods
2.1.  Satellite Data and Reanalyses

IWV from SSM/I (Hollinger et  al.,  1990) has been widely used in AR studies (Neiman, Ralph, Wick, Kuo, 
et al., 2008; Ralph et al., 2004; Wick et al., 2013). However, the spatial coverage of SSM/I is confined to oceans 
while observations over land, which are most relevant for AR impacts, are not available. To circumvent this issue, 
the version 6 (V6) Level 3 (L3) total integrated column water vapor (TotH2OVap or IWV) product from the 
combined retrievals of the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit 
(AMSU) instruments on NASA's Aqua satellite is used in this study (hereafter AIRS/AMSU) (AIRS Science 
Team/Joao Teixeira, 2013). The AIRS/AMSU data set has a global coverage (land + ocean) with spatial reso-
lution of 1° × 1° and daily temporal resolution. Daily observations consist of an ascending orbit and a descend-
ing orbit (Tian et al., 2013). We take the average of these two orbits to obtain a much smoother field which 
is representative of the daily mean. Due to the limited swath width of the satellite observations, gaps with no 
observation exist between swaths. While averaging the ascending orbit and descending orbit to create the daily 
mean can effectively remove most of these swath gaps, small gaps remain over subtropical regions after this 
procedure. We fill in these small gaps using the “poisson_grid_fill” function from NCL (The NCAR Command 
Language, 2019). Note that the results presented in this study would not be affected by whether these small gaps 
are being filled or not. In order to get the lower tropospheric wind information, geopotential heights at 925, 850, 
700, and 600 mb levels are also obtained from the AIRS/AMSU and processed in the same way as the IWV 
field (see Section 2.2 for the use of this variable in our study). Observed precipitation is based on the Integrated 
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Muti-SatellitE Retrievals for GPM (IMERG) Version 6 Final Run (Huffman et al., 2019). This satellite-based 
precipitation data set has been widely used in previous studies for midlatitude weather systems, such as cyclones 
and ARs (Arabzadeh et al., 2020; Naud et al., 2020). Due to the temporal coverage of the AIRS/AMSU combined 
retrievals, the study period of this work is from 31 August 2002 to 24 September 2016.

Seven reanalyses, most of which have been widely used in AR studies, are employed here: they are MERRA-2 
(Gelaro et al., 2017), ERA5 (Hersbach et al., 2020), ERAI (Dee et al., 2011), JRA-55 (Kobayashi et al., 2015), 
CFSR (Saha et al., 2010), NCEP/Department of Energy (DOE) Reanalysis II (NCEP R2) (Kanamitsu et al., 2002), 
and NCEP R1 (Kalnay et al., 1996). The inclusion of ERAI, NCEP R1, and NCEP R2 here allows us to see if 
there are any improvements in the AR representation from older generations of reanalyses to newer generations 
of reanalyses. These data sets have varied temporal resolutions. Data at 00 and 12 UTC are averaged to obtain the 
daily mean. We also tried calculating the daily mean using data at 00, 06, 12, and 18 UTC. The results presented 
in this study are not sensitive to how the daily mean is calculated (not shown). Both IWV and geopotential height 
are bilinearly interpolated to a common resolution of 1° × 1° before analysis. The precipitation fields from reanal-
yses also have varied temporal resolutions. Some data sets provide the field at the analysis time step while others 
provide it at forecast time step, although all reanalysis precipitation data used are essentially short-term forecasts 
(i.e., no assimilation of observed precipitation) and purely generated by the models without any corrections based 
on observations. Precipitation data are thus processed accordingly to obtain the daily mean. More specifically, daily 
precipitation from MERRA-2 and ERA5 is calculated by aggregating hourly total precipitation. Daily precipitation 
in ERAI is calculated by summing the 12-hr forecasted accumulated precipitation initialized at 00 and 12 UTC. 
Daily precipitation in JRA-55 is calculated from the forecasted precipitation rate initialized at 00, 06, 12, and 18 
UTC with steps of 3 and 6 hr. Daily precipitation in CFSR is calculated by aggregating the 6-hr forecasted accumu-
lated precipitation initialized at 00, 06, 12, and 18 UTC. For NCEP R1 and NCEP R2, mean daily precipitation rate 
is available for direct download. All reanalysis-based precipitation data and IMERG are regridded to a common 
1° × 1° resolution using an areal conservative method (“area_conserve_remap” from NCL) before analysis.

2.2.  AR Detection Method

As has been discussed above, AR detections from satellite data usually rely only on the IWV because satellite-based 
3D wind fields are not available. To introduce wind information into the AR detection, we derive geostrophic winds 
from the geopotential height at 925, 850, 700, and 600 mb levels using the “z2geouv” function from NCL. Outside 
of the deep tropics in ERA5, geostrophic winds at these levels are found to temporally correlate with the actual 
winds with correlation coefficients close to one (not shown). Geostrophic winds at these four levels are then verti-
cally averaged to obtain the mass-weighted vertical average geostrophic zonal 〈Ug〉 and meridional 〈Vg〉 winds using

⟨𝑈𝑈𝑔𝑔⟩ =
𝑈𝑈925 × 37.5 + 𝑈𝑈850 × 112.5 + 𝑈𝑈700 × 125 + 𝑈𝑈600 × 50

(37.5 + 112.5 + 125 + 50)
�

⟨𝑈𝑈𝑔𝑔⟩ =
𝑉𝑉925 × 37.5 + 𝑉𝑉850 × 112.5 + 𝑉𝑉700 × 125 + 𝑉𝑉600 × 50

(37.5 + 112.5 + 125 + 50)
�

where the subscripts in U and V denote pressure levels. The weights used for the vertical average are calculated using

weight at 925mb =
925mb − 850mb

2
= 37.5mb�

weight at 850mb =
(925mb − 850mb) + (850mb − 700mb)

2
= 112.5mb�

weight at 700mb =
(850mb − 700mb) + (700mb − 600mb)

2
= 125mb�

weight at 600mb =
700mb − 600mb

2
= 50mb�

The IVT based on the weighted vertical average of geostrophic winds, which we will call the geostrophic IVT 
(GIVT), is then calculated as follows:

GIVT =

√

(IWV × ⟨𝑈𝑈𝑔𝑔⟩)
2
+ (IWV × ⟨𝑉𝑉𝑔𝑔⟩)

2�

 21698996, 2023, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038937 by U
niversity of C

alifornia - Los A
nge, W

iley O
nline Library on [21/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Atmospheres

MA ET AL.

