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Abstract. This paper investigates the problem of synthesizing proactive defense
systems with deception. We model the interaction between the attacker and the
system using a formal security model: a probabilistic attack graph. By allocat-
ing fake targets/decoys, the defender aims to distract the attacker from compro-
mising true targets. By increasing the cost of some attack actions, the defender
aims to discourage the attacker from committing to certain policies. To optimally
deploy limited decoy resources and modify attack action costs with operational
constraints, we formulate the synthesis problem as a bi-level optimization prob-
lem, while the defender designs the system, in anticipation of the attacker’s best
response given that the attacker has disinformation about the system due to the
use of decoys. We investigate the bi-level optimization formulation against both
rational and bounded rational attackers. We show the problem against a ratio-
nal attacker can be formulated as a bi-level linear program. For attackers with
bounded rationality, we show that under certain assumptions, the problem can be
transformed into a constrained optimization problem. We proposed an algorithm
to approximately solve this constrained optimization problem using a novel pro-
jected gradient ascent based on the idea of incentive-design. We demonstrate the
effectiveness of the proposed methods using experiments and provide our insights
in defense design against rational and bounded rational attackers.

Keywords: Deception - Attack Graph - Bi-Level Optimization - Markov Deci-
sion Process

1 Introduction

Proactive defense refers to a class of defense mechanisms for the defender to detect any
ongoing attacks, distract the attacker with deception, or use randomization to increase
the difficulty of an attack to the system. In this paper, we propose a mathematical frame-
work and solution approach for synthesizing a proactive defense system with deception.
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We start by formulating the attack planning problem using a probabilistic attack
graph, which can be viewed as a Markov decision process (MDP) with a set of at-
tack target states. Attack graphs(AGs)[9] can be used in modeling computer networks.
They are widely used in network security to identify the minimal subset of vulnerabil-
ity/sensors to be used in order to prevent all known attacks[17,20]. Probabilistic attack
graphs introduce uncertain outcomes of attack actions that account for action failures
in a stochastic environment. For example, in [8,7], probabilistic transitions in attack
graphs capture uncertainties originating from network-based randomization. Under the
probabilistic attack graph modeling framework, we investigate how to allocate decoy
resources as fake targets to distract the attacker into attacking the fake targets and how
to modify the attack action costs to discourage the attacker from reaching the true tar-
gets.

The joint design of decoy resource allocation and action cost modification can be
cast as a bi-level optimization problem, where the defender (at the upper level) designs
the system, in anticipation of the attacker’s (at the lower level) best response, given
that the attacker has disinformation about the system due to allocated decoys. However,
bi-level optimization problems are generally NP-hard [4]. We investigate two possible
types of attackers: A rational attacker who maximizes the total reward and a bounded ra-
tional attacker whose action choices are computed using quantal response [3,12], where
the probability of an action is proportional to the exponential of the total (discounted)
return of that action.

For the rational attacker, we show that the bi-level optimization problem can be
converted into a single-level optimization problem using Karush—Kuhn-Tucker (KKT)
conditions of the lower-level optimization problem. For the bounded rational attacker,
we formulated a constrained optimization problem and developed a new projected gra-
dient ascent method to solve a (local) optimal policy. We build two important relations:
First, we show that the projection step of a defender’s desired attack policy to the set
of realizable attack policy space can be performed using Inverse Reinforcement Learn-
ing (IRL) [24]. Essentially, IRL shapes the attacker’s perceived reward so that the ratio-
nal attacker will mimic a strategy chosen by the defender. Second, the gradient ascent
step can be performed using policy improvement, which is a subroutine in policy it-
eration with respect to maximizing the defender’s total reward. The projected gradient
ascent is ensured to converge to a (local) optimal solution to this nonconvex-constrained
optimization problem.

Related work The proactive defense design problem is closely related to the Stack-
elberg security game(SSG) (surveyed in [22]). In an SSG, the defender is to protect
a set of targets with limited resources, while the attacker selects the optimal attack
strategy given the knowledge of the defender’s strategy. In [16], the authors study secu-
rity countermeasure-allocation and use attack graphs to evaluate the network’s security
given the allocated resources. However, traditionally SSG does not account for the use
of deception.

