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• Land retirement was evaluated for its in-
fluence on pesticide use.

• We find ~100 kha/y are idle, with 1.3-
3 M kg of pesticide use foregone.

• Retired lands increase pesticide use on
nearby active fields.

• Trend in pesticide use is reversed at high
levels of revegetation cover.
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Agricultural land retirement generates risks and opportunities for ecological communities and ecosystem services. Of
particular interest is the influence of retired cropland on agricultural pests and pesticides, as these uncultivated lands
may directly shift the distribution of pesticide use and may serve as a source of pests and/or natural enemies for re-
maining active croplands. Few studies have investigated how agricultural pesticide use is impacted by land retirement.
Here we couple field-level crop and pesticide data from over 200,000 field-year observations and 15 years of produc-
tion in Kern County, CA, USA to investigate: 1) howmuch pesticide use and applied toxicity are avoided annually due
to the direct effects of retirement, 2) whether surrounding retirement drives pesticide use on active cropland andwhat
types of pesticides are most influenced, and 3) whether the effect of surrounding retirement on pesticide use is depen-
dent on the age or revegetation cover on retired parcels. Our results suggest about 100 kha are idle in any given year,
which equates to about 1.3-3 M kg of pesticide active ingredients foregone. We also find retired lands lead to a small
increase in total pesticide use on nearby active lands even after controlling for a combination of crop-, farmer-, region-
and year-specific heterogeneity. More specifically, the results suggest a 10% increase in retired lands nearby results in
about a 0.6 % increase in pesticides, with the effect sizes increasing as a function of the duration of continuous
fallowing, but decreasing or even reversing sign at high levels of revegetation cover. Our results suggest increasingly
prevalent agricultural land retirement can shift the distribution of pesticides based on what crops are retired andwhat
active crops remain nearby.

1. Introduction

Globally, croplands, people who depend on them, and ecosystems and
landscapes where they are located, are under increasing stress from

environmental and economic pressures (Hanak et al., 2017; Rosenzweig
et al., 2014). As a result, retired agricultural lands - areas that were once
used as cropland, but are no longer in production (Baxter and Calvert,
2017) – are increasingly common inmany agricultural landscapes. How ag-
ricultural land retirement influences surrounding farmers and the environ-
ment is thus an area of increasing interest (Brewer et al., 2022; Crawford
et al., 2022; Lortie et al., 2018).
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Agricultural retirement is estimated to cover 430–580 Mha globally
(Campbell et al., 2008). While agriculture in proximity to urban areas is
often converted to development (Brain et al., 2023), retired agriculture in
rural areas may return to semi-natural land cover or oscillate in and out
of agricultural production with varying economic and/or environmental
conditions. Though once predominantly found in low-value, rain-fed agri-
culture, retired lands are likely to become more common in high-value
croplands. Increasingly long and severe droughts are reducing surface
water supplies and driving increased reliance on limited groundwater re-
sources (Langridge and Van Schmidt, 2020), which, in turn, is leading to
policy initiatives seeking to reduce environmental harms associated with
overdrafts (Hanak et al., 2019; Roberts et al., 2021; Thomas, 2019).

Land retirement in intensive, high-value cropping systems has myriad
risks and opportunities for ecological and environmental health (Bourque
et al., 2019; Bryant et al., 2020; Lortie et al., 2018; Quandt et al., n.d.).
For example, many high-value crops use a considerable amount of agricul-
tural pesticides (Rosenheim et al., 2020). While an important tool for en-
abling high and stable crop yields (Waterfield and Zilberman, 2012),
pesticides are also associated with numerous potential environmental
harms, ranging from species declines to adverse human health outcomes
(Gill et al., 2012; Köhler and Triebskorn, 2013; Larsen et al., 2017; Li
et al., 2020). Foregone application on otherwise high pesticide-use nut,
fruit and vegetable crops may therefore have important implications for
the spatial and temporal distribution of environmental pollution.

