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Abstract

DB-BERT is a database tuning tool that exploits information gained via natural language analysis of manuals and other
relevant text documents. It uses text to identify database system parameters to tune as well as recommended parameter
values. DB-BERT applies large, pre-trained language models (specifically, the BERT model) for text analysis. During an
initial training phase, it fine-tunes model weights in order to translate natural language hints into recommended settings. At
run time, DB-BERT learns to aggregate, adapt, and prioritize hints to achieve optimal performance for a specific database
system and benchmark. Both phases are iterative and use reinforcement learning to guide the selection of tuning settings
to evaluate (penalizing settings that the database system rejects while rewarding settings that improve performance). In our
experiments, we leverage hundreds of text documents about database tuning as input for DB-BERT. We compare DB-BERT
against various baselines, considering different benchmarks (TPC-C and TPC-H), metrics (throughput and run time), as well
as database systems (PostgreSQL and MySQL). The experiments demonstrate clearly that DB-BERT benefits from combining
general information about database tuning, mined from text documents, with scenario-specific insights, gained via trial runs.
The full source code of DB-BERT is available online at https://itrummer.github.io/dbbert/.
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1 Introduction tools) the manual and hundreds of text documents with tuning
hints in order to find promising settings for database system
Give me a user manual, and I'm happy for hours. parameters faster.
— — —LennonParham The problem of finding optimal values for DBMS param-
When all else fails, read the instructions. eters (also called “tuning knobs™) for specific workloads
— — —Anonymous and performance metrics has received significant attention in

recent years. DBMSs often have hundreds of parameters [34],
making it very hard to find optimal settings manually. This
motivates computational methods for automated parameter
tuning. The dominant approach is currently machine learn-
ing [1], in particular reinforcement learning [24, 49, 57].
Here, a tuning tool selects value combinations for DBMS
parameters to try in a principled manner, guided by the
results of benchmark runs for specific settings. However, this
approach is expensive (recent work uses hundreds of itera-
tions per tuning session [49]) and works best if guided by
input from database experts [17], pre-selecting a small set of
parameters to tune and reasonable value ranges to consider.
Our goal is to substitute such input by information that is
gained automatically by analyzing text documents. We call
the corresponding problem variant Natural Language Pro-
cessing (NLP)-Enhanced Database Tuning.

Manuals are useful. For instance, before starting to tune
a database management system (DBMS), it is recommended
to read the associated manual. So far, those words of wis-
dom only seemed to apply to human database administrators.
While it is widely acknowledged that database manuals
contain useful information, this knowledge has long been
considered inaccessible to machines due to barriers in natu-
ral language understanding. We believe that this has changed
with recent advances in the field of natural language pro-
cessing, namely by the introduction of powerful, pre-trained
language models based on the Transformer architecture [51].
We present DB-BERT, a tuning tool, based on the BERT
model [7], that “reads” (i.e., analyzes via natural language
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Table 1 Example tuning hints with extractions

Text snippet

Extraction

The default value of shared_buf fer is set very low... The recommended value is 25%

of your total machine RAM. [35]

I changed ‘random_page_cost’ to | and retried the query. This time, PostgreSQL

used a Nested Loop and the query finished 50x faster. [33]

On a dedicated database server, you might set the buffer pool size to 80% of the machine’s

physical memory size. [31]

shared_buffers =0.25-RAM

random_page_cost =1

innodb_buffer_pool_size=0.8-RAM

DB-BERT extracts, from text, tuning hints that recom-
mend specific values for specific parameters. Instead of
focusing on the database manual alone, typically containing
recommendations to optimize performance for typical work-
loads, DB-BERT mines a large number of text documents on
the Web. In doing so, DB-BERT is able to access the “long
tail” of tuning recommendations, considering less common
scenarios as well.

Table 1 shows examples for tuning hints with sources and
the associated, formal representation of each extracted hint.
Some of the hints (second example) recommend an absolute
value while others (first and third example) recommend rela-
tive values. For the latter, translating the hint into a concrete
value recommendation requires knowledge of system prop-
erties such as the amount of RAM. Some of the hints (first
two examples) mention the parameter explicitly while oth-
ers (last example) refer to it only implicitly. DB-BERT can
exploit all of the hints shown in Table 1.

For a given text snippet, DB-BERT uses a fine-tuned ver-
sion of the BERT Transformer model to solve four tasks.
First, it decides whether a text snippet contains hints. Sec-
ond, it translates hints into formulas such as the ones shown
in Table 1. This may entail steps for resolving implicit param-
eter references as well as relative recommendations. Third,
instead of relying on hints completely, DB-BERT may decide
to deviate from proposed values within pre-defined ranges.
Finally, given potentially conflicting hints from multiple
sources, DB-BERT chooses weights for hints, representing
their relative importance.

DB-BERT does not rely on tuning hints alone. Instead,
DB-BERT gains more information via trial runs, executing
workloads with specific parameter settings while measur-
ing performance. For instance, this enables DB-BERT to
resolve conflicts between recommendations from multiple
sources. Trying out recommended values reveals which rec-
ommendations are reliable. To decide which values to try,
DB-BERT uses reinforcement learning, thereby balancing
between exploration and exploitation in a principled man-
ner.

During a tuning session, DB-BERT iterates until a user-
defined optimization time budget runs out. In each iteration,
DB-BERT selects one or multiple DBMS configurations
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(i.e., parameter settings) to try out. DB-BERT translates the
performance observed during those runs (on user-defined
benchmarks) into a reward value. This reward value is
used to guide the selection of configurations in future itera-
tions, using the Double Deep Q-Networks [50] reinforcement
learning algorithm. To apply this algorithm, we formulate
database tuning as a Markov Decision Process (MDP) with
discrete states and actions. We represent treatment for each
hint as a sequence of decisions, determining the hint type
(e.g., relative versus absolute values) as well as the hint
weight. To leverage NLP for those decisions, we associate
each decision option with a text label. This allows DB-BERT
to compare hint text and decision label using the BERT Trans-
former.

We train DB-BERT in a system and benchmark inde-
pendent manner, before applying it for specific tuning
tasks. In principle, we could use manually annotated tun-
ing documents for training (assigning a high reward for hint
translations that are consistent with annotations). However,
generating such data requires expert knowledge and is hard
to crowdsource (compared to cases where labeling requires
only commonsense knowledge [11]). Instead, we exploit
the database system itself for (noisy) feedback. We assume
that tuning hints, if correctly translated, tend to recommend
admissible values that do not to dramatically decrease per-
formance. Hence, we train DB-BERT by assigning rewards
for hint translations that result in admissible parameter set-
tings (i.e., the DBMS accepts the setting). On the other side,
we assign penalties for translations that result in inadmissi-
ble parameter settings (i.e., the DBMS rejects the setting) or
settings that decrease performance significantly for a simple
example workload. The result of training is a model (i.e.,
weights for around 110 million parameters of the fine-tuned
BERT model) that can be used as starting point for tuning
other database systems on other benchmarks.

We also present an alternative version of DB-BERT which
does not require any scenario-specific training (i.e., no spe-
cialized training for database tuning using text). Instead, this
variant exploits out-of-the-box language analysis models,
pre-trained on standard benchmarks from the NLP domain.
More precisely, it maps the problem of extracting recommen-
dations for specific parameters into a question answering
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problem, using tuning text as context. Also, it uses zero-
shot classifiers to associate relative tuning hints with system
resources such as RAM, CPU cores, or disk space.

The idea of leveraging text documents for database tuning
has been introduced in a recent vision paper [43], published
by the same author as the current one. That paper pro-
poses a simple approach based on supervised learning. The
approach is trained via tuning hints that have been manually
labeled with hint translations. In contrast to that, DB-BERT
uses unlabeled text as input. No manual pre-processing is
required on this input text. Choices associated with hint trans-
lation steps are annotated with manually provided text labels
(15 labels in total). However, those labels are not scenario-
dependent and we use the same labels across all experiments
(Table 3 shows five out of the 15 labels). The same applies to
all other tuning parameters introduced in the following sec-
tions. Besides the differences in manual labeling overheads,
the prior approach is purely based on input text, does not
integrate any performance measurements, and is therefore
unable to adapt recommendations to specific benchmarks or
metrics. Compared to the initial SIGMOD publication that
this paper is based upon [45], this current version expands
the original approach by a “zero-shot” variant which does not
require task-specific training. This variant is evaluated in the
experiments. We discuss differences to prior work in Sect.?2
in more detail.

In our experiments, we compare against the latter work as
well as against state-of-the-art methods for database tuning
without input text. We exploit large document collections,
mined by issuing Google queries with relevant keywords,
as text input for DB-BERT. We consider different bench-
marks (e.g., TPC-C and TPC-H), metrics (throughput and
latency), and database systems (MySQL and PostgreSQL).
The experiments demonstrate that DB-BERT benefits signifi-
cantly from information gained via text analysis. In summary,
our original, scientific contributions are the following:

e We introduce multiple variants of DB-BERT, a sys-
tem that combines natural language text documents and
run time feedback of benchmark evaluations to guide
database tuning.

e We describe the mechanisms used by DB-BERT to
extract, prioritize, translate, aggregate, and evaluate tun-
ing hints.

e We evaluate DB-BERT experimentally and compare
against baselines, using multiple benchmarks, metrics,
and database systems.

