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Abstract: Due to their transient nature, clouds represent anomalies relative to the underlying land-
scape of interest. Hence, the challenge of cloud identification can be considered a specific case in
the more general problem of anomaly detection. The confounding effects of transient anomalies are
particularly troublesome for spatiotemporal analysis of land surface processes. While spatiotemporal
characterization provides a statistical basis to quantify the most significant temporal patterns and
their spatial distributions without the need for a priori assumptions about the observed changes, the
presence of transient anomalies can obscure the statistical properties of the spatiotemporal processes
of interest. The objective of this study is to implement and evaluate a robust approach to distinguish
clouds and other transient anomalies from diurnal and annual thermal cycles observed with time-
lapse thermography. The approach uses Robust Principal Component Analysis (RPCA) to statistically
distinguish low-rank (L) and sparse (S) components of the land surface temperature image time
series, followed by a spatiotemporal characterization of its low rank component to quantify the
dominant diurnal and annual thermal cycles in the study area. RPCA effectively segregates clouds,
sensor anomalies, swath gaps, geospatial displacements and transient thermal anomalies into the
sparse component time series. Spatiotemporal characterization of the low-rank component time
series clearly resolves a variety of diurnal and annual thermal cycles for different land covers and
water bodies while segregating transient anomalies potentially of interest.
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1. Introduction
Cloud cover is a persistent scourge for optical and thermal remote sensing, particularly

in the tropics where it is ubiquitous. Opaque clouds represent a complete loss of information
on the underlying target of interest, while cloud shadow and partially translucent clouds
(e.g., cirrus) can corrupt the recovered radiance signal in ways that are difficult or impossible
to correct. The most common approach to cloud contamination is to identify corrupted
acquisitions (e.g., [1]) and exclude them from analysis. However, the presence of partial
cloud cover within an acquisition does not preclude the use of uncorrupted optical and/or
thermal signals in areas without cloud cover or shadow. In these cases, cloud masking
algorithms often present a partial solution to the problem.

While the objective of cloud masking is generally to exclude corrupted scene elements
from analysis, the principal challenge is in robust identification, both in detecting the
presence or absence of a cloud and in determining its spatial extent. While some types of
clouds have relatively distinct edges, others grade continuously from opaque to translucent,
requiring threshold criteria to determine mask extent [2]. Identification of clouds is further
confounded by the wide range of reflectances [3–6] and emissivities [7–9] clouds possess.
The problem is, therefore, to distinguish clouds from the background Earth surface on
the basis of contrast in reflectance and/or brightness temperature (e.g., [10–12]). The
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basis of the challenge is the combined variability of the physical properties of both clouds
and backgrounds.

Due to their transient nature, clouds represent anomalies relative to the underlying
landscape of interest. Hence, the challenge of cloud identification can be considered a spe-
cific case in the more general problem of anomaly detection. Whereas clouds are transient
anomalies generally excluded from analysis, other types of anomalies may be the focus of
an analysis. Indeed, multitemporal remote sensing is often cast as an exercise in anomaly
detection when the objective is monitoring change. At the heart of anomaly detection is
anomaly definition. Specifically, defining what is the expected background signal and what
is a transient anomaly. Regardless of whether the focus is on the background process or the
anomalies, the two must be distinguished in a robust manner.

The confounding effects of transient anomalies are particularly troublesome for spa-
tiotemporal analysis of land surface processes because anomalies can obscure the spa-
tiotemporal manifestation of the processes of interest. Spatiotemporal characterization
provides a statistical basis to quantify the most significant temporal patterns and their
spatial distributions, without the need for a priori assumptions about the form, amplitude
or timing of the observed changes [13]. In the case of time-lapse thermography, clouds and
other anomalies are superimposed on the diurnal and annual thermal cycles resulting from
Earth’s rotation and orbit. Spatiotemporal characterization might be used to quantify these
thermal cycles in the presence of clouds and other anomalies.

The objective of this study is to implement and evaluate a robust approach to dis-
tinguish clouds and other transient anomalies from diurnal and annual thermal cycles
observed using time-lapse thermography. Specifically, to characterize the thermal cycles of
a diversity of land covers and water bodies in the New York metropolitan area between
2018 and 2023 using land surface temperature retrievals from NASA’s ECOsystem Space-
borne Thermal Radiometer Experiment on Space Station (ECOSTRESS) sensor. While the
methods applied in this study can be directly extended to multitemporal analysis of other
air and spaceborne thermal imagery, they could also be applied to ground-based time-lapse
thermography where transient anomalies need be distinguished from background thermal
cycles (e.g., [14]).

