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Abstract—Reconfigurable arrays mold the propagation en-
vironment to benefit wireless systems. We use single-port
polarization-reconfigurable antennas in a wideband multiple-
input multiple-output (MIMO) system and demonstrate the
efficacy of reconfiguration techniques based on analytical channel
models. We apply a double-directional channel model to show
that polarization reconfiguration acts as an additional precoding
step on an unpolarized channel. We use Jensen’s inequality to
upper bound the spectral efficiency and leverage the relaxed
objective to derive closed-form expressions for the optimal
polarization angles at each antenna. We also derive upper bounds
on the performance of a polarization reconfigurable system and
develop an efficient procedure for polarization reconfiguration
that aims to maximize these upper bounds. Numerical results
show that the proposed simplified methods achieve near-optimal
in wideband MIMO settings.

Index Terms—MIMO, polarization optimization, reconfig-
urable antenna, wideband communication.

I. INTRODUCTION

Reconfigurable antennas allow the system to change the
composite wireless channel. Recent developments in reconfig-
urable antenna arrays have led to a wide variety in designs
and capabilities [2]-[4]. Frequency and bandwidth tuning
enable switching to different portions of the spectrum [5].
Gain pattern and polarization adaptation also enhances the
array beamforming capabilities [6]. Reconfigurable antenna
spacing and array orientation augment low-signal-to-noise-
ratio (SNR) beamforming and high-SNR spatial multiplexing
in sparse multipath channels [7] and line-of-sight channels [8].
By modifying the effective channel, including radio-frequency
(RF), antenna, and propagation effects, reconfigurable systems
increase the performance of wireless systems separately from
other types of signal processing.

There are a large number of existing designs for recon-
figurable antennas; the implementation significantly affects
which parameters are modifiable and the extent of recon-
figurability. Designs based on electronic switches, for exam-
ple, use PIN diodes or RF microelectromechanical systems
(MEMS) to shift between operating modes. These designs
change frequency between two or more bands [9]-[11], switch
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polarization angles [9], [12], alter the radiation pattern [9],
[13], [14], and perform bandwidth reconfiguration [15]. While
relatively easy to implement, switch-based antenna reconfig-
uration requires potentially bulky biasing circuitry and only
provides a few modes of operation. Mechanical devices also
provide tunable control of the electrical properties of antennas
by moving different components [16], [17]. Mechanically
reconfigurable antennas have the advantage of greater control
and flexibility for reconfiguration over switches, but at the
cost of increased complexity and power consumption. Novel
materials, such as graphene metasurfaces and liquid metals,
have also been used to create reconfigurable antennas that
are more compact and operationally flexible. Metasurfaces
have already been studied extensively for their use with
antennas [18]-[20] and antenna arrays [21]-[25], altering the
characteristics of antennas to achieve a wideband operation
and increased gain with a low-profile. Room temperature
liquid metals also enable a great degree of reconfigurability by
leveraging a large range of conductor arrangements [26]—[29].
The aforementioned solutions enable the reconfigurability of
numerous antenna parameters at various frequency bands and
can therefore be readily implemented in existing wireless
deployments.

Reconfigurable arrays increase the throughput of MIMO
systems by promoting beneficial channel conditions. For ex-
ample, reconfigurable systems combat depolarization, improve
array directivity and beamforming, and switch operating fre-
quencies to improve signal reception. The use of reconfig-
urable gain patterns has been applied to a variety of prob-
lems in wireless communication, including single-user MIMO
[30], [31], multi-user MIMO [32], multi-hop communication
[33], and channel estimation and mode selection [34]. Joint
polarization reconfiguration at the transmitter and receiver
increases throughput by adapting to the channel depolarization
conditions [35], [36]. Other array properties, such as the array
spacing and orientation improve performance by adjusting the
rank and singular values of the channel depending on the SNR
[7], [8]. An important benefit of reconfigurable antennas is that
the aforementioned functions can be leveraged concurrently
with advanced signal processing algorithms.