The reminder of this paper is organized as follows. We
cover required background in learning and NLP in Sect.2.
Then, in Sect. 3, we introduce our problem model and termi-
nology. We give an overview of DB-BERT in Sect. 4. Then,

in Sect. 5, we describe how DB-BERT extracts and prioritizes
candidate hints from text documents. We show how DB-
BERT translates single hints in Sect. 6 and how it aggregates
and evaluates hints in Sect.7. Next, we present a zero-shot
variant of DB-BERT in Sect.8 which does not require any
task-specific training data. In Sect. 9, we report experimental
results before we conclude with Sect. 10.

2 Background and related work

We discuss technologies that DB-BERT is based upon. Also,
we describe prior work addressing similar problems as DB-
BERT.

2.1 Pre-trained language models

The field of NLP has recently seen significant advances
across a range of long-standing problems [53]. These
advances have been enabled, in particular, by the emergence
of large, pre-trained language models [16], based on the
Transformer architecture [51]. Such models address two pain
points of prior NLP approaches: lack of task-specific training
data and bottlenecks in computational resources for training.
Language models are trained, using significant computa-
tional resources, on tasks for which training data is readily
available in large quantities. For instance, masked language
modeling [7] (i.e., predicting masked words in a sentence)
canuse arbitrary Web text for training. Instead of training new
models from scratch for other NLP-related tasks, pre-trained
models can be used as a starting point. Pre-trained models
can be used either via fine-tuning or via prompting. Using
fine-tuning, pre-trained models are trained further on task-
specific training data. However, due to the use of pre-training,
the number of required training samples and computational
overheads are reduced by many orders of magnitude [16].
The latest generation of language models [6, 25, 58], includ-
ing also OpenAI’s GPT model series [10], can often be used
without task-specific training via prompting [4]. Instead of
training data, it is sufficient to describe a new task to solve
as part of the prompt, the text input to the model.

2.2 Applications of language models in data
management

Natural language query interfaces [13, 14, 18, 26, 38]
are the most popular application of pre-trained models
in the context of databases. At the time of writing, cor-
responding approaches constitute the state of the art for
text-to-SQL translation benchmarks (e.g., WikiSQL [59] or
SPIDER [56]). The problem of translating text into queries
shares certain characteristics with the problem of extracting
tuning hints from text. In both cases, text is translated into a
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formal representation. However, whereas text-to-SQL meth-
ods typically translate a single sentence into one single SQL
query, DB-BERT extracts multiple tuning hints from multi-
sentence text passages. Also, DB-BERT must aggregate and
prioritize conflicting hints obtained from multiple sources (a
sub-problem that does not appear in the context of natural
language query interfaces). Unlike most prior work on text-
to-SQL translation, DB-BERT does not assume the presence
of labeled training samples.

Recent work explores a variety of novel use cases for large
language models in data management [46]. These include
applications for data preparation and integration problems [2,
39, 41], data profiling and discovery [5, 19, 47], as well as
novel database engine designs that exploit language models
for data processing directly [37, 39, 42] or to synthesize code
for processing [2, 44].

2.3 Reinforcement learning

Reinforcement learning [40] addresses scenarios such as
the following. An agent explores an environment, selecting
actions based on observations. Those actions may influence
the environment (whose dynamics are initially unknown to
the agent) and result in reward values. The goal of the agent
is to maximize reward, accumulated over time. In order to do
so0, the agent needs to balance exploration (trying out action
sequences about which little is known) with exploitation
(exploiting action sequences that seem to work well, based
on observations so far). The area of reinforcement learning
has produced various algorithms that balance this tradeoff in
a principled manner. Specifically, DB-BERT uses the Dou-
ble Deep Q-Networks [50] algorithm. This algorithm learns
to estimate action values in specific states via deep learning,
using two separate models for selecting actions and evaluat-
ing them.

Reinforcement learning has been used for various prob-
lems in the database domain [3, 15, 55, 57], including tuning
problems (discussed in detail next). Different from prior
work, we combine reinforcement learning with NLP to find
promising parameter settings. More broadly, our work con-
nects to prior work on leveraging text for reinforcement
learning, in particular prior work on instruction follow-
ing [27]. However, prior work does not consider performance
tuning, specifically database tuning, as we do.

2.4 Database tuning

A recent vision paper [43] on NLP-enhanced database
tuning, written by the same author as the current publica-
tion, relates most to the current work. The prior work trains
a Transformer model to recognize sentences containing tun-
ing hints via supervised learning. For sentences classified as
tuning hints, it extracts parameters and values according to
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Table 2 Comparing DB-BERT to prior work on NLP-enhanced
database tuning

Criterion Prior-main This

Learning type Supervised Reinforcement Learning
NLP type Classification Multiple choice

Input Text Text + Evaluations
Implicit references No Yes

Adapting hints No Yes

Iterative No Yes

Table 3 Labels associated with actions for decision d = 0. Placehold-
ers are contained in square brackets

Action Label

0 (NO_HINT) [p] and [v] are unrelated

1 [p] and [v] relate to main memory
2 [p] and [v] relate to hard disk

3 [p] and [v] relate to core counts

4 Set [p] to [v]

a simple heuristic. This approach uses only text input but
no run time feedback. It extracts a fixed set of recommenda-
tions from a document collection, without being able to adapt
to specific workloads and performance metrics. DB-BERT,
on the other hand, uses hints extracted from text merely as
a starting point. It supports a broader range of tuning hints
(e.g., implicit hints) and does not require annotated tuning
hints during training. We summarize some of the differences
in Table 2 and compare both approaches experimentally in
Sect. 9.

Machine learning is nowadays the method of choice for
many database optimization problems, ranging from query
optimization [9, 12, 20, 21, 28, 29, 32, 48] over physical
design decisions [8, 15,23, 55] up to database system param-
eter tuning [24, 34, 52, 57]. We address an extended version
of the latter problem, expanding the input by natural language
text documents.

3 Problem model

We tune configurations for database system parameters.

Definition 1 Each DBMS is associated with a set P of con-
figuration parameters. Denote by ) the set of admissible
parameter values. A configuration assigns each parameter
to a valid value and is represented as a function P +— V.
Equivalently, we represent this function as set {(p;, v;)} for
pi € P and v; € V of parameter-value pairs. Parameters not
referenced in a configuration maintain their default values.
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Our goal is to find configurations that optimize perfor-
mance. Traditionally, the following problem model is used.

Definition 2 A database tuning problem is described by a
tuple (b, P, V). Here, b is a benchmark defining a set of
queries (or a transaction workload), together with a perfor-
mance metric to optimize (e.g., run time or throughput). A
solution assigns parameters P, selected for tuning, to val-
ues from V and ideally optimizes performance according to
benchmark b.

In this work, we address a variant of this problem model.

Definition 3 An NLP-enhanced database tuning instance is
described by atuple (b, T, S). Here, b is a benchmark to opti-
mize and T a collection of text documents containing tuning
hints. The goal is to find optimal configurations for b, con-
sidering all DBMS tuning knobs (more precisely, our current
implementation considers all integer, numeric, and Boolean
parameters for each system), using tuning hints extracted
from T via natural language analysis. S is a vector of numer-
ical system properties (such as the amount of RAM or the
number of cores) needed to translate hints, potentially con-
taining relative value suggestions, into concrete values.

We do not expect users to specify parameters to tune
nor to suggest value ranges for parameters. We rely on
natural language analysis to identify relevant parameters
and proposed values. However, the approach presented in
this work assumes access to a DBMS instance. Via this
interface, we verify whether extracted parameter names are
valid and whether the parameter type falls within our scope.
Our current implementation considers integer, Boolean, and
numeric parameters. This scope covers a large share of
performance-relevant parameters in database systems like
PostgreSQL and MySQL. An extension to other value types,
e.g., string-valued parameters, is, in principle, possible. How-
ever, integer, numerical, and Boolean parameters (which can
be represented as integers) open up interesting possibilities
for NLP-enhanced tuning. For instance, given multiple con-
flicting value recommendations for the same parameter, it is
possible to select a value that minimizes distance to any of
the recommendations (which requires a distance function).
This is less convenient for non-numerical value types.

The goal of text analysis is to extract tuning hints,
described next.

Definition 4 A tuning hint suggests a value for one DBMS
parameter. We model tuning hints as a triple (¢, p, v) where
t is a text snippet containing the hint, p a specific parameter,
and v a specific value mentioned in #. We call the hint explicit
if p is mentioned explicitly in # and implicit otherwise. In
pseudo-code, we use notation 4. p or h.t to refer to parameter
or text of hint A.

Note that a text snippet ¢ may contain suggestions for mul-
tiple parameters or multiple suggested values for the same
parameter. This is why we need p and v to identify a specific
hint within ¢. Value v may not always be the concrete value
proposed for p. This is why we translate tuning hints into
formulas, defined next.

Definition 5 We translate tuning hints (7, p, v) into a formula
of the form p = f (v, §) where f is a formula and S a vector
of numerical system properties (e.g., the amount of main
memory). We consider formulas of type f (v, S) = v -m as
well as f (v, S) = v - S; - m where S; is the i-th component
of § and m € R a multiplicator (picked from a discrete set
M of multiplicators).

We illustrate tuning hints and their translation.