2. Materials and Methods
2.1. Data

Thermal image data were collected by NASA’s Ecosystem Spaceborne Thermal Ra-
diometer Experiment on the International Space Station (ECOSTRESS) [15]. The ECOSTRESS
instrument is capable of measuring thermal infrared (TIR) radiance in five channels cen-
tered on (1) 8.29 µm; (2) 8.78 µm; (3) 9.20 µm; (4) 10.49 µm and (5) 12.09 µm [16]. The
ECOSTRESS instrument operates with f/2 optics in a push-whisk configuration, directing
light to 8 ⇥ 16 ⇥ 256 single-bandgap mercury cadmium telluride-based focal plane arrays
maintained at 60 K. Each ECOSTRESS data granule is comprised of radiance measurements
collected by these multiple focal plane arrays, which have been combined to produce a sin-
gle composite image [17]. Given the International Space Station’s orbital altitude of roughly
400 km and the ECOSTRESS swath width of 53�, the spatial extent of each ECOSTRESS
granule is approximately 400 ⇥ 400 km, varying between 385 and 415 km, depending on
ISS altitude. Ground sampling distance at nadir is stated to be approximately 38 ⇥ 69 m at
collection and 75 ⇥ 69 m for derived product. The elliptical pixel footprints are largely a
result of high scanning velocity during the 31.6 µs sensor dwell time producing smearing
along the scanning direction. Down-sampling by a factor of 2 via pixel binning is applied
during ground processing in order to generate pixels with more approximately square
dimensions [18]. The precessing nature of the ISS orbit results in highly variable local
overpass time, sampling throughout the diurnal heating and cooling cycle.

This analysis uses the ECOSTRESS Level-2 Land Surface Temperature (LST) and
Emissivity data product [19]. The conceptual foundation for the derivation of the LST
data product is rooted in a Temperature Emissivity Separation (TES) hybrid approach [20].
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TIR radiances are first produced by correcting at-sensor radiance on a pixel-by-pixel basis
using a radiative transfer model. An empirical relationship is then used to predict the
minimum emissivity using the Minimum–Maximum Difference (MMD) method [21,22].
LST uncertainty estimates and quality flags are provided with the data.

2.2. Study Area

The New York metro (NYC) study area (center: 40.701�N, 73.974�W) spans western
Long Island, the five boroughs of New York City and part of northeastern New Jersey. Major
water bodies include the Hudson and East Rivers, Long Island Sound, New York Harbor
and the Atlantic Ocean. The area contains abundant tidal wetlands in Jamaica Bay, the New
Jersey Meadowlands, Pelham Bay and multiple wetlands on the periphery of Staten Island.
Elevations ranging from sea level to ~80 m above sea level on the Staten Island highlands
and Hudson Palisades allow for a variety of environments and vegetation communities. A
vegetation phenology map derived from spatiotemporal analysis of Sentinel 2 vegetation
fraction time series (Figure 1) clearly distinguishes grass, deciduous trees and wetland
vegetation communities. The range of elevations and coastal proximities results in a range
of phenologies, with most deciduous street trees and urban parks greening in mid-/late
April and some higher elevation forests greening from late May to early June. Wetland
vegetation communities green later and senesce earlier than deciduous trees, which retain
leaves in various stages of senescence well into November. Grasses remain green year
round, with increases in both spring and fall. These spatiotemporal variations in vegetation
phenology and abundance exert considerable influence on surface energy fluxes on both
diurnal and annual time scales.
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Figure 1. Index maps for New York metro study area. Vegetation phenology (left) derived from
spatiotemporal analysis of 2022 Sentinel 2 reflectance shows a continuum of vegetation communities
spanning varying mixtures of grass, deciduous trees and wetland vegetation. Fractional vegetation
cover modulates both seasonal and diurnal thermal cycles through shading and evapotranspiration.
Temporal moment composite of ECOSTRESS Land Surface Temperature (LST) between 2018 and
2023 (right) shows temporal mean LST (µT) and standard deviation (�T) of the LST image time series,
highlighting spatial variations in seasonal and diurnal thermal cycles related to land cover and water
body thermal responses. Major airports include Kennedy (JFK), La Guardia (LGA), Newark (EWR)
and Teterboro (TEB).

Spatiotemporal variability of the ECOSTRESS Land Surface Temperature (LST) time
series is dominated by the difference between land and water thermal cycles. The greater
thermal inertia of the water bodies reduces their variability on both annual and diurnal time
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scales. The temporal moment composite in Figure 1 (right) illustrates the contrast between
higher and lower thermal variability of different land cover types, primarily in the annual
cycle, which is strongly modulated by the combination of both vegetation phenology and
solar illumination geometry and duration.

The orbit of the International Space Station (ISS) provides ECOSTRESS acquisitions
at all times of the day and night throughout the year (Figure 2). Between 2018 and 2023,
approximately 220 potentially usable (partial cloud cover) acquisitions are available for
the NYC study area. Of these, 124 acquisitions could be sufficiently geometrically rectified
to allow for spatiotemporal analysis. The LST scenes were acquired from the NASA
EarthData portal using the Application for Extracting and Exploring Analysis Ready
Samples (AppEARS) tool and were rectified using the Automated and Robust Open-Source
Image Co-registration Software (AROSICS v.1.9.2) available from https://github.com/
GFZ/arosics, accessed on 15 September 2023. Of these 124 acquisitions, 55 are visually
cloud-free, and 19 have swath edge gaps, primarily in the NE corner. The dates and times
of potentially usable and geospatially rectifiable acquisitions are shown in Figure 2. Three
of the rectifiable acquisitions have conspicuous displacements > 1000 m, and numerous
others have smaller displacements. The combination of the ISS orbit and the distribution of
rectifiable acquisitions results in a pronounced day–night asymmetry in the resulting image
time series, with many more daytime (11–24 UTC) than nighttime (0–10 UTC) acquisitions.
This introduces an unavoidable aliasing of the diurnal thermal cycle relative to the more
evenly sampled annual cycle. The implications of this are discussed below.
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Figure 2. ECOSTRESS LST temporal coverage for the NYC study area. The ISS orbit provides
~220 potentially usable granules between mid-2018 and mid-2023, spanning all seasons and overpass
times (left). Of these, 124 could be sufficiently rectified to allow for multitemporal analysis over a
common calendar year (right). Open circles indicate granules with significant swath gaps, primarily
in the northeast quadrant. Three of the open circles also indicate unrectified granules displaced
~1000–1600 m north-east of the other granules. NYC is UTC-5.

