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Abstract

The U.S. wine and grape industry loses $3B annually due to viral diseases
including grapevine leafroll-associated virus complex 3 (GLRaV-3).
Current detection methods are labor-intensive and expensive. GLRaV-3
has a latent period in which the vines are infected but do not display
visible symptoms, making it an ideal model to evaluate the scalability
of imaging spectroscopy-based disease detection. The NASA Airborne
Visible and Infrared Imaging Spectrometer Next Generation was deployed
to detect GLRaV-3 in Cabernet Sauvignon grapevines in Lodi, CA in
September 2020. Foliage was removed from the vines as part of mechanical
harvest soon after image acquisition. In September of both 2020 and 2021,
industry collaborators scouted 317 hectares on a vine-by-vine basis for
visible viral symptoms and collected a subset for molecular confirmation
testing. Symptomatic grapevines identified in 2021 were assumed to have
been latently infected at the time of image acquisition. Random forest
models were trained on a spectroscopic signal of noninfected and GLRaV-3

infected grapevines balanced with synthetic minority oversampling of
noninfected and GLRaV-3 infected grapevines. The models were able to
differentiate between noninfected and GLRaV-3 infected vines both pre-
and postsymptomatically at 1 to 5 m resolution. The best-performing
models had 87% accuracy distinguishing between noninfected and
asymptomatic vines, and 85% accuracy distinguishing between noninfected
and asymptomatic + symptomatic vines. The importance of nonvisible
wavelengths suggests that this capacity is driven by disease-induced
changes to plant physiology. The results lay a foundation for using
the forthcoming hyperspectral satellite Surface Biology and Geology for
regional disease monitoring in grapevine and other crop species.

Keywords: AVIRIS next generation, early detection, grapevine leafroll-
associated virus 3, imaging spectroscopy, scalable

Plant-microbe interactions impact a variety of plant traits that can
be sensed remotely, ranging from changes in tissue color to canopy
architecture (Agrios 2009). Broadband methods relying primarily
on visible (VIS) and near-infrared (NIR) spectral indices, such as
the normalized difference vegetation index (NDVI), were proven
capable of sensing late-stage plant disease in the 1980s (Jackson
1986; Nagarajan 1984). However, the advent of more widely avail-
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able narrowband data streams spanning the VIS—shortwave infrared
(SWIR) range has revolutionized the study of plant disease sens-
ing. Plant pathogens damage, impair, and/or alter foliar function,
thus changing the chemical composition of foliage via the pro-
duction of either systemic effectors or secondary metabolites. The
changes can be sensed with in situ and imaging spectroscopy often
referred to by plant pathologists as “hyperspectral imaging” (Gold
et al. 2020a). SWIR wavelengths have proven valuable for plant—
pathogen interaction sensing due to their sensitivity to a range of
foliar properties (Curran 1989), including nutrient content (Singh
et al. 2015), water (Gao 1996), photosynthetic capacity (Oren et al.
1986), physiology (Serbin et al. 2019), phenolics and secondary
metabolites (Couture et al. 2016), that are all impacted during in-
fection and early-stage disease. Recent work has established that air-
borne imaging spectroscopy is capable of presymptomatic disease
detection in multiple pathosystems, including olive quick decline
syndrome OQDS caused by Xylella fastidiosa (Zarco-Tejada et al.
2018, 2021), infection of Holm oak by Phytophthora spp. (Hornero
et al. 2021), and infection of oak by Bretziella fagacearum (Sapes
et al. 2022). These collective works demonstrate that airborne sens-
ing not only can provide reliable asymptomatic disease detection,
but in some instances, it outperformed human scouting by detecting
minimally symptomatic trees missed by the ground-truthing team
(Zarco-Tejada et al. 2021).

Disease detection via imaging spectroscopy is often facilitated
by machine learning, which helps to make sense of the underlying
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relationships within and among the hundreds of (highly correlated)
spectral bands that the approach offers (Maxwell et al. 2018; Meza
Ramirez etal. 2021). Machine learning methods such as random for-
est (RF) and partial least squares have been used widely in airborne
plant-microbe interaction sensing, including mycorrhizal associa-
tion mapping (Sousa et al. 2021), oak wilt detection (Sapes et al.
2022), and olive quick decline syndrome mapping (Calderén et al.
2013; Zarco-Tejada et al. 2018), as well as in the broader adjacent
domains of foliar functional ecology (Martin et al. 2018; Schneider
et al. 2017).