Deceptions create incorrect/incomplete information for the attacker. In [23], the au-
thors formulate a security game to allocate limited decoy resources to mask a network
configuration from the cyber attacker. The decoy-based deception manipulates the ad-
versary’s perception of the payoff matrix. In [2], the authors study honeypot allocation
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in deterministic attack graphs and determine the optimal allocation strategy using the
minimax theorem. In [13], the authors study directed acyclic attack graphs that can
be modified by the defender using deceptive and protective resources. They propose a
mixed-integer linear program (MILP)-based algorithm to determine the allocation of
deceptive and protective resources in the graph. In [5], they harden the network by us-
ing honeypots so that the attacker can not discriminate between a true target and a fake
target. In [14], the authors assign fake edges in the attack graph to interdict the attacker
and employ MILP to find the optimal solution.

Compared to existing work, our work makes the following contributions: First, we
do not assume any graph structure in the attack graph and consider probabilistic attack
graphs instead of deterministic ones. As the attacker can take a randomized strategy in
the probabilistic attack graph, it is impossible to construct a payoff matrix and apply
the minimax theorem for decoy resource allocation. Second, we consider simultane-
ously allocating limited decoy resources and modifying the cost of attack actions, and
analyzing the best response of the attacker given the disinformation caused by decep-
tion. Third, we propose tractable solutions for dealing with different types of attackers:
rational and bounded rational. We show that by modifying the action reward and decoy
resource allocation properly, it is possible to shape the attacker’s behavior so that the
misperceived attacker is incentivized to commit an attack strategy that maximizes the
defender’s reward. Finally, we evaluate our solution under different attacker types and
test the scalability of our method on different problem sizes.

2 Preliminaries and Problem Formulation

Notations Let R denote the set of real numbers and R"™ the set of real n-vectors. Let
RY, (resp. RZ) be the set of positive (resp. negative) real n-vectors. We use 1 to
represent the vector of all ones. Given a vector z € R", let z; be the i-th component.
Given a finite set Z, the set of probability distributions over Z is represented as Dist(Z).
Given d € Dist(Z), the support of d is denoted as Supp(d) = {z € Z | d(z) > 0}. Let
I be the indicator function, i.e., Ip(z) = 1if x € B, and Ip(x) = 0 otherwise.

We consider the adversarial interaction between a defender (player 1, pronoun she/her)
and an attacker (player 2, pronoun he/him/his) in a system equipped with proactive de-
fense (formally defined later). We first introduce a formal model, called probabilistic
attack graph, to capture how the attacker plans to achieve the attack objective. Then, we
introduce proactive defense countermeasures with deception.

Attack Planning Problem The attack planning problem is modeled as a probabilistic
attack graph,
M = (SaAv-Pa V777F7R2)7

where S is a set of states (nodes in the attack graph), A is a set of attack actions,
P : S x A — Dist(S) is a probabilistic transition function such that P(s’|s, a) is the
probability of reaching state s’ given action a being taken at state s, v € Dist(S) is
the initial state distribution, v € (0, 1] is a discount factor. The attacker’s objective is
described by a set F' of target states and a target reward function Ry : F' x A — R0,
which assigns each state-action pair (s,a) where s € F and a € A to a nonnegative
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value of reaching that target for the attacker. The reward function can be extended to
the entire state space by defining Ro(s,a) = 0 forany s € S\ F,a € A. To capture
the termination of attacks, we introduce a unique sink state sgnx € S \ F' such that
P(Ssink|Ssink, @) = 1 for all a € A and P(sgnk|s,a) = 1 for any target s € F and
a € A

The probabilistic attack graph characterizes goal-directed attacks encountered in
cyber security [10,18], in which by reaching a target state, the attacker compromises
certain critical network hosts. Probabilistic attack graphs [21,13] capture the uncertain
outcomes of the attack actions using the probabilistic transition function and generalize
deterministic attack graphs [9].

The attacker is to maximize his discounted total reward, starting from the initial state
So ~ v. A randomized, finite-memory attack policy is a function 7: S* — Dist(A),
which maps a finite run p € S* into a distribution 7(p) over actions. A policy is called
Markovian if it only depends on the most recent state, i.e., 7: S — Dist(A). We only
consider Markovian policies because it suffices to search within Markovian policies for
an optimal attack policy.

Let ({2, F) be the canonical sample space for (Sp, Ao, (St, A¢)¢~1) with the Borel
o-algebra F = B(£2) and 2 = S x A x [];=,(S x A). The probability measure Pr”
on ({2, F) induced by a Markov policy 7 satisfies: Pr™(Sy = s) = uo(s), Pr"(Ap =
a| Sy = s) = m(s,a), and Pr"(S; = s | (Sk, Ar)k<t) = P(s | Sk, Ar), and
PI“”(At =a | (Sk,Ak)k:<t7 St) = 7'('(5,5, a).