We focus on the use of a single-port polarization recon-
figurable arrays to increase the performance in a wideband
single-user MIMO system. While efficient in terms of size
constraints, dual-polarized systems require double the num-
ber of RF chains since each array element has two ports.
This can lead to increased power consumption and more
complex feeding, especially in systems with a large number
of antennas [36], [37]. The reduced power consumption of



polarization reconfigurable arrays could be leveraged for low-
energy devices or to enable higher quality RF components,
such as high-resolution data converters. In addition, some
types of reconfigurable antennas, such as metasurface antennas
[25], [38], function as large contiguous apertures. This can
significantly impact their implementation as co-located dual-
polarized arrays. While there is a substantial body of work
focusing on dual-polarized arrays [39]-[45], there are only
a few studies that have leveraged single-port polarization
reconfiguration. The achievable rate benefits of polarization
reconfigurable antennas are studied from a signal processing
perspective in [35], [36], where a norm objective is used to
develop an iterative approach to polarization optimization in
a narrowband setting. Polarization reconfiguration and spatial
modulation are combined in [46] to develop an efficient
resource allocation algorithm. An experimental setup in [47]
consisting of two quad-polarized antennas demonstrates that
polarization diversity increases the system achievable rate
by leveraging uncorrelated polarization channels. Results in
[48] also show how channel depolarization knowledge can
be used to perform power allocation across two orthogonal
polarizations to achieve significant SNR gains.

We solve the problem of optimizing the linear polarization
of each antenna in a polarization reconfigurable wideband
MIMO system to maximize the spectral efficiency. Compared
to our preliminary work [1], which only addresses polarization
reconfiguration at the transmitter in a narrowband communi-
cation, we provide a more thorough analysis of polarization
reconfiguration and provide new methods for polarization
reconfiguration at both the transmitter and receiver. We use
the double-directional channel model in [49] to account for
the effects of channel and antenna depolarization, relative
rotations, and the co-polarization and cross-polarization of
each antenna element. Rather than directly optimizing the
spectral efficiency, we relax the optimization objective by
using Jensen’s inequality to maximize the sum of the channel
Frobenius norm for each subcarrier. The relaxed objective
and the analytical channel model allows us to derive closed-
form expressions for the polarization of one of the arrays
when the polarization of the other array is fixed. Polarization
reconfiguration at both ends can then be achieved in an
iterative fashion. In contrast to prior work on polarization
reconfiguration [35], [36], [46]-[48], we provide closed-form
expressions for the optimized polarization angles and objective
function in a more general wideband scenario, which simplifies
the joint polarization optimization. In addition, these expres-
sions are leveraged in analyzing the system performance in
the remainder of the work. This analysis raises a number of
key insights related to how the channel relates to the optimal
polarization angle.

To simplify the optimization, we also suggest a subarray
approach to polarization reconfiguration. Subarray architec-
tures are useful in MIMO systems with limited numbers of
RF chains due to lower hardware complexity with only a
small loss in performance [50], [51]. Likewise, the subarray
method simplifies the hardware design in a reconfigurable
system by allowing the polarization of groups of antennas
to be controlled in conjunction. For example, metasurface

antennas which are tuned using biasing voltages can all be
controlled simultaneously. In addition, a mechanically recon-
figurable array that is rotated to change the polarization of
all the antennas together can also use this method. We also
derive upper bounds on the sum channel norm based on
the unpolarized channel matrix, which is defined later, and
develop a method for polarization reconfiguration based on
maximizing those bounds. Simulation results with wideband
systems demonstrate the efficacy of both the subarray approach
and the bound maximization method, which indicates that
polarization reconfiguration can be successfully achieved with
low feedback and computational overhead.

This paper is organized as follows: In Section II, we
describe the signal model, reconfigurable array model, and the
channel model. In Section III, we formulate the polarization
optimization problem and derive methods for optimization. In
Section IV, we derive the channel norm upper bounds and
discuss a method for polarization reconfiguration based on
maximizing those bounds. We discuss the overhead associated
with quantized polarization reconfiguration feedback in Sec-
tion V. In Section VI, we present numerical results to showcase
the proposed methods. We summarize the results and provide
concluding remarks in Section VIIL.