While the above-mentioned studies have shown that imaging
spectroscopy can be useful in understanding, detecting, and map-
ping plant—fungal and bacterial-fungal interactions, viral-plant in-
teractions remain to be explored. Viral diseases, including that
caused by grapevine leafroll virus complex 3 (GLRaV-3), cause
U.S. $3 billion in losses to the U.S. wine and grape industry annually
(Naidu et al. 2014). GLRaV-3 is primarily vectored by mealy-
bugs (Pseudococcidae spp.) but can also be transmitted by other
phloem-feeding insects (Charles et al. 2009; Pietersen et al. 2013).
In addition to significantly reducing vine lifespan, GLRaV-3 infec-
tion causes the grapevine to misappropriate resources, which results
in uneven cluster ripening, changes in grape berry chemistry, and
reduced wine quality (Naidu et al. 2014; Song et al. 2021). Existing
strategies to detect GLRaV-3 in the field are based on visual scout-
ing by trained experts (Bolton 2020). However, managing GLRaV-3
is particularly challenging because only red grape varieties, such as
Cabernet Sauvignon (unlike Sauvignon Blanc), display foliar symp-
toms, which are necessary for scouts to detect the disease (Naidu
et al. 2015). Compounding this is the fact that GLRaV-3 has a long
(approximately 12-month) latent phase during which the host is in-
fectious but foliar symptoms are not yet apparent (Blaisdell et al.
2016; Naidu et al. 2014; Olmos et al. 2016). This means that both
latently infected red grape varieties and infected white grape vari-
eties serve as inoculum sources for nearby fields without grower
recourse other than expensive molecular testing. Commercial lab-
based serological testing capable of identifying latent infections
costs between U.S. $40 and 300 per vine, depending on how many
viruses are tested for and whether composite sampling is utilized.
Even a small-scale vineyard will have at least 1,000 vines, with
larger vineyards having up to 30,000 vines, making both regular
and asymptomatic testing prohibitively costly to scale.

Consequently, plant pathologists and grape growers have begun
to look for a detection approach that is both temporally and spatially
scalable, accurate, and cost-effective. Remote sensing’s capacity
for scalable, passive disease monitoring makes it of great interest
to plant pathology and the broader agricultural science communi-
ties. Proof-of-concept work has established that contact and prox-
imal spectroscopy can detect GLRaV-3 infection at an early stage
(Bendel et al. 2020; Gao et al. 2020; Naidu et al. 2009; Sinha
et al. 2019). Furthermore, MacDonald et al. (2016) found that spec-
troscopic imagery, the data product of the imaging spectroscopy
approach, can be used to develop models to differentiate between
GLRaV-3 symptomatic and noninfected grapevine. However, it has
yet to be determined whether the detection capability scales to
suborbital (e.g., airborne) deployment.

NASA’s Airborne Visible/Infrared Imaging Spectrometer Next
Generation (AVIRIS-NG) is an airborne instrument operated from
the Jet Propulsion Laboratory in Pasadena, CA with extensive his-
toric acquisitions in California, including over ~364,000 ha of
vineyards. The AVIRIS mission family, which includes Classic (C),
Next Generation (NG), and the forthcoming AVIRIS-3, will con-
tinue to collect wide-swath, high-spectral-resolution (<10 nm), and
highly uniform spectroscopic imagery (400 to 2400 nm) over di-
verse California biomes, including agricultural production areas.
Therefore, it is a perfect opportunity to generalize, optimize, and
continuously validate plant disease detection models. The goal of
this project was to evaluate the scalability of airborne-imaging-
spectroscopy-based detection of symptomatic and asymptomatic
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grape viral disease with AVIRIS-NG using flight lines deployed over
vineyards known to have vines infected with GLRaV-3. Specifically,
we sought to determine the following. (i) How accurately does air-
borne imaging spectroscopy differentiate between noninfected and
GLRaV-3 infected vines? (ii) Can detection be improved with var-
ious dimensionality reduction techniques? (iii) What is the optimal
resolution for GLRaV-3 detection within the range of 1 to 5 m?

Materials and Methods

Ground validation

Industry collaborators coordinated a team of trained field techni-
cians to visually inspect (“scout”) 109 ha of the red grape varieties
Aglianico (3 ha), Cabernet Sauvignon (83 ha), and Petite Sirah
(23 ha) for visible foliar symptoms of GLRaV-3 according to in-
dustry best practices (Bolton 2020). Further information on how
scouting teams are instructed can be found in Bolton (2020). In
brief, scouts were trained to recognize foliar symptoms of GLRaV-3
(Fig. 1). The symptoms include foliar reddening with green veins,
mild chlorosis, and curling of the leaf edges. Vine spacing was 1.5 m
between rows and 1 m in rows. Scouting and geotagging of visi-
bly diseased vines (Fig. 1) were conducted in September of 2020
and 2021, during harvest, when symptoms are most apparent. In
total, 1,427 and 2,398 GLRaV-3-infected vines were identified by
the ground-scouting teams in 2020 and 2021, respectively. All grape
clusters, green foliage, and canes were removed from the grapevines
during mechanical harvest approximately 1 week after final airborne
data acquisition in 2020. Cane tissue samples from 100 vines in 2020
and 10 vines in 2021, variably identified as diseased/nondiseased,
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Fig. 1. Symptoms of grapevine leafroll-associated virus complex 3 (GLRaV-3)
infection in a grapevine (Cabernet Sauvignon). Characteristic reddening of the
foliage can be seen in the upper leaves of the grapevine. Leaves displaying no
obvious foliar symptoms can also be seen in the image.