2.3. Methods

The approach in this study uses Robust Principal Component Analysis (RPCA) to sta-
tistically distinguish low-rank (L) and sparse (S) components of the LST image time series,
followed by a spatiotemporal characterization of the L component time series to quantify
the dominant diurnal and annual thermal cycles in the study area. Conceptually, the RPCA
separates the low-rank structure of the variance associated with the diurnal and annual
thermal cycles present in all the LST images from the sparse structure of the less coherent
variance associated with clouds, swath gaps and other transient anomalies in a subset of
the LST images. As such, it does not require a thermal definition of what constitutes a
cloud (as cloud masking approaches do) but rather a spatiotemporal distinction between
the underlying thermal cycles of the land surface and the transient anomalies associated
with clouds, gaps and other features that are not consistent with the pervasive thermal
cycles responsible for the majority of the time series’ covariance structure.

https://github.com/GFZ/arosics
https://github.com/GFZ/arosics
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Robust Principal Component Analysis [23] defines a spatial array of LST time series
M to be the sum of a low-rank matrix L and a sparse matrix S:

M = L + S (1)

The matrix decomposition is generally ill-posed (NP-hard), but under weak assump-
tions [23] proves that L and S can be recovered exactly through a convex optimization
called Principal Component Pursuit. This is achieved by optimizing the sum of the nuclear
norm of L (L*, sum of the singular values) and the weighted L1 norm of S:

Minimize : kLk⇤ + �kSk1
subject to : L + S = M
where : � = 1p

n(1)
, n(1) = max(n1, n2)

(2)

and L is a general rectangular matrix of dimensions n1 ⇥ n2. A notable benefit of the RPCA
is that no tuning parameters are required.

In this analysis, we implement RPCA using the alternating direction method of [24] as
implemented in the R package “rpca” (https://cran.r-project.org/web/packages/rpca/
index.html, accessed on 23 September 2023). We use the values of � and µ (augmented
Lagrange multiplier parameter) suggested by [23]. The terminal � was set to 1 ⇥ 10�7,
which reached convergence within 5000 iterations in every case, and often within 1500 iter-
ations, for image time series with a spatial extent of ~6.5 ⇥ 105 pixels and >120 temporal
dimensions. This corresponded to ⇡24–48 h processing times using a quad-core 2 GHz
Intel Core i5 CPU with 32 GB of RAM.

The spatiotemporal characterization of the L component time series uses a standard
L2 principal component transformation to identify the dominant temporal patterns (annual
and diurnal thermal cycles) and their spatial distributions corresponding to different land
covers and water bodies. The variance partition of the orthogonal principal component (PC)
dimensions, given by the eigenvalues of the covariance matrix of the time series, provides
an indication of the spatiotemporal dimensionality of thermal cycles. This characterization
of the spatiotemporal dimensionality and temporal basis functions is equivalent to the
Empirical Orthogonal Function (EOF) analysis devised by [25], except that the EOFs are
temporal and the corresponding PCs are spatial—as required by the much greater number
of spatial pixels than temporal acquisition dates. This characterization process is described
in detail by [13]. The end result of this characterization is a parsimonious representation
of the low-rank component of the LST image time series in the form of spatial principal
components. These PCs illustrate the dominant thermal cycles on land and water in both
geographic space and in a temporal feature space illustrating the diversity of thermal
cycles observed. Because of the aforementioned aliasing of the diurnal cycle, these patterns
represent primarily the annual cycles.

3. Results
3.1. Spatiotemporal Characterization

Spatial correlations among LST acquisitions span the range between �1 and 1, driven
by the aforementioned thermal contrast between land and water on both diurnal and
annual time scales. Figure 3 shows the correlation matrices and distributions for the raw
LST time series and the low-rank and sparse components. Anticorrelations near �1 are
apparent between late night and winter acquisitions when the land surface is cooler than
most water bodies and the majority of daytime acquisitions for which the land surface is
warmer. Low correlations occur in early evening temperate acquisitions in which the water
and land surfaces are more nearly isothermal. The presence of clouds and swath gaps
reduces spatial correlations among acquisitions, resulting in a modal correlation near 0 for
the raw LST time series. In contrast, the low-rank component time series has a strongly
bimodal distribution, while the sparse component time series shows the vast majority of

https://cran.r-project.org/web/packages/rpca/index.html
https://cran.r-project.org/web/packages/rpca/index.html
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correlations within ±0.1 of 0. The contrast between anticorrelated presunrise winter and
mid-afternoon spring acquisitions is illustrated in Figure 4.
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Figure 4. Seasonal and diurnal thermal contrast. Early morning winter acquisition (left) shows water
significantly warmer than land surface. Mid-afternoon spring acquisition (right) shows a bimodal
distribution of opposite polarity with a very different spatial temperature distribution on the land
surface. Both acquisitions span ~20� K. The spatial correlation is �0.77.