Retired agricultural land may also indirectly impact agricultural pests
and pesticide use through its effects on surrounding, active agriculture. Re-
tired agricultural lands, whether temporary or permanent, could provide
non-crop habitat and shelter from disturbance that enables overwintering
and reinvasion of both beneficial and pest species (de Paz et al., 2022;
Martin et al., 2019). Spillovers of beneficial organisms such as birds, spi-
ders, and other natural enemies of crop pests from retiredfields could result
in more viable production and reduced pesticide application on fields sur-
rounding retired land (Estrada-Carmona et al., 2022; Landis, 2017;
Thomine et al., 2022; Tscharntke et al., 2016). However, spillover of insect
pests and seed rains of weeds could instead increase pesticide use on re-
maining parcels (Tscharntke et al., 2016), with potential knock-on conse-
quences for natural systems.

Herewe leverage a unique time series of crop and pesticide use data that
covers over 15y of production to understand the direct and indirect effects
of land retirement on pesticides in high-value croplands. We address the
following questions: 1) how much formerly active cropland is idle in any
given year and how much pesticide use is foregone on these uncultivated
lands? 2) does retired land influence pesticide use on nearby cultivated
fields, and if so, does the effect differ for different types of pesticides?
3) does the duration of, or revegetation cover on, retired lands matter
with respect to pesticide use by nearby growers? We focus on Kern
County, CA, which is located in the southern San Joaquin Valley and
is one of the US's highest crop-producing counties by value. Kern pro-
duces around $8B of gross agricultural production (Kern County
Department of Agriculture and Measurement Standards, n.d.) and uses
13 Mkg of agricultural pesticide use annually (Summary of Pesticide
Use Report Data 2018, 2019). Major crops in Kern County include nut
(almond and pistachios) and fruit trees, vineyards, and vegetable crops
(tomatoes, carrots, etc.). Kern County is also acutely dependent on water
availability and likely to experience substantial land use change as a result
of climate-driven water scarcity and associated policy (Bryant et al., 2020;
Hanak et al., 2019).

2. Methods

2.1. Identifying and characterizing retired lands

Vector files representing crop field boundaries from 1997 to 2021 were
downloaded from the Kern County Agricultural Commissioner's Office
(http://www.kernag.com/gis/gis-data.asp). These geospatial data include
information such as farmer (“permit”), area in production, and crop type

(“commodity”, “commodity code”), from which we derived crop family.
Using the set of permitted fields between 1997 and 2021, we identified
fields that changed from production to lack of production or vice versa
(see SI methods). Retirement was defined as either a parcel permitted as
“uncultivated agriculture”with no other crop produced on that physical lo-
cation during the year, or as a parcel that did not receive a permit in the
focal year, but was cultivated at some point in the time series. Throughout
“focal year” is the year of analysis or t in Eq. (2).

Since “fields” are not fixed in space, but rather are defined as a farmer-
site-crop-year combination and can aggregate or split based on farmer
planting decisions, tracking land retirement and age of retirement is chal-
lenging. To do so, we further refined the permitted field polygons to iden-
tify unique field fragments that were not divided during the time series
(See SI methods). We dropped field fragments less than ~0.4 ha (1 ac) to
reduce minor changes in field dimensions that likely reflect changes in
data recording rather than different planting decisions, leaving about
67,000 unique field fragments and eliminating 3237 permitted fields. For
fragments that were retired, we calculated area, duration of continuous re-
tirement relative to the focal year, and recorded the last crop produced. We
calculated (1) the amount of foregone pesticide use based on last crop pro-
duced, fragment area, and focal year, (2) vegetation statistics on each re-
tired fragment in each year, and (3) the amount of retired land of
different age and revegetation levels to understand how nearby retirement
impacts pesticide use on active fields (see below).

We use the longest time series available (1997–2021) to make as com-
prehensive an estimate of surrounding retirement and retirement age as
possible, but use 2005–2021 for our analysis of foregone pesticide use
and the effects of nearby retirement since <100 % of fields and pesticide
use were recorded in early years. Undoubtedly fields were also retired per-
manently prior to 1997, which we would not observe in our time series.
Thus, our estimate of foregone pesticide use due to direct retirement is an
underestimate.

2.2. Pesticide use data

California mandates the collection of pesticide use data on production
agriculture,which includes information such as date of application, product
number, and amount of product used, among other data. The field-level,
daily pesticide use data were sourced from the California Department of
Pesticide Regulation (CDPR) Pesticide Use Reports when available (pre-
2021) and the Kern County Agricultural Commissioner's Office for 2021.
Both data sources are based on the same data collection and produce nearly
identical results (Fig. S1). Pesticide data were merged with the pesticide
product table, provided in the annual download from the CDPR, in the cor-
responding year. For 2021, we merge the County Agricultural Commis-
sioner's data with the 2020 product table. Fields in the vector data that
had no corresponding entry in the pesticide use data were assumed to re-
ceive zero pesticides in that year.

