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Abstract: Most applications of multispectral imaging are explicitly or implicitly dependent on the
dimensionality and topology of the spectral mixing space. Mixing space characterization refers to
the identification of salient properties of the set of pixel reflectance spectra comprising an image
(or compilation of images). The underlying premise is that this set of spectra may be described
as a low dimensional manifold embedded in a high dimensional vector space. Traditional mixing
space characterization uses the linear dimensionality reduction offered by Principal Component
Analysis to find projections of pixel spectra onto orthogonal linear subspaces, prioritized by vari-
ance. Here, we consider the potential for recent advances in nonlinear dimensionality reduction
(specifically, manifold learning) to contribute additional useful information for multispectral mixing
space characterization. We integrate linear and nonlinear methods through a novel approach called
Joint Characterization (JC). JC is comprised of two components. First, spectral mixture analysis
(SMA) linearly projects the high-dimensional reflectance vectors onto a 2D subspace comprising the
primary mixing continuum of substrates, vegetation, and dark features (e.g., shadow and water).
Second, manifold learning nonlinearly maps the high-dimensional reflectance vectors into a low-D
embedding space while preserving manifold topology. The SMA output is physically interpretable in
terms of material abundances. The manifold learning output is not generally physically interpretable,
but more faithfully preserves high dimensional connectivity and clustering within the mixing space.
Used together, the strengths of SMA may compensate for the limitations of manifold learning, and
vice versa. Here, we illustrate JC through application to thematic compilations of 90 Sentinel-2
reflectance images selected from a diverse set of biomes and land cover categories. Specifically, we
use globally standardized Substrate, Vegetation, and Dark (S, V, D) endmembers (EMs) for SMA,
and Uniform Manifold Approximation and Projection (UMAP) for manifold learning. The value of
each (SVD and UMAP) model is illustrated, both separately and jointly. JC is shown to successfully
characterize both continuous gradations (spectral mixing trends) and discrete clusters (land cover
class distinctions) within the spectral mixing space of each land cover category. These features are
not clearly identifiable from SVD fractions alone, and not physically interpretable from UMAP alone.
Implications are discussed for the design of models which can reliably extract and explainably use
high-dimensional spectral information in spatially mixed pixels—a principal challenge in optical
remote sensing.
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1. Introduction

Since the first ERTS-1 images over 50 years ago, Earth scientists have relied on multi-
spectral satellite imaging as a source of impartial, systematic, quantitative observations of
land surface processes [1]. These data have progressively advanced in quantity and quality,
enabled by both advances in engineering and increasing recognition of the value of such
data for both public and private sectors [2,3]. Such advances can be broadly understood as
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falling along three main axes: improving spatial resolution, shortening revisit time, and
increasing spectral fidelity [4,5].

Since 1999, the Landsat program was the only freely available source of decameter
scale optical satellite imagery [6]. Recently, the European Space Agency complemented
this public record with the 2015 and 2017 launches of the Sentinel-2A /B constellation [7].
These data fundamentally advance the set of multispectral satellite observations available
to Earth scientists along all three axes—increasing spatial resolution to 10 m (20 m for NIR
& SWIR bands), shortening revisit to 3-5 days, and increasing the number of spectral bands
to 13 (with 11 useful for surface processes).

Multispectral image analysis capabilities have advanced alongside observations. Sta-
tistical methods for exploiting high dimensional data have become particularly popular in
recent decades, largely referred to by the moniker “machine learning” [8-11]. However,
while these methods can generate accurate predictions for many problems, such methods
are generally limited by their lack of explicit physical basis [12]. If these methods are to
reach their full potential, interpretability—scientific understanding of why a given model
works, and when it might not work—will thus be paramount [13].

One subset of machine learning algorithms, referred to as manifold learning, is
explicitly designed to preserve connectivity structure (topology) of high dimensional
datasets [14,15]. These algorithms are particularly promising in the context of dimen-
sionality reduction—finding an effective, parsimonious representation of the generative
geophysical signals captured by high dimensional data. In this context, manifold learning
can be considered a nonlinear complement [16] to the longstanding linear dimensionality
reduction offered by Principal Component Analysis [17]. Dimensionality reduction can be
considered an important subset of the broader question of characterization, particularly as
a precursor to effective modeling [18]. Decameter multispectral imagery in particular may
provide particularly well-connected high-dimensional topologies due to the prevalence
of spatial autocorrelation [19] and ubiquity of spectral mixing [20-22]. Manifold learn-
ing is increasingly popular in remote sensing for applications like identification of mine
explosions [23], hyperspectral feature extraction [24], ship wake morphology [25], rock
discontinuities [26], and geologic mapping and reconnaissance [27].

Recently, joint characterization (JC) has been introduced as a novel framework for ex-
ploiting synergies between and among complementary dimensionality reduction methods.
Briefly, joint characterization uses the strengths of one dimensionality reduction method
to mitigate limitations of another method. JC has been shown effective for synthetic im-
ages [28], airborne hyperspectral data [28,29], multispectral image time series [30], and
gridded climate data [31]. However, to our knowledge, no comparative analysis has yet
been performed in which joint characterization is applied systematically to globally diverse
compilations of image spectra across a broad range of land cover types.

Here, we conduct such an analysis. Specifically, we illustrate the joint characterization
approach for a globally diverse compilation of 90 Sentinel-2 image subsets representative
of 9 globally prevalent land cover categories. We implement joint characterization of the
composite spectral mixing space using a globally standardized Substrate, Vegetation, Dark
(S,V,D) spectral mixture model [32] as our linear, physical model; and the Uniform Manifold
Approximation and Projection (UMAP) [33] as our nonlinear, topology-preserving manifold
learning model.

In so doing, we ask the following questions:

1. Geophysical

a.  Whatis the overall S,V,D fraction distribution of globally diverse representatives
of significant land cover categories?
b.  How well does the global S,V,D model fit each land cover category, as measured

by root mean square misfit?

2. Topological
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a. How clustered or continuous are the manifolds for each land cover category
found by UMAP?
3. Joint
a. To what extent can S,V,D fractions and UMAP clusters be used together to yield
useful information? Specifically,

i. To what extent are UMAP clusters geographically contiguous?

ii. To what extent do disparate UMAP clusters at similar S,V,D fraction
values represent physically plausible and/or spectroscopically inter-
pretable spectral variability?

iii. Are some S,V,D fractions, or land cover classes, better suited to JC than
others? If so, why? If not, why not?

2. Materials and Methods
2.1. Data

110 Sentinel-2 image tiles were acquired as Level 1C exoatmospheric reflectance
from the USGS EarthExplorer data portal (https:/ /earthexplorer.usgs.gov/; accessed on
1 October 2022). Sites were selected to span a broad geographic diversity, sampling all
major biomes and a wide range of geologic histories (Figure 1).
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Figure 1. Geographic and climatic distributions of 110 Sentinel-2 tiles from spectral diversity hotspots.
Geographic distribution of sample sites is guided by climatic and geologic diversity as well as overall
species biodiversity (a; top). Individual tile selection criteria favor spectral diversity arising from
land cover diversity within and across biomes. Tile geographic coverage corresponds well to global
land area distribution within the climatic parameter space (b; lower left) based on 1 degree monthly
mean temperature and precipitation (1900-2002) from [34]. All biomes are well represented. Biome
classification (c; lower right) adapted from [35].
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90 subsets were selected as representatives of dominant land cover classes. Each
subset covered a 10 x 10 km (1000 x 1000 pixel) area dominated by a particular land
cover class. The classes used were: agriculture, sand, lava/ash, urban, forest, senescent
vegetation, tundra, wetland /mangrove, and rock/alluvium. For the agriculture, sand,
wetland /mangrove, and rock/alluvium classes, 10 representative subsets of each were
used. For the lava/ash, urban, senescent vegetation, and tundra classes, 5 subsets were
used. For the forest class, 20 subsets were used and subsequent analysis was decomposed
into two 10-tile portions. The full mosaic is shown in Figure 2 as a false color composite
(R/G/B = SWIR/NIR/Visible). Scene IDs, UTM zones, and northwest corner Eastings and
Northings for each subset are listed in Table Al.

Land Cover Subcategories

Agriculture Sand Ash/Urban Forest Senescent/Tundra  Wetland Rock/Alluvium

560nm 842nm 2190nm

Figure 2. Sentinel-2 composites for land cover subcategories (10 x 10 km) selected from individual
hotspot tiles. 1% linear stretch applied.

Tile selection was based on spectral diversity of land cover, both within and among
image tiles. Guided by previous global compilations (e.g., [36-39]), the collection of 110 Sen-
tinel 2 tiles focused on spectral diversity hotspots spanning all of Earth’s biomes (Figure 1).
As explained in detail by [32], maps of plant biodiversity, bedrock lithology, soil type and
climatic zone were used to maximize the land cover diversity included in the compilation.
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In addition, agricultural crop diversity and urban morphologic heterogeneity guided the
selection of anthropogenically modified landscapes. As verified by [32], the spectral di-
mensionality and topology of the 90 subset land cover subcategory mixing space is nearly
identical to the larger 110 tile mixing space it represents.