The variance partition given by the eigenvalues of the principal components of the
low-rank and sparse component time series quantify the effectiveness with which the
RPCA separates anomalies and noise from the annual and diurnal thermal cycles. Figure 5
compares this variance partition for the full LST time series (n = 124) and a censored subset
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(n = 107) in which acquisitions with swath edge gaps have been removed. The low-rank
components of both are effectively 2D, with the annual and diurnal land–water contrast
accounting for ~99% of variance and vegetation–substrate contrast only ~1%. While the
RPCA does relegate the swath gaps to the sparse component, some faint residual does
remain in the low-rank component. The residual incoherent variance introduced by the
swath gaps is apparent in the difference in the higher-order (>2) dimensions of the low-rank
components but accounts for <1% of total variance. In contrast, the effect of the swath gaps
is most apparent in dimensions 2 and 3 of the sparse component variance, accounting for
~7% of total variance. The remaining incoherent variance related to clouds, sensor artifacts
and transient thermal anomalies is distributed more evenly over the PC dimensions of the
sparse component time series, with a maximum of 20% in PC1 and 14 dimensions > 1%
accounting for ~79% total variance. Statistically, the RPCA has very effectively separated
the spatiotemporally coherent diurnal and annual thermal cycles of the land cover and
water bodies from the spatiotemporally incoherent variance associated with clouds, swath
gaps, sensor artifacts, transient anomalies and geospatial misregistration.
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Figure 5. Seasonal temperature distributions and variance partition for the low-rank and sparse
components of NYC ECOSTRESS LST time series. Low-rank distributions (top left) are all bimodal,
while sparse residuals (top right) are generally ±5 K. Variance partition of both full (o) and censored
(*) time series (bottom) show the low-rank component as 2D, with ~99% and 1% of variance in the first
two dimensions and a continuum with <0.1% in all higher dimensions. The residual variance of the
swath gaps and geographic displacements in the full time series is apparent in the difference between
the higher-order dimensions. In contrast, the variance partition of the sparse residual component is
more uniformly dispersed over all dimensions for both time series.

The spatial PCs of the low-rank component form a temporal feature space within
which distinct temporal patterns can be identified. The temporal feature space of the three
low-order PCs is rendered as orthogonal scatterplots in Figure 6. The phase and amplitude
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differences between annual cycles of land and water are apparent in the PC1–PC2 projection
and in the temporal endmembers plotted below. Water bodies are characterized by a ~30 K
annual cycle peaking sharply in mid-July, with near linear increase and decrease. In
contrast, land surfaces show a more sinusoidal cycle peaking in early June and declining
more gradually. The broad envelope of the land surface cycles reflects the much greater
diurnal temperature range resulting from the lower thermal inertia of most land cover.
This is apparent in the temporal feature space of PC2 and PC3. Airports (e.g., EWR, JFK)
and industrial areas show the highest-amplitude diurnal thermal cycles due to the large
open areas that are unshaded during the day and strongly radiative at night. Forested
areas have lower-amplitude diurnal cycles due to the thermal inertia of leaf water content
and the cooling effect of transpiration during the day. The PC3 dimension of the temporal
feature space also shows the effect of a prominent NE–SW thermal gradient that seems
to be driven by the different temperatures of Long Island Sound and Lower Bay of the
Atlantic Ocean, respectively.
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Figure 6. Low-rank component temporal feature space and temporal endmembers. Two low-order
dimensions of the spatial principal components (top) illustrate the contrast between temperature
range and seasonal cycle phase, while PC 3 shows NE–SW thermal gradient. Water bodies (lower left)
have reduced seasonal and diurnal range, with annual peaks occurring around jd217, while land
areas (lower right) have a greater temperature range, with earlier and more prolonged seasonal peaks.
Vegetated areas, such as wetlands, forests and large cemeteries, span the thermal gradient between
wet and dry due to evapotranspiration and thermal inertia of leaf water content. The NE–SW thermal
gradient in PC 3 affects both land and water bodies. Note also much greater annual and diurnal
temperature range of land compared to water.
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All of the thermal cycles seen in the temporal feature space are apparent in geographic
maps of the low-order PCs. Figure 7 shows PC composites for the full (n = 124) low-rank
component time series and the subset (n = 12) of nighttime (0–10 UTC) acquisitions. As
expected, the land–water contrast is prominent on both composites, with water having very
low values in PCs 1 and 2. On land, the strongest contrast is between the thermal cycles
of open areas such as airports (red) and residential neighborhoods with high densities of
deciduous tree canopy (green). In addition to airports and industrial areas, thermal cycle
hotspots are also apparent in midtown Manhattan, the Financial District (southernmost
Manhattan) and downtown Brooklyn, with their high concentration of tall buildings. The
most prominent small thermal hotspot is located SW of Newark Airport (EWR), adjacent
to the NW corner of Staten Island. This is an industrial area with multiple refineries and
chemical plants. As would be expected, the Port of Elizabeth on the westernmost edge of
NY Harbor also stands out as a thermal hotspot.
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Figure 7. Low-order spatial PCs of ECOSTRESS LST low-rank time series. Spatial PCs of the
full composite-year time series (left) illustrate contrasting thermal responses of the most (red) and
least (blue/black) variable surfaces. Areas in green are more seasonally variable than darker areas.
Spatial PCs of the nighttime-only time series (right) show a similar pattern overall but with more
pronounced nighttime hot spots in some parts of Manhattan and downtown Brooklyn. Warmer water
temperatures are also apparent for Lower Bay, Rockaway Inlet and Verrazzano Narrows. Gaussian
stretches have been applied to both images to emphasize smaller thermal gradient features on land.