2.3. Pesticide applied toxicity

To quantify applied toxicity, we prioritized ecotoxicological observa-
tions available through the Pesticide Properties Database (PPDB). The data-
base derives ecotoxicological endpoints from European and United States
regulatory agencies where able, and where peer-reviewed literature,
ecotoxicity prediction tools, and other resources are consulted, verified
datasets receive the highest priority. Toxicity information in the PPDB
was not available for all active ingredients and species investigated; how-
ever, the data reflect available information for the applied pesticides
through the United States and European regulatory agencies. For the pres-
ent investigation, we consider acute endpoints where half of the sample
populationwill experiencemortality (LD50/LC50) for honeybees (contact),
birds (oral), mammals (oral), and earthworms (soil concentration).

Applied toxicity refers to the mass of pesticide applied to an area with
the potential to do harm. Leveraging the high resolution pesticide applica-
tion rate data from the pesticide use reports and following the methods of

A.E. Larsen et al. Science of the Total Environment 896 (2023) 165224

2

http://www.kernag.com/gis/gis-data.asp


Parker et al. (Parker et al., n.d.), applied toxicity of the jth county or water-
shed is calculable for the ith pesticide and kth taxon of interest as:

TIi,j ¼ ∑
Mi,k

Ti,k,
(1)

where TI is the Toxicity Index, M is the mass of applied pesticide (by active
ingredient), and T is the adverse health-effect concentration of concern for
the species or taxonomic groups of interest. For the present investigation,
we consider applied toxicity to terrestrial organisms summarized by Kern
County. Though applied toxicity does not consider exposure, which is re-
quired for risk assessment, it enhances our understanding of where hazards
exist (US EPA Office of Pollution Prevention and Toxics, 2022) without the
high degree of uncertainty of fate and transport models over large extents
(Dubus et al., 2003; Srivastava et al., 2007; Zheng and Keller, 2006).

2.4. Foregone pesticide use and toxicity

From daily, field-level pesticide use data, we calculated mean annual
pesticide use (kg ha−1 of active ingredients) by crop-year. We calculated
foregone pesticide use based on the crop-year specific pesticide use rates
using kg ha−1 average for the crop last produced on the retired fragment.
In other words, if a field fragment produced pistachios in 2010, and was
then retired, we calculated crop-specific foregone pesticide use in 2015 as
the pistachio-specific 2015 average kg ha−1 multiplied by the area of the
retired field fragment. Similarly, we calculated applied toxicity based on
the crop-year specific pesticide use—calculating the average, applied toxic-
ity for a given crop-year, multiplied by ha of each type of now-retired crop
and summed over all now-retired crops to create an annual total. For fields
with intra-annual rotations in the year prior to retirement, we used the last
crop rotated to define the crop last produced on the retired fragment. Kern
County was intensively cultivated for decades prior to the beginning of our
dataset. Unfortunately, we cannot capture the land use history on each plot.
We evaluate a version of the foregone pesticide use analysis multiplying
pesticide use by 1.5× on fields last growing annual crops to evaluate the
potential influence of within year crop rotations on our estimate of fore-
gone pesticide use (Fig. S2).

2.5. Revegetation

Data coverage and cloud screening: Revegetation of retired lands was
evaluated using multispectral satellite imagery. All available Landsat 5, 7,
and 8 images from WRS-2 Path 42, Rows 35 and 36 were downloaded as
Collection 2, Level 2 surface reflectance from the USGS EarthExplorer
web portal (https://earthexplorer.usgs.gov/). Due to the favorable geome-
try of the WRS-2 grid in this area, the entire Central Valley portion of the
study area is captured by data from a single orbital path. Images with any
perceptible cloud cover over the study area were removed, resulting in re-
tention of data from 156 of the 526 acquisition dates. Image tiles from
the two rows were mosaicked into a single tile and spatially subset to
match the study area. A small number of agricultural areas in the eastern
portion of Kern County (Sierra foothills and Mojave Desert) were present
in the County vector files but not imaged by Path 42 data and were thus ex-
cluded from this analysis.