As in [32], Sentinel 2 bands 1-8a, 11 and 12 were coregistered and resampled to
10 m resolution by linear interpolation. For hyperparameter tuning, the 90 land cover
subcategory examples were mosaiced and spatially decimated by a factor of 10 in each
dimension to reduce redundancy from spatial autocorrelation. This subsampling does not
impact the spectral dimensionality or topology of the mixing space, but it does reduce
the computational load of the nonlinear manifold learning (UMAP, t-SNE and Laplacian
Eigenmap) while facilitating hyperparameter sweeps. Once final hyperparameters were
chosen, UMAP was run again on each compilation at full resolution (without decimation).

2.2. Methods
The joint characterization workflow proceeded with the following three steps:

A. Use a linear spectral mixture model to characterize the overall S,V,D distribution of
each land cover class (variance-based, physical, linear).

B.  Use Uniform Manifold Approximation and Projection (UMAP; [33]) to characterize
interdimensional topology & clustering (topology-based, statistical, nonlinear)

C.  Synthesize Steps A and B into a set of 1 or more bivariate distributions which use the
physical meaning of the Step A fraction distributions to differentiate among purely
topological relations identified from Step B (joint characterization).

Spectral signatures of clusters identified from Step C were identified, region of interest
(ROI) means and spectral separability metrics were computed, and geographic coherence
was visually evaluated.

Each step is explained briefly below.

2.2.1. Step A: Linear Characterization and Modeling: Spectral Mixture Analysis

For the linear component of this analysis, the spectral feature space of the 90-tile
mosaic was characterized using Principal Component Analysis [17] (Figure 3a) as described
by [32]. Consistent with numerous studies with other multispectral and hyperspectral
sensors [36—-41], the preponderance of variance was found to be well-characterized by a
small number of dimensions (95% of variance in the first 2 dimensions; 97% in the first
3 dimensions). Additionally, consistent with previous studies, the low-order spectral
feature space of this diverse mosaic was found to be well-represented by linear mixing
among Substrate, Vegetation, and Dark (S,V,D) spectrally distinct endmembers (EMs). Two
sets of endmembers were selected, identifying both: (1) the “outer” (subscript O) convex
hull bounded by the most extreme pixel spectra, and (2) the “inner” (subscript I) convex
hull which excludes the most extreme spectra and uses 10- to 100-pixel mean spectra from
the more densely populated region of each apex. All tiles were then unmixed to S,V,D
fractions using the lower amplitude mean (S;,V},D) endmembers [32]. Bivariate fraction
distributions (Figure 3, right) show fraction estimates to be within the physical range (0 to
100%) for all tiles except high albedo sands, which give S; fractions greater than 100% and
D fractions less than 0. Mixture model misfit, as quantified by the Root Mean Square Error
(RMSE) of misfit between observed and modeled spectra, was less than 6% for over 99% of
spectra. Due to the unit sum constraint and the fact that the 3D SVD space maps onto a
linear 2D subspace, fraction distributions can also be visualized using a barycentric plot
(i.e., ternary diagram) with no loss of information. The remainder of this analysis uses such
a visualization to demonstrate variability in S,V,D fraction abundance among land cover
classes. For greater detail on variance-based characterization of this mosaic, see [32].
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Figure 3. Sentinel-2 SVD spectral mixing space, spectral endmembers, and corresponding SVD
fraction space. An eight column (80,000,000 spectra; Columns 2-9 of Figure 2, to emphasize mixing
space edges) subset of the Land Cover Subcategory mosaic encompassing the SVD-bounded plane of
the full mixing space (a) is effectively 2D with Principal Component (PC) dimensions 1 (81%) and
2 (14%) accounting for 95% of total variance, compared to PC 3 (2%). Maximum amplitude (Outer)
and lower amplitude mean (Inner) endmember spectra for Substrate and Vegetation define bases
for maximal and minimal SVD models (a; lower right). Inversion of the minimal model provides
liberal estimates of SVD fractions (b) but excludes pure sand landscapes. Because sands lie outside
the minimal SVD model, their Substrate fractions exceed 1.0 with Dark fractions < 0. A planar
SVD fraction distribution can be projected onto a 2D ternary diagram (b; lower right) with no loss
of information.

The fundamental principle underlying the S,V,D model is the observation that most de-
cameter terrestrial pixels measure an aggregate of reflected (or scattered) radiance originat-
ing from more than one target. This is formalized by a linear spectral mixture model [20-22]
which can be written as the vector equation

x=Mf+e 1)

where x is the observed reflectance (or radiance), M is the matrix of spectrally distinct
endmember reflectances (or radiances), f is the vector of subpixel area fractions of each
endmember, and e is a vector of errors [42].

Specifically, the generalized S,V,D model used in this study takes advantage of the
observed generality of Earth’s (terrestrial, non-cryospheric, non-evaporitic) reflectance field
as being well-characterized by linear combinations of three stable Substrate, Vegetation,
and Dark endmembers [36,43,44].

2.2.2. Step B: Nonlinear Characterization and Modeling: Manifold Learning

In this analysis, nonlinear characterization was based on Uniform Manifold Approxi-
mation and Projection (UMAP) [33] of the 11D spectral mixing space. UMAP is a novel,
increasingly popular algorithm for nonlinear dimensionality reduction. Mathematically,
UMAP assumes that the Sentinel-2 spectra are uniformly distributed on a locally connected
Riemannian manifold with an (approximately) locally constant Riemannian metric. UMAP
models this manifold using a fuzzy topological structure, then seeks a low-dimensional
(usually 2 or 3D) embedding with an optimally similar fuzzy topological structure. The
resulting embedding is generally nonlinear and noninvertible.

UMAP results depend on choice of several tunable hyperparameters. Among the most
important are:
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- n_components: The number of dimensions of the low-D embedding space.

- n_neighbors: The size of the local neighborhood used when learning the manifold
structure of the data.

- min_dist: The limit on how closely points may be spaced in the output space.

- metric: The distance metric in the input space.

For all figures in the following analysis, we use the following values:

- n_components = 2
- n_neighbors = 30

- min_dist=0.1

- metric = Euclidean

For the sake of presentation, we defer an illustration of dependence on hyperparameter
setting to the (Figures A1-A5).

All UMAP computations were performed using the open source umap-learn Python
package on a commercially available laptop computer with 32 GB RAM, 2GHz Quad-Core
Intel Core i5 CPU, and a 1536 MB Intel Iris Plus Graphics GPU. Runtime for a typical 10 tile
(10,000,000 11-band spectra) subset was approximately 2 hours. For more information
about UMAP, see [45].

2.2.3. Step C: Joint Characterization: Bivariate Distributions and Cluster Identification

Linear and nonlinear methods were then combined to perform a joint characterization
of the spectral mixing space. In this analysis, we implement JC using bivariate distributions
of the linear and nonlinear mixing space characterizations. This step leverages interrelation-
ships between the variance-based (spectral mixture fraction) and topology-based (UMAP
embedding) metrics.

In the context of this analysis, the mutually reinforcing goals of JC are to: (1) use the
mixture fractions to imbue the UMAP embedding with physical meaning, and likewise
(2) to use the UMAP embedding to differentiate between subsets of otherwise apparently
continuous, indistinct mixture fractions.

Conceptually, JC follows approaches like [46,47] in seeking a robust analytic frame-
work capable of both (a) exploiting (potentially) high dimensional and /or nonlinear signals,
and (b) adhering to the well-known physical constraints of linear mixing processes. The
chief novelty is in the fusion of recent developments in manifold learning with a now
well-established low-order global S,V,D spectral mixing space.

In the subsequent analysis, spectral endmember fractions are shown on the x-axis and
UMAP embedding is shown on the y-axis. Different endmember fractions are more or less
useful for understanding different land cover types, so the choice of S, V, or D endmember
used in the following JC plots is dependent on the land cover subcategory.

3. Results
3.1. Agriculture

Figure 4 illustrates the JC workflow as applied to a compilation of 10 tiles from diverse
agricultural basins worldwide. From the SVD ternary diagram (top left), we see that this
collection spans nearly the entire global mixing space. These spectra are well-fit by the
global mixture model (99% spectra with <5% RMSE). Pixels with fractions near 1.0 are
observed for each endmember. Both S <+ D and D «+ V binary mixtures are observed.
Consistent with previous studies, the edge of the space corresponding to S <+ V binary
mixing is much sparser due to the ubiquity of subpixel shadow in even the flattest and
smoothest natural landscapes.