Example 1 Consider the text snippet 1 =“Properly config-
ure shared_buffers - we recommend 25% of available
RAM”.! Assume § = (8G B, 4, 1T B) describes the amount
of RAM, the number of cores, and the amount of disk space
on the target system. Then, the tuning hint (¢, p, v) for
p =shared_buffers and v = 0.25 should translate into
the formula f(v,S) = v - Sp - 1 (where 1 represents the
multiplicator), which evaluates to 2 GB.

4 System overview

Figure 1 shows an overview of the DB-BERT system. DB-
BERT searches settings for the tuning knobs of a DBMS that
maximize performance according to a specific benchmark
(specifying workload and performance metric). DB-BERT
differs from prior tuning system in that it exploits text doc-
uments about the DBMS to tune, for instance the DBMS
manual, as additional input.

DB-BERT obtains as input the benchmark to tune, a
collection of text documents containing suggested settings
for tuning knobs, and numerical properties describing the
hardware platform (namely, our implementation expects the
amount of RAM, the number of cores, and the amount of disk
space as inputs). The latter input is necessary to translate tun-
ing hints in text documents that use relative recommendations
(e.g., suggesting a buffer size as a percentage of the amount
of RAM). Note that DB-BERT is not restricted to parameters
that relate to the aforementioned hardware properties. DB-
BERT can process hints for arbitrary parameters, as long as
recommended values are specified as absolute values in text.

DB-BERT does not use text input alone to determine
parameter settings (separating it from prior work on NLP-
enhanced database tuning [43]). Instead, it exploits run time

! https://blog.timescale.com/blog/ 13-tips-to-improve-postgresql-
insert-performance/.

@ Springer


https://blog.timescale.com/blog/13-tips-to-improve-postgresql-insert-performance/
https://blog.timescale.com/blog/13-tips-to-improve-postgresql-insert-performance/

I. Trummer

4
DB-Bert
| Extract Hints ]A
1
| Prioritize Hints ]B
1
->| Translate Hints IC
3
| Adapt Hints | D
n DBMS
| Weigh Hints | E
1
| Aggregate Hints IF
| Evaluate Configurations IG
—I Learn from Experiences |H

I

Recommended configuration

Fig. 1 Overview of DB-BERT system: we exploit tuning hints,
extracted from text documents, to find optimal DBMS knob settings
for a given workload

feedback obtained by benchmarking specific configurations
on the DBMS to tune. Hence, DB-BERT requires a connec-
tion to a DBMS instance.

At the start of a tuning session, DB-BERT divides input
text into text snippets and tries to extract tuning hints from
each snippet (Step A in Fig. 1). A tuning hint corresponds to a
recommendation of a specific value for a specific parameter.
Extracting hints from text snippets is non-trivial, in particular
as parameter references may be implicit (i.e., the text does
not explicitly mention the name of the parameter to tune).
Next, DB-BERT determines the order in which hints will be
considered in the following stages (Step B in Fig. 1). Ideally,
the most important hints are considered first. DB-BERT uses
a heuristic to order hints, prioritizing hints about frequently
mentioned parameters while limiting the number of hints
considered consecutively for the same parameter.

Next, DB-BERT iteratively creates configurations (i.e.,
value assignments for tuning knobs) from tuning hints.
It evaluates those configurations on the input benchmark
via trial runs. Iterations continue until the user interrupts
optimization or a user-specified optimization time limit is
reached.

In each iteration, DB-BERT considers a batch of tuning
hints (not the entire set of tuning hints). It considers hints
in the order established at the start of the tuning session,
thereby considering the seemingly most important hints first.
For each hint, DB-BERT takes three types of decisions. First,
it translates the hint text into a simple equation, assigning a
value to a parameter (Step C in Fig. 1). Second, in Step D, it
decides whether to deviate from the recommended value (i.e.,
whether to multiply the recommended value by a constant).
Third, it assigns a weight to the hint (Step E). These weights
decide how to prioritize in case of conflicting recommenda-
tions about the same tuning knob. After treating all hints in
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Algorithm 1 NLP-enhanced database performance tuning.

1: // Optimize all parameters P for benchmark b via hints
2: // from text collection 7', using multiplicators M, system
3: // properties S, and weights W for translating hints. Use
4: // < [ hints per parameter and episode and up to e hints
5: // per episode. Evaluate n configurations in each episode.
6: function DB- BERT(T, b, P, M, S, W, [, e, n)

7:  // Extract tuning hints from text snippets

8: H <« U;er EXTRACTHINTS(P, 1)

9:  // Order tuning hints by priority

10:  H, <ORDERHINTS(H, [)
11:  while No timeout do

12: /I Iterate over hints in priority order

13: for H, < BATCHES(H,, ¢) do

14: // Evaluate configurations created using hints
15: RUNEPISODE(b, H, S, M, W, n)

16: end for

17:  end while
18:  return Best configuration found
19: end function

the current batch, DB-BERT aggregates them into a small
set of configurations (Step F), mediating between inconsis-
tent recommendations using hint weights. It evaluates those
configurations on the user-specified benchmark via trial runs
(Step G in Fig. 1).

DB-BERT learns to improve the way hints are translated,
adapted, and weighted over the course of a tuning session.
This allows DB-BERT to specialize a configuration to the
current benchmark and platform. DB-BERT uses reinforce-
ment learning to make all decisions associated with Steps C
to E in Fig. 1. The learning process is therefore driven by a
reward function that the system tries to maximize. In case
of DB-BERT, that reward function is based on the perfor-
mance results for specific configurations during trial runs.
Configurations that are accepted by the DBMS (i.e., trying
to set parameters to specific values does not result in an error)
and achieve high performance generate high reward values.
Based on rewards received, the system learns to improve its
decision making in coming iterations (Step H in Fig. I).

DB-BERT uses deep reinforcement learning. This means
that immediate and future reward values associated with
specific choices are estimated using a neural network. Specif-
ically, DB-BERT uses BERT, a pre-trained language model,
as neural network. Due to pre-training, this model comes with
powerful natural language analysis capabilities out of the
box. To estimate the value of specific choices during Steps C
to E, BERT is applied to pairs of text snippets. The first snip-
pet is taken from the text of a tuning hint, the second snippet
is a text label representing the semantics of that choice (see
Table 3 in Sect. 6 for example labels). Based on reward values
received, the initial weights of the BERT model are refined
over the course of a tuning session (in Step H).

Algorithm 1 represents the main function, executed
by DB-BERT, in pseudo-code. The input integrates user-
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Algorithm 2 Extract candidate tuning hints from text docu-

ments.

1: // Extract tuning hints about parameters P from text 7.
2: function EXTRACTHINTS(P, 1)

3:  // Extract explicit parameter references

E <« {p € P|contains(t, p)}

// Extract implicit parameter references

i < argminyep S(BERT (p), BERT (1))
/] Extract candidate parameter values

V «EXTRACTVALUES(1)U{0, 1}

9:  // Return pairs of values and parameters
10:  return {(z, p,v)|p € EU{i},v e V}
11: end function

A

provided inputs, represented in Fig.1, as well as other
parameters, extracted automatically or kept constant across
systems and benchmarks. These include the full set of inte-
ger, Boolean, and numeric tuning knobs, extracted from the
DBMS, P, a set M of multiplicators (to deviate from values
proposed in text), a set W of weights (to determine relative
importance between conflicting hints from different sources),
and parameters /, e, and n to choose the number of hints pro-
cessed per parameter and iteration, the total number of hints
considered per iteration, and the number of configurations
evaluated per iteration, respectively. The semantics of those
parameters will be described in more detail in the following
sections.

Line 8 in Algorithm 1 realizes Step A from Fig. 1, Line 10
realizes Step B. The main loop iterates until the tuning time
budget is depleted. Function BATCHES(H,, ¢) divides hints
into batches of size at most e, following the previously estab-
lished hint order. Each invocation of RUNEPISODE realizes
Steps C to H from Fig. 1. Finally, DB-BERT recommends
the best observed configuration.

Section 5 discusses hint extraction and ordering. Section 6
describes the learning process in more detail and Sect. 7 out-
lines how hints are aggregated into configurations.

5 Extracting candidate hints

In a first step, DB-BERT extracts candidate tuning hints.
Following Definition 4, a tuning hint consists of a text snip-

Parameters Text passage
Encode Encode Extract Extract
via BERT | | via BERT || Parameters Values
Cosine Top-K U X
Similarity Matches

Candidate hints

Fig. 2 Given a text passage and DBMS parameter names, DB-BERT
pairs extracted values with parameters that are explicitly mentioned or
are similar to the text

Algorithm 3 Prioritize hints based on their parameters.