Estimation of Vegetative Cover: Photosynthetic vegetative cover on re-
tired lands was then quantified using spectral mixture analysis (SMA) of
Landsat imagery. Briefly, SMA assumes linear optical mixing within each
pixel's field of view and uses a simple linear model to estimate the areal
abundance of constituent spectrally distinct endmember (EM) materials
(Adams et al., 1986; Gillespie et al., 1990; Smith et al., 1990). Multispectral
reflectance of Earth's ice-free land surface can be well-modeled by three
such EM materials: soil and non-photosynthetic vegetation Substrates, illu-
minated photosynthetic Vegetation, and Dark targets like shadow and
water (S, V, and D) (Small, 2004). Unlike some spectral indices, SMAV frac-
tion are linearly scalable across over 4 orders of magnitude (Sousa and
Small, 2017). We point the interested reader to (Sousa and Small, 2023)

for further information on the relationship between SMA V fraction and
several common spectral indices. Here we use intercalibrated endmembers
derived from a diverse compilation of global targets to empirically account
for changes in spectral responses between Landsat 5/7 TM/ETM+ and
Landsat 8 OLI (Sousa and Small, 2017), also comparing to locally-derived
image EMs.We compute the first three statistical moments (mean, standard
deviation, skewness) of the V fraction time series for each year, then com-
pute the spatial mean of the pixels within each uncultivated parcel. A
60 m inner buffer was first applied to each field polygon to minimize the
impact of edge effects and geolocation uncertainty. The result is a quantita-
tive, physically-based annualized estimate of the aggregate photosynthetic
vegetative cover on each retired parcel.

2.6. Statistical approach

Nearby retirement: To understand how retired lands impact nearby ac-
tive lands, we calculated the area of retired lands within a 2.5 km buffer of
each active field. A 2-3 km buffer is commonly used as the landscape of in-
fluence for insect pests and natural enemies (Karp et al., 2018; Landis,
2017). While any duration of retirement may provide habitat for some spe-
cies, the value of the refugia likely increase with the duration of retirement
and the level of revegetation. As such, we calculated the area of retired
lands of different retirement duration (1, 2–4, 5–8, 8+ years) and of differ-
ent revegetation quartiles within the buffer. Sincewewere interested in the
effect of surrounding retirement on actively cultivated fields, we dropped
focal fields labeled as “uncultivated agriculture” (N = 14,326 of
>227,000 total observations from 2005 to 2021), as well as others for
whomwe could not decipher a crop family (e.g. nursery plants; N=1267).

Statistical methods: In the ideal scenario, we could randomly assign the
area of retired lands nearby active fields and measure the impact on pesti-
cide use. In the absence of the experimental ideal, we use a within-
estimator approach (“fixed effects” in causal inference terminology;
Wooldridge, 2002; Larsen et al., 2019). If “fields” did not change year-to-
year, such an approach could compare a field in one year to itself in another
year with different amounts of surrounding land retirement. Since fields
change over time, and we only observe pesticide use at the whole field
level (rather than field fragments), we instead include a series of dummy
variables for year, region (93 km2 Public Land Survey Township), farmer,
and crop type. Dummy variables function to de-mean pesticide use, retire-
ment, and other covariates by, for example, region; thus, largely time-
invariant heterogeneity such as soil quality, which may be correlated
with both the amount of retirement and the amount of pesticide use, is re-
moved. Dummy variables for farmer, crop type, and year may capture
farmer-specific risk preferences, crop-specific pest susceptibility or value,
and year shocks such as weather that affect all fields in the county, respec-
tively. A version of our model can be written as,