The 2D UMAP embedding (top center) suggests that most of the geographic area is
well-represented by a single broad, well-connected manifold, but several exceptions are
also present in the form of both apexes to the main manifold and smaller pixel clusters
disconnected from the main manifold. Joint Characterization (bottom row) shows this
useful manifold structure can be present at high fractions for all three S,V,D endmembers.
ROI mean spectra with high S endmember fractions show plausible differences in soil
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moisture, albedo, and/or composition. Dominant variability in JC-identified V endmem-
bers corresponds predominantly to SWIR1 (suggestive of leaf water) and visible bands
(suggestive of differences in pigments). Variability in JC-identified D endmembers largely
corresponds to overall brightness in the NIR and SWIR (turbidity, flotsam?) and curvature
in the visible (chlorophyll, CDOM?).

Spectral Diversity of Agriculture at 10 m
10,000,000 Sentinel-2 Spectra

Q
=
I
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0.5 0.5 15:0) 0.5
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Figure 4. Joint characterization of agriculture. 10 X 1 megapixel Sentinel-2 tile subsets are selected
from global agricultural hotpots and analyzed at full 10 m pixel resolution. These spectra fill out
nearly the entire global SVD mixing space (a) and are well represented by a single global 3-endmember
linear mixture model (99% of spectra with <5% RMSE). Manifold learning (b, using UMAP) captures
both subtle mixing continua and discrete clusters, but does not offer physical interpretability. Joint
characterization (e) uses the physical meaning of the mixture fractions to contextualize the subtle
statistical relationships captured by UMAP. Example regions of interest are identified from the joint
space. Mean spectra for each region (d) illustrate similarities and differences among statistically
distinct clusters. Statistically distinct clusters identified through joint characterization frequently
show geographic coherence (c).

All endmembers were identified as ROIs from the JC plots. These ROIs were then
back-projected onto both the ternary diagram and UMAP plot, and visualized in geographic
space for 1 example tile from the 10 comprising this land cover compilation (top right).
Geographic coherence (e.g., spatial clusters conforming to visually distinct intra- and inter-
field boundaries) strongly implies that the ROIs are likely to have physically meaningful
distinctions. Examination of the back-projected ROIs on the ternary diagram shows that
they would clearly not be distinct from examination of S,V,D fractions alone; examination
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of the ROIs on the UMAP plot shows that they would have no physically interpretable
context from UMAP alone.

3.2. Sands

Figure 5 shows JC applied to a compilation of 10 tiles collected from geologically
diverse sand dunes. As expected, the SVD ternary diagram (top left) shows a strong
preferential distribution towards the global S endmember, with most mixing occurring
along the S <+ D binary mixing line. Pixels with substantive V endmember contributions are
effectively absent as few plants can grow in pure sand substrate. The sand spectra are well-
fit by the global mixture model (99.9% spectra with <5% RMSE)—but fractions regularly
exceed 100% due to frequently being brighter than the global soil endmember because
of high solar incidence angle on sun-facing dune slopes. This suggests that differences
between these spectra and the global S spectrum are largely driven by scaling of overall
brightness, and not major changes in spectral curvature.

Spectral Diversity of Sands at 10 m
. 1 0,000,000 Sentinel-2 SHectrz_z

o
15
=1
]
8
37
(5]
%
~

= 0.2
05 05 10 L5 20

Figure 5. Joint characterization of sands. 10 x 1 megapixel Sentinel-2 tile subsets are selected
from global sand hotspots and analyzed at full 10 m pixel resolution. These spectra preferentially
occupy the S apex of the SVD mixing space, with mixing toward D (a), leaving the V portion of the
space very sparse. The global 3-endmember linear mixture model fits these spectra better than the
agricultural spectra (here, only >99.9% of spectra with <5% RMSE)—but fractions regularly exceed
100%. UMAP (b) captures both subtle mixing continua and discrete clusters, but does not offer
physical interpretability. Joint characterization (c) uses the physical meaning of the substrate mixture
fraction to contextualize the subtle statistical relationships captured by UMAP. Example regions of
interest are identified from the joint space and projected onto the ternary mixing and UMAP spaces.
Mean spectra for each region (d) illustrate similarities and differences among statistically distinct
clusters. Clusters identified by joint characterization also frequently show geographic coherence (e).

Examination of 2D UMAP embedding (top center) shows a discontinuous, sinuous
manifold with numerous apexes and exterior pixel clusters. For JC of this land cover
compilation, the S endmember fraction is the obvious choice for JC of this land cover
compilation (bottom left).
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Many high S distinct clusters are clearly identifiable from JC. 8 illustrative examples are
shown in red and magenta. ROl mean spectra (bottom center) show variability consistent
with potential physical drivers like grain size and mineralogy. Here, the S fraction effectively
stratifies UMAP clusters by albedo, and UMAP effectively differentiates among subtle
differences in spectral curvature among sands with similar albedos.

ROIs are geographically visualized on 2 example tiles (right column). ROI pixels
consistently cluster on the basis of topographic position and geographic location in ways
that strongly suggest physical meaning (e.g., fine vs. coarse grain size at troughs vs. dune
crests). ROIs are again also back-projected onto both the SVD and UMAP spaces. From
this back-projection, the complementarity captured by JC is again evident: UMAP clusters
without EM fraction context lack physical context, and EM fractions without UMAP are
visually indistinct.

3.3. Lava and Ash

Figure 6 shows JC applied to a compilation of 5 tiles from globally diverse volcanic
(lava and ash) landscapes. Within the global SVD mixing space, these landscapes are
preferentially distributed between the D and S endmembers (top left). Some substantive
mixing towards the V EM is also observed. Relative to the other land cover classes, these
spectra are not particularly well fit by global mixture model (96.5% spectra with <5% RMSE).
Presumably, this is because the global D endmember corresponds to clear, deep water—not
ferromagnesian rock (e.g., basalt).

Examination of 2D UMAP embedding (top center) shows a set of interconnected
submanifolds, each with numerous apexes and exterior pixel clusters. The S endmember
fraction is again used to illustrate JC of this land cover compilation (bottom left).

Spectral Diversity of Lava & Ash at 10 m

0.5 3 (0‘5 1.0
Substrate Fraction Wavelength

1.5 2.0

(microns)
Figure 6. Joint characterization of lava and ash. 5 x 1 megapixel Sentinel-2 tile subsets are selected
from global volcanic hotspots and analyzed at full 10 m pixel resolution. These spectra preferentially
occupy the S to D apexes of the SVD mixing space (a), leaving the V portion of the space relatively
sparse. The global 3-endmember linear mixture model fits these spectra less well than the agricultural
spectra (here, 96.5% of spectra with <5% RMSE). UMAP (b) captures both subtle mixing continua
and discrete clusters, but does not offer physical interpretability. Joint characterization (c) uses the
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physical meaning of the Substrate mixture fraction to contextualize the subtle statistical relationships
captured by UMAP. Example regions of interest are identified from the joint space and projected
onto the ternary mixing and UMAP spaces. Mean spectra for each region (d) illustrate similarities
and differences among statistically distinct clusters. Clusters identified by joint characterization also
frequently show geographic coherence (e).

Again, many distinct clusters with moderate to high S fraction are clearly identi-
fiable from the JC. 8 of the clearest are shown in red and yellow. These ROIs are dif-
ferentiated in terms of both overall albedo and spectral curvature across the full visible
through shortwave infrared (VSWIR) range. The observed spectral variability is sugges-
tive of differences in underlying (mafic: felsic) mineralogy, mineral vs. glass composi-
tion (holocrystalline <+ holohyaline), texture (aphaneritic <+ phaneritic), and lava flow
age/weathering.

ROIs are geographically visualized on 2 example tiles (right column). ROI pixels
consistently cluster on the basis of topographic position and geographic location in ways
that strongly suggest geophysical meaning (e.g., topographic position, across vs. within
individual flow extents). Back-projection of ROIs onto both SVD and UMAP spaces again
highlights the complementarity of each characterization approach.

3.4. Urban

Figure 7 shows JC applied to a compilation of 5 tiles from globally diverse urban
landscapes. Within the global SVD mixing space, these landscapes are preferentially
distributed between the D and S endmembers (top left). More mixing towards the V EM is
observed than with the volcanic or sand land cover classes. These spectra are better fit by
the global mixture model than the volcanic compilation, but worse fit than the agriculture
or sands (97.5% spectra with <5% RMSE).

Spectral Diversity of Urban at 10 m
5,000,000 Sentinel-2 Spectra

Reflectance

N T
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0 0.5 : ]
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(micro
Figure 7. Joint characterization of urban landscapes. 5 x 1 megapixel Sentinel-2 tile subsets are
selected from global urban hotspots and analyzed at full 10 m pixel resolution. These spectra fill out

most of the SVD mixing space (a). The global 3-endmember linear mixture model fits these spectra
less well than the agricultural spectra (here, 97.5% of spectra with <5% RMSE). UMAP (b) captures
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both subtle mixing continua and discrete clusters, but does not offer physical interpretability. Joint
characterization (c) uses the physical meaning of the Substrate mixture fraction to contextualize the
subtle statistical relationships captured by UMAP. Example regions of interest are identified from the
joint space and projected onto the ternary mixing and UMAP spaces. Mean spectra for each region
(d) illustrate similarities and differences among statistically distinct clusters. Clusters identified by
joint characterization also frequently show geographic coherence (e).