1: // Order hints H using stride of length /.
2: function ORDERHINTS(H, [)

3:  // Collect parameters in hints

4: P <« {h.plh € H}

5:  // Group hints by parameter

6: G <« {(pi, Hi)lH = UH;, h € H; —> h.p = p;}

7: I/ Sort parameters by hint count

8:  po,..., pn < P sorted by number of hints (ascending)
9:  // Initialize result list

10: R <[]

11:  // Iterate over hint ranges
12: fori < 0,...,[|G(po)/l|] do

13: // Tterate over (ordered) parameters

14: for p < po, ..., pndo

15: /I Add hints on p within i-th range

16: APPEND(R, G(p)[i -1 : i+ 1) -1 —1])
17: end for

18:  end for

19:  return R

20: end function

|Parameter 1 Hints

)

v
L 2

w

|Parameter 2 Hints
3

Parameter 3
Hints

Fig.3 DB-BERT prioritizes hints about frequently mentioned parame-
ters while limiting the number of hints per parameters before switching
to the next one. In the illustrated example, hints are considered in the
order indicated by the red (numbered) arrows

pet, a parameter reference, and a value reference. Algorithm 2
describes the extraction process (illustrated in Fig. 2 as well).
It extracts explicit as well as implicit parameter references.
Implicit references are obtained by comparing the BERT
encoding for the text (a vector) against BERT encodings
of parameter names, selecting the parameter with minimal
cosine distance. We consider all numbers that appear in text,
potentially combined with size units, as potential value sug-
gestions. By default, we add values 0 and 1, representing on
and off values for Boolean flags, into the set of values (on
and off values are often not explicitly mentioned in tuning
hints). The set of candidate hints for a given text snippet is
the Cartesian product between parameter references and val-
ues. This means that our candidates likely contain erroneous
hints (i.e., parameter-value combinations that are not linked
by the text). The task of separating actual from erroneous
hints is solved during the translation phase, described in the
next section.

After extracting candidate hints, DB-BERT sorts them
using Algorithm 3. Our goal is to increase chances of find-
ing promising configurations when considering hints in sort
order. We consider two rules of thumb. First, we expect
important parameters to be mentioned in more documents.
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Algorithm 4 Transition function for translating single hints.

1: // For benchmark b, translate hint for parameter p and
2: // value v, using system properties S, multiplicators M.
3: // Action a refers to decision d and expands formula f.
4: // Returns next decision, expanded formula, and reward.
5: function TSTEP(D, p,v, S, M,d, f,a)

6: if d =0 then
7
8

// Decide hint type and whether to use it
if @ = NO_HINT then

9: return (END, —, 0)

10: else

11: return (d + 1,v - S, 0)

12: end if

13:  elseif d = 1 then

14: /I Choose multiplicator for current hint value
15: f < f M,

16: // Try setting parameter value and benchmark
17: suc <—DBMSSET(p, f)

18: if suc = True then

19: r <—EVALUATEPERFORMANCE(D)

20: return (END, f,r + 1)

21: else

22: return (END, —, —1)

23: end if

24:  endif

25: end function

Second, we expect diminishing returns when considering
more and more hints about the same parameter. As a result,
we prioritize hints about parameters that appear in more doc-
uments. However, we consider at most a fixed number of hints
about the same parameter, before switching to the next one.
Algorithm 3 implements those high-level principles. After
grouping hints by parameter, it iterates over hint index ranges.
For each index range, it iterates over parameters in decreas-
ing order of occurrences, adding up to [ hints per parameter
before switching to the next one (until no new hints are left
to add for any parameter).

Example 2 Fig.3 illustrates hint ordering with three parame-
ters. Blue rectangles represent hints for each parameter. The
horizontal width is proportional to the number of hints. Start-
ing with the most frequently mentioned parameter, we add
a limited number of hints for each parameter. After treating
the least frequently mentioned parameter (symbolized by the
red arrow), Parameter 3, we start again with the first one until
no more hints are left.

6 Translating single hints

DB-BERT translates tuning hints into arithmetic formulas
(see Definition 5 for details). Those formulas may depend on
values, specified in text, as well as on system properties such
as the amount of main memory. Evaluating a formula yields
a value suggestion for a tuning knob.
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For each tuning hint, we model the translation as a
sequence of decisions. We learn to translate tuning hints
by using reinforcement learning. Reinforcement learning is
generally applied to Markov Decision Processes (MDPs),
specified by a set of states, actions, a transition function
mapping state and action pairs to new states, and a reward
function. A reinforcement learning agent learns to make deci-
sions maximizing expected rewards, using observations as
guidance. In our scenario, states represent (partially spec-
ified) arithmetic formulas. Actions specify parts of the
formula. The transition functions links partially specified
formulas and actions to states representing the formula, com-
pleted as specified in the action. The reward function is
based on feedback from the DBMS, penalizing translations
that result in inadmissible configurations while rewarding
changes that improve performance. We describe the struc-
ture of the environment (i.e., states, actions, transitions, and
rewards) in Sect. 6.1 and the structure of the learning agent
in Sect. 6.2.

6.1 Learning environment

Algorithm 4 implements the transition function, used by DB-
BERT to translate single hints (the pseudo-code is close to
the implementation of the step function in the corresponding
OpenAI Gym environment?). In Algorithm 4, and for a fixed
tuning hint, the current state is characterized by a partially
specified formula ( /) and by variable d, the integer ID of the
next decision to take. For each hint, we start with an empty
formula f and d = 0. We represent actions (input a) as
integer numbers from one to five. The semantics of actions
depend on the value of d. For d = 0, the action decides
whether the current hint is erroneous (constant NO_HINT)
and, if not, whether the hint suggests a relative or absolute
parameter value. Relative values are expressed as percentage
of system properties such as main memory or the number
of cores (stored in vector S with S, representing a specific
vector component). For relative values, we set f to the prod-
uct between value v and the corresponding system property.
We unify treatment of relative and absolute values by setting
S1 =1 (i.e., a = 1 represents an absolute value).

For d = 1, the action picks a multiplicator from M that
allows deviating from the proposed value. Unlike prior work
using extracted hints without changes [43], such multiplica-
tors allow DB-BERT to adapt to specific benchmarks. In the
next section, we introduce an additional decision that weighs
hints. Here, we have fully specified the formula after two
decisions. Next, we try setting parameter p to the formula
evaluation result. If the setting is rejected by the DBMS,
we directly advance to an end state (constant END). This
case yields negative reward (motivating our agent to learn

2 https://gym.openai.com/.
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Fig. 4 Markov Decision Process for hint translation: parameter-value
pairs are mapped to formulas by action sequences. Rectangles repre-
sent states (double lines mark end states). Arrows represent transitions
(dashed arrows mark non-deterministic transitions)

Run Benchmark

translating hints into admissible formulas). Otherwise, we
evaluate performance on the input benchmark b. The result is
areward value. Higher rewards are associated with better per-
formance. We calculate reward by comparing performance
with a configuration to evaluate to performance with default
settings. For OLAP benchmarks (e.g., TPC-H), we use the
delta of run times (scaled by a constant). For OLTP bench-
marks (e.g., TPC-C), we use the throughput delta.

We reward configurations that are admissible and increase
performance. Those two metrics are immediately relevant for
tuning. We use them when applying DB-BERT for tuning a
specific system for a specific benchmark. Before applying
DB-BERT for specific tuning tasks, we perform a training
phase to fine-tune DB-BERT’s language models for hint
translation in general. To speed up convergence, only dur-
ing training, we add an additional component to the reward
function. This component rewards settings that seem more
likely, e.g., since they are in the same order of magnitude as
the default settings for a parameter. Such heuristics replace
manually generated hint translations, used in prior work [43].
Figure4 illustrates the MDP behind the translation process
(some of the states in Fig.4 are not explicitly represented in
Algorithm 4).

6.2 Learning agent

DB-BERT introduces a learning agent to choose actions in
order to maximize rewards. In each state, the agent selects
among a discrete set of options. Each option can be expressed
as a natural language statement. We can find out which option
is correct by comparing that statement against the tuning
hint text. Hence, we model action selection as a “multiple
choice question answering problem”. Pre-trained language
models can be used to solve this problem (in our implementa-
tion, we use the BertForMultipleChoice Transformer

Algorithm 5 Evaluating expected reward of actions.

1: // Estimate value of action a for decision d,
2: // given text t, parameter p and value v.
3: function EVALUATEACTION(Z, p, v, d, a)
// Get text associated with choice

| < CHOICE_LABEL[d, a]

// Instantiate label for current hint

| <~ INSTANTIATE(/, p, v)

/I Generate input text for BERT

9: i<«tol

10:  // Generate input types for BERT

11: 1< 0lflo1l

12:  // Generate input mask for BERT

A

13: u < 1Ml

14:  if MASKED_MODE then
15: u <—MASK(¢, p)

16: end if

17: return BERT((i, 7, u))
18: end function

model®). We fine-tune model weights during training, based
on rewards received.

Algorithm 5 shows how the agent evaluates specific
actions, based on observations. Besides the action to evalu-
ate, the input includes a description of the current tuning hint
(tuning text ¢, parameter p, and value v) as well as the current
translation step (decision d). We associate each combination
of an action and a decision with a label. The array containing
those labels is represented via constant CHOICE_LABEL in
the pseudo-code. The label is a natural language sentence,
representing the semantics of the associated choice. It con-
tains placeholders for the concrete parameter and value in the
tuning hint. The INSTANTIATE function replaces placeholders
by concrete values.

The BERT model uses three inputs: an input text, a type
tag associating input tokens with one of two input types, and
a mask indicating tokens to consider. Here, we concatenate
hint text and instantiated label to form the input text. Types
separate hint text from label. By default, all input text is
considered for processing. An exception occurs during our
generic training phase (see Sect. 6.1 for more details). Here,
we want to avoid learning the names of specific parameters
as they do not generalize across systems. Hence, we mask all
occurrences of the current parameter name (Function MASK).
On the other side, if learning system and benchmark-specific
configurations for a concrete tuning problem, there are no
reasons to hide information. Algorithm 5 uses a Boolean flag
(MASKED_MODE) to switch between these two modes.