3.2. Examples of Low-Rank and Sparse Component Separation

Figures 8–12 provide illustrations of the RPCA separation of low-rank and sparse
component time series for a variety of transient thermal anomalies, sensor artifacts, swath
gaps and spatial misregistrations. In each case, the raw input images are shown along with
their low-rank and sparse components side by side. A common 70 K temperature range
(260� to 330�) is used for all raw and low-rank examples, with a smaller 20 K (�10� to 10�)
range for the sparse residuals.
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Figure 8. Raw LST, low-rank and sparse components for daytime acquisitions. Note complete
suppression of even thin, almost invisible, clouds (darker) to sparse residual. Note also subtle
anomalies in sea surface temperature plumes and small isolated hot spots.
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Figure 9. Raw LST, low-rank and sparse components for nighttime acquisitions. Note much lower ther-
mal contrast between land and water compared to daytime acquisitions in Figure 8. Diurnal thermal
cycle is illustrated by reduced land–water contrast between early evening on jd081 and near midnight
on jd083. Note persistent warm anomaly in shallow marsh waters of NJ Meadowlands (arrows).
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Figure 10. Raw LST, low-rank and sparse components for acquisitions containing anomalies and
sensor artifacts. The swath gap on jd239 and diagonal artifacts on the other 3 acquisitions are
completely removed from the low-rank components. Numerous point source hotspots and water
body anomalies are apparent in the sparse residuals.
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Figure 11. Raw LST, low-rank and sparse components for acquisitions containing swath gaps of
different size, location and contrast. While a distinct discontinuity is apparent on the low-rank
components of jd 165 and jd 218, the NE corner of jd 089 and jd 165 is conspicuously darker on both
low-rank images. Numerous point source hotspots and water body anomalies are also apparent in
the sparse residuals.
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Figure 12. Raw LST, low-rank and sparse components for acquisitions with uncorrected geographic
displacements. Positive and negative sparse residual anomalies along shorelines indicate direction of
displacement relative to base image. Note the lack of thermal anomalies smaller than displacement
anomalies in each sparse residual.

Clouds appear dark, generally saturated black in the sparse residual, in all LST
acquisitions where they occur. In many cases, thin translucent clouds are apparent in the
sparse residual image but are barely visible in the raw image. In no case is any cloud
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“ghost residual” apparent in the low-rank component image, indicating that the RPCA is
completely effective for cloud removal.

A variety of transient thermal anomalies are apparent in many of the sparse residual
images. Most prominent are larger water body anomalies. Warm residuals are frequently
observed in the shallow waters of Jamaica Bay (near JFK airport), the New Jersey Meadow-
lands (extensive marshes) and the shallow bays between the necks on the north shore of
Long Island. Steep thermal gradients are also frequently observed between the Atlantic
Ocean and the outflow plumes from New York Harbor and Jamaica Bay. Smaller high-
amplitude thermal anomalies are observed throughout the metro area, which are primarily
associated with the aforementioned industrial areas where large, unshaded warehouse and
factory roofs and staging yards are common.

The effectiveness of the RPCA to compensate for swath edge gaps varies with the size
of the gap. Figure 11 shows some residual ghost darkening in the low-rank component
image for acquisitions with larger gaps (e.g., jd165 and jd218) where linear discontinuities
can be seen. However, the compensation for smaller swath gaps appears to be effective,
with no ghost effect apparent and thermal structure retained in gapped areas of the low-
rank images.

The RPCA is also effective for identification of spatially misregistered acquisitions.
Figure 12 shows examples in which misregistered images are apparent in the complemen-
tary residual anomalies along coastlines. Because significant displacement would result
in misalignment of all thermal features in the low-rank component, a significant number
of misregistered images would be expected to corrupt the spatiotemporal structure of the
low-rank time series. Therefore, images identified as misregistered in the sparse component
could be either corrected (if possible) or excluded from subsequent spatiotemporal analysis.
In this study, a significant number of displaced acquisitions were identified by the inability
of AROSICS to achieve suitable alignment and were excluded from the outset. However,
the few with significant displacements that remain in the time series were retained to illus-
trate the effectiveness of the RPCA to separate the displacement effects from the low-rank
structure of the thermal cycles.