Examination of 2D UMAP embedding (top center) shows a single, highly connected
main manifold, with numerous apexes. This manifold is much more continuous than for
the preceding land cover classes, with more dominant global structure and less prominent
statistically local clustering. The S endmember fraction is again used to illustrate JC of this
land cover compilation (bottom left).

Again, many distinct clusters are clearly identifiable from the JC. 8 of the clearest are
shown in red and yellow. These ROIs are differentiated in terms of both overall albedo and
spectral curvature across the full VSWIR range, particularly in the infrared spectral region.
The observed spectral variability is suggestive of differences in synthetic materials (plastics,
asphalt, roofing materials, paint), as well as exposed substrates.

ROIs are geographically visualized on 2 example tiles (right column). ROI pixels
consistently cluster in ways suggestive of physical meaning (parking lots, roofs of large
buildings, city blocks). Back-projection of ROIs onto both SVD and UMAP spaces again
highlights the complementarity of each characterization approach.

3.5. Forests

Figures 8 and 9 show JC applied to a compilation of 20 tiles (2 sets of 10) from globally
diverse forests. Forest spectra are preferentially distributed towards the D <+ V mixing line
(consistent with closed canopy spectra), with a significant amount of additional mixing
towards S (consistent with incomplete canopy closure, stems and other woody material,
and/or senescent leaves). The forest spectra are better fit by the global SVD mixture model
than any preceding land cover class (99.9% spectra with <5% RMSE).

Spectral Diversity of Forests at 10 m
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Figure 8. Joint characterization of forests (1). 10 x 1 megapixel Sentinel-2 tile subsets are selected from
global forest diversity hotpots and analyzed at full 10 m pixel resolution. These spectra preferentially
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occupy the V to D apexes of the SVD mixing space (a), leaving the S portion of the space relatively
sparse. The global 3-endmember linear mixture model fits these spectra better than the agricultural
spectra (here, > 99.9% of spectra with <5% RMSE). UMAP (b) captures both subtle mixing continua
and discrete clusters, but does not offer physical interpretability. Joint characterization (c) uses the
physical meaning of the Vegetation mixture fraction to contextualize the subtle statistical relationships
captured by UMAP. Example regions of interest are identified from the joint space and projected
onto the ternary mixing and UMAP spaces. Mean spectra for each region (d) illustrate similarities
and differences among statistically distinct clusters. Clusters identified by joint characterization also
frequently show geographic coherence (e).

Spectral Diversity of Forests at 10 m
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Figure 9. Joint characterization of forests (2). 10 x 1 megapixel Sentinel-2 tile subsets are selected from
global forest diversity hotpots and analyzed at full 10 m pixel resolution. These spectra preferentially
occupy the V to D apexes of the SVD mixing space (a), leaving the S portion of the space relatively
sparse. The global 3-endmember linear mixture model fits these spectra better than the agricultural
spectra (here, > 99.9% of spectra with <5% RMSE). UMAP (b) captures both subtle mixing continua
and discrete clusters, but does not offer physical interpretability. Joint characterization (c) uses the
physical meaning of the Vegetation mixture fraction to contextualize the subtle statistical relationships
captured by UMAP. Example regions of interest are identified from the joint space and projected
onto the ternary mixing and UMAP spaces. Mean spectra for each region (d) illustrate similarities
and differences among statistically distinct clusters. Clusters identified by joint characterization also
frequently show geographic coherence (e).

The 2D UMAP embedding (top center) shows a broad, well-connected manifold
comprised of several major lobes. This manifold is visually less continuous than Urban,
but more continuous than Sands or Lava/Ash. Multiple apexes to the main manifold and
smaller disconnected pixel clusters are also present.

The V fraction is the natural endmember to use for Joint Characterization (bottom left).
Useful manifold structure is observed at a wide range of V fractions. In each figure, 8 of
the clearest are shown in cyan and green. These clusters are differentiated in terms of NIR
amplitude (e.g., leaf structure), visible wavelength slope and curvature (e.g., pigments),
and overall SWIR brightness (e.g., leaf water & dry matter).
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In each figure, ROIs are geographically visualized on 2 example tiles (right column).
As with other land cover classes, geographic clustering of ROIs (microtopography, distance
from channel, ecological differences among tiles) implies plausible geophysical meaning.
Back-projection of ROIs onto both SVD and UMAP spaces again highlights the complemen-
tarity of each characterization approach.

3.6. Senescent Vegetation

Figure 10 shows JC applied to a compilation of 5 tiles from diverse biomes dominated
by senescent (non-photosynthetic) vegetation. Within the global SVD mixing space, these
landscapes are preferentially distributed towards high- to mid- Dark fraction values, with
mixing towards both V and S endmembers well-represented, but less comprehensive than
for the agriculture compilation (top left). Like the forest compilations, these spectra are also
well fit by the global mixture model (99.9% spectra with <5% RMSE).

Spectral Diversity of NPV at 10 m
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Figure 10. Joint characterization of senescent vegetation. 5 x 1 megapixel Sentinel-2 tile subsets
are selected from global forest diversity hotpots and analyzed at full 10 m pixel resolution. These
spectra preferentially occupy the V to D apexes of the SVD mixing space (a), leaving the S portion
of the space relatively sparse. The global 3-endmember linear mixture model fits these spectra
better than the agricultural spectra (here, 99.9% of spectra with <5% RMSE). UMAP (b) captures
both subtle mixing continua and discrete clusters, but does not offer physical interpretability. Joint
characterization (c) uses the physical meaning of the Vegetation mixture fraction to contextualize the
subtle statistical relationships captured by UMAP. Example regions of interest are identified from the
joint space and projected onto the ternary mixing and UMAP spaces. Mean spectra for each region
(d) illustrate similarities and differences among statistically distinct clusters. Clusters identified by
joint characterization also frequently show geographic coherence (e).

Examination of 2D UMAP embedding (top center) shows a single, highly connected
main manifold. This continuity of this manifold is comparable to that of the urban land
cover compilation. The V endmember fraction is again used to illustrate JC of this land
cover compilation (bottom left).



Remote Sens. 2022, 14, 5688

15 of 32

Again, many clusters are clearly identifiable from the JC. 4 of the clearest V-dominated
clusters are shown in green. 4 additional S-dominated clusters were selected from the
S-based JC (not shown) and projected onto the V-based JC space. S-dominated ROIs
are differentiated in terms of differences in NIR brightness and associated curvature. V-
dominated ROIs are differentiated in terms of red edge bands and SWIR, along with
NIR brightness. The observed spectral variability is suggestive of differences in overall
vegetation composition and 3D structure (e.g., differences in volume scattering associated
with grass vs. shrub vs. tree morphologies), as well as stage of senescence. V-dominated
ROI differences are suggestive of leaf water (SWIR) and leaf structure (red edge, NIR), with
one cluster showing significant differences in visible wavelength curvature in addition to a
50% reduction in NIR brightness. ROIs are geographically visualized on 2 example tiles
(right column), and again cluster in ways suggestive of biophysical meaning (along river
channels, stands of trees, discernable savanna transitions).

3.7. Tundra

Figure 11 shows JC applied to a compilation of 5 tiles from diverse tundra landscapes.
Within the global SVD mixing space, these landscapes are preferentially the D <+ V mix-
ing line (consistent with dense vegetation and vegetation/water mixtures), with minor
additional mixing towards S (consistent with dark, water-saturated soils) (top left). Like
the forest and senescent vegetation compilations, these spectra are well fit by the global
mixture model (99.8% spectra with <5% RMSE).

Examination of 2D UMAP embedding (top center) shows a single main manifold with
several lobes. This manifold is less continuous than the urban or senescent vegetation
compilations, but more continuous than the sand or volcanic compilations. Here, the D
endmember fraction is used to illustrate JC of this land cover compilation (bottom left).

Spectral Diversity of Tundra at 10 m
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Figure 11. Joint characterization of tundra. 5 x 1 megapixel Sentinel-2 tile subsets are selected from
global tundra diversity hotpots and analyzed at full 10 m pixel resolution. These spectra preferentially
occupy the V to D apexes of the SVD mixing space (a), leaving the S portion of the space relatively
sparse. The global 3-endmember linear mixture model fits these spectra better than the agricultural
spectra (here, 99.8% of spectra with <5% RMSE). UMAP (b) captures both subtle mixing continua and
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discrete clusters, but does not offer physical interpretability. Joint characterization (c) uses the physical
meaning of the Dark mixture fraction to contextualize the subtle statistical relationships captured by
UMAP. Example regions of interest are identified from the joint space and projected onto the ternary
mixing and UMAP spaces. Mean spectra for each region (d) illustrate similarities and differences
among statistically distinct clusters. Clusters identified by joint characterization also frequently show
geographic coherence (e).