were sent to Agri-Analysis Laboratories (Davis, CA) for GLRaV-3
virus diagnostic testing to validate scouting accuracy. All samples
sent for testing that had been identified as GLRaV-3-infected by the
scouts returned positive for infection. No samples that were iden-
tified as noninfected by the scouts tested positive, giving us high
confidence in the scouting teams’ accuracy. After mechanical har-
vest in 2020 and prior to 2021 bud break, the industry collaborators
removed diseased vines from the vineyards to prevent them from
serving as an inoculum reservoir for uninfected grapevines. There-
fore, vines identified as diseased in 2020 were not present in the
vineyards in 2021.

Imagery acquisition

In September 2020, spectroscopic imagery over vineyards in Lodi
was acquired with NASA-JPL’s AVIRIS-NG instrument on board
a King Air B-200 aircraft from an altitude of ~1,000 m above
ground level. In total, this campaign, the “AVIRIS Wine Tour,”
collected imagery over 15,095 ha of California vineyards span-
ning Napa Valley, Sonoma Valley, Lodi, and Paso Robles, at peak
grapevine foliage. Each AVIRIS-NG flight line (acquisition) was
collected at <1 m spatial resolution. The AVIRIS-NG platform sam-
ples the electromagnetic (EM) spectrum at 5-nm intervals within the
380- to 2,510-nm spectral range, resulting in 425 spectral channels
(Chapman et al. 2019; Thompson et al. 2018). Acquisitions were
collected between 1300 and 1500 Pacific (local) time. An 83-ha sub-
set of the imagery collected from Cabernet Sauvignon grapevines
was used for this study (Supplementary Fig. S2). The specific
acquisition IDs are ang20200918t210249, ang20200918t205737,
ang20200918t212656, ang20200918t213801, and ang20200918
t213229. All AVIRIS-NG imaging used in this study is reflectance
data, is publicly available, and can be downloaded from the AVIRIS-
NG data portal: https://aviris.jpl.nasa.gov/dataportal/.

Data processing and cleaning

Generic spectra for soil, vegetation, and shadow were used as
endmembers for spectral unmixing. The soil and vegetation spectra
were pulled from the United States Geological Survey Spectroscopy
Laboratory’s spectral library (Kokaly et al. 2017). The U.S. Geo-
logical Survey spectral measurements were selected because they
matched the spectral range of the AVIRIS-NG imagery in terms of
spectral resolution. Additionally, the Lodi team provided ground-
spectral measurements of grass pastures, soil, pavement, and vines
for calibration and validation purposes (Supplementary Fig. S4).
The entirety of the pipeline was written in Python 3.9 (Fig. 2). All
scripts are available from the GoldLab-Github repository (https://
github.coecis.cornell.edu/GoldLab-GrapeSPEC). Anaconda was
used for Python package management; likewise, Anaconda virtual
environments have been uploaded to the GoldLab-GitHub.

A bidirectional reflectance distribution function and a topo-
graphic correction (Queally et al. 2022) were applied to all re-
flectance files of the entire AVIRIS-NG flight line. Bidirectional
reflectance distribution function and topographic correction code
were pulled from the HyTools package (Chlus et al. 2023), an
open-source spectroscopy processing Python library. Some of the
AVIRIS-NG imagery required further spatial georeferencing to be
better aligned with the disease incidence coordinates collected
by the scouting team. Imagery collected by the National Agri-
culture Imagery Program (NAIP; USDA; https://naip-usdaonline.
hub.arcgis.com/) within 1 week of the AVIRIS-NG imagery ac-
quisition was used as a reference to improve georeferencing and
co-registration. Each NAIP image was clipped according to the
area of overlap with the AVIRIS-NG image. Specifically, the NAIP
red band was extracted and compared with the AVIRIS-NG band
at 600 nm. Ground control points were generated by passing the
described target and reference imagery to the open-source Python
library Automated and Robust Open-Source Image Co-registration
Software (AROSICS) (Scheffler et al. 2017). For higher specificity
and co-registration of images, AROSICS was parameterized ac-

cording to the code-base author’s default parameters. The resulting
ground control points were used to co-register the AVIRIS-NG im-
agery onto the NAIP imagery. Last, following standard practice,
noisy bands (due to water absorption and other atmospheric effects)
present in the data were excluded following a visual analysis; these
are the wavelengths between 380 and 400 nm, 1,310 and 1,470 nm,
1,750 and 2,000 nm, and 2,400 and 2,600 nm. The excluded wave-
lengths are illustrated as gaps (Fig. 3; Supplementary Figs. S1, S4,
and S5).