Notation: A bold lowercase letter a denotes a column vector,
a bold uppercase letter A denotes a matrix. The matrix AT de-
notes the transpose of A, AT denotes the nontransposed conju-
gate of A, A* denotes the conjugate transpose of A, and || A|| -
denotes the Frobenius norm of A. D = diag(d;,da,...,dn)
denotes the diagonal matrix D with diagonal entries given
by di,ds,...,dy and B = blkdiag(D;,Ds,...,Dy) de-
notes the block diagonal matrix B composed of the blocks
D,,D,, ..., Dy along the diagonal. For an N x N Hermitian
matrix A, \,,(A) denotes the nth dominant eigenvalue ordered
in descending fashion with A;(A) being the largest. The
distribution N(u, 02) denotes a circularly-symmetric complex
Gaussian with mean 4 and variance o2. We denote j = v/—1.
For a complex number z = x + jy, we denote Re[z] = = and
Im[z] = y. The function tan; ' (a, b) denotes the two-argument
inverse tangent, which finds the angle between the positive z-
axis and the line to the point connecting the origin and the
point (a,b), and 14(-) denotes the indicator function of the
set A. The operator ® denotes the element-wise product for
matrices and the operator ® denotes the Kronecker product
for matrices.

II. SYSTEM MODEL

In this section, we describe the models for the different
components of the system. We overview the wideband MIMO
signal model. We then describe the model for a polarization
reconfigurable array. We incorporate the array model into
a double-directional channel model that accounts for both
antenna and channel depolarization. We conclude the section
by developing an equivalent model that separates the recon-
figurable component from the rest of the channel.

A. Signal model

We first present the signal model of a single-user wideband
MIMO system using ortogonal frequency-division multiplex-



ing (OFDM). A transmitter equipped with [V, antennas com-
municates with a receiver equipped with N, antennas. The
transmitter sends N data streams across K subcarriers to the
receiver. The symbol vector for the kth subcarrier s € C™s
is precoded with F;, € CNe*Ns yielding the transmit signal

X = FkSk. (1)

We assume the symbol vector is zero-mean and satisfies
E [sesi] = In..

The transmit signal is sent across the frequency-selective
channel H;, € CM>*M: The receive antennas observe the
signal y,. We assume perfect synchronization at the receiver.
Both time and frequency synchronization are not affected by
the polarization reconfigurable antennas and can be performed
using standard methods in literature [52]. Let nj denote the
noise vector for the kth subcarrier with independent and
identically distributed entries with distribution N'(0, 02). The
received signal is then given by

Y, = HgFisi + ng. 2

To simplify the analysis of polarization reconfiguration, we
assume an optimum receiver that can jointly decode the
received data streams [53].

While this appears to be a standard MIMO signal model, the
addition of reconfigurable antennas plays an important role in
the channel model. We now discuss the reconfigurable antenna
array models. We also discuss antenna polarization and its
effect on the array characteristics.

B. Array model

Electromagnetic waves radiated by antennas are composed
of oscillating electric and magnetic fields that are perpen-
dicular to the direction of propagation. The polarization of
an antenna generally refers to the orientation of the elec-
tric field oscillations. Antennas are commonly designed with
an intended polarization, which is referred to as the co-
polarization. A component of the radiated field may also
be present in the orthogonal polarization, referred to as the
cross-polarization. Let ¢ be direction-of-departure or -arrival,
which accounts for both the azimuthal angle ¢,, and the
elevation angle ¢¢. For a given antenna, let Gc(¢p) denote
the gain pattern in the co-polarization direction and Gx(¢)
denote the gain pattern in the cross-polarization direction. The
cross-pol pattern is generally much weaker than the co-pol
pattern in linear polarized systems, but elliptical and circular
polarization require the two polarization patterns to have near-
equal strength. As an example, we can denote the inverse
cross-polarization discrimination (XPD) of an antenna as ant
and let Gc = 1/4/1 + Xant and Gx = v/Xant/1 + Xant for all
angles. Antennas generally exhibit high XPDs, meaning that
Xant 18 small. The net antenna gain pattern is characterized
by examining the gain pattern in two orthogonal polarization
directions.