Table 3 shows labels associated with different actions and
the first decision level. At this level, we decide whether a
candidate hint represents an actual hint and, if so, whether
the value is relative or absolute. Finally, we illustrate the
translation by an example.

3 https://huggingface.co/transformers/model_doc/bert.html.
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Algorithm 6 Transition function for interpreting multiple

hints.

1: // Given benchmark b, system properties S, multipli-
2: // cators M, and weights W, translate/weigh hints H.
3: // Evaluate n configurations, based on weighted hints.
4: procedure RUNEPISODE(b, H, S, M, W, n)

5 re < 0

6: Hy <0

7 // Tterate over batch of hints

8: for (t, p,v) € H do

9: // Translate hint into formula

10: d <0

11: while d € {0, 1} do

12: a <—CHOOSEACTION(d, p, v, t)

13: (d, f,rs) < TSTEP(—, p,v, S, M,d, f,a)
14: Fe < Fe+ 75

15: end while

16: /I Add weighted hint if admissible setting
17: if f # — then

18: a <—CHOOSEACTION(d, p, v, t)

]9: HwFHwU{(WavPsfH

20: end if

21:  end for

22: /[ Evaluate weighted hints in combination
23:  re < re+EVALWEIGHTED(H,,, b, n)

24: /[ Integrate new experiences

25: UPDATERL(Hy, r¢)

26: end procedure

Example 3 Consider tuning hint (¢, p, v) with t =“Set
shared_buffers to 25% of RAM”, v = 25%, and
finally p =shared_buffers. First, the agent decides
whether the hint is valid and whether it recommends an
absolute or relative value. Using the labels from Table 3, the
agent evaluates alternative actions based on the hint text. For
instance, for action 1, the agent generates the input text “Set
shared_buffers to25% of RAM. shared_buffers
and 25% relate to main memory.”, separating the two sen-
tences via the type specification. If masked mode is activated,
the two occurrences of the shared_buf fers parameter
are masked. To make a choice, the agent internally compares
values resulting from applying BERT to the input for each
possible action.

7 Aggregating hints

The last section describes how to translate single tuning hints.
However, we often need to integrate multiple hints, possibly
from different sources, to obtain optimal performance. DB-
BERT creates configurations based on groups of hints. This
requires aggregating, possibly conflicting hints, from differ-
ent sources. To support that, we expand the MDP presented
in the last section. Instead of considering a single hint, we
consider an entire batch of hints. For each single hint, we
add an additional decision assigning the hint to a weight.
This weight determines the priority when aggregating the
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hint with others into a configuration. Note that this approach
gives DB-BERT the possibility to prioritize hints differently
for each input workload. Different from static heuristics for
hint priorization, this enables DB-BERT to specialize config-
urations to each input workload, even when using the same
source text.

Algorithm 6 shows complete pseudo-code executed dur-
ing one iteration of DB-BERT’s main loop (Algorithm 6 is
invoked by Algorithm 1). From the reinforcement learning
perspective, each iteration corresponds to one episode of the
associated MDP. Each episode starts from the same start-
ing state, representing the default configuration. The number
of hints considered per episode does therefore restrict the
maximal number of changes, compared to the default con-
figuration. However, as shown in recent work [17, 49], tuning
a small number of tuning knobs is typically sufficient to
achieve near-optimal performance.

Algorithm 6 obtains a batch of candidate hints as input.
It iterates over those hints and uses Algorithm 4 (Func-
tion TSTEP) to translate single hints (respectively, to deter-
mine that a candidate hint is erroneous and should not be
considered). We postpone benchmark evaluations by speci-
fying “—" as benchmark parameter for TSTEP. If successful
at translating the current hint into a formula (i.e., f # —),
Algorithm 6 assigns a weight (Line 18). Weights are chosen
from a discrete set W of possibilities and are assigned by
the learning agent (Function CHOOSEACTION). Finally, the
algorithm assembles a set H,, of weighted tuning hints.

Next, we assemble one or several configurations to evalu-
ate, using weighted hints. Algorithm 7 chooses and evaluates
configurations, using weighted hints as input. It iterates over
parameters mentioned in hints (loop from Line 23-30) and
selects a limited number of n values to try (n is a tuning
parameter). Values are selected in order to cover the range
of suggested values (in hints) as well as possible. We choose
values iteratively (loop from Line 26-29). We want to cover
values proposed in hints as closely as possible in the fol-
lowing sense. Given a distance function § comparing values
for the same parameter, our goal is to minimize the maxi-
mal, weighted distance between a value proposed in a hint
and the closest selected value. Function MAXDIST calcu-
lates the latter metric, given a weighted set V of values
and a set of selected configurations C. We select values
greedily, minimizing the aforementioned cost function in
each step®. Note that some tuning knobs can only be set
to specific values within their value range (e.g., MySQL’s

4 While this heuristic may seem simplistic, it can be shown that it
finds near-optimal solutions. Consider the reduction of MAXDIST as a
function of selected values in C (fixing V and assigning MAXDIST(#, V')
to a large constant). The reduction is sub-modular in the set of selected
values, meaning that adding more values shows diminishing returns. As
itis also non-negative and monotone (adding values cannot increase the
maximal distance), the greedy algorithm corresponds to the algorithm
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Algorithm 7 Evaluate set of weighted tuning hints on bench-
mark.

Algorithm 8 Extract tuning hints from text documents, using
zero-shot methods.

1: // Maximal distance from V to nearest value in C.
2: function MAXDIST(C, V)

3:  return max, y)ev W - Mingec 8(v, ¢)

4: end function

5: // Evaluate configuration C on benchmark b.
6: function EVALUATE(D, C)

7: suc < True

8: for (p,v) € Cdo

9: suc < sucADBMSSET(p, v)

10:  end for

11:  if suc then

12: return EVALUATEPERFORMANCE(D)
13:  else

14: return -1

15:  endif

16: end function

17: // Evaluate up to n configurations on benchmark b,
18: // selecting configurations using weighted hints H,,.
19: procedure EVALWEIGHTED(H,,, b, n)

20:  // Select configurations to cover hints

21: P < {pl{w, p,v)}

22:  C <« {0}

23:  for p € Pdo

24: V « {(v,w)lw:ZW,’pyv)GHw w}

25: C, <0

26: fori < 1,...,ndo

27: V¥ <= arg miny|(y, w)ev MAXDIST(C), U {v}, V)
28: C, < C,U{*}

29: end for

30:  end for

31:  // Compose configurations to evaluate

32:  C < {Upepi-thentry from Cp|l <i < n}
33:  // Evaluate performance of configurations
34: E < {EVALUATE(b, ¢)|c € C}

35:  return maX.cg e

36: end procedure

innodb_buffer_pool_size mustbe a multiple of the
chunk size [31]). We cannot simply average proposed values.

Example 4 Assume we collect hints recommending the fol-
lowing values for parameter shared_buf fers: 1 GB with
weight 1, 2 GB with weight 8, and 8 GB with weight 1.
When selecting 1 GB, we obtain maximal weighted distance
of 8- 12 — 1] = 8 GB from value 2 GB (only distance
1-18 — 1] = 7 GB from 8 GB). Selecting 2 GB yields a max-
imal weighted distance of 6 GB from value 8 GB. Selecting
8 GB yields a maximal weighted distance of 48 GB from
value 2 GB. Hence, we select value 2 GB first. Next, we
select value 8 GB to minimize the maximal distance of the
remaining values to 1 GB.

Finally, we compose selected values for each parameter
into n configurations (Line 32). Function EVALUATE eval-
uates selected configurations on the given benchmark b. It

by Nemhauser [30] which guarantees solutions within factor 1 — e !

of the optimum.

1: // Extract tuning hints about parameters P from text 7.
2: // Resolve relative hints using system properties S.
3: function EXTRACTHINTS(P, ¢, S)

4: /] Extract explicit parameter references

5:  E < {p € P|contains(t, p)}

6:  // Extract implicit parameter references

7: i < argmin,cp S(BERT (p), BERT (1))
8:  // Extract hints for each parameter

90 H<«0

10:  for p e EU{i} do

11: /I Question to extract recommendation
12: q <“Which values are recommended for”opo*“?”
13: // Obtain answer with confidence

14: (a, c) <QA(t, q)

15: /I Check confidence threshold

16: if ¢ > 6 then

17: /l Extract recommended value

18: v <—EXTRACTVALUE(a)

19: /I Classify recommendation

20: t <CLASSIFY(a)

21: /I Treat relative recommendations
22: v <UPDATE(v, ¢, S)

23: /I Add tuning hint

24: H <~ HU{(p,v)}

25: end if

26:  end for

27:  return H

28: end function

assigns a penalty for configurations that are not accepted by
the DBMS and, otherwise, calculates reward based on bench-
mark performance (we use the reward function introduced
in Sect. 6.1). Function EVALWEIGHTED returns the maximal
reward obtained by any configuration.

8 Zero-shot variant

The DB-BERT approach presented so far requires expen-
sive training, specifically for the scenario of database tuning.
As new variants of language models appear, this training
would have to be repeated. Equally, if targeting different
types of tuning text documents, re-training may be neces-
sary for optimal performance. This motivates the “zero-shot”
variant presented next. This variant differs from the main ver-
sion by avoiding scenario-specific training. Instead, it maps
the problem of extracting tuning hints into standard problems
from the NLP domain such as question answering [36].