Vineyard boundaries shared by industry collaborators were used
to mask the AVIRIS-NG imagery. The open-source Python library
Rasterio’s mask package was used for clipping the imagery (Gillies
et al. 2013). The opensource HyTools library included a command
line interface (CLI) Python spatial resampling script that was used
to resample the clipped co-registered imagery from the native 1- to
3-m and 5-m resolution. The spatial resampling script used applies
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Fig. 2. An illustrative summary of the methodology used in the study. First,
the grapevine leafroll-associated virus complex 3 (GLRaV-3) incidence coor-
dinates are used to spatially sample the Airborne Visible and Infrared Imaging
Spectrometer Next Generation (AVIRIS-NG) spectroscopic imagery. Second,
the 2020 GLRaV-3 incidence is used to generate the symptomatic (Sy) dataset
while the 2021 GLRaV-3 incidence is used to generate the asymptomatic (aSy)
dataset. Third, a list of corrections applied to the AVIRIS-NG spectroscopic im-
agery is indicated, as well as how the data are converted into a tabular dataframe.
Fourth, the dataframe is used to train a random forest model to predict the class
of the grapevine using the wavelengths included in the spectroscopic image.
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the nearest-neighbor algorithm with no blurring effects to resample
the image.

The spectral mixture residuals (SMRs) were computed using the
open-source code of Sousa et al. (2022). Endmembers for shadow,
soil, and generic vegetation were used to spectrally unmix the
AVIRIS imagery (Supplementary Fig. S3). The SMR simultane-
ously estimates two related parameters for each pixel in the image:
(i) fractional area of each input endmember and (ii) mixture resid-
ual spectra quantifying wavelength-explicit misfit. Soil masks for
each vineyard were generated by calculating a percentage of vege-
tation and soil endmember weights calculated by the SMR script.
The equation used was Vw/(Vw + Sw), where Vw is the vegetation
endmember fractal weight and Sw is the soil endmember fractal
weight. The resulting raster was used to create a binary mask: all
pixels with a value >0.50 were assigned a one, and all remaining
pixels were assigned a zero. A percentage of 0.5 was found to be
optimal both to preserve disease incidence and to remove most soil
pixels. This binary mask was applied to all clipped imagery, retain-
ing only pixels sampling a minimal area that was not covered with
grapevine canopy.

Data analysis

The dataset consists of three labels: noninfected (NI), symp-
tomatic (Sy), and asymptomatic (aSy). These acronyms are used
when referring to dataset labels. Vines that were not identified as
visibly diseased by scouting teams in 2020 or 2021 are labeled as
noninfected (NI). Vines identified as visibly diseased in 2020 (the
data acquisition year) are labeled as symptomatic (Sy). These vines
were removed from the vineyards during winter dormancy before
the 2021 growing season (bud break). Vines identified as visibly
diseased in 2021 are labeled as asymptomatic (aSy). These vines
were NOT visibly diseased in 2020, implying they were latently in-
fected during the 2020 AVIRIS-NG flights. Green tissue is required
for the insect vector to feed upon and transmit GLRaV-3. Red grape
variety vines infected with GLRaV-3 can remain asymptomatic for
up to a year if visible symptoms do not manifest before winter dor-
mancy (Blaisdell et al. 2016; Charles et al. 2006; Olmos et al. 2016).
Winter dormancy begins when all green foliage is shed or forcibly
removed during mechanical harvest and the season’s green cane tis-
sue hardens and forms bark. It is unlikely that grapevines labeled as
aSy in our dataset became infected after the 2020 AVIRIS-NG data
acquisition and before the 2021 bud break. However, we must note
that molecular testing was not conducted to diagnose conclusively
whether vines we label as aSy were truly asymptomatic during the

Fig. 3. Spectrally unmixed residuals
by grapevine leafroll-associated virus

2020 data acquisition. Molecular testing was not possible given
the study’s scope and the expense of sample testing (approximately
$40 to $50 per vine). Our assumption that vines identified as visibly
diseased in 2021 were latently infected during the 2020 data acqui-
sition is well supported by the current understanding of GLRaV-3
disease biology (Almeida et al. 2013; Blaisdell et al. 2016; Maree
etal. 2013; Naidu et al. 2014) and the fact that all green foliage was
removed from the vineyard during mechanical harvest shortly after
the AVIRIS-NG image data acquisition flight.