The antenna gain pattern can also be expressed in terms
of horizontal direction and vertical directions, which are
specified with reference to the antenna coordinate system,
i.e., locally. Let Gu(¢) be the horizontal polarization gain

pattern and Gy (¢) be the vertical polarization gain pattern.
The relationship between the co-pol/cross-pol patterns and
the horizontal/vertical patterns are captured through a simple
coordinate rotation. Let 6 denote the antenna co-polarization
angle and define Q(#) to be the Givens rotation matrix

cosf sinf
—sind } '

3)

cos

Q) - |

Then, we have the following expression relating the two sets
of coordinates:

[Gn(9) Gv(@)]" = Q) [Gc(o) Ox(d)] . @

The local co-pol and cross-pol coordinates will be used for
describing the antenna patterns of the transmitter and receiver,
while the horizontal and vertical coordinates will provide
a common reference to characterize propagation over the
wireless channel.

Array responses can be described using a vector a(¢) that
specifies the relative phase differences between the antenna
elements. For an N element uniform linear array operating at
wavelength A\ and inter-element spacing d, the array response
vector at azimuth angle ¢,, is

) . . . T
a((baz) -1 6—1271'% sinaz ., e—]27r%(N—1) sm¢aZ:| ] 5)

For a uniform planar array, the array response vector needs to
account for the azimuth angle ¢,, and elevation angle ¢. If
the array is in the yz-plane with N, elements in the y-direction
and N, elements in the N, direction, the two-dimensional
array response can be vectorized as

a((baz; QSeI) —|1... 67j27r%(ny Sin ¢az Sin e +nz COS ¢el) | | .

i R X T
o327 (N —1) sin ¢az sin ga+(N=—1) cos del)

(6)

Here, we assume the vectorization is applied over the y-
axis, but it can also be applied over the z-axis. The array
response vector in this form, however, only provides a mean
of analyzing the response of an array of isotropic antennas.
In practice, the antenna responses, which include the gain
patterns and polarizations, should also be taken into account.

We apply the array model in [49] to model the array re-
sponse of an array of non-isotropic antennas. Since the antenna
gain patterns are separated into two polarization components,
we define the NV x 2 array response matrix A(¢) to account
for the phase, gain pattern, and polarization differences. For
the nth antenna, let Gy , denote the horizontal gain pattern
and Gy ,, denote the vertical gain pattern. We define the array
net response matrix as

Gh,1(®)  Gvi(o)
Ave(9) = (al@) @ 1 1]) © : : (D
Gun(®) Gv.n(o)

The array net response matrix is composed of two columns,
each of which corresponds to a modified array response vector
that accounts for the gain pattern of a particular polarization.



The array net response matrix in (7) expressed in terms
of the co-polarization gain Gc, and cross-polarization gain
Gx,n. We let Oc, denote the polarization angle of the nth
antenna and let & = [0, ...0y] be a vector containing the
polarization angles for the entire array. We additionally define
the polarization angle vector for an angle 6 as

p(6) = [cosf sin6]", 8)

the polarization matrix for the array as

P(6) = blkdiag(p(61), -+, p(On)) ©)
and the antenna gain matrix J,(¢) as
_ gC,n(d)) gX,n(d))
Jn(@p) = Oxn(®) —Gen(d) (10)
Then, the array net response matrix is then expressed as
J1(9)
Ana(g) ={a(@) @1 1]} OPT(0) | (1)
In(9)

In this form, the effect of polarization Aet(¢) is completely
specified by P(0).

We assume that both the receive and transmit arrays are
polarization reconfigurable. We model reconfigurability of the
array as the ability to control 8 within a feasible set ©. When
each polarization angle 6,, changes, the antenna effectively
rotates its polarization relative to the horizontal and vertical
directions. Unless otherwise stated, each antenna is assumed
to be able to individually reconfigure its polarization. This
models a polarization change in a linearly polarized system.
While changes from linear to and from circular or elliptical
polarization could also be modeled, this requires the co-pol
and cross-pol gain patterns to change as well. For analytical
tractability, we will assume that the gain patterns of each
antenna do not change as a function of the polarization angle.