Given a Markovian policy w: S — Dist(A), we define the attacker’s value function

Vi S = Ras Vi (s) = Ex[ Y 7*Ra(Sk, Ax)|So = s|, where E, is the expectation
k=0

given the probability measure Pr”.

Proactive Defense with Deception We assume that the defender knows the attacker’s
objective given by the tuple (F, Ry), i.e., the target states and target reward function.
The defender’s proactive defense mechanisms are the following:

— Defend by deception: The defender employs a deception method called “revealing
the fake”. Specifically, the defender has a set D C S \ F of states in the MDP
M that can be set to be fake target states with fake target rewards y € RI”!. The
attacker cannot distinguish the real targets F' from fake targets D.

— Defend by state-action reward modification: The defender has aset W C (S'\ (FU
D)) x A of state action pairs in the MDP M whose reward can be modified. Once
the reward of the state action pair (s, a) is modified, the attacker’s perceived reward
Rs(s,a) < 0, i.e., the cost of attack action « at state s is —Ra(s, a).

The defender can determine how to allocate her decoy resource and limited state-action
reward modification ability.

Definition 1 (Decoy allocation under constraints). The defender’s decoy allocation

design is a nonnegative real-valued vector y € R‘>S0‘ satisfying y(s) = 0 for any

s € S\ D and constrained by 1"y < h for some h > 0. Given a decoy allocation vy,
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the attacker’s perceptual reward function is defined by

y _Juyls)  ify(s) >0,
Rz (s,0) = {RQ(Sva) ify(s) =0.

Definition 2 (Action reward modification). Given a set W C (S \ (F U D)) x A,
the defender’s action reward modification is a nonpositive reward-valued vector x €
R|<SOXA| satisfying z(s,a) = 0 for any (s,a) ¢ W and —1Tx < k for some k > 0.
Given an action reward modification x, the attacker’s perceptual reward function is
defined by

= x(s,a) ifz(s,a) <0,
B3 (s,0) = {R(Q(s, zz) iwas, ag =0.

The defender does not consider modifying the state-action reward for (fake or real)
target states F' U D because once a state in /' U D is reached, the attack is terminated.

Definition 3. The defender’s proactive defense strategy is a tuple (x,y) including an
action reward modification x and a decoy allocation design y.

Because the action reward modification is independent of the decoy allocation de-
sign, the reward function given a defender’s strategy («,y) is the composition of R%
and RY and thus omitted.

Assumption 1 The attack process terminates under two cases: Either the attack suc-
ceeds, in which the attacker reaches a target s € F, or the attack is interdicted, in which
the attacker reaches a state allocated with a decoy.

Our problem can be informally stated as follows.

Problem 1. In the attack planning scenario we mentioned above, determine the de-
fender’s strategy to allocate decoy resources and modify action rewards so as to max-
imize the probability that the attacker reaches a fake target given the best response of
the attacker.

3 Main Results

In this section, we first define the attacker’s perceptual planning problem for a fixed
action reward modification and decoy resource allocation (z, y). Then we show that the
design of the proactive defense can be formulated as a bi-level optimization problem.
We investigate the special property of the formulated bi-level optimization problem to
develop an optimization-based approach for synthesizing the proactive defense strategy.

3.1 A Bi-level Optimization Formulation

The defender’s strategy changes how the attacker perceives the attack planning problem
as follows:
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Definition 4 (Perceptual attack planning problem with modified reward and de-
coys). Let the action reward modification be x and decoy allocation be y, and the
attacker’s original planning problem M = (S, A, P,v,~, F, Ry), the perceptual plan-
ning problem of the attacker is defined by the following MDP with terminating states:

M(z,y) = (S, A, PY,v,v,FU DY, R}"Y),

where S, A, v,~y are the same as those in M, DY = {s € D | y(s) # 0} are decoy
target states and absorbing. The transition function PY is obtained from the original
transition function P by only making all states in DY absorbing. The reward R3"Y is

defined based on Def. 1 and Def. 2.

The perceptual value for the attacker is

VE (vi@,y) = Bx [ >y RS (S, A) | So ~ v,
k=0

where E, is the expectation given the probability measure Pr™ induced by 7 from the

MDP M (x,y).
The defender’s deception objective is given by a reward function RY : S — R,

defined by
1 ifse DY
RY(s) = ’ 1
1() {0 otherwise. M

Given the probability measure Pr™, we denote the defender’s value by

VF(”; y) =E; [Z "YkR1(Sk) ‘ Sy ~ V] .
k=0

With this reward definition, the value V" (v;y) is the probability of the attacker
reaching a fake target in DY.