To generate “noninfected” vine locations, clipped, co-registered,
and soil-masked imagery was vectorized by extracting the centroid
for all pixels within the image. GLRaV-3 infected vines are spatially
clustered (Arnold etal. 2017; Cabaleiro and Segura 2006; Habili and
Nutter 1997), so centroids within a 5-m buffer of the known diseased
coordinates were excluded to avoid accidentally labeling vines as
“noninfected” that may not truly be nondiseased. In total 621,000,
70,000, and 27,000 noninfected vine pixels were counted using this
procedure for the 1-, 3-, and 5-m spatial resamplings, respectively.
The pixel count for aSy was 2,258, 2,458, and 2,192 for the 1-, 3-,
and 5-m resamplings, and the pixel count for Sy was 1,027, 1,139,
and 1,031 for 1, 3, and 5 m, respectively. The pixel count for the
class where aSy and Sy were treated together was 3,285, 3,597, and
3,223 for 1-, 3-, and 5-m resamplings, respectively.

Spectral transformations of various types were considered and
tested to reduce noise, dimensionality, and correlation between
wavelengths in the AVIRIS-NG imagery. First, the SMR output was
used as the feature for the RF to train on. Second, the Savitzky—
Golay (SG) filter from the signal module in the Scipy python
package was applied to the data (Virtanen et al. 2020). SG is a
commonly used filtering method for random noise reduction in
spectroscopic signal processing (Tsai and Philpot 1998). The SG
smoothing window was limited to five wavelengths and a poly-
nomial order of three. Third, SKLearn’s PCA library was used to
perform a principal components analysis (PCA) on the spectral fea-
ture space to reduce the dimensionality of the feature space from 425
to 10 principal components (PCs). Fourth and last, a combination of
all techniques above was used as the feature set for the later training
of the RF model. All noise-reduction and dimensionality-reduction
techniques excluded noisy wavelengths due to atmospheric water
content, as is standard for airborne imaging spectroscopy.

Vine coordinates labeled by their GLRaV-3 infection status (NI,
Sy, and aSy) were loaded onto a Geopandas data frame. All coordi-
nates were stored and reprojected to the AVIRIS-NG acquisition’s
coordinate system WGS 84/UTM zone 10N; EPSG: 32610. Each
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coordinate was used to sample the AVIRIS-NG imagery spatially,
resulting in a data frame that held the coordinate, label, unique
field name, and relevant spectral data. NI vines far outnumber Sy +
aSy vines combined. Noninfected to diseased ratios were approxi-
mately 3,109:18, 700:33, and 175:9 for 1-, 3-, and 5-m resamplings,
respectively, which presented a challenge in choosing a balancing
strategy. In order to generate a representative population of NI vines
to train on, we employed both under- and oversampling. To under-
sample, a PCA was performed on all NI vine spectra. Three PCs
explained 95% of the variance of the NI-vine spectra. The result-
ing PC space was clustered using SKLearn’s K-means clustering
library, and three K-means were found to be optimal to cluster the
data using the “elbow method,” where distortion is plotted against
the number of clusters to establish a cutoff. In this case, three-
clusters were found to be optimal. Next, an equal number of points
were randomly selected from the resulting three-dimensional clus-
ter feature space. In total, 3,200 NI spectral rows were sampled from
1-m resampling, 3,500 from 3-m resampling, and 3,200 from the
5-m resampling, respectively.

Next, Imbalanced Learn’s (Lemaitre et al. 2017) Synthetic Mi-
nority Oversampling Technique (SMOTE) was used for oversam-
pling. First, the diseased incidence points were oversampled using
SMOTE to increase their count by 10, 25, 50, 75, 100, 200, and
300%. It was found that an increase of 50% oversampling of the
minority class was optimal. Second, SKLearn’s RF Python package
was used for RF model training (Pedregosa et al. 2011). The now
balanced datasets were used to train 10 RF models, and performance
was averaged across the models for the validation set. The train-
ing/validation data was split 70/30 and 10 k-folds were performed on
each training. All steps were repeated for all transformations done
to the spectra and across the 3- and 5-m resolution data. Partial least
squares discriminant analysis (PLS-DA) was briefly investigated as
an alternative approach to RF. A model discriminating between NI
and (aSY + Sy) was trained on both raw reflectance values and
10 PCA; however, little to no difference was found between PLS-
DA and RF accuracy. The PLS-DA model performed best at 1 and
5 m with similar accuracy and kappa scores peaking at 79% and
0.57, respectively (data not shown). PLS approaches can be prone
to overfitting and take significantly longer to compute than RF, so
this avenue of analysis was not investigated further.