The feasible set of polarizations depends on the degree of
reconfigurability of the system. For the majority of this paper,
we will assume that each polarization angle # lies in the range
[-7/2, w/2). The coordinate change relationship (4) shows
that a polarization angle rotation of 7 results in a phase shift
of 7 of both patterns. Since this phase term is arbitrary, we
restrict the feasible set of polarizations to have a range of 7
without loss of generality. A practical scenario in which the
polarizations are quantized is discussed in Section V.

C. Channel model

The wideband channel model is obtained by combining the
array model with a double-directional channel model as in
[49]. The channel is composed of L paths from the transmitter
to the receiver. The (th path is distinguished by a complex path
gain oy, a path delay 7, a direction of departure (DOD) ¢y s,
a direction of arrival (DOA) ¢, and a 2 x 2 depolarization
matrix X,. In addition, we denote 1 as the rotation angle
between the local polarization coordinates at the transmitter
and the local polarization coordinates at the receiver. We let
v(7) be the filter that captures low-pass filtering and pulse

shaping as a function of time 7, and let 7" denote the sampling
period.

We first describe the time-domain and frequency-domain
representations of the channel. In the remainder of the paper,
we will use the subscripts t to denote transmit-side and r
to denote receive-side. For a channel with D delay taps, the
discrete delay d channel Hy is given by

L

Hd = Z Otg’l}(dT - TE)Anet,r(qu,r)Q(q/})Xf,d (Anet,t((ﬁf,t))T;
{=1
(12)

where the depolarization matrix varies over lag. Let the
coefficient vy ;, denote

—j2mkd

v(dT —T)e &, (13)

and let X, be the 2 x 2 depolarization matrix for the kth
subcarrier and fth path. We also combine the terms o, and v, i,
into a single term By . Then the channel frequency response
matrix for the kth subcarrier is given as

L
Hk = ZBl,kAnet,r(d)é,r)Q(zp)Xé,k (Anet,t(¢€,t>)T- (14)

(=1

While not explicitly stated, the array steering matrices can also
vary as a function of the subcarrier k, for example, in cases
where beam squint is relevant. We focus on frequency-domain
processing in the remainder of this paper.

We leverage an alternate channel representation to simplify
the polarization reconfiguration operation. For convenience,
we momentarily assume a single-path channel and drop the
path index ¢. Let Hg,, n, denote the (n,,n:)th element of
H;, arn, be the ncth element of the receive steering vector,
and ay ,, be the nith element of the transmit steering vector.
Expanding (14) and using the fact that

Q) [Gc(¢) Gx()]" = T(9)p(6),

the elements of the channel are

Hi e :pT(Qr,nr)Jr,n, (ﬁk ar,nr((ﬁr)Q(w)xkat,nt((ﬁt)) X
I p(Oen,)- (16)

5)

The polarization vectors, as defined in (8), effectively combine
the two orthogonal polarizations present in the channel at
the transmitter and receiver. We then define the unpolarized
channel for antenna pair (n,,n;) as the 2 X 2 matrix

Hup,k,nr,nt = Jr,nr (ﬁk ar,n,(d)r)Q(w)xka’Int(d)t)) Jg—nt
A7)
The term “unpolarized” here refers to the fact that the po-
larizations of the arrays are not included. To construct the
unpolarized channel matrix for all of the antennas, we let J,
denote the 2N x 2N block diagonal matrix

Jy = bikdiag (J1(e), ..., In () - (18)
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Fig. 1: Illustration of the polarization reconfigurable MIMO system. The channel Hy(8,, 6;) is represented by polarization

precoding and combining over the unpolarized channel Hyp, ;.

Reintroducing the multi-path channel and the subcarrier index
k, the unpolarized MIMO channel is then be expressed as

Hup k —ZJ,z ((ﬁe N YR ENCY) t)) ® Q(w)xe,k> Ji
(19)

The unpolarized MIMO channel effectively acts as a virtual
dual-polarized channel, where each array element is com-
posed of two orthogonally polarized antennas. Unlike a dual-
polarized system, however, the reconfigurable system only has
a single port for each antenna.