4. Discussion
4.1. Process Segregation—Why It Works

The primary spatiotemporal thermal field of the NYC study area is determined by a
relatively small number of physical processes. By far, the dominant process is the differing
thermal responses of land and water to both diurnal and annual cycles of solar forcing. This
direct forcing, in the form of absorption of sunlight and subsequent longwave emission,
is supplemented by the passage of warm and cool air masses and by advection of warm
and cool water masses in the Hudson River, Atlantic Ocean and Long Island Sound. To
a much smaller degree, the thermal responses of different types of land cover influences
their absorption of sunlight during the day and emission of longwave radiation at night.
Superimposed on these processes is the formation and movement of clouds through the
study area and a variety of localized transient thermal anomalies. The measurement of all
of these processes is subject to the characteristics of the imaging system, such as sensor
artifacts and swath + orbital geometry giving rise to swath edge gaps.

The variance partition of the raw LST time series, given by its singular values, explains
less than 50% of total variance in the primary dimension of its temporal feature space
and requires more than 40 dimensions to account for 99% of total variance. In contrast,
the low-rank component time series requires only two dimensions to represent 99% of
total variance, and these two dimensions clearly depict the physical processes driving the
diurnal and annual cycles of the thermal field. By segregating the correlated low-rank
structure from the uncorrelated sparse transients of the spatiotemporal thermal field, the
RPCA effectively isolates the predictable physical processes driving the diurnal and annual
periodicities of different land covers and water masses from the more stochastic processes
giving rise to transient cloud cover and sensor anomalies. In addition, the segregation of the
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predictable thermal cycles from the nonperiodic transients makes smaller transient thermal
anomalies much easier to identify. The segregation given by the RPCA distinguishes the
persistent and predictable components of the thermal field that are present in consistent
spatial patterns of every LST image from the transient and spatially stochastic components
related to cloud cover and sensor artifacts that vary from one image to another. In this case,
the RPCA works because the dominant spatiotemporal patterns present in every image
can be represented with a small number of distinct spatial configurations with distinct
diurnal and annual cycles, while the transient anomalies do not form coherent patterns in
space or time. The spatially and temporally incoherent clouds and anomalies are relegated
to the sparse component precisely because they do not recur with the same form and
location throughout the time series. If they did, the RPCA would presumably not separate
them from the thermal cycles as effectively. Hence, the RPCA separation benefits from the
spatiotemporal consistency of the diurnal and annual cycles and their clear difference in
amplitude and phase for land surfaces and water bodies.

4.2. Limitations

The factors that make RPCA so effective for spatiotemporal process segregation also
give rise to its primary limitation. Like the traditional L2 PCA, the effectiveness of RPCA is
data-dependent. Specifically, it relies on the presence of a consistent low-rank structure
with sufficient variance to allow it to be distinguished statistically from the sparse structure
of spatiotemporal transients. Had we included all LST acquisitions available, without
regard to fractional cloud cover or geospatial rectification, the relative contribution of the
low-rank structure of the diurnal and annual thermal cycles would have been diminished
accordingly by the spatiotemporally incoherent variance associated with higher fractions
of cloud cover and reduced spatial coherence of the land and water bodies.

The asymmetric day–night distribution of usable LST acquisitions in the study area
results in an unavoidable temporal aliasing of the diurnal thermal cycle. While the RPCA
cannot compensate for this diurnal sampling asymmetry, the low-rank structure recovered
from the annual cycle is able to accommodate the aliasing of the diurnal cycle. This is
because the spatial similarity of diurnal and annual heating and cooling cycles combined
with the strong polarity of the land and water bodies in the study area captures enough
of the diurnal cycle structure to allow it to be represented accurately in the low-rank
component. This is indicated by the three low-order spatial PCs of the 12 usable nighttime
acquisitions that retain sufficient spatial detail to distinguish land cover types with different
nocturnal cooling characteristics. This suggests that the combination of RPCA and low-
rank spatiotemporal characterization proposed here could potentially complement the
multisensor diurnal + seasonal mapping of regional thermal processes, such as [26–30].

4.3. Additional Spatiotemporal Applications

The ability of RPCA to separate pervasive annual cycles suggests that it may be useful
for studies of vegetation phenology. Indeed, the combination of RPCA + spatiotemporal
characterization + temporal mixture modeling has been used to suppress combined effects
of cloud cover and agricultural phenologies in the study of mangrove phenology and
disturbance response in the Bangladesh Sundarban [31]. Despite the subtle phenology
of evergreen mangrove species and the diversity of double-cropping practices in the
agricultural landscape surrounding the mangrove, the low-rank component of the RPCA
was able to resolve the varying effect of pre- and postmonsoon phenology among different
tree communities within the mangrove. However, as in this study, the near complete cloud
cover Landsat and Sentinel 2 acquisitions during the monsoon were omitted from the
vegetation fraction time series. Given the consistent performance of RPCA component
separation with these very different types of spatiotemporal process, we expect that this
approach could find application in other types of phenology analysis for which partial
cloud cover is a problem as well as ground-based time-lapse thermography analysis in
which transient anomalies are superimposed on a diurnal or annual cycle background.
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However, it is important to note that the relatively low spatiotemporal dimensionality of
the thermal cycles resulting from the strongly contrasting heat capacities of land surfaces
and water bodies does not necessarily apply to vegetation phenologies, which are subject
to climatic variations in temperature and precipitation, as well as anthropogenic factors
(e.g., agriculture). The spatiotemporal dimensionality of vegetation phenology is often on
the order of seven to nine [13], with temporal feature spaces significantly more complex
than those observed in this study [32].