10.1029/2023JD038937

5 of 21

We find that the GIVT can serve as a good proxy for the actual IVT in terms of magnitude. As demonstrated 
in Figures 1a and 1b, the snapshot of the GIVT shown for ERA5 is nearly identical to the snapshot of actual 
IVT. Filaments of enhanced IVT in the actual IVT field can also be found in the GIVT field. Minor differences 
between these two fields only exist in the magnitude: GIVT tends to slightly overestimate the magnitude of the 
actual IVT, especially over regions with enhanced IVT. Indeed, as shown in Figure 2a, which plots the joint 
probability distribution function (PDF) of the actual IVT versus GIVT in ERA5 for the year 2003, most of the 
points fall along the one-to-one line, indicating the good correspondence between the GIVT and the actual IVT. 
As IVT increases, slightly more points are located above the one-to-one line than those located below it. This 
corroborates the results in Figures 1a and 1b that GIVT tends to be slightly stronger than the actual IVT over 
enhanced IVT regions. Such subgeostrophic wind is expected near a low-pressure center due to gradient wind 
balance. As shown later, such a slight overestimate of the IVT magnitude by the GIVT has negligible effect on 
the ARs detected due to the percentile-based threshold adopted by the ARDT used in this study.

The ARDT used in this study is based on the IVT-based Guan and Waliser  (2015) algorithm, with modifi-
cations so that GIVT can be directly used as input. This ARDT is a global algorithm which has been widely 
used in AR studies (e.g., Arabzadeh et al., 2020; Espinoza et al., 2018; Ionita et al., 2020; J. Kim et al., 2021; 
Nash et  al.,  2018). Notable criteria adopted by this ARDT are listed here. Readers are referred to Guan and 

Figure 1.  A snapshot of the integrated water vapor transport (IVT) (a) and geostrophic IVT (GIVT) (b) in ERA5 on 5 October 2003. Panel (c) is showing the same 
snapshot of GIVT, but from AIRS/AMSU. Corresponding atmospheric rivers (ARs) detected by the modified algorithm are shown in (d), (e), and (f), respectively.

Figure 2.  Joint probability distribution function of integrated water vapor transport (IVT) versus geostrophic IVT (GIVT) in ERA5 (a) and IVT from ERA5 versus 
smoothed GIVT from AIRS/AMSU (b). Correlations are shown at the upper left of each panel. Note that the color bars are in logarithmic scale and only data from the 
year 2003 are used.
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Waliser  (2015) for a detailed description of the algorithm. In the first step of the detection, a seasonally and 
regionally dependent 85th percentile of the IVT magnitude, or 100 kg m −1 s −1, whichever is greater, is used as the 
intensity threshold. The detected “objects” are then further filtered by three IVT direction criteria. The detected 
“object” will be filtered out if (a) more than half of the grid cells have IVT direction deviating >45° from the 
object's mean IVT direction (the coherence criterion), (b) mean poleward meridional IVT is <50 kg m −1 s −1 
(the meridional IVT criterion), and (c) direction of object-mean IVT deviates from the overall orientation of 
the object's shape by >45° (the consistency criterion). Objects which pass these three IVT direction criteria are 
subjected to further geometrical screening, such that the final detected ARs are longer than 2,000 km in length 
and have a length/width ratio greater than two.

To test the sensitivity of the algorithm to the input variables, in the first step, we used both the IVT and GIVT 
from ERA5 as input to the original Guan and Waliser (2015) ARDT. The GIVT-based AR frequency, which is 
defined as the fraction of time a grid cell experiences AR conditions, is very similar to that based on the IVT 
(Figure S1 in Supporting Information S1). Enhanced AR frequency is found over the midlatitude storm track 
regions (Figure S1a in Supporting Information S1). However, compared to the AR frequency based on the IVT, 
results based on the GIVT underestimate AR frequency over midlatitude regions and overestimate it over the 
subtropics (Figure S1b in Supporting Information S1). We then removed the three IVT direction criteria one at a 
time, and tested the sensitivity of the modified algorithm to the input variables. We found that removing either the 
coherence criterion or the consistency criterion has very little effect on the AR frequency (Figures S1c and S1e 
in Supporting Information S1), consistent with the degree of filtering associated with the two criteria reported 
in Guan and Waliser  (2015). The differences between the IVT-based AR frequency and the GIVT-based AR 
frequency persist (Figures S1d and S1f in Supporting Information S1). However, once we removed the merid-
ional IVT criterion, the differences between the IVT-based AR frequency and the GIVT-based AR frequency 
mostly vanish (Figure S1h in Supporting Information S1). Meanwhile, the magnitude of the AR frequency also 
increases nearly everywhere (Figure S1g in Supporting Information S1). These results imply that the differences 
in the magnitude of the meridional IVT between the IVT and GIVT are likely nonnegligible. This is likely due 
to boundary layer friction that causes the direction of actual winds to deviate from geostrophic winds. Given the 
results found in the sensitivity experiments, we removed the three IVT direction criteria of the original algorithm 
in our modified algorithm. After these three IVT direction criteria are removed, AR frequency increases nearly 
everywhere and its distribution becomes more uniform (Figure S1i in Supporting Information S1).

Besides removing these three criteria, two additional minor modifications are also made to the algorithm. We 
found that the modified algorithm tends to detect too many ARs over the Northern Hemisphere continents during 
boreal summer. To partially alleviate this problem, instead of calculating the IVT threshold for a particular 
month using all the time steps from the 5 months centered on that month over the study period, we only use 
the time steps from that month in the modified algorithm. Furthermore, previous studies suggested that the 
Guan and Waliser (2015) algorithm may occasionally pick up tropical disturbances as ARs (Guan et al., 2018; 
Lora et al., 2020). To remedy this problem, we impose that, if the detected object has all its area located within 
30°N/S, it will be filtered out. This criterion mostly affects ARs within 30°N/S and it reduces the magnitude 
of AR frequency over these regions. We want to emphasize that the conclusions presented in this study are not 
sensitive to whether these two additional modifications are adopted or not (not shown). In summary, our modified 
algorithm is based on the Guan and Waliser (2015) ARDT and detects ARs with an enhanced IVT/GIVT relative 
to its background state, a length greater than 2,000 km, and a length/width ratio greater than two (see Table S1 
in Supporting Information S1 for the summary of the differences between the original Guan and Waliser (2015) 
algorithm and the modified algorithm used in this study).