Then the problem of synthesizing an optimal proactive defense strategy (x, y) can
be mathematically formulated as

Problem 2.
. VT (v
pmax VY (v;y)

s.t. 7 € argmax V3 (v; ¢, y).
s

where X = {x € Rg/gl | 1Tz <k}andY = {y | Vs € S\D,y(s) =0and 1Ty <
h} are the ranges for variables = and y correspondingly.

In words, the defender decides (x,y) so that the attacker’s best response in his
perceptual attack planning problem turns out to be an attack policy most preferred by
the defender, as it maximizes the defender’s value.
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3.2 Synthesizing proactive defense against a rational attacker

The bi-level optimization problem is known to be strongly NP-hard [6]. In this section,
we show that when the attacker is rational, then the lower-level problem can be for-
mulated as a linear program (LP). Thus, the original bi-level optimization is a special
case-bi-level LP. Using the KKT condition of the lower-level problem, the bi-level LP
reduces to a single-level optimization with special ordered set(SOS) constraints. We for-
mulate the lower-level LP using occupancy measures [1]. For a given defense strategy
(z,y), the optimal policy perceived by the attacker can be solved using the following
LP:

max. Z R3YY(s,a)m(s,a).

s€S,acA

s.t. Z m(s,a) = Z P(sls',a"ym(s',a’) + v(s),Vs € S, 2)
a€A s’eS,a’€A
m(s,a) > 0,Vs € S,a € A. 3)

where m(s, a) is the (discounted) occupancy measure that represents the frequency a
state s is visited and a is taken. Using the solution of the LP, the optimal attacker policy
7 is recovered via: (s, a) = %

The original bi-level optimization reduces to

max. Z Ri(s,a)m(s,a)

xeX,ycY
Y s€S,acA

s.t. max. E RYY(s,a)m(s,a), s.t.(2),(3).
m
s€S,a€A

By rewriting the lower-level LP using its KKT conditions, we convert the bi-level opti-
mization problem into a single-level optimization problem with SOS1 constraints.
First, we have the lower-level problem:

max. Z RYY(s,a)m(s,a).

s€S,aeA

s.t. Z m(s,a) =7 Z P(s|s’,a"ym(s',a’) + v(s),Vs € S, 4
acA s'€S,a'€A
m(s,a) > 0,Vs € S,a € A. (5)

where we have R3'Y(s,a) = Ra(s,a) + x(s,a) + y(s),Vs € S,a € A. Thus we can
use KKT condition to form the lower-level problem to a Lagrangian function. We first
rewrite

Z m(s,a) = Z P(s|s’,a"ym(s',a") + v(s),Vs € S. (6)

acA s'e€S,a’€A
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to the matrix form, which is equivalent to
Cm —~yDm —v =0.

where C, D corresponds to the parameters in Equation 6. And m € RLSOXA‘ denotes the
vector of discounted state-action visiting frequency.
Thus the Lagrangian function can be written as

Lm,u,\) = (Re+z+y)"'m+p"m+ 2\ (Cm —yDm —v). @)

where y is extended to S x A domain by defining y(s,a) = y(s), and Rz is the vector
form of reward function Rs.
The necessary conditions are listed as follows:

—(Rz+z+y)+p+(C—vD)'A=0,

Cm —~Dm —v =0,

-m <0,

p =0,

wit)m(i) =0,i=1,2,...,|5 x Al. 8)
where (8) are special ordered sets of type 1 (SOS1) constraints. We then combine these

necessary conditions with the upper-level problem, the bi-level problem can be rewritten
as:

sex BT

s.t. 1Ty < h,
- 1Tz <k,
y =0,
x <0,

—(Ra+z+y)+pu+(C—yD)'A=0,

Cm —~yDm —v =0,

-m <0,

pn =0,

p(i)m(i) =0,i=1,2,...,|S x Al. 9)

where R; is the vector form of reward function R;. This optimization problem is
single-level and can be solved using the Gurobi Optimization toolbox.
3.3 Synthesizing proactive defense against a bounded rational attacker

The defense against a rational agent can be sensitive to potential mismatches on the
rationality assumption: Consider the defender aims to protect two targets {1, 2}. Both
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targets have similar values but target 1’s value is slightly higher than that of target 2.
Knowing a rational agent will aim at target 1, the defender will enforce all resources to
guard target 1 and may leave target 2 unprotected. However, a bounded rational attacker,
based on the quantal response [3,12], will compromise either target with almost equal
probabilities. We investigate how to design a defense strategy against attackers with
bounded rationality.