Again, many clusters are clearly identifiable from the JC. 4 of the clearest D-dominated
clusters are shown in cyan. 4 additional low-D (and high V) clusters were also selected
(shown in green). D-dominated ROIs are differentiated in terms of overall brightness in the
NIR and SWIR (turbidity /flotsam?) and curvature in the visible (chlorophyll, CDOM?). V-
dominated ROIs are differentiated in terms of NIR amplitude (plant community structure?),
visible wavelength slope and curvature (pigments?), and overall SWIR brightness (canopy
& understory water? Spatial mixing with underlying waterlogged substrate?). ROIs are
geographically visualized on 2 example tiles (right column), and again cluster in ways
highly suggestive of biophysical meaning (V: distance from river channel, microtopography,
differences among tiles; D: sets of thermokarst lakes clustering together, possibly on the
basis of lake age, largely distinct from river channels).

3.8. Mangroves and Wetlands

Figure 12 shows JC applied to a compilation of 10 tiles from diverse mangrove and
wetland landscapes. Mixture fractions from these landscapes are distributed similarly to
tundra, preferentially occurring near the D <+ V mixing line, with minor additional mixing
towards S (consistent with more open canopies resulting in subpixel mixing with water
or dark, water-saturated soils) (top left). Like the forest, senescent vegetation, and tundra
compilations, these spectra are well fit by the global mixture model (99.9% spectra with
<5% RMSE).
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Figure 12. Joint characterization of mangroves and wetlands. 10 x 1 megapixel Sentinel-2 tile subsets
are selected from global forest diversity hotpots and analyzed at full 10 m pixel resolution. These spectra
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preferentially occupy the V to D apexes of the SVD mixing space (a), leaving the S portion of the
space relatively sparse. The global 3-endmember linear mixture model fits these spectra better
than the agricultural spectra (here, > 99.9% of spectra with <5% RMSE). UMAP (b) captures both
subtle mixing continua and discrete clusters, but does not offer physical interpretability. Joint
characterization (c) uses the physical meaning of the Vegetation mixture fraction to contextualize the
subtle statistical relationships captured by UMAP. Example regions of interest are identified from the
joint space and projected onto the ternary mixing and UMAP spaces. Mean spectra for each region
(d) illustrate similarities and differences among statistically distinct clusters. Clusters identified by
joint characterization also frequently show geographic coherence (e).

Examination of 2D UMAP embedding (top center) shows a single main manifold with
several lobes. This manifold also comparable to the tundra compilation: less continuous
than the urban or senescent vegetation compilations, but more continuous than the sand or
volcanic compilations. Here, the V endmember fraction is used to illustrate the JC approach
(bottom left).

Again, many submanifolds are clearly identifiable as apexes and clusters from the JC. 8
of the clearest V-dominated clusters are shown in cyan and green. 4 additional low-D (and
high V) clusters were also selected (shown in green). D-dominated ROIs are differentiated
in terms of overall brightness in the NIR and SWIR (turbidity/flotsam?) and curvature
in the visible (chlorophyll, CDOM?). V-dominated ROIs are differentiated in terms of
NIR amplitude (possibly associated with leaf and canopy structure), visible wavelength
slope and curvature (potentially associatd with pigments), and overall SWIR brightness
(potentially associated with canopy and/or understory water, and spatial mixing with an
underlying waterlogged substrate). ROls are geographically visualized on 2 example tiles
(right column), and again cluster in ways highly suggestive of biogeophysical meaning
(distance from river channel, microtopography, differences among tiles).

3.9. Rocks and Alluvium

Figures 13 and 14 show ]JC applied to a compilation of 20 tiles (2 sets of 10) from
geologically diverse landscapes exemplifying rock and alluvium, respectively. Both rock
and alluvium spectra are preferentially distributed towards the D <+ S mixing line, with
minor mixing towards V within the global SVD mixing space (upper left). Like the lava/ash
spectra, these spectra are less well fit by the global mixture model (96% spectra with
<5% RMSE), presumably because the single Substrate EM does not capture the full geologic
diversity of the basement rocks and alluvium.

The 2D UMAP embedding (top center) shows a broad, well-connected manifold
comprised of several major lobes. These manifolds are visually less continuous than Urban,
but more continuous than Sands or Lava/Ash. Multiple apexes to the main manifold and
smaller disconnected pixel clusters are also present.

Here, the S fraction is the natural endmember to use for JC (bottom left). Useful
manifold structure is observed at a wide range of S <+ D mixture fraction continuum. In each
figure, 8 of the clearest apexes and clusters are shown. These ROlIs are differentiated in terms
of both overall albedo and spectral curvature across the full VSWIR range. Mean cluster
spectra are suggestive of differences in underlying (mafic: felsic) mineralogy, rock type
(igneous, sed, met), exposure age/weathering, hydrothermal alteration, presence/absence
of evaporite minerals.

In each figure, ROlIs are geographically visualized on 2 example tiles (right column). As
with other land cover classes, geographic clustering of ROIs (topographic position, relation
to extraction operations) identified from JC implies plausible geophysical meaning. Back-
projection of ROIs onto both SVD and UMAP spaces again highlights the complementarity
of each characterization approach.
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Figure 13. Joint characterization of rocks and alluvium (1). 10 x 1 megapixel Sentinel-2 tile subsets
are selected from global geology hotspots and analyzed at full 10 m pixel resolution. These spectra
preferentially occupy the S to D apexes of the SVD mixing space (a), leaving the V portion of the
space relatively sparse. The global 3-endmember linear mixture model fits these spectra less well
than the agricultural spectra (here, only 96% of spectra with <5% RMSE). UMAP (b) captures both
subtle mixing continua and discrete clusters, but does not offer physical interpretability. Joint
characterization (c) uses the physical meaning of the Substrate mixture fraction to contextualize the
subtle statistical relationships captured by UMAP. Example regions of interest are identified from the
joint space and projected onto the ternary mixing and UMAP spaces. Mean spectra for each region
(d) illustrate similarities and differences among statistically distinct clusters. Clusters identified by
joint characterization also frequently show geographic coherence (e).

Spectral Diversity of Rocks & Alluvium at 10 m
10,000,000 Sentinel-2 Spectra

2 0
5 0.5 L0 15 20
Substrate Fraction Wavelength (microns)

Figure 14. Joint characterization of rocks and alluvium (2). 10 x 1 megapixel Sentinel-2 tile subsets
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are selected from global geology hotspots and analyzed at full 10 m pixel resolution. These spectra
preferentially occupy the S to D apexes of the SVD mixing space (a), leaving the V portion of the
space relatively sparse. The global 3-endmember linear mixture model fits these spectra less well
than the agricultural spectra (here, 98.5% of spectra with <5% RMSE). UMAP (b) captures both
subtle mixing continua and discrete clusters, but does not offer physical interpretability. Joint
characterization (c) uses the physical meaning of the Substrate mixture fraction to contextualize the
subtle statistical relationships captured by UMAP. Example regions of interest are identified from the
joint space and projected onto the ternary mixing and UMAP spaces. Mean spectra for each region
(d) illustrate similarities and differences among statistically distinct clusters. Clusters identified by
joint characterization also frequently show geographic coherence (e).

4. Discussion

With these results in mind, we structure our discussion in three parts. First, we
revisit each fundamental science question that motivated the analysis. Next, we present a
conceptual explanation for the efficacy of the method. We then close with a brief discussion
of limitations, avenues for future work, and concluding remarks.

4.1. Revisiting the Motivating Questions
4.1.1. Question 1: Variance-Based Characterization & Modeling

The first set of questions addressed by this study concerned the overall SVD fraction
(and misfit) distributions of globally significant land cover classes. The SVD fraction ques-
tion is addressed by the ternary diagrams shown in the upper left of each of Figures 4-14.
We summarize these in Figure 15, showing the SVD distribution for each category (outer
plots), as well as the merged global distribution of the entire mosaic (center left). Clearly,
the land cover categories used in this study occupy overlapping subsets of the global SVD
space. This is in part because spectral mimicking may render distinct reflectances indistin-
guishable with a broadband sensor, and in part because not all categories are fully mutually
exclusive. For example, some rock and alluvium subsets certainly contain some amount of
green and senescent vegetation, as well as some sand; and clear decision boundaries are
not always present among the wetland, mangrove, and forest categories.
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Figure 15. SVD fractions summarized by land cover type. Sands are dominated by S. Other geologic
scenes show more mixing towards D. Urban, senescent, and agriculture show increasing mixing
towards V, respectively. Forests, mangroves, and tundra then show decreasing S and increased skew
towards binary V <+ D mixing, respectively.
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Despite this fundamental nonuniqueness observed in SVD fraction space, differences
among land cover category distributions are also evident. Specifically, agricultural land-
scapes (light green) are the most spectrally variable of all the categories, spanning nearly
the entire space SVD space. Forests, mangroves, tundra (dark green, dark cyan, and cyan,
respectively) are reasonably well mixed, but preferentially occur towards the D <+ V binary.
Urban landscapes (dark red) are also reasonably mixed, but instead skew towards the
D « S binary. Rocks, alluvium, and lava/ash (dark gray, dark brown, and black) are
further skewed towards the D <+ S binary, and the sands used in this compilation (red)
demonstrate this preferential distribution even more strongly.