Due partly to the low sampling frequency in satellite observations, the geostrophic winds derived from the 
geopotential height tend to be noisier compared to the smoother fields in reanalyses (Fetzer et al., 2006; Hearty 
et al., 2014; North et al., 1993; Tian & Thomas, 2020; Tian et al., 2013). Since geostrophic winds are derived 
based on the gradient of the geopotential height, these noises in the geopotential height result in the derived 
geostrophic winds being too strong compared to the geostrophic winds in reanalyses. We applied a simple bias 
correction to the satellite weighted vertical average geostrophic wind speed so that the satellite mean wind speed 
over midlatitudes is equal to that in ERA5 (see Text S1 in Supporting Information S1 for details on how the 
bias correction is carried out). We found that these noises in the geostrophic wind field in satellite data can 
also increase the “false negative” rate for AR detection. In other words, features which are detected as ARs in 
reanalyses are occasionally not picked up as ARs in satellite data. After manually examining those ARs which are 
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detected in reanalyses, but not in satellite data, we found that most of those ARs are either fragmented into multi-
ple smaller objects or showed a concentration of intense GIVT magnitude within a smaller single object in the 
satellite data. Both situations can result in the AR failing to meet the geometric criteria for an AR. To resolve this 
issue, Gaussian smoothing was applied to the bias-corrected weighted vertical average geostrophic wind speed of 
the satellite data. (Note that Gaussian smoothing is not applied to the reanalyses because the data from reanalyses 
is already quite smooth.) We adjusted the size of the smoothing kernel by varying the sigma parameter ranging 
from 1 to 6 in an increment of 0.5. We found that, when the sigma is too small, the resulting field is not smooth 
enough. This results in the “false negative” rate remaining high. However, when we set the sigma too large, the 
field is smoothed out too much. This effect can cause some filaments of enhanced IVT to be smoothed out and 
thus potentially get filtered out during the detection process. We set the sigma to be three in this study as a balance 
between smoothing the IVT enough yet not inadvertently erasing any filamentary structure. This smoothing on 
the AIRS/AMSU geostrophic wind field tends to slightly enhance the weak GIVT values while weakening the 
strong GIVT values (Figures 1c and 2b). Since the ARDT used in this study uses a percentile-based threshold and 
the threshold is calculated after the smoothing is applied, the smoothing is expected to have very minor effects 
on the ARs detected (comparing Figure 1f with Figures 1d and 1e). As a result, the AR frequency difference 
between ERA5 and AIRS/AMSU is small when sigma is set to three. These two additional operations on the 
satellite data are based on the assumption that the ERA5 winds are better representative of the true observation, 
as the satellite-based geostrophic winds are not directly measured or dynamically constrained. Whether such an 
assumption is valid or not is not a concern in this study, since both satellite data and reanalyses have their own 
biases in representing AR winds, and the purpose of this study is not to treat satellite data as the true observation 
and evaluate the biases in reanalyses relative to satellite observations. Instead, our goal is to demonstrate the feasi-
bility of including wind information for AR detection based on satellite data and also comprehensively investigate 
the spread among reanalyses. Therefore, the assumption we made is justifiable for the purpose of this study.

3.  Results
3.1.  AR Frequency and Characteristics

Figure 3a shows the annual AR frequency distribution in AIRS/AMSU. Enhanced AR frequency is observed over 
the midlatitude oceans. Unlike the AR frequency distribution obtained from other global ARDTs that participated 
in the ARTMIP (Figure S2 in Supporting Information S1), the AR frequency distribution in Figure 3a is spatially 
more uniform, and substantially more ARs are detected over land. It has been shown by previous studies that 
these features in the AR frequency distribution are unique to algorithms adopting relative AR thresholds (Rutz 
et al., 2019; Shields et al., 2018). Since our algorithm is modified from the Guan and Waliser (2015) ARDT, it is 
thus expected that the AR frequency distribution based on our algorithm shares many similarities to that based on 
the Guan and Waliser (2015) algorithm (Figure S2 in Supporting Information S1). The spatial patterns of the AR 
frequency difference between reanalyses and AIRS/AMSU are very similar across reanalyses: the differences over 
the storm track regions, where ARs are most active, are generally small. Reanalyses tend to have fewer ARs over the 
subtropical regions while having more ARs over the higher latitudes poleward of 60°N/S, especially near the coast 
of Antarctica. As shown in Figure S3 in Supporting Information S1, this pattern in the AR frequency difference does 
not depend on the magnitude of the sigma used in the smoothing function for AIRS/AMSU. Reanalyses also tend 
to have slightly more ARs over the high latitude land regions over the Northern Hemisphere. Compared to AIRS/
AMSU, all reanalyses show more ARs around the date line over midlatitudes. This is caused by the temporal discon-
tinuity at the date line in the AIRS/AMSU daily data files which can occasionally prevent the detection of ARs over 
this region. In each AIRS/AMSU daily L3 product file, observations start at the date line and progress westward. 
This results in the data immediately west of the date line being farthest apart in time (∼24 hr) from those immedi-
ately east of the dateline, leading to the temporal discontinuity at the date line in AIRS/AMSU daily data files. For 
the zonal mean figures shown below, regions around the date line (±10°) are excluded from the calculations. In 
addition, pressure levels at 925 and 850 mb are used in the derivation of the geostrophic winds. This can result in 
unrealistic AR statistics over topographies. Therefore, regions with climatological surface pressure <850 mb (based 
on ERA5) are also excluded in the calculations of zonal mean. After these bias corrections, we see that the spreads 
among the reanalyses are small, with NCEP R1 and NCEP R2 having only slightly higher AR frequency, suggesting 
that all reanalyses have similar performance in representing the AR frequency distribution (Figures 3c–3e).