IHS yirtð Þ ¼ γr þ δt þ αIHS RetiredHairtð Þ þ IHS Xirtð Þ
0βþ εirt (2)

where our covariate of interest is the amount of retired land (“RetiredHa”)
nearfield i, in region, r, and year, t, which, like other covariates and the out-
come variable, is inverse hyperbolic sine (IHS) transformed to accommo-
date zero values and non-linear relationships. yirt denotes pesticide use
(kg ha−1). The vector X denotes covariates for size of the focal field and
the amount of permitted cropland, defined as total permitted area minus
area of annual uncultivated agriculture, in the buffer that overlaps with
the growing season of the focal field. γr and δt denote region and year
dummy variables; other specifications included farmers and crop type, as
well. IHS transformed variables can be interpreted as % change-% change,
similar to log-log specifications (Bellemare and Wichman, 2020). Pesticide
use variables were pre-multiplied by 100 to reduce distortions for small
values (Bellemare andWichman, 2020), though doing so does not influence
the interpretation. Thus, α can be interpreted as the percent change in pes-
ticide use for every 1% change in nearby retired lands, and the vector β can
similarly be interpreted, but for changes in focal field size and surrounding
cropland extent. Lastly, εirt represents the stochastic error term, which is
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clustered at the farmer (permit number) level to account for autocorrelation
of fields within the same farm.

Eq. (2) results in one slope coefficient estimating the effect of a change
in retired lands nearby on pesticide use. To evaluate the effect of duration of
retirement (or revegetation state), we replace the single covariate for re-
tired land with a series of variables representing the area in different age
classes (or revegetation quartiles). This allows us to flexibly model the rela-
tionship between retirement duration (revegetation level) and pesticide
use. Additionally, since retired lands may affect different pest taxa differ-
ently, we rerun our analysis predicting how different metrics of retirement
influence pesticides functioning only as insecticides, only as herbicides,
only as fungicides, and those that have dual action as fungicides/insecti-
cides, which captures widely used sulfur pesticides. We similarly evaluate
pesticide-applied toxicity to different taxa to understand if there are differ-
ences in the types and toxicity of foregone pesticide use as a function of re-
tired lands.

All statistical analyses were completed in Stata 16MP, using the reghdfe
package (Correia, 2019). Creating the time series of field fragments was
completed in R and mapshaper, while calculating proximity between field
fragments was completed in arcpy. For the remote sensing analysis,
mosaicking and spatial subsetting were completed using GDAL (Rouault
et al., 2022). SMA was implemented using Python 3.8.8 and the publicly
available scripts described by (Sousa et al., 2022). Visual cloud screening
and statistical computation were performed in ENVI 5.6.1.

3. Results

Land retired for one or more years during our time series existed
throughout the county, but was concentrated in the northwest (Fig. 1),
though some occurred near urban areas (Fig. S3). The most common
crops to be retired, based on the last cultivated crop type, were cotton,
wheat, and carrots.

Overall, the area of land permitted at least once in our times series and
retired was fairly similar year to year, at around 100 kha, which
corresponded to foregone pesticide use of 1.3-3 M kg, based on crop-year-
specific pesticide use rates (Fig. 2). The relative stability of the amount of
retired lands is reflected in the Kern County Annual Crop Reports, which re-
ports less than a 10% change in the total harvested area between 2005 and
2021 (http://www.kernag.com/caap/crop-reports/crop-reports.asp).

Foregone pesticide-use rates and applied toxicity generally trended to-
gether, with both tending to increase over time (Fig. 2). Pesticide-applied
toxicity to bees is responsible for the overwhelming majority of foregone
applied toxicity over time (Fig. S4).

For active fields during our time series, there were ~ 150 ha, on aver-
age, within the nearby buffer of radius 2.5 km (~1950 ha total) occupied
by retired cropland. In general, most of the retired cropland near active
fields was fairly old, with~52 ha being retired for<5 years, and the rest re-
tired for over 5y (Table 1). The average activefield used about~26 kg ha−1

of pesticide active ingredients.
We began analyzing the effect of nearby retirement on pesticide use by

specifying a series of increasingly stringent models that included a combi-
nation of region (PLS Township), year, crop, and farmer dummy variables.
Overall, we find increasing retired lands nearby leads to an increase in pes-
ticide use rates. Including crop dummies, with or without farmer, resulted
in a coefficient estimate roughly a third of the size of the model specified
with just region and year (Fig. S5), indicating crop was correlated with
IHS transformed measures of retired land area nearby. We continue with
the most stringent model that includes region, year, crop and farmer
dummy variables.

For total pesticide use, we report a 10 % increase in the amount of
retired lands nearby leads to about a 0.56 % increase in total pesticide
use rates (kg ha−1). Breaking it down by the target taxa, we find slightly
larger effects for herbicides, insecticides and fungicides (0.58–0.61 %;
Fig. 3).