Results

All models developed during the study followed a 70/30 training
and validation scheme. All accuracy and respective kappa scores
are derived from the 30% validation data withheld during training
and are reported in Supplementary Table S1. Each metric presented
is the result of the average performance of 10 models trained on
different splits of training and validation datasets. To generate a
baseline accuracy, a RF model was trained on the reflectance values
to classify the row according to its GLRaV-3 infection status label
(NI, aSy, and Sy). This model at best differentiated between NI and
aSy labels at 1-m resolution with 75% accuracy and a 0.50 kappa
score. Next, a RF model was trained on reflectance values with SG
smoothing applied; at best this model differentiated between NI and
aSy at 3-m resolution (80% accuracy, 0.58 kappa score). Next, 10
PCs were generated from the SG filtered spectra and used to train
the RF SG PCA model; this model performed best at differentiat-
ing between NI and aSy labels at 3 m with an 83% accuracy and
0.66 kappa score. The original reflectance data were then used to
calculate the SMRs; this dataset was used to train the RF model RF
MR, which performed best at differentiating between NI and aSy
labels at 3-m and 5-m resolution with 77% accuracy for both mod-
els, and kappa scores of 0.51 at 3 m and 0.54 at 5 m, respectively.
The MR dataset was used to calculate a new set of 10 PCs to be used
as features to train the RF MR PCA model; this model performed
best at differentiating between NI and aSy labels at 1 and 5 m, with
accuracy/kappa scores of 79%/0.58 and 77%/0.54, respectively.

Overall, the two best-performing models were for discrimina-
tion between the NI versus aSy and NI versus aSy + Sy labels.
In both cases, the best-performing models were those that were
trained on 3-m resolution spectroscopic imagery with SG applied
and then lowered in dimensionality to 10 PCs. In both cases, the
model training data followed a balancing strategy that first under-
sampled the majority class and oversampled the minority class via
SMOTE (Supplementary Table S1). The two models had 87% ac-
curacy (0.73 kappa) and 85% accuracy (0.71 kappa), respectively,
in discriminating between NI and (aSy + Sy) vines. In all cases,
the diseased label, regardless of aSy or Sy status, was differentiable
from the NI vine spectra (Fig. 4).

Generally, model accuracy did not vary significantly across spa-
tial scales ranging from the native resolution (1 m) to the resampled
3- and 5-m resolutions (Supplementary Table S1). The RF model
performed best at 3-m spatial resolution, with a decrease in accu-
racy at 5 and 1 m. The 3-m SG-PCA-SMOTE model discriminating
between NI and aSy + Sy with the appropriate data corrections and
transformations applied was found to be the most accurate model
(87% accuracy and a 0.73 kappa score). The model was used to clas-
sify any pixel with a >50% probability as infected (Fig. 5). While
the model was accurate overall, it overclassifies areas as diseased
(aSy or Sy) compared with the observed diseased extent. Misclas-
sification swathes tend to cluster near the edges of the vineyard
boundary.

[lustrating the MR (Fig. 3) provides insight into why the GLRaV-
3 Sy, aSy, and NI classes are differentiable by the ML models. The
figure shows that most of the differences are in the SWIR (1,130 to
1,330 nm and 1,530 to 1,730 nm), NIR (820 to 880 nm), and VIS
(580 to 680 nm) regions. Although the differences are subtle and
difficult to find by inspecting the spectral signal (Supplementary
Fig. S1), visualizing the MR allows the differences between the
vine classes to be more readily observed.

NI vs Sy vs aSy

b4 17% 13%
=z
& 21%
) >
@ @Q 8% 20%
NI Sy aSy

NI vs (Sy + aSy)

25%

NI

26% 74%
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Fig. 4. The confusion matrices based on validation datasets for the random forest
(RF) model trained on 3-m-resolution imagery with Savitzky—Golay (SG) filter-
ing, principal components analysis (PCA), and undersampling and oversampling
class balancing strategies (labeled RF SG PCA SMOTE in Supplementary Table
S1). The model predictions follow the y-axis, while the observed label follows
the x-axis. Here, we show the true and false positive as well as the true and false
negative rates of the validation dataset (the dataset excluded from training) for
each labeling strategy: noninfected (NI) versus asymptomatic (aSy), NI versus
symptomatic (Sy), NI versus Sy versus aSy, and NI versus (Sy + aSy) treating
both labels as one class.
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Discussion