Author Contributions: Conceptualization, C.S. and D.S.; methodology, C.S. and D.S.; formal analysis,
C.S. and D.S.; data curation, C.S. and D.S.; writing—original draft preparation, C.S.; writing—review
and editing, C.S. and D.S.; visualization, C.S. and D.S.; funding acquisition, C.S. and D.S. All authors
have read and agreed to the published version of the manuscript.

Funding: D.S. gratefully acknowledges funding from the USDA NIFA Sustainable Agroecosys-
tems program (Grant #2022-67019-36397), the USDA AFRI Rapid Response to Extreme Weather
Events Across Food and Agricultural Systems program (Grant #2023-68016-40683), the NASA Land-
Cover/Land Use Change program (Grant #NNH21ZDA001N-LCLUC), the NASA Remote Sensing of
Water Quality program (Grant #80NSSC22K0907), the NASA Applications-Oriented Augmentations
for Research and Analysis program (Grant #80NSSC23K1460), the NASA Commercial Smallsat Data
Analysis Program (Grant #80NSSC24K0052), the NASA FireSense Airborne Science Program (Grant #
80NSSC24K0145), the California Climate Action Seed Award Program and the NSF Signals in the
Soil program (Award #2226649). C.S. gratefully acknowledges the support of the endowment of the
Lamont Doherty Earth Observatory of Columbia University.

Data Availability Statement: All ECOSTRESS LST data used in this analysis are publicly available
from the archives given in the Data section above.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Irish, R.R. Landsat 7 Automatic Cloud Cover Assessment. In Proceedings of the AeroSense 2000, Orlando, FL, USA,

24–28 April 2000; Volume 4049, pp. 348–355.
2. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow

Detection for Landsats 4–7, 8, and Sentinel 2 Images. Remote Sens. Environ. 2015, 159, 269–277. [CrossRef]
3. Hovis, W.; Blaine, L.; Forman, M. Infrared Reflectance of High Altitude Clouds. Appl. Opt. 1970, 9, 561–563. [CrossRef] [PubMed]
4. Twomey, S.; Cocks, T. Spectral Reflectance of Clouds in the Near-Infrared: Comparison of Measurements and Calculations. J.

Meteorol. Soc. Japan Ser. II 1982, 60, 583–592. [CrossRef]
5. Young, S.J. Diffuse Reflectance of Clouds: A Semiempirical Model. Appl. Opt. 1979, 18, 1881–1882. [CrossRef] [PubMed]
6. Kokhanovsky, A. Optical Properties of Terrestrial Clouds. Earth-Sci. Rev. 2004, 64, 189–241. [CrossRef]
7. Allen, J. Measurements of Cloud Emissivity in the 8–13 µ Waveband. J. Appl. Meteorol. Climatol. 1971, 10, 260–265. [CrossRef]
8. Cox, S.K. Observations of Cloud Infrared Effective Emissivity. J. Atmos. Sci. 1976, 33, 287–289. [CrossRef]
9. Liu, L.; Zhang, T.; Wu, Y.; Niu, Z.; Wang, Q. Cloud Effective Emissivity Retrievals Using Combined Ground-Based Infrared Cloud

Measuring Instrument and Ceilometer Observations. Remote Sens. 2018, 10, 2033. [CrossRef]
10. Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating Clear Sky from Clouds with

MODIS. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [CrossRef]
11. Gao, B.-C.; Kaufman, Y.J. Selection of the 1.375-Mm MODIS Channel for Remote Sensing of Cirrus Clouds and Stratospheric

Aerosols from Space. J. Atmos. Sci. 1995, 52, 4231–4237. [CrossRef]
12. Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118,

83–94. [CrossRef]
13. Small, C. Spatiotemporal Dimensionality and Time-Space Characterization of Multitemporal Imagery. Remote Sens. Environ. 2012,

124, 793–809. [CrossRef]
14. Small, C.; Okujeni, A.; Van der Linden, S.; Waske, B. Remote Sensing of Urban Environments, in Comprehensive Remote Sensing.