The polarized channel Hj, is computed by reincorporating
the polarization of each antenna. Let 6, be the receive polar-
ization angle vector and 8, be the transmit polarization angle
vector. Then the channel matrix is given by

H.(6,,6,) = PT(6,)H,, . P(6;).

The polarization matrices effectively combine the entries of
the unpolarized channel according to the polarization of each
antenna at the transmitter and receiver, as shown in Fig. 1.

The benefit of the decomposition shown in (20) is that it
decouples the polarization reconfiguration from the rest of the
channel. In this manner, the unpolarized channel H,, x does
not change when reconfiguring the arrays, and the matrices P
is designed based on H, ;. In the next section, we leverage
this channel representation to optimize the polarization angle
at the transmitter and the receiver.

(20)

D. Problem formulation

We now formulate the polarization angle optimization for
the wideband MIMO system. Both the transmit and receive
arrays are assumed to be polarization reconfigurable. As
discussed in Section II-B, we model reconfigurability by
assuming that 6, and 6, are adjustable. This changes the
polarization matrices, which then affects the channel matrix.

We assume that both Hy, and H,, ;. are known at the trans-
mitter and receiver. The unpolarized channel can be estimated
by training with two orthogonal polarizations at each end,
where each polarized channel can be obtained using existing

channel estimation algorithms from the literature. From (16),
by appropriately setting both 6, ,,, = 0,7/2 and 6, ,, = 0,7/2,
the entries of each 2 x 2 matrix in (17), are isolated. Other
orthogonal polarization pairs could also be applied in tandem
with an appropriate linear transformation to obtain H,p .

The system objective is to find the polarization angle vectors
6; and 0, and precoder F to maximize the mutual information
given a transmit power constraint P. This optimization is
formulated as

Zlog2
Ztr(F,?Fk) <P
k=1

For fixed transmit and receive polarizations, an appropriate
choice of precoder Fj diagonalizes the channel, and the
optimal achievable rate is obtained by waterfilling over the
channel [53]. Waterfilling diagonalizes the channel and then
allocates power P j, to the sth stream and kth subcarrier. The
resulting achievable spectral efficiency is given by

¢ ({Hk(enet }§f1>
= i%lng (1 + (Hk(arvHt)HZ(anet))Ps,k) )

k=1s=1

H; (6, 0,)F,F H.(0,,6,)

max
6.c06.,6,co, F

21

(22)

Given the water level i, the powers p;  is calculated as

0.2
For = (“ - A5<Hk<emet>Hz<er,ot>>> @

and p is then chosen to satisfy the total power constraint

K s
Y>> Pp=P

k=1s=1

(24)

Unfortunately, the intertwined nature of the polarization angles
and waterfilling solution make it difficult to directly optimize
(22).



We apply Jensen’s inequality to (22) to separate the effect
of polarization reconfiguration from precoding. Exploiting
log det concavity [53],

C ({Hk(erv Ot)}::1> <

K Ng1
s 1082 O_E

p K
< K N log, 1+mZHHk(0ra0t)Hir )
SUN k=1

(25)

where the first inequality follows from Jensen’s inequality and
the second from the total power constraint. A uniform power
allocation would result in equality in the second step. The
bound in (25) only depends on the polarization angle vectors at
the transmitter and receiver. We therefore focus on optimizing
the polarization angles by maximizing the upper bound as

K
Z HPrTHup,th
k=1

Once the optimal polarization angles are found, the precoder
is then designed to waterfill over the reconfigured channel.
While the power constraint does not play a part in (26), it will
affect the spectral efficiency performance once waterfilling is
performed over the optimized channel. We also note that the
analysis could also be extended to hybrid and analog pre-
coding by designing the precoder to approximate the optimal
waterfilling solution over H(6,, 8;). As shown in the following
sections, the relaxation yields feasible optimizations of the
polarization angles.