Surprisingly, the aSy vine native spectral signature and the signa-
ture in the spectral residual feature space were the most notably dif-
ferent from the Sy and NI classes. This suggests that asymptomatic
GLRaV-3 vines have a unique spectral signature that differentiates
them from both noninfected and symptomatic grapevines. This find-
ing that all three classes differ spectrally supports the assumption
that the aSy-labeled vines were indeed experiencing latent infec-
tion at the time of data acquisition. In classifying between all three
classes, most misclassifications are between Sy and aSy vines, indi-
cating that these two groups share enough spectral similarity for the
models to confuse them. The spectral similarity may be explained
by the GLRaV-3-infection, which is known to affect vine biology
prior to symptom appearance (Gao et al. 2020; Naidu et al. 2009;
Sinha et al. 2019). We find that SWIR wavelengths are the most
important for accurate differentiation of the classes. This spectral
region is known to be strongly associated with plant chemistry and
physiology (Curran 1989), implying that the spectral differences
we see likely originate in differences between non-, pre-, and post-
symptomatic vine physiology. Thus, we find that “full-spectrum”
(aka VSWIR) imagery is necessary for accurate asymptomatic dis-
ease detection. We see this reflected again in the performance of the
models trained on the aSy dataset only and on that combined with
the Sy dataset. The result is surprising, considering that visually,
an asymptomatic vine cannot be differentiated from a noninfected
vine. However, the results in this study suggest that asymptomatic
vines are in fact the most spectrally differentiable not only from
noninfected, but also from symptomatic vines.

The resulting pixel size of airborne spectroscopic imagery is de-
pendent on the height at which the aircraft is flown. Therefore, the
exact AVIRIS-NG pixel size achieved can be unpredictable, though
the spatial resolution will commonly be between 1 and 5 m. Our
models generally performed best at 3-m spatial resolution. Likely,
the loss of accuracy in going from 3- to 5-m resolution is due to the
dilution of the spectral signal that underlies the ability to discrimi-
nate between groups. In this study it was anticipated that detection
would be most accurate at the native 1-m resolution, but the results
show otherwise. This may be because each individual diseased vine,
despite the geotag being accurate at <1 m resolution, is sometimes
at the edge of multiple pixels, which may conflate the signal. Ad-
ditionally, at 1-m resolution, there is less dilution of factors that
cause noise in the spectra, such as soil patches, grass, and other
nonvine reflectance. The results suggest that for the vine spacing in
the vineyards used (1 m x 1.5 m), 3-m resampling was the optimal
balance point between minimizing noise and not overdiluting the
dataset.

A Scouted 3m NI

v

Predictions

- Probabilities

(NI

B NI vs Sy

Our most accurate model, the 3-m SG-PCA-SMOTE model dif-
ferentiating between NI and Sy + aSy, is prone to misclassification
near vineyard boundaries, which we suspect is due to confound-
ing instances of biotic (disease) and abiotic stress. Vines at the
ends of the row are known to experience more stress than buffered
inner vines. This includes more exposure to contrasting environ-
mental factors and uneven management practice (e.g., irrigation
being less near the row end). Untangling biotic and abiotic stressors
is amajor challenge to accurate plant—pathogen interaction mapping
with imaging spectroscopy. Additionally, vineyards are not sterile
environments, and it is likely that an infected vine may have a com-
bination of stressors affecting it, including pest damage. The border
regions tend to experience more stress; thus, these vines are most
likely to have a baseline stressed profile that our model finds more
like a diseased spectral profile at this scale of study. Alternatively,
in some cases the confusion may be due to stress caused by an over-
abundance of water (waterlogging; Zhu et al. 2018). Proximity to
water, such as a river’s edge (Fig. 5), can increase the likelihood
of an unhealthy root system that may become infected by various
fungal pathogens, especially for grapevines with typically deep root
systems.

One of the greatest challenges in disease detection via imaging
spectroscopy is untangling the signal sof abiotic and biotic stres-
sors that may be affecting a vine simultaneously. Typical vineyard
abiotic stressors, including water stress or nutrient deficiency, are
closely related to thermal data (Calderdn et al. 2013; Lépez-Lopez
et al. 2016). Abiotic and biotic stresses, even those with a com-
mon visual manifestation (e.g., wilt), can be differentiated with
airborne sensing because their underlying biological origins are dif-
ferent (Zarco-Tejada et al. 2021). Multimodal sensing complements
imaging-spectroscopy-based disease detection by adding biologi-
cally relevant data that can be useful for untangling biotic and abiotic
stress. In other pathosystems, solar-induced fluorescence has proven
useful considering the close relationship between SIF and photosyn-
thetic activity (Sun et al. 2017). However, calculating solar-induced
fluorescence requires a narrower-band instrument (0.3 nm) than that
on board AVIRIS-NG (5 nm). Adding thermal and solar-induced
fluorescence products in combination with spectral unmixing ap-
proaches, such as SMR or multiple endmember spectral mixture
analysis, could help provide a clearer picture of the biological ori-
gins, biotic or abiotic, of crop stress. Despite these challenges, we
find that imaging spectroscopy continues to be a rapid and accurate
tool for mapping GLRaV-3.