AR frequency is controlled by both the size and the number of detected ARs. In AIRS/AMSU, both the size 
and the number of detected ARs are sensitive to the value of sigma chosen for the Gaussian smoothing. As 
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sigma increases, both the AR length and width increase while the number of detected ARs drops (Figure S4 in 
Supporting Information S1; consistent with Figures 5k and 5l of Guan and Waliser (2015)). We set the sigma 
value to three, which minimizes the AR frequency difference between ERA5 and AIRS/AMSU over midlatitudes 
(Figure S3 in Supporting Information S1). Figure 4a shows that the PDFs of the AR length are consistent across 
different data sets. Compared to the AR length in reanalyses, ARs in AIRS/AMSU are slightly longer. The spread 
measured by the standard deviation in the AR length across reanalyses is relatively small and only about 0.5% of 
the climatology in AIRS/AMSU. However, there is a larger spread in the AR width distribution with the spread 
across reanalyses reaching about 4% of the climatology (Figure 4b). In particular, the ARs in MERRA-2 are 
the narrowest. Consistent with the narrowest ARs in MERRA-2, ARs in MERRA-2 also have the smallest area 
(Figure 4c) and largest length/width ratio (Figure 4d). The total number of ARs in MERRA-2 during the study 
period is more than other data sets (Figure 4a), consistent with the ARTMIP analysis for MERRA-2 (Collow 
et al., 2022). This suggests that MERRA-2 tends to simulate more ARs, but with smaller AR size. These two 
effects in MERRA-2 compensate for each other and result in the AR frequency being comparable to those in other 
reanalyses. NCEP R1, NCEP R2, and to a lesser extent, CFSR have larger AR size due to the larger AR width 
in these data sets, but fewer ARs were detected in them. Consequently, the length/width ratio in these three data 
sets are smallest and AR frequencies in NCEP R1 and NCEP R2 are slightly higher compared to other reanalyses 
(Figures 3c–3e). It is also worth pointing out that NCEP R1, NCEP R2, and CFSR start out with a coarser resolu-
tion of 2.5° × 2.5°. Even though we have regridded them to a common resolution of 1° × 1°, such a coarser native 
resolution can still be expected to have some impacts on the geometry of the ARs (e.g., Guan & Waliser, 2017). 
The wider ARs found in these three data sets thus could be partially caused by their coarser native resolution.

3.2.  AR Strength

AR GIVT is defined as the GIVT under AR conditions. As shown in Figure 5a, enhanced AR GIVT occurs over 
the storm track regions. Unlike AR frequency, the spatial distribution of AR GIVT is less uniform and exhibits 

Figure 3.  Atmospheric river (AR) frequency detected by the modified algorithm based on AIRS/AMSU (a). AR frequency difference between ERA5 and AIRS/AMSU 
(b). The differences between the zonal mean AR frequency in reanalysis products and AIRS/AMSU. (d) and (e) are the same as (c), but for the zonal mean differences 
over oceans and land, respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR frequency in AIRS/AMSU.
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more spatial variation, with enhanced AR GIVT concentrated in smaller regions of the storm tracks. Compared 
to the magnitude of the AR GIVT over oceans, AR GIVT over land is substantially weaker. The interproduct 
differences in AR GIVT between reanalyses and AIRS/AMSU have considerably similar spatial characteristics 
(Figures 5b–5e). Reanalyses show stronger AR GIVT over the midlatitudes, especially the storm track regions. 
Weaker GIVT can be found over subtropical regions. Since the geostrophic wind in AIRS/AMSU is bias-corrected 
based on ERA5 (see the Method section or Text S1 in Supporting Information S1), the differences in AR GIVT 
between reanalyses and AIRS/AMSU should not be treated as biases from reanalysis winds. Over the Northern 
Hemisphere, MERRA-2, NCEP R1, and NCEP R2 tend to have stronger AR GIVT. Over the Southern Ocean, 
AR GIVT in NCEP R1 and NCEP R2 are substantially stronger than the AR GIVT in AIRS/AMSU (up to about 
27% stronger) and those in other reanalyses. Over land, the spread among these five reanalyses is relatively 
small, though the AR GIVT in MERRA-2 is slightly stronger over the Northern Hemisphere, consistent with the 
stronger IVT magnitude in MERRA-2 found in Collow et al. (2022). It is not surprising that we also find that 
the results of the AR GIVT are consistent with those of the climatological mean GIVT (Figure S5 in Supporting 
Information S1). Given the small spread in AR frequency across reanalyses (Figures 3c–3e), these results suggest 
that differences in AR GIVT among data sets are mostly due to the differences in the climatological mean GIVT.

The interproduct differences in the AR GIVT can be caused by the differences in AR IWV and AR geostrophic 
wind magnitude. Figure 6a shows the AR IWV in AIRS/AMSU. Enhanced AR IWV mostly occurs over the 
subtropical regions equatorward of 30°N/S. Poleward of 30°N/S, AR IWV decreases rapidly. Compared to the 
AR IWV over oceans, AR IWV over land is substantially weaker. Compared to the AR IWV in AIRS/AMSU, 
reanalyses simulate stronger AR IWV over midlatitudes poleward of 30°N/S and weaker AR IWV can be found 
equatorward of 30°N/S. This spatial pattern in the difference is shared by all reanalyses (Figures 6c–6e). Over 
the Northern Hemisphere, the spread among all reanalyses is relatively small, with the AR IWV in NCEP R1 
and NCEP R2 being slightly stronger than those in other reanalyses. Over the Southern Ocean, the AR IWV 
in NCEP R1 and NCEP R2 is substantially stronger than those in the other five reanalyses, which is consistent 
with the results in AR GIVT. Similar to GIVT, the results of the AR IWV are also reflective of the results in 

Figure 4.  Probability distribution functions of atmospheric river (AR) length (a), width (b), area (c), and length/width ratio (d) for all reanalyses and AIRS/AMSU. The 
numbers inside the parentheses in (a) indicate the total number of ARs detected during the study period.

 21698996, 2023, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038937 by U
niversity of C

alifornia - Los A
nge, W

iley O
nline Library on [21/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Atmospheres

MA ET AL.

10.1029/2023JD038937

10 of 21

Figure 5.  Atmospheric river (AR) geostrophic integrated water vapor transport (GIVT) in AIRS/AMSU (a). AR GIVT difference between ERA5 and AIRS/AMSU 
(b). The differences between zonal mean AR GIVT in reanalyses and AIRS/AMSU (c). Panels (d) and (e) are the same as (c), but for the zonal mean AR IVT over 
oceans and land, respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR GIVT in AIRS/AMSU.

Figure 6.  Atmospheric river (AR) integrated water vapor (IWV) in AIRS/AMSU (a). AR IWV difference between ERA5 and AIRS/AMSU (b). The differences 
between zonal mean AR IWV in reanalyses and AIRS/AMSU (c). (d) and (e) are the same as (c), but for the zonal mean AR IWV over oceans and lands, respectively. 
The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR IWV in AIRS/AMSU.
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the climatological mean IWV (Figure S6 in Supporting Information  S1). Since the AIRS/AMSU IWV data 
are subject to sampling biases and there is no bias correction applied to the AIRS/AMSU IWV field (Hearty 
et al., 2014; Tian & Thomas, 2020; Tian et al., 2013), the differences between AIRS/AMSU and other reanalyses 
should not be viewed as the biases in reanalyses. Instead, the spread among data sets should be simply viewed as 
observed uncertainties.