8.1 Extracting hints

Algorithm 8 shows the algorithm used for analyzing tuning
documents. Different from the prior variant of DB-BERT,
this algorithm handles hint extraction and hint translation
together. This means that reinforcement learning is not
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used anymore to translate text into tuning recommendations.
Given a text passage, parameter, and system properties, Algo-
rithm 8 first extracts parameters that relate to the input text.
Again, parameter references may be either explicit (i.e., the
name of the parameter is explicitly mentioned) or implicit
(i.e., the text describes a desired effect while the name of the
parameter has to be inferred).

Next, Algorithm 8 iterates over all extracted parameter
names. For each parameter, the algorithm generates a ques-
tion (using a simple template). The purpose of that question
is to extract recommended settings for the current parame-
ter. To answer this question, given the tuning text as context,
standard methods from the NLP area can be used. The call
to sub-function QA represents the invocation of a model for
question answering, pre-trained, for instance, on the SQUAD
benchmark [36] (or pre-trained on tasks such as text comple-
tion which enable the latest generation of language models
to solve question answering tasks with a high precision [4]).

Given the lack of task-specific training for database tun-
ing, the chance for spurious extraction may increase. Hence,
Algorithm 8 filters answers using a confidence threshold
0, comparing 6 to the confidence score returned for the
answer by the question answering model. Assuming that
the answer confidence exceeds the threshold, a numerical
value is extracted from the recommendation text. This value
is either an absolute recommendation or a relative one, refer-
ring to system properties such as the amount of RAM, the
amount of disk space, or the number of CPU cores. Given
a collection of named system properties, the algorithm uses
zero-shot classification to compare the recommendation text
to a set of text labels (e.g., “RAM?”, “disk”, “cores”). Here,
language processing methods typically compare embedding
vectors of text labels and a sample to find the class with
minimal distance in the embedding vector space. Based on
the results of zero-shot classification, the algorithm adapts
the extracted value by multiplying with the system property
value, associated with the result class.

Finally, the resulting tuning hint is added to the result set,
returned by Algorithm 8. Note that tuning hints do not refer
to the source text anymore as no further text processing takes
place after extraction (different from the prior variant which
iteratively translates tuning hints into formulas).

8.2 Learning configurations

In this variant of DB-BERT, tuning hints are already trans-
lated as part of pre-processing. Hence, the number of
decisions made via reinforcement learning reduces. Simi-
larly to before, the algorithm iterates over tuning hints that
are sorted using any of the simple heuristic discussed pre-
viously. For each of those hints, the reinforcement learning
algorithm makes the following decisions:
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e Select a multiplicative factor out of a given set of discrete
alternatives. This factor adapts the recommended value
by going either above or below the raw recommendation.

e Select a weight for the tuning hint. This weight represent
the relative importance of the hint. In case of conflicting
recommendations, hints with a higher weight are priori-
tized, as discussed previously.

While the search space for reinforcement learning changes,
the reward function (integrating rewards for appropriate
value assignments as well as for performance improvements)
remains the same. Similarly to before, weighted hints are
aggregated into configurations to try, taking into account the
weights associated with different hints for the same parame-
ter.

9 Experiments

We describe our experimental setup in Sect.9.1, provide
details on the text used for NLP-enhanced database tuning
in Sect.9.2, and details on the training process of all com-
pared algorithms in Sect. 9.3. We compare DB-BERT against
various baselines in Sect.9.4 and study the impact of text
document size, data size, and various DB-BERT features on
performance in Sect.9.5.

9.1 Experimental setup

We compare approaches for tuning system configuration
parameters for MySQL 8.0 and PostgreSQL 13.2. We con-
sider all numerical and Boolean tuning parameters that those
systems offer: 232 parameters for PostgreSQL and 266
parameters for MySQL. We use TPC-H with scaling factors
one (Sect.9.4) and ten (Sect.9.5) and TPC-C with scaling
factor 20 as benchmarks. For TPC-C, we use ten terminals,
unlimited arrival rate, and 60s for both, warmup and mea-
surement time (for each trial run). Besides those parameters,
we use the default TPC-C configurations for PostgreSQL and
MySQL from the OLTP benchmark.’ In addition to the two
TPC benchmarks, we tune for the Join Order Benchmark
(JOB) [22]. This benchmark is unusual in that it is designed
to challenge the query optimizer in particular. Different from
the TPC benchmarks, it has been proposed recently and
encountering specialized tuning recommendations for this
benchmark on the Web is unlikely. We use all queries of
JOB on PostgreSQL and (as time for processing all queries
with the default configuration exceeds the intended tuning
time frame) the first 20 queries for MySQL. For the ana-
lytical benchmarks, each trial run executes all considered

> https://github.com/oltpbenchmark/oltpbench.


https://github.com/oltpbenchmark/oltpbench

DB-BERT: making database tuning tools...

queries. For each tuning scenario and baseline, we execute
five runs and allow for 25 min of tuning time per run (prior
work uses the same time frame [57]). All experiments exe-
cute on a p3.2xlarge EC2 instance with 8 vCPUs, 61 GB of
RAM, and a Tesla V100 GPU featuring 16 GB of memory.
The EC2 instance uses the Amazon Deep Learning AMI with
Ubuntu 18.04.

We compare against the DDPG++ algorithm [49] as repre-
sentative for tuning without NLP-enhancement. We consider
different value ranges for tuning parameters, ranging from a
factor of two around the default value (i.e., d /2 to 2 - d where
d is the default) to 100. In the following plots, we only report
results for the factor leading to optimal performance at the
end of the tuning period. Also, we compare to two base-
lines described in a recent vision paper on NLP-enhanced
database tuning [43]. In the following, Prior-Main denotes
the main method proposed by that prior work, based on super-
vised learning. Also, we compare against a simple baseline,
denoted as Prior-Simple, described in the same paper [43].
Furthermore, we compare to several rule-based tuning tools,
specialized for the database management systems we use
in our evaluation. For PostgreSQL, we use PgTuner,® an
online interface that allows users to tune PostgreSQL for spe-
cific workload types. In the interface, we provide the precise
PostgreSQL version, as well as all relevant hardware proper-
ties of the target platform (RAM, disk, and CPUs) as input.
For the analytical workloads (TPC-H and JOB), we use tun-
ing recommendations for the data warehouse workload type.
For TPC-C, we use recommendations for transactional pro-
cessing. For MySQL, we use the MySQLTuner.” We obtain
recommendations by executing the MySQLTuner tool locally
on the target platform. In the following plots, legend entry
“Specialized” denotes results for the tuning tool (PgTuner or
MySQLTuner) matching the tuned database system.

By default, we use the following configuration parame-
ters for DB-BERT. DB-BERT uses reinforcement learning
to select multiplicator values and weights for each hint from
a fixed set of alternatives. For all experiments, DB-BERT
selects the multiplicator from the set {1/4, 1/2, 1,2, 4} and
weights from {0, 2, 4, 8, 16}. We use the same number of
alternatives (five) in each case. This makes it easier to model
the associated environment with OpenAl’s gym framework.
We avoid using overly small or large multiplicators (if the
optimal parameter value deviates by more than factor four
from the proposed value in any direction, the associated hint
should be disregarded). The set of weight alternatives allows
DB-BERT to disregard hints (by using a weight of zero) as
well as to make specific hints up to eight times more impor-
tant, compared to other hints with non-zero weights. We
set [ to 10 in order to allow at most ten hints per episode

© https://pgtune.leopard.in.ua/#.
7 https://github.com/major/MySQLTuner-perl.
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Fig.5 Frequency distribution of hints and parameters in the collection
of tuning documents for PostgreSQL and MySQL

and parameter. We consider at most 50 hints per episode in
total (e = 50) and evaluate two configurations per episode
(n = 2). DB-BERT splits text documents into segments of
length at most 128 tokens.

‘We also evaluate a DB-BERT variant, described in Sect. 8,
that parses manuals via a zero-shot approach. This means that
no task-specific training is used (unlike for the primary DB-
BERT variant). In the following plots, this variant is denoted
as DB-BERTO0. We use the same settings for all tuning param-
eters that are shared between DB-BERT and DB-BERTO,
except for the parameter determining the number of hints
processed per episode. As DB-BERTO tends to extract less
hints than DB-BERT from the same documents, we set the
number of hints processed per episode to ten (¢ = 10). For
zero-shot classification, we use a BART model, pre-trained
on the MNLI benchmark.® For question answering, we use a
Roberta model, pre-trained on the SQUAD benchmark.® For
the confidence threshold, we use 6 = 0.05.

All baselines (with the exception of specialized tuning
tools) are implemented in Python 3.7, using Pytorch 1.8.1 and
(for the NLP-enhanced tuning baselines) the Huggingface
Transformers library [54]. DB-BERT uses Google’s pro-
grammable search engine API'? to retrieve text documents.
Also, DB-BERT uses the Double Deep Q-Networks [50]
implementation from the Autonomous Learning Library!!
as reinforcement learning algorithm.