Geography plays an important role in the generalizability of
all remote sensing applications. The models developed here con-
sider only central California, where the soil type, grape variety,
regional vineyard management practices, and climate likely im-

C NI vs aSy " D i vs Sy+aSy
3 X NI

NI

Sy+aSy

5% 50'5/; ‘ '75'%

Syl NI EED (N

Fig. 5. A classified Airborne Visible and Infrared Imaging Spectrometer Next Generation spectroscopic image of a vineyard in Lodi, California, based on the random
forest model SG-PCA-SMOTE at 3-m resampling resolution. Noninfected (NI), symptomatic (Sy), and asymptomatic vines (aSy). A, Scouted locations of grapevine
leafroll-associated virus complex 3 are indicated at 3-m resolution. B, Predictions of a model trained to differentiate between NI and Sy + aSy showing the probability
heat map. C, Predictions of a model trained to differentiate between NI and Sy showing the probability heat map. D, Predictions of a model trained to differentiate

between NI and aSy showing the probability heat map.
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pact model performance. Future work should investigate an ex-
panded geographic range, such as different latitudes of California
and different geographic regions, for example—the northeastern
Great Lakes region, or areas in other wine-producing countries.
Additionally, crop varieties are known to interact with pathogens
differently (Gold et al. 2020b). In grapevines, for example, white
grape varieties (e.g., Chardonnay) exhibit subtle to no foliar symp-
toms when infected with GLRaV-3, and some hybrids are known
to have higher viral load tolerance that affects biological response
(Naidu et al. 2014). In grape production, varieties are managed
differently according to their individual requirements as well as
the ultimate product (e.g., wine, juice, table, or raisin) for the
grapes. These differences all influence spectral signals. Scien-
tists aiming to use imaging spectroscopy for disease detection
not only in grapevines, but any in cropping system, must take
into consideration generalizability among varieties, geography,
and management practices and quantify how each affects disease
detection.

Interest in using nondestructive imaging spectroscopy to detect
plant-microbe interactions has increased exponentially in recent
years; however, most studies have focused on bacterial and fun-
gal disease detection in tree crops (Sapes et al. 2022; Sousa et al.
2021; Zarco-Tejada et al. 2018). This study expands our current
understanding of plant disease sensing by reporting for the first
time the capacity for airborne imaging spectroscopy to detect plant—
viral interactions in a nontree crop at multiple resolutions both pre-
and postsymptomatically. The findings suggest that viral infection,
regardless of visible symptom appearance, imparts a consistent,
systemic change to foliar reflectance that can be detected with air-
borne imaging spectroscopy, and that this ability is improved by
de-noising and dimensionality reduction techniques. A scalable,
nondestructive, and low-cost solution for latent viral infection detec-
tion is a game-changing prospect for the grape industry and agricul-
ture in general. Destructive molecular or serological testing remains
the most accurate method of detecting viral infection at the asymp-
tomatic stage; however, these methods cannot be scaled because of
expense. The imaging spectroscopy described in this study is an ini-
tial step toward accurate and scalable early detection of grapevine
viral infection that could be used to deploy ground mitigation efforts
more strategically, such as scouting, molecular testing, and vine
removal.

In conclusion, we find that airborne imaging spectroscopy and
machine learning can be used to develop models that effec-
tively identify the spectroscopic signal of GLRaV-3 infection in
grapevines across various spatial resolutions, regardless of visible
symptom manifestation. The goal of our work is not to replace
existing field scouting strategies or molecular testing, but instead
to deploy these resources more strategically to improve the over-
all financial, environmental, and societal sustainability of grape
production. As we advance toward launch of NASA’s Surface Bi-
ology and Geology study, a deployment of polar sun-synchronous
satellites with hyperspectral and thermal capabilities (Stavros et
al. 2023), it will be important to assess the scalability of our find-
ings to the study’s anticipated native resolution (~30 m), as well
as to develop a user-friendly application for the grape and broader
agricultural community to access the surface biology and geology
data that requires minimal programming, remote sensing, or GIS
expertise for use.
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