(26)

max

2
6,€0,, 0,€0, F

III. WIDEBAND MIMO POLARIZATION ANGLE
OPTIMIZATION

We develop a few different solutions to the problem in (26)
in this section. We present a method that is optimal but requires
a difficult multivariate optimization, as well as a suboptimal
but efficient algorithm based on an upper bound maximization.
We describe how to optimize the transmit and receive polar-
ization angles separately. We discuss the case in which the
polarization angle of each antenna is reconfigured separately,
and a subarray approach in which groups of antennas have
the same polarization. We end the section with a discussion
on joint optimization of the transmit and receive polarizations.

A. Unilateral polarization optimization

For this first method the system aims to maximize
Z,If:l HPT(@,)HUP,;CP(Ht)Hi7 by optimizing one of the polar-
ization matrices given the other is fixed. For simplicity, we will
drop the dependence of the polarization matrix P(6¢) on ¢
and simply denote it as P. Similarly, we will let P, = P(0¢.).

We show that unilateral polarization optimization of each
antenna can be performed independently from the other ele-
ments. In the case that P, is fixed, we define the matrix C,
as

K
Cr=> Hi, PP Hy, 27)
k=1

which we will refer to as the receive-polarized channel Gram
matrix. Similarly, if P, is fixed, we define the transmit-
polarized channel Gram matrix as

K

Ci =) HyiP:P{H, . (28)
k=1

The objective function in (26) is then expressed as

K
2

> HP,THuMPt — tr (PtTCrPt):tr (PrTCtP,).
F

k=1

(29)
Without loss of generality, the system focuses optimizing the
length IV angle vector 6 for the 2N x 2N unilaterally polarized
channel Gram matrix C as

0opt = argmax tr (PT(H)CP(0)> .
6co

(30)

To simplify (30), we partition C into 2 x 2 block matrices
and denote the (7, j)th block matrix as C; ;. Due to the
block diagonal form of P, the nth diagonal term of the
matrix PTCP, denoted as +,, and referred to as the nth post-
polarization gain, is written in terms of the polarization vectors
Pn = p(0y) as

Yn = Py CrnnPn- 31)

The nth polarization can be optimized by maximizing the
corresponding post-polarization gain.

The following Lemma describes how to find the optimal
polarization angle given C,, .

Lemma 1. Let C be a 2 x 2 Hermitian matrix with (i,7)th
entry c; j, and let p(0) = [cosO sin6]". Then, the angle 0
that maximizes p' (0)Cp(0) is given as

Oopt (C) = argmax pT(H)Cp(G)
0

1
= 75 tan;l(Q Re[0172}, 61’1 — 6272). (32)
The optimal value is given as
max p' (0)Cp(0) = A1 (Re[C)) (33)

c11+c¢ c11—¢C 2 2
_ 1,12 2,2+ (1,12 2,2> 4 Re [61,2] .

Proof: The objective p(0)Cp(0) is written as
p'(9)Cp(9)
Re[C]

—[pT@) o 0} [Im[c]
=p' (6) Re[C]p(0).

IO
(34

Since Re[C] is a real symmetric 2 X 2 matrix, it admits a
decomposition in terms of a rotation matrix with angle ¢ and
a diagonal matrix A = diag(A,, Ap) as [54]

Re[C] = Q" (¢)AQ(yp).

The vector x that maximizes x' Re[C]x is one of the eigen-
vectors of Re[C], which is either p(—¢) or p(—¢ + 7/2)
depending on the ordering of A, and A,. From [54], A\, > Ay

(35)



when c1,1 > ¢22, and A, < A, otherwise. The optimal angle,
denoted as o, (C) is therefore given as

aopt(c) = —¢ + 1[>\1,oo)(>‘2> : 71—/27

where the =+ is irrelevant due to the invariance of the objective
to sign changes of the solution vector but included for simpli-
fication purposes. Using [54, eq. (3.5)], the optimal angle is
written in terms of the elements of C as in (32), where the +
allows the simplification to tan, ! The optimal value in (33)
is given by the largest eigenvalue of Re[C], which is obtained
in closed-form from [54, egs. (3.2)-(3.3)]. |

Lemma 1 is applied to each of the C,, ,, to obtain the nth op-
timal angle that maximizes the post-polarization gain, given as
oopt(cn,n)- Letting aopt(C) = [eopt(cl,l) e eopt(CN,N)]Ta
Lemma 1 also yields the optimal value of the objective in (30)
as

(36)

tr (PT (eopt (C))CP OPt
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The optimal angles and values can be computed efficiently
using fast diagonalization techniques [54] or the cosine-sine
decomposition [55].