9.2 Tuning text documents

DB-BERT comes with a script that retrieves text docu-
ments via Google search and transforms them into the input
format required by DB-BERT. For most of the following
experiments, we use two document collections retrieved via
the queries “Postgresql performance tuning hints” (issued

8 https://huggingface.co/facebook/bart-large-mnli.
9 https://huggingface.co/deepset/roberta-base-squad?2.
10" https://developers.google.com/custom-search.

T https://github.com/cpnota/autonomous-learning-library.
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Table 4 Tuning parameters mentioned in most documents for Post-
greSQL and MySQL

System Parameter

PostgreSQL shared_buffers

max_connections

max_parallel_ workers_per_gather
max_wal_size

wal_buffers

MySQL innodb_buffer pool_size
join_buffer_size
innodb_buffer_ pool_instances
max_connections

innodb_flush_log_at_trx_commit

on April 11, 2021) and “MySQL performance tuning hints”
(issued on April 15, 2021). We included the first 100 Google
results for each of the two queries into the corresponding doc-
ument collection (accounting for a total of 1.3 MB of text for
PostgreSQL and 2.4 MB of text for MySQL). The results
are diverse and cover blog entries, forum discussions (e.g.,
on Database Administrators Stack Exchange'?), as well as
the online manuals from both database systems. We call the
document collection for PostgreSQL Pg100 and the one for
MySQL Ms100 in the following.

Figure 5 shows the distribution of parameter mentions
and proposed value assignments in those document collec-
tions, generated via DB-BERT’s candidate hint extraction
mechanism (see Sect.5). Clearly, the distribution of hints
over documents and parameters is non-uniform. For both
database systems, few parameters are mentioned in multi-
ple documents while most parameters are mentioned only
in a single document. Similarly, there are a few assignments
proposed by multiple sources. On the other side, most value
assignments are proposed only once.

Table 4 shows the most frequently mentioned parame-
ters for both PostgreSQL and MySQL. Parameters related
to buffer size (e.g., shared_buffers for PostgreSQL
and innodb_buffer pool_size for MySQL) fea-
ture prominently among them. Besides that, parameters
related to the degree of parallelism (e.g., the parameter
max_parallel_workers_per_gather) or logging
(e.g.,max_wal_size) are mentioned frequently as well.

9.3 Training

Two of the compared algorithms, namely DB-BERT and
Prior-Main, use training before run time. Prior-Main uses
natural language tuning hints, annotated with associated for-

mulas, as training data. We use the same training samples and

12 https://dba.stackexchange.com/.
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training parameters as in the prior work [43]. Consistent with
the experimental setup in the latter paper, we apply Prior-
Main, trained on PostgreSQL samples, to tune MySQL and
Prior-Main, trained on MySQL samples, to tune PostgreSQL.
The goal is to demonstrate that NLP-enhanced database tun-
ing does not require system-specific, annotated samples.

Prior-Main does not support extracting benchmark-specific
tuning hints from a fixed document collection, a disadvantage
if the same document collection is used for tuning multiple
benchmarks. To allow at least some degree of variability, we
train the Prior-Main model separately for each of our five
benchmark runs. This leads to slightly different extractions
in each run. Training Prior-Main on the platform outlined in
Sect. 9.1 took 417s for MySQL samples and 393 for Post-
greSQL samples.

DB-BERT does not use annotated tuning hints for train-
ing. Instead, it uses the database system itself for run time
feedback during the training phase. Similar to Prior-Main,
we train DB-BERT on Pg100 to tune MySQL and on Ms100
to tune PostgreSQL. We activate the masked mode dur-
ing training (see Sect.6), meaning that parameter names
are masked. This avoids learning system-specific parame-
ter names (which are useless in our experimental setup) and
focuses attention on the sentence structure of tuning hints
instead. The reward signal of DB-BERT (see Sects. 6 and 7)
combines reward for successfully changing parameter values
according to tuning hints (meaning that the corresponding
values are valid) and for performance obtained. To mea-
sure performance, we use a synthetic database containing
two tables with two columns containing consecutive num-
bers from 1 to 1,000,000. We use a simple count aggregation
query joining both tables with an equality predicate. Reward
for performance is scaled down by a factor of 100 to avoid
specialization to this artificial benchmark (it merely serves to
penalize particularly bad configurations such as setting the
buffer pool size to a minimal value). Finally, we add a small
reward bonus for setting parameter values that are within the
same order of magnitude as the default setting (assuming
that extreme deviations from default values are possible but
less likely). DB-BERT"s training starts from the BERT base
model [7] with 110 million parameters. All model parameters
are tuned during training.

We trained DB-BERT for 5000 iterations on Pg100 and
for 10,000 iterations on Ms100 (due to the larger number of
hints in this collection). Training took 43 min for Pg100 and
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84 min for Ms100. Figure 6 shows progress for Pg100 as a
function of the number of training steps.

Note that, in contrast to the primary variant, DB-BERTO0
does not require any training.

9.4 Comparison with baselines

We compare DB-BERT against baselines on TPC-H (see
Fig.7), JOB (see Fig. 8 with a logarithmic y-axis), and TPC-
C (see Fig.9). We tune PostgreSQL and MySQL for 25 min
per run. We use throughput as optimization metric for TPC-
C and execution time for TPC-H. We show performance of
the best configuration found (y-axis) as a function of opti-
mization time (x-axis). In these and the following plots, we
report the arithmetic average as well as the 20th and 80th
percentile of five runs (using error bars to show percentiles).
The plots contain one data point per baseline for every 30's of
tuning time (not displaying any data points before results for
the first trial run have become available for the correspond-
ing baseline). This means that data points in the plots do not
necessarily align with the start and end of trial runs.

DDPG++ [49] is a database tuning approach, based on
reinforcement learning. It was shown to be competitive with
various other state-of-the-art tuning approaches [49]. How-
ever, the prior publication evaluates DDPG++ for a few tens
of tuning parameters and allocates 150 iterations per tuning
session. Here, we consider hundreds of parameters for tuning
and aim at a tuning time frame that allows only few iterations.
Clearly, within the allocated time frame, DDPG++ does not
find solutions of comparable quality to DB-BERT. In par-
ticular for TPC-H, DDPG++ often tries parameter changes
that decrease performance significantly (e.g., changes to
optimizer cost constants triggering different join orders).
Hence, performance of the best configuration found remains
almost constant for DDPG++ (close to the one achieved
via the default configuration, tried before the first iteration).
DDPG++ could benefit from specifying parameter-specific
value ranges to consider during tuning. For instance, increas-
ing buffer pool size by an order of magnitude, compared to the
default settings, is often beneficial. For optimizer cost con-
stants (e.g., random_page_cost in PostgreSQL), doing
so is however dangerous. Our goal is to show that such input
can be partially substituted by information mined automati-
cally from text.

Specializing tuning tools to specific database systems and
workload types is another option to avoid costly exploration.
We compare to two tuning tools (MySQLTuner and PgTuner)
that are specialized to the tuned database systems. Those
tuning tools use hard-coded rules to map properties of the
target platform and workload to recommended settings. A
first advantage of those tools is that they do not require any
trial runs with default configuration (hence, they minimize
tuning time among all compared tuning tools). Overall, they

achieve excellent performance on TPC-H and TPC-C. This
is to be expected as those are two of the most popular bench-
marks for database management systems. Hence, it can be
assumed that the rules used by these tools are optimized to
work well for such standard benchmarks. On the other hand,
run times on JOB are higher than the optimum by a multi-
ple. This shows that hard-coded tuning rules have limitations
when applied to non-standard tuning scenarios.

Prior-Simple and Prior-Main are the two most related
baselines as both use tuning text as input, similar to DB-
BERT. Prior-Simple uses a naive heuristic for translation.
Applying this heuristic is fast and Prior-Simple is typically
the first baseline to return results. However, it only extracts
the recommendation to set checkpoint_completio
n_target to 0.9 in Pgl00 and no recommendations in
Ms100. Hence, it does not improve over the default con-
figuration. Prior-Main performs significantly better. Due to
small differences in training, extractions differ across differ-
ent runs, leading to high variance. For instance, for Pg100,
Prior-Main is able to extract a tuning hint that recommends
setting shared_buffers to 25% of main memory in
two out of five runs. This can lead to significant perfor-
mance improvements, in particular for TPC-H. However,
average performance is significantly below the optimum. As
Prior-Main classifies all sentences in the document collection
before aggregating tuning hints, its run time is significantly
higher than the one of Prior-Simple.

Both DB-BERT variants find attractive tradeoffs between
tuning time and result quality, comparing to generic (i.e., non-
specialized) tuning tools. For instance, when tuning for TPC-
H, DB-BERT finds settings that lead to significant perfor-
mance advantages after less than 200 (PostgreSQL), respec-
tively, less than 400 s (MySQL). More precisely, at that point,
both DB-BERT variants find settings that increase main
memory allocation (e.g., PostgreSQL’s shared_buffers
parameter) or increase the degree of parallellism (e.g., Post-
greSQL’s max_parallel_workers_per_gather
parameter), motivated by hints extracted from text, leading
to a significant drop in execution time.