Transforming into a Constrained Optimization Problem Based on the quantal re-
sponse model, an attacker with bounded rationality aims to compute a quantal response
policy 7* in the perceived MDP M (x, y) by solving the following entropy-regularized
Bellman equation [15]:

Vs (s;a,y) = rlog »_exp{(Ra(s;@,y) + V5 (s; ®,y))/7},

where 7 > 0 is the temperature parameter that controls the degree of entropy regular-
ization, if 7 approaches 0, the Bellman equation recovers the optimal Bellman equation
under a rational attacker. However, due to the bounded rationality assumption, the orig-
inal bi-level optimization cannot be reduced into a bi-level LP as the objective function
using occupancy measures includes an additional nonlinear term which is the weighted
entropy of the policy.

Next, we propose a gradient-based method to solve Problem 2 assuming the at-
tacker is bounded rational. First, we show the original problem can be formulated as a
constrained optimization problem. Let I1(, y) be the set of quantal response policies
in the attacker’s perceived planning problem with respect to a choice of variables x
and y. The bi-level optimization problem is then equivalently written as the following
constrained optimization problem:

. Vi (v
ﬂ*,wnelz)lgfer 1 (V y)
s.t. 7 e l(x,y). (10)

This, in turn, is equivalent to

max. V" (v;y)
st. e |J @) (1)
zxeX,yeY

Here, the constraint means the attacker’s response 7* can be selected from the collection
of optimal attack policies given all possible values for x, y.

By the definition of the defender’s value function, it is noted that V" (v; y) does not
depend on the exact value of y but only depends on whether y(s) > 0 for each state
s € D. Formally,

Lemma 1. For any y1,y2 €Y, ify1(s) = 0 = ya(s) = 0 and vice versa, then
VI (viy1) = Vi (Vi y2).
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Proof. Given two different vectors y; and y=, we can construct two MDPs: M; =
M(x,y1) = (S, A, PY*,v,v, F,Ry) and My := M(x,y2) = (S, A, P¥2,v,~v,F, Ry),
respectively.

If y1 (s) = 0 if and only if y2(s) = 0, then the transition functions P¥* of M; and
PY2 of M, are the same (see Def. 4).

Further, the defender’s reward function R’l“ also equals to le2 (see (1)), given both
the transition dynamics and reward are the same, we have V" (v;y1) = V™ (v; y2).

Lemma 1 proves given an attacker’s policy «, the defender’s value only relates to
where the decoys are located. Next, to remove the dependency of V{"(v;y) on y, we
make the following assumption:

Assumption 2 The set DY = {s € D | y(s) # 0} of states where decoys are allocated
is given.

Under this assumption, we simply assume all states in the given set D have to be as-
signed with nonzero decoy resources. That is DY = D.

This assumption further reduces the defender’s synthesis problem into a constrained
optimization problem.

max. V" (v)
s

st. 7wt ell & U (z,y),
yeY,xeX

y(s) > 0,¥s € D. (12)

Because the above problem is a standard-constrained optimization problem, one can
obtain a locally optimal solution using the projected gradient method:

. 7‘—k
T+ = projrr (7 + VY (1),

where projg (7) denotes projecting policy 7 onto the policy space 1T and 7 is the step
size.

Connecting Inverse-reinforcement Learning with Projected Gradient Ascent A
key step in performing Projected Gradient Ascent (PGA) is to evaluate, for any policy
7, the projection projg (7). However, this is nontrivial because the set IT includes a set
of attack policies, each of which corresponds to a choice of vectors (i, y). As a result,
IT does not have a compact representation. Next, we propose a novel algorithm that
computes the projection.

First, it is noted that this projection step is equivalent to solving the following opti-
mization problem:

min. D(#, )
S.t. T e ﬁ,
y(s) > 0;Vs € D. (13)
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where D (7, 7) is the distance between the two policies 7, 7.

The distance function D can be chosen to be the Kullback—Leibler (KL)-divergence
between policy-induced Markov chains. Specifically, the KL divergence in (13) can be
expressed as

D (Mz(@,y)|[Mn(z,y)) = Y Pr(p)log %

:Zf’}( logPr ZPr )log Pr(p|lx,y), (14)

where f’\r(p) is the probability of path p in the Markov chain Mz (x, y), and Pr(p|y)

is the probability of path p in the Markov chain M, (x, y) induced by a policy 7.
Because the first term in the sum in (14) is a constant for 7 is fixed, the KL diver-

gence minimization problem is equivalent to the following maximization problem:

. Pr(p) log Pr( 1
Lmax Z r(p) log Pr(p|x,y) (15)

Problem (15) can be solved by an extension of the Maximum Entropy (MAXENT) IRL
algorithm [24], which was originally developed in the absence of constraints on the
reward parameters. It is well-known that IRL is to infer, from the expert demonstrations,
a reward function for which the policy generating the demonstrations is optimal.