Figure 7a shows the AR geostrophic wind magnitude. Unlike the pattern in the AR IWV, enhanced AR wind 
is found over the regions poleward of 30°N/S. This suggests that the enhanced AR GIVT shown in Figure 5a 
is dominated by IWV over the subtropics, but by wind over midlatitudes. Consistent with the climatological 
wind speed (Figure S7 in Supporting Information  S1), AR wind over the Southern Hemisphere is stronger 
compared to that over the Northern Hemisphere. Enhanced wind can also be found along the coastal regions 
of Antarctica. The enhanced wind over these regions is likely unrealistic, which may be caused by the presence 
of topography. Compared to the AR wind in AIRS/AMSU, reanalyses overestimate the wind magnitude over 
the midlatitude Southern Ocean while substantially underestimating it along the coastal regions of Antarctica 
where sea ice is present. Such a large difference between reanalyses and AIRS/AMSU over these regions usually 
covered by sea ice likely indicates that the wind over these regions in AIRS/AMSU may be biased high (Yue 
& Lambrigtsen, 2017, 2020). Weaker wind in reanalyses can be found over subtropical regions and regions at 
around 60°N. Unlike the AR IWV field, the spread in the AR wind among reanalyses is small (Figures 7c–7e), 
indicating higher skills and/or better constrained to observations for reanalyses in simulating the wind field. Note 
that the AR wind in the AIRS/AMSU shown here has been bias-corrected by the wind field in ERA5 based on the 
climatological wind speed over midlatitudes. The differences between reanalyses and AIRS/AMSU thus should 
not be treated as biases in reanalyses.

3.3.  AR Precipitation

It has been well documented that ARs are associated with enhanced precipitation (e.g., Arabzadeh et al., 2020; 
Gao et al., 2016; Lavers & Villarini, 2013). It is also quite common that reanalysis-based precipitation is directly 
used in AR studies (Collow et al., 2020; Gao et al., 2016; S. Kim et al., 2022; Maclennan et al., 2022; Pasquier 

Figure 7.  Atmospheric river (AR) geostrophic wind magnitude in AIRS/AMSU (a). AR geostrophic wind magnitude difference between ERA5 and AIRS/AMSU (b). 
The differences between zonal mean AR geostrophic wind magnitude in reanalyses and AIRS/AMSU (c). Panels (d) and (e) are the same as (c), but for the zonal mean 
AR geostrophic wind magnitude over oceans and land, respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR wind 
magnitude in AIRS/AMSU. The geostrophic winds shown here are the mass-weighted vertical average geostrophic winds.

 21698996, 2023, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038937 by U
niversity of C

alifornia - Los A
nge, W

iley O
nline Library on [21/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Atmospheres

MA ET AL.

10.1029/2023JD038937

12 of 21

et  al.,  2019; Y. Zhou et  al.,  2022). Yet, reanalysis-based precipitation is not directly constrained by observa-
tions. Their performance against observed precipitation thus requires further evaluation. In this section, we will 
focus on AR precipitation which is defined as the precipitation that falls within the AR boundaries. Figure 8a 
shows the mean AR precipitation intensity. Since observations of precipitation in IMERG are scarce poleward of 
60°N/S, the analyses of AR-related precipitation will be restricted to regions within 60°N/S. Over the Northern 
Hemisphere, enhanced AR precipitation occurs over the poleward flank of the AR active regions over both the 
North Pacific and North Atlantic. Intense AR precipitation can be observed extending from the southwest of the 
ocean basin into the northeast of the ocean basin. We note a discontinuity between the western North Pacific and 
the eastern North Pacific. The intensity west of the date line is much weaker than that over east of the dateline. 
The exact cause of this discontinuity is unclear. However, after manual examinations of the identified ARs and 
the precipitation field, there seems to be a time lag between the AR footprints detected from AIRS/AMSU and 
the  precipitation systems in IMERG over the western North Pacific: the precipitation systems tend to locate east/
northeast (ahead) of the AR footprints. This spatial mismatch between the AR footprints and the precipitation 
systems likely contributes to the abnormally weak AR precipitation over this region. Therefore, we will exclude 
the western North Pacific (15°N–60°N, 120°E–180°E) from the following analyses and discussion, as well as in 
the zonal mean calculations followed.

Over the Southern Hemisphere, consistent with Collow et al. (2022), strong AR precipitation occurs over the South 
Pacific and South Atlantic while AR precipitation over the South Indian Ocean is relatively weak. Compared to 
the AR precipitation over oceans, AR precipitation over land is much weaker, except over some coastal regions 
(Figure  8a). Reanalyses underestimate the AR precipitation over regions with strong AR precipitation inten-
sity, such as the northeastern North Pacific, the North Atlantic poleward of 50°N, western subtropics over the 
South Pacific and the Southern Ocean Poleward of around 40°S. The differences between reanalyses and satellite 
observation are relatively small over regions between 30° and 40° latitude in both hemispheres (Figure 8c). The 
biases over land are smaller compared to those over oceans, likely due to the smaller AR precipitation intensity 
over land (Figure 8e). Due to their small areas, land regions poleward of 40°S are excluded from the zonal mean 
calculation over land. Compared to other reanalyses, AR precipitation intensity is weakest in NCEP R1 while the 
spread among the other six reanalyses is generally small.

Figure 8.  Atmospheric river (AR) precipitation intensity in IMERG (a). AR precipitation intensity difference between ERA5 and IMERG (b). The differences between 
zonal mean AR precipitation intensity in reanalyses and IMERG (c). Panels (d) and (e) are the same as (c), but for the zonal mean AR precipitation intensity over 
oceans and land, respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR precipitation intensity in IMERG.
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As shown in Figure 9a, ARs contribute substantially to the total annual precipitation. Over many of the oceanic 
and coastal regions, AR precipitation can account for up to half of the total annual precipitation. The contribu-
tion of ARs to total precipitation over land is spatially more heterogeneous. For example, ARs can contribute 
up to half of the annual precipitation over Australia and North Africa. At the same time, East Asia only receives 
10%–30% of its annual precipitation from ARs. Compared to observation, reanalyses generally underestimate 
ARs' contribution to the total precipitation over oceans, especially over regions equatorward of 30°N/S and 
poleward of 50°N/S. Smaller differences between reanalyses and satellite observation can be found over regions 
between 30°N/S and 40°N/S. Over land, ARs in reanalyses can contribute more to the total precipitation, such as 
over Australia and East Asia. At the same time, they can also underestimate ARs' contribution to the total precip-
itation over regions such as northern North America and South Africa. The spread across reanalyses is generally 
small. However, over the Northern Hemisphere and equatorward of about 30°S over the Southern Hemisphere, 
NCEP R1 simulates the lowest contribution to total precipitation by ARs while CFSR produces the lowest contri-
bution to total precipitation by ARs over oceans poleward of 30°S over the Southern Hemisphere.