In Comprehensive Remote Sensing; Elsevier: Oxford, UK, 2018; pp. 96–127.
15. Fisher, J.B.; Lee, B.; Purdy, A.J.; Halverson, G.H.; Dohlen, M.B.; Cawse-Nicholson, K.; Wang, A.; Anderson, R.G.; Aragon, B.;

Arain, M.A.; et al. ECOSTRESS: NASA’s Next Generation Mission to Measure Evapotranspiration From the International Space
Station. Water Resour. Res. 2020, 56, e2019WR026058. [CrossRef]

16. Hook, S.J.; Cawse-Nicholson, K.; Barsi, J.; Radocinski, R.; Hulley, G.C.; Johnson, W.R.; Rivera, G.; Markham, B. In-Flight Validation
of the ECOSTRESS, Landsats 7 and 8 Thermal Infrared Spectral Channels Using the Lake Tahoe CA/NV and Salton Sea CA
Automated Validation Sites. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1294–1302. [CrossRef]

https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.1364/AO.9.000561
https://www.ncbi.nlm.nih.gov/pubmed/20076243
https://doi.org/10.2151/jmsj1965.60.1_583
https://doi.org/10.1364/AO.18.001881
https://www.ncbi.nlm.nih.gov/pubmed/20212569
https://doi.org/10.1016/S0012-8252(03)00042-4
https://doi.org/10.1175/1520-0450(1971)010%3C0260:MOCEIT%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1976)033%3C0287:OOCIEE%3E2.0.CO;2
https://doi.org/10.3390/rs10122033
https://doi.org/10.1029/1998JD200032
https://doi.org/10.1175/1520-0469(1995)052%3C4231:SOTMCF%3E2.0.CO;2
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2012.05.031
https://doi.org/10.1029/2019WR026058
https://doi.org/10.1109/TGRS.2019.2945701


Remote Sens. 2024, 16, 255 18 of 18

17. Logan, T.; Johnson, W. ECOSTRESS Level-1 Focal Plane Array and Radiometric Calibration Algorithm Theoretical Basis Document

(ATBD); Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2015; p. 18.
18. Smyth, M.; Leprince, S. ECOSTRESS Level-1B Resampling and Geolocation Algorithm Theoretical Basis Document (ATBD); Jet

Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2018; p. 29.
19. Hulley, G.; Hook, S. ECOSTRESS Level-2 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document (ATBD); Jet

Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2015.
20. Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A Temperature and Emissivity Separation

Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images. IEEE Trans. Geosci.

Remote Sens. 1998, 36, 1113–1126. [CrossRef]
21. Kealy, P.S.; Hook, S.J. Separating Temperature and Emissivity in Thermal Infrared Multispectral Scanner Data: Implications for

Recovering Land Surface Temperatures. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1155–1164. [CrossRef]
22. Matsunaga, T. A Temperature-Emissivity Separation Method Using an Empirical Relationship between the Mean, the Maximum,

and the Minimum of the Thermal Infrared Emissivity Spectrum. J. Remote Sens. Soc. Jpn. 1994, 14, 230–241.
23. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust Principal Component Analysis? J. ACM (JACM) 2011, 58, 1–37. [CrossRef]
24. Yuan, X.; Yang, J. Sparse and Low-rank Matrix Decomposition via Alternating Direction Methods. Pac. J. Optim. 2013, 9, 167.
25. Lorenz, E. Empirical Orthogonal Functions and Statistical Weather Prediction; Statistical Forecasting Project; Massachusetts Institute

of Technology: Cambridge, MA, USA, 1956; p. 49.
26. Bechtel, B. Robustness of Annual Cycle Parameters to Characterize the Urban Thermal Landscapes. IEEE Geosci. Remote Sens. Lett.

2012, 9, 876–880. [CrossRef]
27. Bechtel, B. A New Global Climatology of Annual Land Surface Temperature. Remote Sens. 2015, 7, 2850–2870. [CrossRef]
28. Bechtel, B.; Zakšek, K.; Hoshyaripour, G. Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg,

Germany. Remote Sens. 2012, 4, 3184–3200. [CrossRef]
29. Sismanidis, P.; Bechtel, B.; Keramitsoglou, I.; Goettsche, F.; Kiranoudis, C.T. Satellite-Derived Quantification of the Diurnal and

Annual Dynamics of Land Surface Temperature. Remote Sens. Environ. 2021, 265, 112642. [CrossRef]
30. Sismanidis, P.; Bechtel, B.; Keramitsoglou, I.; Kiranoudis, C.T. Mapping the Spatiotemporal Dynamics of Europe’s Land Surface

Temperatures. IEEE Geosci. Remote Sens. Lett. 2017, 15, 202–206. [CrossRef]
31. Small, C.; Sousa, D. Spatiotemporal Characterization of Mangrove Phenology and Disturbance Response: The Bangladesh

Sundarban. Remote Sens. 2019, 11, 2063. [CrossRef]
32. Sousa, D.; Small, C. Joint Characterization of Spatiotemporal Data Manifolds. Front. Remote Sens. 2022, 3, 760650. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/36.700995
https://doi.org/10.1109/36.317447
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1109/LGRS.2012.2185034
https://doi.org/10.3390/rs70302850
https://doi.org/10.3390/rs4103184
https://doi.org/10.1016/j.rse.2021.112642
https://doi.org/10.1109/LGRS.2017.2779829
https://doi.org/10.3390/rs11172063
https://doi.org/10.3389/frsen.2022.760650

	Introduction 
	Materials and Methods 
	Data 
	Study Area 
	Methods 

	Results 
	Spatiotemporal Characterization 
	Examples of Low-Rank and Sparse Component Separation 

	Discussion 
	Process Segregation—Why It Works 
	Limitations 
	Additional Spatiotemporal Applications 

	References