Retired lands could differentially affect surrounding fields based on the
duration of retirement or the level of revegetation, as bothmay be expected
to affect habitat quality and occupancy for beneficial and pest species.
Across all types of pesticides, except dual action insect/fungicides, we
find the coefficient on retirement increases with duration of continuous re-
tirement. For most types of pesticides besides insecticides, we only observe
a significant (p< 0.05) coefficient after 8y of continuous retirement (Fig. 4,
Table S2), suggesting retired lands become burdensome for insect pest con-
trol early, and are increasingly burdensome for all pest control, besides dual
action insecticide/fungicide AI, with the duration of retirement. In contrast
to duration of retirement, area of nearby retired land in the lowest quartile
of vegetation cover led to an increase in pesticide use, while land in the
highest quartile had a null or significant, negative effect, depending on pro-
cessing approach (Figs. S6, S7).

Fig. 1.Distribution of agriculture (gray) and retired agriculture categorized by duration of continuous preceding retirement (colors) for Kern County (blue inlay) in 2020.We
estimate there were ~ 289,000 ha of land cultivated at least once in 2020 (gray), and 116,000 ha of retired land of different ages (see legend).
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Crops differ in their pest communities and thus may be expected to re-
spond differently to nearby retired lands. We rerun our analysis for the
six most commonly grown crops, representing over half of both total
cropped area and pesticide use, between 2005 and 2021 including region,
year, and farmer dummy variables. In doing so, we allow for a crop-
specific slope, as well as intercept, for the effect of retirement on pesticide
use. Here we see that there is considerable heterogeneity by crop type.
For several high-value, high-pesticide-use crops such as almonds and
grapes, nearby retirement led to a much larger increase in pesticide use
than the all-crop average (Fig. 5). For others, including pistachios and car-
rots, there is little effect. However, as might be expected, the effects differ
depending on the type of pesticide used. Many commonly grown crops in-
crease insecticide-only use rates in response to nearby retirement, while
the effects on insecticide/fungicides are more muted and on fungicides
are more variable by crop type (Fig. 5, Fig. S8-S9).

4. Discussion

Agricultural land retirement reverberates across numerous social, eco-
logical and environmental axes. Here we sought to understand how land

retirement affects agricultural pesticide use through both foregone applica-
tion and landscape effects on remaining active fields. We report three main
findings: 1) Retired agricultural land, or land cultivated at least once be-
tween 1997 and 2021 but uncultivated for at least one full year, accounts
for about 100kha in any given year and represents about 1.3-3M kg of fore-
gone pesticide active ingredients. We do not observe strong time trends in
retired lands, though the amount of retired lands, foregone pesticides,

Fig. 2. Time trends in key variables. Annual fallowed lands (kHa; orange line) and cropland cultivated at least once during the year (kHa; green dash) are fairly stable over
time, while foregone pesticide active ingredients (kKg; black bars) and foregone applied toxicity to investigated taxa (toxicity index of 1 T; navy bars), calculated using crop-
year specific pesticide use rates, trend together and are more variable over time.

Table 1
Summary statistics for pesticide use and the amount of surrounding
retired land surrounding active fields 2005–2021. Pesticide “AI”
represents the average pesticide use rates (kg ha−1 active ingredi-
ents). The various retired variables represent the average area
(ha) of retired lands of different retirement durations (1y, 2-4y, 5-
8y, >8y) and all combined (all) in the 2.5 km radius buffer
(~1963 ha) around active fields.

Variable Mean (SD)