It has been shown by previous studies that ARs play an even more important role in extreme precipitation compared 
to mean precipitation (Arabzadeh et  al.,  2020; Gao et  al.,  2016; Guan et  al.,  2023; Waliser & Guan,  2017). 
Defined as the 95th percentile intensity of all the AR precipitation (including nonprecipitating days), AR extreme 
precipitation is much stronger (Figure 10a) compared to AR mean precipitation (Figure 8a). Over the western 
South Pacific subtropics, northwest of the South Atlantic and southwest of the North Atlantic, the intensity of 
AR extreme precipitation can exceed 60 mm/day. Over the Southern Ocean, the spatial pattern of the AR extreme 
precipitation intensity is very similar to the AR mean precipitation intensity, with very strong intensity observed 
over the South Pacific and South Atlantic. The intensity over the South Indian Ocean is substantially weaker. 
Over the Northern Hemisphere oceans, enhanced AR extreme precipitation can be observed over the entire ocean 
basins of the North Pacific and North Atlantic, except over the southeast ocean basins. Enhanced AR extreme 
precipitation can also be found over the west coasts of North America and Chile due to orographic lifting, as well 
as in eastern North America and eastern South America. The spatial patterns of the difference between reanalyses 
and satellite observation (Figure 10b) are similar to those for the differences in AR mean precipitation between 
reanalyses and satellite observation (Figure  8b). The AR extreme precipitation in reanalyses is substantially 

Figure 9.  Atmospheric river (AR) precipitation fraction in IMERG (a). AR precipitation fraction difference between ERA5 and IMERG (b). The differences between 
zonal mean AR precipitation fraction in reanalyses and IMERG (c). Panels (d) and (e) are the same as (c), but for the zonal mean AR precipitation fraction over oceans 
and land, respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR precipitation fraction in IMERG.
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weaker than the satellite observation nearly everywhere (Figure  10b). The largest underestimate occurs over 
the subtropical oceans and regions poleward of 50°N/S. The differences over land are smaller compared to the 
differences over oceans due likely to the weaker AR extreme precipitation over land. Over land, the magnitude in 
MERRA-2 is most comparable to the observation (Figure 10e). The magnitude of the AR extreme precipitation is 
weakest in NCEP R1, followed by ERAI (Figure 10c). The spread of the other five reanalyses is generally small 
(Figure 10c). There is an improvement in simulating AR precipitation intensity from NCEP R1 to NCEP R2 and 
CFSR. Similar improvement can also be found from ERAI to ERA5.

Next, we examine the AR fractional contribution to total extreme precipitation amount. For a grid point, we define 
an extreme precipitation threshold as the 95th percentile of all precipitation with intensity greater than 0.01 mm/
day (including both AR days and non-AR days). This threshold is calculated separately for each data set. The total 
extreme precipitation for a grid point is then calculated by summing all the daily precipitation with intensity greater 
than or equal to this extreme precipitation threshold. As shown in Figure 11a, the spatial pattern of the fractional 
contribution to extreme precipitation by ARs is very similar to the spatial pattern in the fractional contribution to 
mean precipitation by ARs (Figure 9a). However, ARs contribute more to the total extreme precipitation. Compared 
to the 30%–50% in the fractional contribution to mean precipitation, ARs account for 50%–70% of the total extreme 
precipitation over most of the oceanic regions. Unlike the fractional contribution to mean precipitation which shows 
the largest fraction at around 30°N/S, the spatial pattern in the fractional contribution to extreme precipitation is 
spatially more uniform over oceans. Over land, large fractional contribution can be found over the west coast of 
North America, Chile, South Africa, eastern North America, eastern South America, Australia, and interestingly 
North Africa. In contrast to the differences in the fractional contribution to mean precipitation which shows strong 
underestimates by reanalyses nearly everywhere, the differences in fractional contribution to extreme precipitation 
are smaller. Underestimates by reanalyses can be found over regions poleward of 50°N/S and some regions over the 
subtropics. Over midlatitudes and many land regions, ARs in reanalyses tend to contribute slightly more to the total 
extreme precipitation. Compared to other reanalyses, NCEP R1 and NCEP R2 tend to simulate a slightly smaller 
fraction of extreme precipitation contributed by ARs, especially over oceanic regions equatorward of about 40°N/S.

Despite using different definition of AR days and/or different precipitation data set, the satellite-based spatial 
patterns of the AR precipitation intensity (Figure 8a), fraction (Figure 9a), extreme AR precipitation intensity 

Figure 10.  Extreme atmospheric river (AR) precipitation intensity in IMERG (a). Extreme AR precipitation intensity difference between ERA5 and IMERG (b). The 
differences between zonal mean extreme AR precipitation intensity in reanalyses and IMERG (c). Panels (d) and (e) are the same as (c), but for the zonal mean extreme 
AR precipitation intensity over oceans and land, respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean extreme AR 
precipitation intensity in IMERG.
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(Figure  10a), and fraction (Figure  11a) show marked similarity to those based on the original Guan and 
Waliser (2015) algorithm using reanalysis data (Arabzadeh et al., 2020; Zhao, 2022). These results indicate that 
our algorithm can correctly capture those precipitating systems with filaments of enhanced moisture transport. 
Compared to the original Guan and Waliser (2015) algorithm, the modified algorithm used here produces slightly 
higher AR frequency and with a more uniform spatial pattern (compare Figure 3a with Figure S2d in Supporting 
Information S1). The consistency in the spatial patterns of the AR precipitation characteristics between our algo-
rithm and the original Guan and Waliser (2015) algorithm suggests that both algorithms likely have high agree-
ment in detecting those relatively strong ARs with intense precipitation. The disagreement in the AR frequency 
distribution is thus likely caused by the modified algorithm used here being able to detect more relatively weak 
ARs due to its less stringent criteria.