The use of IRL to perform the projection is intuitively understood as follows: The
goal is to compute a pair of vectors (x,y) that alters the attacker’s perceived reward
function so that the bounded rational attacker’s optimal policy given (x, y) is closed to
the “expert policy” 7, under the constraints of x, y. Importantly, we used the MAXENT
IRL because it assumes the expect policy is entropy-regulated, and thus is consistent
with the assumption of the quantal response of a bounded rational attacker.

To enforce the constraints * € X,y € Y, we approximate the constraint using a
logarithmic barrier function and compute the optimal solution (x*, y*) using gradient-
based numerical optimization Considering the constraint 1Ty < h, we implement the
barrier function to approximate the inequality constraints and rewrite the optimization
problem as:

o~ 1 1
max. E Pr(p)log Pr(p|z,y) + n log(h —1Ty) + n log(k +17x)
®,y
p

st. y(s)=0, VseS\D,
z(s,a) =0,Y(s,a) € S x A\ W.

where ¢ is the weighting parameter of the logarithmic barrier function. In our experi-
ment, ¢ is fixed to be 1000.

Let L(x,y) be the objective function. Specifically, x and y can be updated via
zh*! = projx (z* + n.VL(z,y)), y**' = projy (y* +n, VL(z,y)).
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Policy Improvement for Gradient Ascent Step After the projection step to obtain a
policy 7% and the corresponding vector (x, y), we aim to compute a one-step gradient
ascent to improve the objective function’s value

VI W) = Vi (v) + VI (v),

where V}*(v) is the defender’s value evaluated given the attack policy 7* at the k-th
iteration.

For this step, we perform a policy improvement step with respect to the defender’s
reward function RY. It is shown in [19,11] that policy improvement is a one-step New-
ton update of optimizing the value function.

Specifically, the policy improvement is to compute

exp ((Ra(s,a) + 9V (s"))/7)
Yacaexp ((Ru(s,a) + V() /)’

The policy at iteration k + 1 is obtained by performing the projection step ((13)) in
which & £ 7.

The iteration stops when |V}*"!(v) — V()| < € where € is a manually defined
threshold. The output yields a tuple (x*,y*) which is the (local) optimal proactive
defense strategy. We can only obtain a local optimal proactive defense strategy here
due to the transferred constrained optimization problem having a nonconvex constraint
set. However, we can start from different initial policies and select the best one.

To summarize, the proposed algorithm starts with an initial policy 7", and use the
IRL to find the projection 7° as well as the corresponding vectors (z°, y°) that shape
the attacker’s perceptual reward function for which 7% is optimal. Then a policy im-
provement is performed to update 7° to 7!. By alternating the projection and policy
improvement, the process terminates until the stopping criteria is satisfied.

7 tl(s, a) =

Remark 1. In our problem, we assume the set D is given. If the set D is not given
but to be determined from a candidate set of states. Then the bi-level optimization is
combinatorial and NP-hard. A naive approach is to enumerate all possible combinations
and evaluate the defender’s value for every subset and select the one that yields the
highest defender’s value.

4 Experiment

We illustrate the proposed methods with two sets of examples, one is a probabilistic
attack graph and another is an attack planning problem formulated in a stochastic grid-
world. For all case studies, the workstation used is powered by Intel i7-11700K and
32GB RAM.

Figure 1 shows a probabilistic attack graph with the targets F' = {10}. The attacker
has four actions {a, b, ¢, d}. For clarity, the graph only shows the transition given action
a where a thick (resp. thin) arrow represents a high (resp. low) transition probability.
For example, P(0,a) = {1:0.7,2:0.1,3 : 0.1,4 : 0.1} °. The defender can allocate

5> The exact transition function is provided: https://www.dropbox.com/s/nyycf57vdry139j/
MDPTransition.pdf?dl=0.
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Fig. 1: A probabilistic attack graph.

decoy resources at a set D = {11, 12} of decoy states and receive a reward of 1 if the
attacker reaches the decoy instead of the true targets. If no decoy resource is allocated,
the attacker receives a reward Ry(s,a) = 1 for any s € F and the optimal attack
policy has probability 60.33% of reaching the target set F' from the initial state 0. In the
meantime, the defender’s expected value is 0.149. That is, with probability 14.9%, the
attacker will reach decoy set D and the attack is terminated.