Unlike DDPG++, DB-BERT uses tuning text as input
that allows identifying the most relevant parameters and
candidate values quickly. Compared to Prior-Simple and
Prior-Main, it finds significantly better solutions in average.
In particular for MySQL, Prior-Main typically fails to find
solutions of comparable quality. Furthermore, the time taken
by Prior-Main to analyze all documents is typically higher by
a factor of two to three, compared to the time until DB-BERT
produces a near-optimal solution (i.e., within one percent
of DB-BERT’s final optimum). Tables 5 and 6 show con-
figurations found by DB-BERT when tuning PostgreSQL.
Despite extracting hints from the same document collection,
DB-BERT is able to find benchmark-specific configurations.
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Compared to system-specific tuning tools, the DB-BERT
variants, in particular DB-BERTO, shine on JOB. Hard-
coded tuning rules are not flexible enough to optimize
performance beyond standard benchmarks. For instance,
in the default configuration, PostgreSQL is hampered by
sub-optimal choices made by its query optimizer. This is
to be expected as the data of JOB is skewed, invalidating
assumptions made by the optimizer while estimating cost
of candidate plans (e.g., assuming independent predicates).
DB-BERT and DB-BERTO both extract tuning recommen-
dations about PostgreSQL’s effective_cache_size
parameter from text. This parameter represents assumptions
of the PostgreSQL planner on the size of the disk cache,
available for each query. Both DB-BERT variants set this
parameter to a value of 64 for trial runs, following recommen-
dations in text. This value is significantly below the default
of 524288. The new setting discourages index scans and
leads to different query plans. Further analysis shows that
changing the setting for this parameter alone reduces execu-
tion time approximately by factor two. Therefore, changing
this parameter setting seems to have a similar effect as
disabling nested loop joins, a change recommended in the
original paper introducing JOB [22]. Unlike recommenda-
tions to, e.g., increase buffer pool size, hints concerning the
effective_cache_size parameter are relatively rare.
Enabling DB-BERT to access the “long tail”” of tuning recom-
mendations by parsing a large collection of text documents
pays off in this case.

In most cases, DB-BERTO achieves similar performance
to DB-BERT, despite the lack of a task-specific training
phase. When tuning JOB on MySQL, DB-BERTO even
achieves significantly better results. An analysis of the
logs shows that DB-BERT takes longer to find interest-
ing parameter settings due to slightly more noisy extrac-
tions, causing DB-BERT to waste the initial trial runs
with highly sub-optimal parameter settings that do not
appear in text. As JOB requires most time per trial run,
this delay prevents DB-BERT from trying efficient set-
tings within the tuning time frame. A follow-up analysis
shows that DB-BERT finds configurations with comparable
performance to DB-BERTO after around 2,000s of tuning
time. On the other hand, DB-BERT achieves better results
when tuning MySQL for TPC-C. Here, DB-BERTO con-
sistently converges to a configuration that increases the
amount of buffer space (innodb_buffer_pool_size)
to 1 GB, while using default settings for other parameters.
In contrast to that, DB-BERT changes settings for multi-
ple parameters (e.g., parameter max_connections and
parameter innodb_flush_log_at_trx_commit) for
significantly higher throughput.

Altogether, DB-BERTO is the most robust optimization
tool across different systems and benchmarks. More pre-
cisely, the relative performance degradation of DB-BERTO
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Fig.7 Minimal execution time for TPC-H as a function of optimization
time for different baselines

(i.e., the relative increase of run time, compared to the opti-
mum, or relative decrease in throughput, compared to the
optimum) never exceeds 34% across all scenarios. The degra-
dation reaches its maximum for TPC-C on MySQL where
DB-BERTO only achieves 66% of the optimal throughput.
However, all other baselines experience performance degra-
dations of at least up to 93%, compared to the optimum (e.g.,
when optimizing JOB on MySQL). System-specific tuning
tools work well for standard benchmarks but lack the ability
to adapt to less common tuning scenarios. Exploiting both,
information gained from text documents as well as informa-
tion gathered via trial runs, gives DB-BERT advantages over
methods that exploit only one of those two sources of infor-
mation. DB-BERT performs similarly to DB-BERTO0 in most
cases but is slowed down by noisy text extractions in one of
the tuning scenarios.

The best configurations for each benchmark and system,
considering all runs and all DB-BERT variants, are reported
online.?

9.5 Further analysis

We study the impact of different factors on tuning perfor-
mance. First, we compare DB-BERT against two simplified
variants in Fig.10. We compare against a variant of DB-
BERT that processes hints in document order (instead of
prioritizing them as described in Sect. 5). Also, we compare
against a variant that does not consider implicit hints (i.e.,

13 https://drive.google.com/drive/folders/ 1 A_1uvjXzCSrXIoyBh4u4
6LGmZzukyjjH?usp=sharing.
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Table 5 PostgreSQL configuration for TPC-H by DB-BERT

Parameter Value
max_connections 1100
max_parallel_workers_per_gather 19

max_wal_size 4GB
shared_buffers 1GB

Table 6 PostgreSQL configuration for TPC-C by DB-BERT

Parameter Value
archive_command 3
archive_timeout 4
checkpoint_flush_after 0
maintenance_work_mem 32 MB
max_wal_senders 5
random_page_cost 2
synchronous_commit 0
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Fig. 10 Comparison of different DB-BERT variants when optimizing
PostgreSQL for TPC-H
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Fig.11 NLP-enhanced database tuning for TPC-H on PostgreSQL with
different input text (100 documents with generic hints versus one doc-
ument with benchmark-specific hints)

only hints where parameter names are explicitly mentioned).
Clearly, both simplifications degrade tuning performance
on TPC-H. Considering hints in document order prevents
DB-BERT from tuning the most relevant parameters first.
Discarding implicit hints reduces the total set of available
hints.

Next, we study the impact of the input text. We replace
Pg100, containing hundreds of generic tuning hints, by a sin-
gle blog post.'* This post describes how to tune PostgreSQL

14 http://rhaas. blogspot.com/2016/04/postgresql-96-with-parallel-
query-vs.html.
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specifically for TPC-H. Figure 5 compares performance with
different input documents for all NLP-enhanced tuning
baselines. While the performance of Prior-Simple does not
change with the input text, the performance of Prior-Main
degrades as we switch to the smaller document. Prior-Main
benefits from large document collections as redundant hints
can partially make up for imprecise extractions. For the
smaller input document, it does not extract any hints. DB-
BERT, however, benefits from more specialized tuning hints.
Using benchmark-specific input text, it converges to near-
optimal solutions faster and ultimately finds a slightly better
solution (using a higher value for the shared_buffers
parameter, compared to Table 5, as proposed in the blog
entry).

Finally, we scale up the data size. Figure 12 reports results
for TPC-H with scaling factor 10 (and using the TPC-H spe-
cific tuning text).!> Compared to Fig. 11, showing results for
scaling factor one, it takes longer for DB-BERT to find near-
optimal solutions. This is expected, as longer run times per
benchmark evaluation reduce the number of DB-BERT s iter-
ations per time unit. Compared to other baselines, DB-BERT
finds significantly better solutions again.

10 Conclusion and outlook

We presented DB-BERT, a database tuning system that
extracts tuning hints from text documents. Our experiments
demonstrate that such hints lead to significantly better tuning
results.

In future work, we will consider more diverse tuning
objectives. Currently, DB-BERT is limited to optimizing
metrics such as latency or throughput that can be easily mea-

15 Note that execution time for the best configuration increases slightly
atthe beginning for DDPG10. This cannot happen as long as we consider
asingle run. However, we average over a smaller set of runs that finished
their first evaluation fast for the first data point, while the second data
point averages over all runs.
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sured. However, there are other, important metrics that are
difficult to measure. For instance, many parameters (e.g., the
fsync parameter in PostgreSQL) allow increasing perfor-
mance if willing to accept a small risk of data loss. Database
manuals typically contain warnings detailing such risks. We
plan to extend DB-BERT to extract information on metrics
that are difficult to measure from the manual. Thereby, it can
support users in finding parameter settings that maximize per-
formance while complying with constraints on other metrics.

The current DB-BERT version only supports extrac-
tion for a common but limited class of tuning hints. More
precisely, it support absolute value recommendations and
relative recommendations that depend on one single sys-
tem property. In some cases, recommendations link multiple
parameters together. For instance, a recommendation such
as “We can use the formula below to calculate the optimal
work_mem value for the database server: Total RAM * 0.25
/ max_connections”!% is not supported. Expanding the
scope to such hints requires extensions of the text extrac-
tion mechanism as well as of the reinforcement learning
approach (since decisions for different parameters are not
independent anymore). However, mining such hints seems
particularly powerful as discovering dependencies between
multiple parameters via trial runs is expensive.

Sometimes, tuning hints come with valuable context,
restricting their scope to specific scenarios. For instance, the
hint “Note that on Windows, large values for shared_bu
ffers aren’t as effective, and you may find better results
keeping it relatively low and using the OS cache more
instead”!” refers to platforms with a Windows operating sys-
tem. Beyond the operating system, hints may refer to specific
hardware platforms (e.g., low parallelism versus high paral-
lelism) or to specific workload types (e.g., analytical versus
transactional workloads). For the moment, DB-BERT only
exploits such context indirectly, by allowing users to retrieve
documents that contain certain keywords (e.g., “analytical
workload”). Exploiting context directly would require DB-
BERT to recognize context and link it to properties of the
current tuning scenario.

In summary, while the current DB-BERT version already
benefits significantly from parsed tuning hints, we see various
avenues for future research and improvements.
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