Mixture model misfit also varies by land cover category (Figure 15, center right).
Categories dominated by closed canopies, exposed soil, and water tend to yield relatively
low misfits (5% error or less for >99% of pixel spectra). Categories with the highest
misfit are likely to host greater substrate diversity than can be captured by a simple 3 EM
model. This is to be expected as the variance in PC 3 is almost entirely associated with
the broadening diversity of substrates approaching the Dark endmember. Because the
SVD model corresponds to a planar triangle, most of these substrates lie outside the model
and project onto the SVD plane at its nearest point. This misfit can take the form of either
geologic (rock, soil, alluvium, lava/ash) or synthetic (urban) materials. Notably, even for
these poorer-fit landscapes, the vast majority (>95%) of pixels still show root mean square
misfits < 5%.

4.1.2. Question 2: Topology-Based Characterization & Modeling

The second set of questions concerns category dependence of the underlying topology
of the spectral data manifold. These questions are addressed by the UMAP manifolds in
the top center of each of Figures 4-14, summarized for convenience along the periphery of
Figure 16.

Alluvium-
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Mangroves “% Forests

UMAP]|
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Figure 16. UMAP summary. Urban and senescent show highly continuous manifolds. Forests,
agriculture, tundra, and mangrove show increasing clustering/decreasing continuity, respectively. Of
the geologic scenes, rocks and alluvium show more continuous manifolds, with lava/ash and sands
showing highly sinuous, clustered manifolds with a large number of distinct apexes.
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Spectral manifold topology can clearly vary considerably across land cover types. In
some cases, UMAP learns a single, well-connected manifold with a relatively small number of
apexes and exterior clusters (e.g., Urban, Senescent Vegetation). In other cases, substantially
more sinuous manifolds are found with more complex apexes and disconnected exterior
clusters (e.g., Sands, Lava/Ash). Other land cover classes yield intermediate results.

4.1.3. Question 3: Leveraging Variance & Topology with Joint Characterization

The third set of questions we address concerns the practical utility of the joint (SVD + UMAP)
characterization approach. These questions are addressed by the joint characterization plots and
associated spectra shown in the lower portion of Figures 4-14, and geographic patterns shown in
the right columns. For brevity, these are not summarized in an additional figure here.

Clearly, JC consistently succeeds in using SVD fractions to differentiate UMAP clus-
ters on the basis of physical interpretability. JC-identified ROIs frequently demonstrate
geographic coherence and spectral interpretability from (putative) absorption features and
scattering processes. In addition, JC produces potentially useful results even though overall
spectral variance, spectral curvature, geographic size/contiguity of landscape features, and
generative physical processes vary considerably across land cover types. Further, JC seems
to be equally effective at capturing potentially useful clustering relations when landscapes
are dominated by either S, V, or D endmember fractions. We speculate that the ability
of JC to capture clustering relations across all three endmember fractions may arise from
the stability of the three component linear model in conjunction with the sensitivity of
UMAP to statistically local neighborhoods without regard to overall brightness or spectral
shape. We expand further on this critical convergence of stability and sensitivity in the
following subsection.

4.2. Why JC Works: A Convergence of Visions

The preceding analysis clearly demonstrates that JC is effective at identifying subtle,
spatially coherent, spectrally distinct patterns in multispectral imagery. However, why
does this approach work? Here, we present the philosophy underlying the approach in the
context of two complementary visions for analysis of high dimensional imagery.

4.2.1. The Geophysical Vision: Projecting Each Pixel Spectrum Independently onto the
Global Mixing Space

One vision for the analysis of spectral imagery conceptualizes the problem geophysically.
This approach is rooted in a long history of physically based characterization and modeling
approaches which has been formalized by the field of geophysical inverse theory [48-50].
In the context of the present study, this framework considers the image analysis problem
to be physical, linear, and deterministic. A specific, interpretable quantity is estimated
(e.g., area contribution of constituent EMs). Some prior knowledge of the system is
required—which fortunately has been obtained by previous studies characterizing the
global spectral mixing space ([36,43,44] and subsequent papers). This knowledge is used
to design a system of equations which can be formulated into a matrix which describes a
specific set of linear mixing processes governing the interaction of incident solar radiation
with the Earth surface. Only 1 tunable parameter (weight of unit sum constraint) is present,
and the rationale for parameter choice (1.0) has quasi-physical basis. This assumption
is intrinsically linked to the choice of error metric (or cost function), which is commonly
selected as the I, norm. Inverting the linear mixture model to obtain estimates of EM
fractions provides a continuous result that is easily validated by comparison with higher
spatial resolution imagery (vicarious validation) or in situ field measurements. A key
assumption of this approach is that global variance is representative of information content.

4.2.2. The Statistical Vision: Learning High-Dimensional Structure within and among
Clusters of Similar Pixel Spectra

Another vision for the analysis of spectral imagery conceptualizes the problem purely
statistically. This approach is rooted in the more recently developed field of manifold



Remote Sens. 2022, 14, 5688

22 of 32

learning, e.g., as reviewed by [16] and implemented for hyperspectral image analysis
by [51,52]. Here, no a priori physical model is assumed. Linearity is also not assumed, and
models generally have a stochastic element. The problem of characterization is formulated
in terms of estimation of an abstract quantity (i.e., optimal embedding of a natively high-
D manifold into a low-D space). Prior geophysical knowledge is not required, nor is it
used. Several tunable parameters exist, which can significantly alter the output. Often
a parameter is used to quantify connective complexity by setting a number of statistical
neighbors to be examined. In this context, hyperparameter choice is less defensibly physical
(although arguments can be made for a link to spatial autocorrelation). For this analysis,
hyperparameter sensitivity is treated in Appendix A. A key assumption of this approach is
that local topology is representative of information content.

4.2.3. Fusing These Two Visions: Joint Characterization

JC was designed under the guiding principle that both the geophysical and statistical
visions can have intrinsic merit for the generalized problems of characterization and
modeling of spectral imagery. Specifically, a framework was desired which could use the
strengths the geophysical vision to mitigate the limitations of the statistical vision, and
vice versa.

The fundamental idea of JC is to use two (or more) different formalizations of informa-
tion to characterize, and ultimately model, high dimensional information. Conceptually,
this can be understood using an analogy to parallax—systems capable of observing the
world from two lines of sight can use both the redundancy and variability in the sig-
nals captured by each to estimate information not generally evident from either vantage
point alone.

Here, we use SVD mixture fractions as our geophysical metric, and one UMAP dimen-
sion as our statistical metric. The approach could easily be extended to 3D (e.g., 1 SVD +
2 UMAP dimensions) or higher dimensions by using 3D UMAP projections and three (or
more) fraction dimensions. When implementing JC in this context: mixture fractions give
physically interpretable information capable of discriminating among UMAP-identified
clusters; and UMAP embeddings give statistical information capable of separating subtle
spectral features which are not evident from mixture fractions alone.

4.3. Limitations and Future Work
4.3.1. Limitations

Like any analysis approach, JC is not without limitations. One important consideration
is the nonuniqueness of the manifold learning output. A wide range of possible algorithms
exist, and more are certain to be developed in the coming decades. While we use UMAP
here, we note that t-SNE [53] and Laplacian Eigenmaps [54] can also prove useful, for
instance as shown in [28-30]. Other algorithms also possess important strengths and
weaknesses. Similarly, these algorithms tend to have stochastic elements and require
prescription of several tunable parameters; implementation always has the potential to be
sensitive to hyperparameter choice and users are advised to examine the severity of this
limitation on a case-by-case basis (e.g., [55]). Anecdotally, we do note that our experience
suggests UMAP outputs are less likely to be plagued by severe issues in this regard than
some other algorithms, consistent with the findings of others such as [56-58].

In addition, the manifold learning step is fundamentally dependent on the spatial
resolution of the imagery in a way that SVD fractions are not. V fractions in particular, and
SVD fractions more generally, have been shown to scale linearly from meter to kilometer
ground sampling distance [37,39,59]. Global EMs are identified from spectrally diverse,
Principal Component-derived, aggregate spectral mixing spaces. However, each pixel’s
SVD fractions are estimated independently from all other pixels, and are not sensitive
to the overall number of samples. This is inherently not the case for manifold learning
algorithms. Anecdotal results from spectral libraries and collections of leaf-level reflectance
spectra are substantially less fruitful than results for full images. It is thus possible that
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the manifold learning aspect of JC may require the redundancy that is provided by image
spatial autocorrelation to reach its potential.