Consider a defender who has a limited decoy resource constrained by 1Ty < 3
and cannot modify the state-action reward. First, we consider the decoy allocation
against a rational attacker, from the bi-level LP solution, the decoy resource allocation
is y1(11) = 1.218,y1(12) = 0. The defender’s value is 0.654 given the best response
of a rational attacker in M (y1). Then, the same problem is solved for defending against
a bounded rational attacker. The decoy resource allocation based on the PGA method
yields y2(11) = y2(12) = 1.313. Based on the given decoy resource allocation, the at-
tacker has an 8.63% probability of reaching the target set F' and the defender’s expected
value is 0.653 at initial state 0. In these two cases, we observed that the defender’s val-
ues are similar: By assigning resources to decoys to attract the attacker, the defender
reduces the attacker’s probability of reaching the target state significantly (85% reduc-
tion) and improves the defender’s value by 3.38 times.

A key observation is that the decoy allocation against rational attacker y; places
resources only at one decoy state. This is because, when y;(11) = 1.218, the rational
attacker selects the optimal action to reach state 9 and then 11 from state 6 instead of
the true target 10. If the attacker is bounded rational, then at state 6, he will choose
the action leading to either 9 or 10 with nearly equal probabilities. Thus, the design
Y1 against a rational attacker can be sensitive to possible mismatches in the rational-
ity assumption. To see this, we perform the following comparison: We use the design
Y1 against a rational attacker to construct the attack planning MDP and then solve the
optimal attack policy of a bounded rational attacker in this MDP. The defender’s value
is obtained by evaluating the bounded rational attacker policy in M (y;) with the de-
fender’s reward. In this example, we observe that the defender’s value is 0.444, which
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indicates that the defender would have a performance drop of 33% if the rationality
assumption is violated. On the other hand, when we solve a rational attack policy in
the MDP M (y2), whose defense is optimized against the bounded rational attacker, we
observe the defender’s value is 0.654, which is similar to the case against a bounded
rational attacker. The result is shown in Table 1.

; Types of Attackers Rational | Bounded Rational
Defense Strategies
y1 optimized for rational attackers 0.654 |0.444
y2 optimized for bounded rational attackers|0.654 |0.653

Table 1: Defender’s values in the probabilistic attack graph.

(«d) | («d)

? .:
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—

Fig.2: A 6 x 6 gridworld.

Next, we consider a robot motion planning problem in attack graphs modeled by
stochastic gridworlds. The purpose of choosing such an environment is to make the
results more interpretable. Consider first a small 6 by 6 gridworld in Fig. 2. The attack-
er/robot aims to reach a set of goal states while avoiding detection from the defender.
The attacker can move in four compass directions. Given an action, say, “N”, the at-
tacker enters the intended cell with 1 — 2« probability and enters the neighboring cells,
which are west and east cells with « probability. In our experiments, « is selected to be
0.1. A state (¢, j) means the cell at row ¢ and column j.

The defender has deployed sensors shown in Fig. 2 to detect an attack. Once the
attacker enters a sensor state, his task fails. The decoy set D is given as blue cells and
the target set F'is given as green cells. The robot icon represents the robot’s initial state.
If no decoy resource is allocated, the attacker’s policy has a probability of 98.98% of
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Fig.3: A 10 x 10 gridworld.

reaching the target set from the initial state. In the meantime, the defender’s expected
value is 3.56 x 10~%, which means the attacker’s probability of reaching decoys is close
to 0.

We employ the bi-level LP to solve decoy allocation against a rational attacker and
the result is y1((1,4)) = 1.946,y2((4,5)) = 1.774, the defender’s value is 0.433.
Then the same problem is solved for defending against a bounded rational attacker. The
PGA method yields y2((1,4)) = 2.016, y=2((4,5)) = 1.826. Based on the given decoy
resource allocation, the attacker has a 9.9% probability of reaching the target set F', and
the defender’s expected value at the initial state is 0.388.

To see how sensitive y; is to the rationality assumption of the attacker, we evaluate
the defense strategy y1, yo against these two types of attackers: rational and bounded
rational attackers. We observe a 26% decrease of defender’s value when using vy, op-
timized against rational attacker, to defend against a bounded rational attacker. When
the optimal defense y, against a bounded rational attacker is used against a rational
attacker, the performance loss for the defender is negligible. The result is shown in
Table. 2.