It has been well documented that climate models tend to suffer from the so-called “drizzling” bias in which 
models tend to rain too frequently and too lightly (D. Chen et  al.,  2021; Dai,  2006). To investigate whether 
this problem is also present in AR precipitation, we define a metric called AR precipitation frequency. There 
is no guarantee that precipitation must occur when a grid point is experiencing AR conditions. We thus define 
AR precipitation frequency as the fraction of AR days a grid point experiences noticeable precipitation. Here, 
noticeable precipitation is defined to be greater than or equal to 0.5 mm/day. We tried varied thresholds ranging 
from 0.1 to 2 mm/day. The conclusions presented here are not sensitive to the threshold used (not shown). As 
shown in Figure 12a, over most of the midlatitude regions, >80% of the AR days are associated with noticeable 
precipitation. This suggests that our algorithm is able to effectively identify precipitating systems with enhanced 
moisture transport. Smaller AR precipitation frequency is generally found over land and subtropical regions, 
suggesting that ARs are usually less efficient in generating precipitation over these regions. Compared to obser-
vation, ARs in reanalyses tend to precipitate too often, especially over subtropics equatorward of 30°N/S, which 
is consistent with previous studies showing that “drizzling” bias is most severe over lower latitude regions (D. 
Chen et al., 2021; Dai, 2006). The “drizzling” bias of ARs in reanalyses discovered here seems to be consistent 
with previous studies in which they found that reanalyses tend to simulate too many wet days compared to obser-
vations (Herold et al., 2016; Naud et al., 2020; C. Zhou & Wang, 2017). Other regions which also suffer from this 
problem include regions poleward of 50°S, Eurasia, and the west coasts of North America and South America. 

Figure 11.  Extreme atmospheric river (AR) precipitation fraction in IMERG (a). Extreme AR precipitation fraction difference between ERA5 and IMERG (b). The 
differences between zonal mean extreme AR precipitation fraction in reanalyses and IMERG (c). Panels (d) and (e) are the same as (c), but for the zonal mean extreme 
AR precipitation fraction over oceans and land, respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean extreme AR 
precipitation fraction in IMERG.
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Interestingly, this “drizzling” bias is greatly alleviated poleward of about 30°N over North Pacific and North 
Atlantic, as well as over the Southern Ocean between about 30°S and 40°S. Surprisingly, the biases in the AR 
precipitation frequency in NCEP R1 and NCEP R2 are relatively smaller compared to other newer generation of 
reanalyses (Figures 12c–12e). This seems to be in line with the finding by C. Zhou and Wang (2017) who showed 
that the frequency of the drizzle days over China is lower in NCEP R1 and NCEP R2 compared to other reanalysis 
products. In these two reanalyses, ARs precipitate even less often compared to observation over oceanic regions 
poleward of about 30°N over the North Atlantic. As shown in Figure S8 in Supporting Information S1, the biases 
in the AR precipitation frequency in reanalyses are also consistent with the biases in the precipitation frequency, 
which is simply defined as the fraction of days with daily precipitation greater than or equal to 0.5 mm/day. The 
reasons for the smaller AR-related “drizzling” bias in these two older generation reanalyses are unknown and 
warrant further studies.

4.  Conclusions and Discussion
Satellite observations and reanalyses have been indispensable in characterizing ARs, which are associated with 
changes in both moisture and wind fields. However, previous AR studies using satellite data usually detect ARs 
based only on the IWV while studies using reanalyses usually make the assumption that reanalyses are represent-
ative of the true observation (Matrosov, 2013; Neiman, Ralph, Wick, Kuo, et al., 2008; Ralph et al., 2004; Wick 
et al., 2013). In this study, we improve previous satellite-based AR studies by incorporating wind into the AR 
detection. Low-level geostrophic winds derived from satellite-based geopotential height are combined with the 
satellite-based IWV to obtain the GIVT. We demonstrate that GIVT can serve as a good proxy for IVT in terms 
of magnitude. By removing the three IVT direction criteria in the Guan and Waliser (2015) algorithm, namely the 
coherence criterion, the meridional IVT criterion and the consistency criterion, we show that the AR frequency 
based on the GIVT and the one based on the IVT are nearly identical. The modified ARDT is then applied to 
the GIVT from the satellite observation by AIRS/AMSU and seven commonly used reanalyses: MERRA-2, 
ERA5, ERAI, JRA-55, CFSR, NCEP R1, and NCEP R2. We find that all data sets show high agreement on AR 
frequency. Given that the IWV and wind field in reanalyses are strongly constrained by satellite observations, this 
result should be expected: a weather system which is present in satellite observations should also be present in 

Figure 12.  Atmospheric river (AR) precipitation frequency in IMERG (a). AR precipitation frequency difference between ERA5 and IMERG (b). The differences 
between zonal mean AR precipitation frequency in reanalyses and IMERG (c). Panels (d) and (e) are the same as (c), but for the zonal mean AR precipitation frequency 
over oceans and land, respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR precipitation frequency in IMERG.

 21698996, 2023, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038937 by U
niversity of C

alifornia - Los A
nge, W

iley O
nline Library on [21/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Atmospheres

MA ET AL.

10.1029/2023JD038937

17 of 21

reanalyses. While the spread in AR length across data sets is relatively small, larger spread in the AR width can be 
found across data sets. Consequently, the spread in width leads to the spreads in the AR area and AR length/width 
ratio. Compared to other data sets, MERRA-2 tends to simulate narrower and more ARs while CFSR, NCEP R1, 
and NCEP R2 tend to simulate broader and fewer ARs. Compared to ARs in satellite observation, ARs in reanal-
yses have stronger GIVT over midlatitudes. The spread in the AR GIVT among reanalyses is mostly caused by 
the spread in AR IWV while the spread in AR wind magnitude is small.

Unlike IWV and winds in reanalyses which are heavily constrained by observations, precipitation in reanaly-
ses is produced by the models without any direct observational constraints. Larger biases are thus expected in 
reanalysis-based precipitation. We evaluate the AR-induced precipitation in reanalyses against that based on 
IMERG. We reveal systematic biases in the reanalysis-based AR precipitation characteristics. Specifically, we 
find that reanalyses systematically underestimate both the mean and extreme AR precipitation intensity over 
oceans, with the strongest underestimates found in NCEP R1. Consequently, the fractional contributions to both 
the mean and extreme precipitation by ARs are all underestimated by reanalyses. It has long been known that 
climate models suffer from the so-called “drizzling” bias problem (D. Chen et al., 2021; Dai, 2006). Namely, 
models tend to rain too often and too lightly. Defining AR precipitation frequency as the fraction of AR days 
when a grid point experiences noticeable precipitation, we discover that ARs in reanalyses tend to rain too often, 
especially over the lower latitude regions. Combined with the weak biases in the AR precipitation intensity, we 
demonstrate that the “drizzling” bias also exists for AR precipitation in reanalyses. These findings cast doubts on 
the direct uses of reanalysis-based precipitation in AR studies.