Pesticide AI (kg ha−1) 25.61 (72.85)
Retired Ag All (Ha) 150.41 (187.7)
Retired 1y (Ha) 21.90 (49.16)
Retired 2-4y (Ha) 30.44 (63.34)
Retired 5-8y (Ha) 28.19 (58.26)
Retired 8y + (Ha) 69.86 (108.5)
N 211,820
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Fig. 3. Coefficient estimates for the effect of nearby retired lands on total pesticide
use rate and pesticide use rate by target taxa on active fields. Coefficients are
indicated by symbols and the 95 % CI is indicated by the bars. Coefficients can be
interpreted as percent change-percent change (elasticity). “All” indicates total
pesticide use (kg ha−1), “Herb” indicates kg of pesticides targeting only weeds,
“Insect” indicates kg of pesticides functioning only as insecticide, miticide, insect
growth regulator or repellents, “Fung” indicates kg of pesticides targeting only
fungi and molds, and “Ins/Fung” indicates dual action pesticides targeting both
insect and fungi pests. For all types of pesticides, except dual action insect/
fungicides, nearby retired lands lead to a significant increase in use rates. All
models include covariates for the amount of cropland nearby and focal field size,
dummy variables for region, year, crop and farmer, and standard errors clustered
at the farmer (permit number) level. See Table S1 for coefficient estimates and
number of observations.
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and associated foregone applied toxicity appear to be increasing. 2) Nearby
retired lands lead to an increase in several types of pesticides on active
fields, and this relationship increases with the duration of retirement;
3) the effects of nearby retirement are heterogeneous by crop type, with
some high spray crops such as almonds and grapes associated with a
much larger increase in pesticides in response to nearby retirement than
the all-crop average.

Agricultural lands are retired formyriad reasons. Though often assumed
to be the lowest-value crops, we observe several medium to high-value
crops like cotton and pistachios are commonly retired. Though still not a

random draw of crop composition, the retirement of high-value, high-
spray crops results in a substantial amount of foregone pesticide use on
the order of about 1.3-3 M kg of active ingredients, depending on the
year. Still, the spatial distribution of retirement, and thus, foregone,
field-applied pesticides, is clustered indicating any environmental health
benefits associatedwith a reduction in pesticide applications and associated
toxicity to different taxa will be as well. Notably, we observe pesticide use
during production and thus do not account for any additional foregone pes-
ticide use applied in the supply chain.

Many of the retired lands near active croplands have been retired for
several years. Biodiversity and ecosystem service benefits tend to accrue
with the duration of retirement (Crawford et al., 2022; Isbell et al., 2019),
though even ephemeral retirement may improve landscape connectivity
(McComb et al., 2022). Interestingly, we observed an increase in both
herbicide and insecticide on active fields with nearby retired lands, and
an increase in the magnitude of the coefficient with the duration of time re-
tired. This suggests that both insect and weed pest spillover from retired
lands, and likely that the level of weed and insect pest pressure increases
with the amount of time since cultivation. This contrasts, to some degree,
with agroecological principles that suggest uncultivated (semi) natural
lands like field margins may reduce insect pest pressure due to spillover
of natural enemies (Haan et al., 2020; Tscharntke et al., 2016). While this
may still occur, particularly on fields with higher vegetation cover, it ap-
pears insect pest pressure increases, on average, with increasing nearby re-
tired lands. Agriculture in Kern County is intensive and diverse. With
respect to the former, the soil may be so far disturbed from natural nutrient
and water cycles that the vegetation that recovers passively is invasive and
weedy (Lortie et al., 2018). With respect to the latter, highly diverse crop-
land may reduce the relative habitat benefits of uncultivated land covers
since heterogeneous crop cycles may already provide substantial habitat
heterogeneity (Estrada-Carmona et al., 2022; Sirami et al., 2019). Lastly,
we find the effect of retirement on both insect and weed pest control in-
creases with the duration of retirement, though decreases with vegetation
cover. These contrasting trends suggest that management of retired parcels
may determine pest buildup and spillover. We cannot differentiate between
native and invasive plant cover nor remnant crop plants over the time
series, which likely impacts pest control through different, conflicting path-
ways. Field studies measuring vegetation composition following retirement
would be valuable to elucidate the mechanisms behind our results.