We further note that this workflow is not, at present, fully automatable. We have not
found present methods of automatic cluster detection to yield satisfactory results in the
context of JC. This approach can thus be considered semi-supervised, with final interactive
input from the scientist to select the clusters and apexes for regions of interest.

Finally, the globally standardized 3-endmember SVD model intentionally excludes
some optically complex landscapes—notably evaporites, cryosphere, and shallow marine
environments. Reflectance images containing these features will not be accurately modeled
by the global SVD endmembers, and so JC will be of limited use. However, the wavelength-
dependent mixture residual of the generalized global model may contain a significant
amount of useful information, as suggested by [41], and applying JC to mixture residual
images of this landscape may be significantly more useful in these cases.

4.3.2. Future Work

A wide range of promising avenues exist for integrating JC into image analysis work-
flows. One category of future work involves integration with advances in data quality and
quantity. For instance, JC has the potential to improve characterization and modeling of
hyperspectral imagery (e.g., through recent & planned missions like EMIT [60], DESIS [61],
PRISMA [62], CHIME [63], HISUI [64], and SBG [65]), as well as spatially and temporally
dense image time series (e.g., Sentinel-2 and Planet imagery). Hyperspectral applica-
tions are particularly promising given its greater reported intrinsic dimensionality [66-70].
Application to field- and tower-based imagery is also promising.

As noted above, another avenue for investigation is the incorporation of other algorithms
and information metrics. Several other nonlinear dimensionality reduction algorithms exist
for this purpose beyond UMAP and t-SNE, like Laplacian Eigenmaps [54], ISOMAP [71], and
both metric and nonmetric multidimensional scaling (MDS and NMDS, [72,73]). Similarly,
other geophysical observed (emissivity, land surface temperature, night light luminance)
and/or modeled (evapotranspiration, population density) parameters could be used as well.

More comprehensive links between manifold topology and specific geophysical prop-
erties would also be valuable. Given the wide range of spectral differences highlighted by
this study, a more detailed analysis and validation would be required for each case than
is possible in this paper. Investigation of the physical properties revealed by JC is likely
best accomplished using higher spatial and spectral resolution hyperspectral data. For
one example, a more detailed investigation of the spectral properties revealed by JC for
sub-decameter cryospheric hyperspectra is given by [29].

Finally, an additional potential avenue for advancing this work would be development
of a standard method to quantify manifold quality. This question is fundamental to the field
of manifold learning and a satisfactory answer is clearly beyond the scope of this study.
In the context of Sentinel-2 imagery, the important point is that all the UMAP manifolds
found here were observed to possess many more than 3 apexes and distinct clusters—in
contrast to the 2D continuum of the PC feature space.

5. Conclusions

We demonstrate Joint Characterization (JC), a novel approach for spectral image
analysis, as applied to a globally diverse mosaic of 90,000,000 Sentinel-2 image spectra. JC
exploits synergy between geophysical (spectral mixing) and topological (manifold learning)
approaches to characterization and modeling. Dependence of both approaches on land
cover is examined through detailed investigation of 9 categories. For each class, mixture
fraction distribution and spectral manifold topology are characterized, and JC is shown to
effectively capture clusters and apexes which are clearly geographic coherent and spectrally
distinct. The underlying philosophy of the method, its major limitations, and avenues
for future work are discussed. Taken together, these results highlight the potential of JC
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as an effective, efficient approach for characterization and modeling of high dimensional
image information.
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Appendix A

Any algorithm with one or more tunable parameters has the potential to generate
outputs which are dependent on the choice of those parameters. Here, we investigate
UMAP hyperparameter dependence for this dataset by systematically sweeping through
the relevant hyperparameter subspace of for the full 90 subset image mosaic. All figures
in this section can be compared to the central manifold in Figure 16 of the main text.
We note that further case-by-case exploration of the impact of hyperparameters on Joint
Characterization could be a useful avenue for future work.

Figure Al shows the effect of varying the n_neighbors parameter, and leaving all other
parameters constant. Conceptually, this parameter can be considered a method of trading
off between local (low values) and global (high values) statistical structure in the data. For
n_neighbors = 2, no result is found. For other very low (n_neighbors = 3 to 5) values, the
primary structure of the manifold clearly decomposes, losing global structure and giving
a large number of small, sparse peripheral clusters. As this value increases, the manifold
stabilizes (n_neighbors = 10 or higher). Perceptible minor changes are apparent as the
value continues to increase, but the overall topology of the point cloud clearly stabilizes.
Runtimes were observed to increase with increasing n_neighbors. For this analysis, the
embeddings found using n_neighbors = 30 were found to be satisfactory on the basis of
cluster coherence.

Figure A2 shows the effect of varying the min_dist parameter, and leaving all other
parameters constant. Conceptually, this parameter can be considered a control on how
tightly points are allowed to cluster together. Low values allow for dense “clumpier”
clusters. High values prevent dense clusters, preserving more global structure. For this
dataset, varying the min_dist parameter by 6 orders of magnitude yields very little percep-
tible impact on the topology of the embedding. Due to the lack of impact found by this
parameter, the default setting of min_dist = 0.1 was used.

Figure A3 shows the effect of embedding in a 3D space, rather than a 2D space. Here,
the overall connectivity structure of the manifold remains similar to the 2D embedding,
but the more distinct sand and mangrove clusters show better separation from the body
of the manifold. Given the information content found in the 2D embeddings, this setting
was used for all analyses in this paper. However, we do note that 3D (or higher) may
prove useful for future studies, particularly in cases where more complex manifolds must
be resolved.
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Figure A4 shows the effect of using alternative distance metrics in the ambient space
of the input data, leaving all other parameters constant. Note the following warning
was issued for the Mahalanobis result: “Failed to correctly find n_neighbors for some
samples. Results may be less than ideal.” This likely explains the lack of granularity in this
embedding. Beyond the Mahalnobis result, the greatest differences in manifold topology
are observed for the correlation and cosine metrics.

Figure A5 shows a comparison to three other manifold learning algorithms: Spectral
Embedding using Laplacian Eigenmaps (LE), ISOMAP, and t-distributed Stochastic Neigh-
bor Embedding (t-SNE). Note that the already-decimated mosaic required further (3x)
decimation to run to completion on typical commercially available computer hardware. LE
yields markedly different results from UMAP, with a much “spikier” embedding resulting
in clearer separation between endmembers, but much reduced topological complexity for
pixels with intermediate values. ISOMAP gives a globally dominated result comparable
to the first two dimensions of a traditional PC transformation (e.g., compare to Figure 3a).
In contrast, t-SNE does not retain perceptible structure of the global manifold, but does
identify interesting (and in many cases, likely spurious) local clusters. The “perplexity”
hyperparameter exerts a strong control on t-SNE results but is not shown for brevity.

X
n_neighbors = 500

No Result

Sy -

Figure A1. UMAP dependence on n_neighbors parameter. UMAP results for the image mosaic are
shown for a range of n_neighbors parameter settings. All runs use min_dist = 0.1 and Euclidean

n_netghbors =5 n_nei n neighbors = 3 n_neighbors =2

distance metric.
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Figure A2. UMAP dependence on min_dist parameter. UMAP results for the image mosaic are
shown for a range of min_dist parameter settings. All runs use 30 nearest neighbors and Euclidean
distance metric.

%“t L
=
-

UMAP

1

UMAP

UMAP,

Figure A3. UMAP results using a 3D embedding space. This figure uses min_dist = 0.1, 30 nearest
neighbors, and Euclidean distance metric.

Below we further provide a supplementary table (Table A1) showing the Sentinel-2
Scene IDs used in this analysis. The UTM Zone, as well as the Easting and Northing of the
northwest corner of the 1000 x 1000 pixel subset, are also provided for reference.
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‘Mahalanobis Manhattan

Minkowski

Figure A4. UMAP dependence on choice of distance metric. Results are shown for the image mosaic.
All runs use 30 nearest neighbors and min_dist = 0.1.

| Laplacian Eigenmaps|Laplacian Eigenmaps ,
(Spectral Embedding) |(Spectral Embedding)
D1 vs D2\D3 vs D4

ISOMAP

Figure A5. Comparison to other manifold learning algorithms. Results are shown for Lapla-
cian Eigenmap-based Spectral Embedding (LE), ISOMAP, and t-distributed Stochastic Neighbor
Embedding (t-SNE). LE and ISOMAP runs both use the nearest neighbor affinity metric, with
n_neighbors = 10. t-SNE uses perplexity = 30 and random initialization.
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Table Al. Scene list.