The effects of allowing action-reward modifcation and different choices of decoy states
We study how much the defense can be improved by allowing additional state-action re-
ward modification. The actions the defender can modify are marked as arrows in Fig 2.
The PGA method yields x2((4,0),'N’) = =1, x5((4,1),’N’) = —0.94, 25((4, 2),'N")
—0.904, x5((4,4),'N’) = 2((4,4),"W’) = x2((4,4),’S’) = —1,22((4,4),’E’) =
0,y2((1,4)) = 1.938,y>((4,5)) = 1.734. The defender’s value is 0.394 given the joint
decoy allocation and action reward modification, and the attacker has a probability of
8.6% to reach the true goal, which is 13.13% reduction compared to that when only the
decoy resource allocation is allowed. The result is shown in Table 3.

In order to test how the decoy set D influences the result. We re-allocate the posi-
tion of decoys to {(0,2), (5,3)}. The result is shown in Table 4. If we do not allocate
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: Types of Attackers Rational | Bounded Rational
Defense Strategies
y1 optimized for rational attackers 0.433  ]0.321
Y2 optimized for bounded rational attackers|0.431  |0.388

Table 2: Defender’s values in 6 x 6 gridworld with only decoy allocation.

decoy resources, the attacker reaches the target set with 98.97% probability, and the
defender’s value is 7.61 x 108 at the initial state. If the defender can allocate resources
to the decoys, PGA method yields y2((0,2)) = 1.141 and y2((5,3)) = 1.0. The at-
tacker’s probability of reaching the target set is 3.99% and the defender’s expected value
is 0.699. If the defender is allowed to modify the same set of state-action rewards as she
is in the previous example, PGA method yields €2 ((4,0),’N’) = —1,22((4,1),’N’) =
—0.85,25((4,2),’N’) = —0.081,25((4,4),’N’) = x2((4,4),"W’) = x5((4,4),’S’) =
—1,22((4,4),’E’) = 0, y2((0,2)) = 0.985 and y2((5,3)) = 1.068. Under this con-
figuration, the attacker’s probability of reaching the target set is 0.3% (93% reduction
compared to only allocating decoy resources) and the defender’s expected value is 0.730
(4.4% increase compared to only allocate decoy resources). Clearly, the choice of de-
coy states D influences the attacker’s probability of reaching the target set and the de-
fender’s expected value: the second set D' = {(0, 2), (5, 3)} appears to outperform the
firstset D = {(1,4), (4,5)}. The defender’s value is 0.73 given decoy set D', compared
to 0.39 given decoy set D.

No decoy  |Decoy only|Decoy and action reward
Attacker’s value 0.99 0.099 0.086
Defender’s value[3.56 x 10~°| 0.388 0.394
Table 3: Experiment result in 6 x 6 gridworld given D = {(1,4), (4,5)}.

No decoy |Decoy only|Decoy and action reward
Attacker’s value 0.99 0.04 0.003
Defender’s value|7.61 x10~°|  0.699 0.730
Table 4: Experiment result in 6 x 6 gridworld given D = {(0, 2), (5, 3)}.

4.1 Scalability

We increase the gridworld size to 10 x 10 as shown in Figure 3. The sensors, decoy
set, and target set are represented using the same notations as the 6 x 6 gridworld. The
results obtained from bi-level LP and PGA are shown in Table 5.
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: Types of Attackers Rational | Bounded Rational
Defense Strategies
y1 optimized for rational attackers 0.476 0.469
Y2 optimized for bounded rational attackers|0.476  (0.472

Table 5: Defender’s values in 10 x 10 gridworld.
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Fig. 4: The convergence of PGA for computing an optimal defense strategy in 10 x 10 gridworld
given different initializations.

We also test the convergence of the PGA method using different initial policies as
shown in Figure 4. From Figure 4, we observe that different initial policies result in
a similar converged value for the objective function. However, the rate of convergence
depends on the initialization of the PGA. The PGA method solved the 10 x 10 gridworld
using 2112.25 seconds and the 6 x 6 example using 537.58 seconds. The bi-level LP
solution running time increases from 0.17 seconds to 0.89 seconds when we increase
the gridworld size from 6 x 6 to 10 x 10. The running time shows both methods can be
extended to moderate problem sizes.

5 Conclusion and Future Work

We present a mathematical framework and algorithms for decoy allocation and reward
modification in a proactive defense system against rational and bounded rational at-
tackers. The formulation and solutions can be extended to a broad set of adversarial
interactions in which proactive defense with deception can be deployed. In the future,
it would be interesting to consider more complex attack and defense objectives and in-
vestigate the decoy allocation given the uncertainty in the attacker’s goal or capability.
Apart from “revealing the fake” studied herein, another direction is to explore how to
“conceal the truth” by manipulating the attacker’s perceptual reward of compromising
true targets.
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