Studies have shown that the statistics of ARs and AR precipitation are sensitive to the ARDT used (Collow 
et al., 2022; Rutz et al., 2019; Shields et al., 2018). In this study, we employed the modified ARDT based on 
Guan and Waliser  (2015) to demonstrate the feasibility of using GIVT for detecting ARs. In this regard, this 
study thus serves as a proof of concept. We have demonstrated that GIVT can be a good proxy for IVT given 
that the direction of GIVT/IVT is not considered. Therefore, as long as the IVT-based ARDT does not have any 
IVT direction criteria, GIVT can be used readily as input to the algorithm and produce AR statistics comparable 
to those based on IVT. As has been shown (Figure S2 in Supporting Information S1), the AR statistics based on 
Guan and Waliser (2015) are quite different from those based on other ARDTs. The results presented in this study 
are likely algorithm-dependent. For example, we show in this study that there is a high agreement among data sets 
on the AR frequency. However, this is mostly due to the percentile-based threshold used in our ARDT. It can be 
expected that reanalyses with larger climatological GIVT would have larger AR frequency if an absolute thresh-
old is used. Nevertheless, since an identical ARDT is consistently applied to all data sets, the results regarding 
the spreads among data sets in this study should be more robust.

It is well known that the satellite products have sampling biases (Fetzer et al., 2006; Hearty et al., 2014; Lin 
et al., 2002; North et al., 1993; Tian & Thomas, 2020; Tian et al., 2013). As a product obtained from both infrared 
(AIRS) and microwave (AMSU) sensors, the retrieval quality of AIRS/AMSU under cloudy conditions degrades 
rapidly, and the sampling frequency under cloudy regions, such as the ITCZ and midlatitude regions, is lower 
than that over the clear regions, such as the subtropics and some land regions. Furthermore, the Aqua satellite on 
which the AIRS and AMSU sensors board is in a Sun-synchronous polar orbit, both AIRS and AMSU can only 
sample the atmosphere twice daily at low latitude regions and thus cannot adequately resolve the diurnal cycle. 
These sampling issues can result in the sampling biases in the AIRS/AMSU observations (Hearty et al., 2014; 
Tian & Thomas, 2020; Tian et al., 2013). In addition, the AIRS/AMSU may also have measurement errors due 
to the AIRS/AMSU retrieval algorithm (Hearty et al., 2014). Given these factors, the results based on AIRS/
AMSU are subject to sampling biases and measurement errors and the differences between AIRS/AMSU and 
other reanalyses also should not be viewed as biases in reanalyses. Instead, the spread among data sets should be 
simply viewed as observed uncertainties. Smaller spread of a quantity thus gives us more confidence in the ability 
of reanalyses and satellite observations in representing the true observation of that quantity and vice versa. In this 
sense, we have more confidence in the reanalyses and satellite observation's ability in representing AR frequency, 
AR length and AR wind magnitude while our confidence in the AR width and AR IWV representations is lower.

While potential biases exist in the IWV and geostrophic wind field from AIRS/AMSU, it is also possible that 
the satellite-based precipitation product IMERG also contains biases. Evaluations on the performance of IMERG 
against other ground observations and remotely sensed products have shown varied results (Pradhan et al., 2022). 
Whether IMERG has better performance than other observed precipitation products remains inconclusive. 
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However, IMERG is produced by merging the precipitation estimates with highest quality passive microwave 
sensors and infrared sensors. It thus can be regarded as the state-of-the-art observational precipitation product (Li 
et al., 2023; W. Ma, Chen, & Guan, 2020; Watters et al., 2021; Xin et al., 2022). Compared to IMERG, it has been 
well known that models have trouble simulating the precipitation realistically (D. Chen et al., 2021; Christopoulos 
& Schneider, 2021; Frei et al., 2003; H. Kim et al., 2021). It thus can be expected that the IMERG precipitation is 
closer to the true observation compared to reanalysis-based precipitation. The differences between IMERG-based 
AR precipitation and reanalysis-based AR precipitation can also be viewed as biases in reanalyses. Furthermore, 
a previous study (Naud et al., 2020), which uses IMERG to evaluate the modeled precipitation in oceanic extrat-
ropical cyclones, found that IMERG-based cyclone precipitation is stronger over the warm sector of the cyclone 
compared to other model-based and reanalysis-based cyclone precipitation. Given that ARs are usually located 
over the warm sector of the cyclone, this result adds further confidence to the findings presented in this study.

In this study, we have provided a proof of concept for the feasibility of detecting ARs in satellite observations 
using both moisture and wind information. The mismatch between ARs based on AIRS/AMSU and IMERG-based 
precipitation shown in Section 3.3 suggests that future works should be aimed at reducing noise/uncertainty in 
the satellite data. As the quality of the satellite observations continues to improve, the methodology presented 
here can be applied to other satellite observations such as geostationary satellites to develop higher resolution or 
higher frequency AR statistics. We have also conducted a comprehensive intercomparison between reanalyses 
and satellite observations and among reanalyses on their skills in representing AR characteristics and AR-related 
precipitation. Our findings provide better guidance on the direct uses of reanalyses and reanalysis-based precip-
itation in future AR studies. The satellite-based AR statistics and AR precipitation developed in this study can 
also be used to evaluate the climate models' skills in representing ARs and AR precipitation. Such evaluation will 
be presented in a future study.

Data Availability Statement
AIRS/AMSU can be found at: https://disc.gsfc.nasa.gov/datasets/AIRX3STD_006/summary. IMERG can be found 
at: https://gpm.nasa.gov/data/directory. MERRA-2 (https://doi.org/10.1175/JCLI-D-16-0758.1) can be found at: 
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/. ERA5 (https://doi.org/10.1002/qj.3803) can be 
found at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. ERAI (https://doi.org/10.1002/
qj.828) can be found at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim. JRA-55 
(https://doi.org/10.2151/jmsj.2015-001) can be found at: https://rda.ucar.edu/datasets/ds628.0/. CFSR (https://
doi.org/10.1175/2010BAMS3001.1) can be found at: https://rda.ucar.edu/datasets/ds093.0/ and https://rda.ucar.
edu/datasets/ds094.0/. NCEP R1 (https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2) can 
be found at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. NCEP R2 (https://doi.org/10.1175/
BAMS-83-11-1631) can be found at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html.
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