Agriculture

TileID UTM Zone Easting Northing
S2A_MSIL1C_20170205T210921_N0204_R057_T04QHH 4N 868610 2223190
S2A_MSIL1C_20170315T101021_N0204_R022_T32TPP 32N 623950 4864330
S2A_MSIL1C_20170508T012701_N0205_R074_T54STE 54N 269220 3988590
S2A_MSIL1C_20170723T064631_N0205_R020_T41TKG 41N 266210 4645260
S2A_MSIL1C_20170917T190351_N0205_R113_T10SFG 10N 688930 4167330
S2A_OPER_PRD_MSIL1C_PDMC_20161017T044357 45N 723470 2625060
S2B_MSIL1C_20170730T040549_N0205_R047_T47SND 47N 554190 4363690
S2B_MSIL1C_20170918T054629_N0205_R048_T43SDT 43N 459570 3800040
S2B_MSIL1C_20171008T105009_N0205_R051_T30TYN 30N 702100 4787760
S2B_MSIL1C_20171013T081959_N0205_R121_T36SYF 36N 778000 4095680
Sand

TileID UTM Zone Easting Northing
S2A_MSIL1C_20170628T173901_N0205_R098_T13SCS 13N 372290 3654900
S2A_MSIL1C_20170908T063621_N0205_R120_T40QFK 40N 653400 2447190
S2A_MSIL1C_20171119T040041_N0206_R004_T48TUK 48N 305540 4438710
S2A_MSIL1C_20171208T111441_N0206_R137_T29QKD 29N 291550 2399280
S2A_MSIL1C_20171209T072301_N0206_R006_T38QND 38N 527910 1890720
S2B_MSIL1C_20171207T105419_N0206_R051_T30RVT 30N 481880 3290910
S2B_MSIL1C_20171208T084329_N0206_R064_T33JWN 33S 541880 7265640
S2B_MSIL1C_20171212T100359_N0206_R122_T32RLQ 32N 339750 2966720
S2B_MSIL1C_20171212T100359_N0206_R122_T32RLR 32N 331950 3100020
Lava & Ash

TileID UTM Zone Easting Northing
S2A_MSIL1C_20170205T210921_N0204_R057_T04QHH 4N 861160 2206290
S2A_MSIL1C_20171016T073911_N0205_R092_T36MZC 36S 819250 9703580
S2A_MSIL1C_20171016T073911_N0205_R092_T36MZC 365 834220 9768640
S2A_OPER_PRD_MSIL1C_PDMC_20161014T163303 15S 652170 9967520
S2B_MSIL1C_20170723T124309_N0205_R095_T28WDT 28N 399960 7200220
Urban

TileID UTM Zone Easting Northing
S2A_MSIL1C_20170508T012701_N0205_R074_T54STE 54N 269890 3950620
S2A_MSIL1C_20170830T131241_N0205_R138_T23KLP 23S 328970 7398470
S2A_MSIL1C_20170916T055631_N0205_R091_T42RUN 42N 300000 2758120
S2A_MSIL1C_20171017T103021_N0205_R108_T32TLQ 32N 390060 4999690
S2B_MSIL1C_20170912T170949_N0205_R112_T14RLP 14N 364980 2848280
Forest—1

TileID UTM Zone Easting Northing
S2A_MSIL1C_20170118T081241_N0204_R078_T35MRV 355 831290 9963030
S2A_MSIL1C_20170119T074231_N0204_R092_T36JTT 36S 284150 7247210
S2A_MSIL1C_20170205T210921_N0204_R057_T04QHH 4N 847400 2230620
S2A_MSIL1C_20170427T021921_N0205_R060_T50HLH 50S 355240 6230970
S2A_MSIL1C_20170508T012701_N0205_R074_T54STE 54N 257880 3907290
S2A_MSIL1C_20170604T043701_N0205_R033_T45RYL 45N 794940 3088140
S2A_MSIL1C_20170705T022551_N0205_R046_T50NMN 50N 450950 704020

S2A_MSIL1C_20170724T145731_N0205_R039_T18LZL 18S 875170 8546360
S2A_MSIL1C_20170724T145731_N0205_R039_T19LBF 19S 215640 8582190
S2A_MSIL1C_20170830T131241_N0205_R138_T23KLP 23S 321220 7348390
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Forest—2
TileID UTM Zone Easting Northing
S2A_MSIL1C_20170917T190351_N0205_R113_T10SFG 10N 607440 4106660
S2A_OPER_PRD_MSIL1C_PDMC_20151206T145051 20N 469370 431170
S2B_MSIL1C_20170713T023549_N0205_R089_T51RTN 51N 231700 3257530
S2B_MSIL1C_20170718T101029_N0205_R022_T32TQS 32N 773730 5121020
S2B_MSIL1C_20170906T002659_N0205_R016_T55KCA 555 353630 8006280
S2B_MSIL1C_20170912T084549_N0205_R107_T36TUL 36N 335150 4512660
S2B_MSIL1C_20171009T003649_N0205_R059_T55MDP 555 469610 9317570
S2B_MSIL1C_20171013T081959_N0205_R121_T36SYF 36N 791100 4092030
S2B_MSIL1C_20171116T132219_N0206_R038_T23KKP 23S 215910 7344400
S2B_MSIL1C_20171215T152629_N0206_R025_T18NUF 18N 381240 26200
Senescent Vegetation
TileID UTM Zone Easting Northing
S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT 36S 387540 7237130
S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT 365 381920 7259800
S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT 36S 375110 7261040
S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT 36S 379990 7209420
S2A_MSIL1C_20170516T154911_N0205_R054_T18TWQ 18N 563770 4938390
Tundra & Wetlands
TileID UTM Zone Easting Northing
S2A_MSIL1C_20170718T210021_N0205_R100_T08SWNB 8N 508380 7654750
S2A_MSIL1C_20170718T210021_N0205_R100_T08WNB 8N 540940 7608620
S2A_OPER_PRD_MSIL1C_PDMC_20160318T145513 19S 495986 7997974
S2B_MSIL1C_20170916T215519_N0205_R029_T06WVB 6N 442210 7700040
S2B_MSIL1C_20170916T215519_N0205_R029_T06WVB 6N 458950 7676830
Mangroves
TileID UTM Zone Easting Northing
S2A_MSIL1C_20170427T153621_N0205_R068_T18NTP 18N 258620 824760
S2A_MSIL1C_20170704T013711_N0205_R031_T52MHD 52S 814620 9839210
S2A_MSIL1C_20170705T022551_N0205_R046_T50NMN 50N 498390 752360
S2A_MSIL1C_20170705T022551_N0205_R046_T50NMN 50N 423780 704730
S2A_MSIL1C_20170916T055631_N0205_R091_T42RUN 42N 319520 2736030
S2A_OPER_PRD_MSIL1C_PDMC_20161018T073751 38N 655730 3419140
S2B_MSIL1C_20170826T155519_N0205_R011_T17NM]J 17N 472220 875270
S2B_MSIL1C_20170919T140039_N0205_R067_T21KVA 21S 445610 8017250
S2B_MSIL1C_20171123T043059_NN0206_R133_T45QYE 45N 756960 2481220
S2B_MSIL1C_20171123T043059_N0206_R133_T45QYE 45N 763390 2429410
Rock & Alluvium—1
TileID UTM Zone Easting Northing
S2A_MSIL1C_20160723T143750_T19KER 19S 506000 7534310
S2A_MSIL1C_20170124T051101_N0204_R019_T44RQV 44N 781870 3417600
S2A_MSIL1C_20170412T074611_N0204_R135_T37PDQ 37N 467190 1496550
S2A_MSIL1C_20170412T074611_N0204_R135_T37PDQ 37N 415880 1480390
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB 11N 478340 4162580
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB 11N 441920 4110190
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB 11N 424630 4194020
S2A_MSIL1C_20170613T182921_N0205_R027_T11SMB 11N 429810 4180830
S2A_MSIL1C_20170627T180911_N0205_R084_T12SUF 12N 310360 4011400
S2A_MSIL1C_20170627T180911_N0205_R084_T12SUF 12N 304930 4096250
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Rock & Alluvium—2

TileID UTM Zone Easting Northing
S2A_MSIL1C_20170627T180911_N0205_R084_T12SUG 12N 393280 4169500
S2A_MSIL1C_20170908T063621_N0205_R120_T40QFK 40N 664760 2494790
S2A_MSIL1C_20171201T150711_N0206_R039_T18LZH 18S 866060 8213050
S2A_MSIL1C_20171207T082321_N0206_R121_T34HCH 34S 395100 6286480
S2A_OPER_PRD_MSIL1C_PDMC_20151022T184002 1IN 516790 4027140
S2A_OPER_PRD_MSIL1C_PDMC_20160318T145513 19S 486817 8008443
S2B_MSIL1C_20171103T061009_N0206_R134_T42SWC 42N 576560 3774420
S2B_MSIL1C_20171103T061009_N0206_R134_T42SWD 42N 544220 3856340
S2B_MSIL1C_20171202T064229_N0206_R120_T40RGU 40N 768340 3304040
S2B_MSIL1C_20171212T064249_N0206_R120_T40QEL 40N 520620 2570980
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