Importantly, though perhaps unsurprisingly, we report substantial crop-
specific heterogeneity in the effect of surrounding retirement on pesticide
use. Different crops have different suites of pests and natural enemies that
may respond differently to retired lands depending on, for example, dis-
persal ability, diet breadth, pest diversity, and other life history characteris-
tics (Rosenheim et al., 2020). Across all pesticide types, wefind grapes have
a consistently large and positive response to surrounding retirement. For
example, while a 10 % increase in nearby retirement leads to around a
0.6 % increase in most pesticide use rates (kg ha−1AI) on average, the
same increase in retirement leads to over a fivefold greater increase for
grapes. Grapes were also the crop responsible for the highest applied toxic-
ity over the analysis period (33 %), driven primarily by imidacloprid, and
almost all toxicity was to honeybees. More generally, foregone applied tox-
icity to honeybees dwarfed other endpoints, reflecting the high toxicity of
modern pesticides to honeybees noted elsewhere (DiBartolomeis et al.,
2019; Douglas et al., 2020). As such, land retirement in Kern County
could substantially change local pressures on pollinators, depending on
the crop idled and the crops nearby. The crop-specific response to nearby
retired lands implies certain growers and near-field areas are likely to be
better or worse off, with respect to pest control and health risks, as retire-
ment becomesmore frequent with future groundwater limitations. Growers
and extension agents may thus consider switching crops depending on the
spatial evolution of land retirement nearby. Additionally, as with grapes,
the majority of toxicity is driven by a few, highly toxic insecticides. Thus,
employing existing, lower-toxicity alternatives could also mitigate some
environmental concerns stemming from retirement-driven pesticide
increases.

Fig. 4. Coefficient estimates for the effect of nearby retired lands on total pesticide
(“All”), herbicide, and insecticide use rates by duration of continuous retirement.
Coefficients are indicated by symbols and the 95 % CI is indicated by the bars.
Coefficients can be interpreted as percent change-percent change (elasticity).
Herbicides are defined here as pesticides targeting only weeds, insecticides as
pesticides functioning only as insecticide, miticide, insect growth regulator or
repellents. All models include covariates for the amount of active cropland nearby
and focal field size, dummy variables for region, year, crop and farmer, and
standard errors clustered at the farmer level. For simplicity, we focus the results
on all pesticides, herbicides and insecticides because there are ecological
predictions regarding landscape-level effects. See Table S2 for coefficient
estimates and number of observations for these models and insect/fungicide and
fungicide pesticides.

Fig. 5. Coefficient estimates for the effect of nearby retired lands on total pesticides
(blue circle), herbicides (red diamond) and insecticide (green triangle) use rates by
crop type. “All” indicates all crops combined, “Alm” indicates almond, “Pist”
pistachios, “Alf” alfalfa, “Grp” grape, “Cot” cotton, “Car” carrot. Coefficients are
indicated by symbols and the 95 % CI is indicated by the bars. Coefficients can be
interpreted as percent change-percent change (elasticity). All models include
covariates for the amount of cropland nearby and focal field size, dummy
variables for region, year and farmer, and standard errors clustered at the farmer
level. See Table S3-S5 for coefficient estimates and number of observations.
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There are several important caveats to our study. First, Kern County
is just one county. Though we might expect similar results in other parts
of the Central Valley, and other high-value and water-limited growing
regions, temperate or tropical agricultural systems are likely to have dif-
ferent relationships. Second, the unique field and pesticide data are user
reported. The PUR data are extensively checked for outliers (California
Department of Pesticide Regulation, 2002), and our statistical approach
such as farmer dummy variables should reduce the error associated with
individual farmer reporting behavior in our landscape analysis. Never-
theless, our results depend on accurate crop reporting and valid permits.
Additionally, we do not have complete land use histories and fail to cap-
ture all potential crops grown on a given parcel, and thus we underesti-
mate foregone pesticides, particularly on annual croplands. Lastly, we
lack data on farm management. While some farmers may leave retired
fields untended, others may till or otherwise manage them. Our remote
sensing analysis aims to uncover the relationship between revegetation
and pesticides, but more detailed information on the type of revegeta-
tion (and pest pressure) from field-based studies would undoubtedly im-
prove our mechanistic understanding. Such data would also improve
our understanding of the potential value associated with different man-
agement of retired parcels.

In summary, retired agricultural lands are an increasing land cover with
underexplored implications for surrounding human and natural communi-
ties. Our results suggest agricultural land retirement has direct environmen-
tal benefits in the form of reduced pesticide use, yet leads to an increase in
pesticide use on surrounding active fields. Given the ongoing (Pancorbo
et al., 2023) and expected increase in retired land under groundwater pol-
icies in California (Hanak et al., 2019) and other water-limited systems, un-
derstanding the spatial distribution of environmental benefits and costs to
retired lands is crucial for improving the environmental and economic sus-
tainability of these agricultural systems.
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