Remark 1: The optimal angle expression given in (32) lies
in the range [—7/2,7/2). This corresponds with the intuition
that rotating the polarization angle by 7 will not affect the
system.

Remark 2: Lemma 1 highlights the relationship between the
optimal polarization angle and the eigendecomposition of the
real part of the unilaterally polarized channel Gram matrix C.
Only the real part of C is relevant for the optimization because
the system optimizes over linear polarizations, in which the
co-pol and cross-pol components are in-phase. We expect that
a polarization reconfiguration method that allowed elliptical
polarizations would involve the imaginary part of C as well.

As noted earlier, the unilateral reconfiguration method can
be applied to find both the transmit polarization and receive
polarization with the proper definition of C. This method can
be applied when only one side of the link is reconfigurable. An
alternating maximization using this maximization to iteratively
optimize the receive and transmit polarizations could also be
applied as discussed in [36]. As an alternative, we develop
a solution that is guaranteed to maximize the channel norm
and a practical solution that is easy to compute. The closed-
form expression for the optimal polarization will allow us to
develop and analyze the performance of different reconfigura-
tion techniques in the following sections.

B. Subarray optimization

The method presented in the previous section finds the
optimal polarization for each antenna assuming individual
reconfiguration. We show that the system can perform a
similar technique when groups of antennas use the same
polarization angle by simply grouping the post-polarization
gains and appropriately applying Lemma 1. We will also
demonstrate that this subarray method is suboptimal to the
array optimization and discuss cases in which equality holds.

We again drop the notation indicating whether we are tar-
geting the receiver or the transmitter. Let N = {1,2,..., N}
denote the indices of the antenna elements. Let M denote
the number of subarrays and let N,, C A denote the
mth subarray. We assume that the set of subarrays P =
{Nm } —; is mutually exclusive and collectively exhaustive,
ie., U 1 N =N and N, NNy, = 0 for mq # mo. The
subarray polarization constraint restricts the polarization angle
of each antenna in subarray A, to be equal so that 6,,, = 0,
for any n1, no € N,,.

From (31), if the polarization angles of each antenna in
a subarray are identical, then the corresponding C,, ,, can be
added together to find the optimal polarization for the subarray.
We define the subarray unilaterally polarized channel Gram

matrix as
= E Chn-
neNm

(38)

The optimal polarization angle for subarray A, is then
obtained by applying Lemma 1 and taking Cu,  as the
argument, yielding the angle 0,5t (Cy, ). We let Oope 2 (C)
denote the optimal polarization angle vector for the subar-
ray partition P. The nth entry of O, »(C) is given by

Zﬁ;le Oopt (Ca,,. )1, (n) and the resulting channel norm is
given by

t (PT (Gope,p(C))CP (Gope (C))) = 3 Mi(Re[Chy, -

(39)
The per-element and subarray reconfiguration methods are
directly compared, and the following result shows the sub-
optimality of the subarray approach.

Lemma 2. Let P; = {Ny(nl)}%lzl and Py = {Nm 2)}m 9
two subarray partitions with N divisible by both. Let k be a
positive integer and M, = kM,. Furthermore, assume that
the subarray partition Py subdivides Py, i.e.,

][j N,
J

j=k(m—1)+1

N = (40)

Then, the optimized channel norm of the coarser partition is
smaller than that of the finer one:

tr (P (Bope, 7, (C)) CP (G 7, (C))) 1)
< tr (PT (Gopt P, (C)) CP (Gope 7,(C)) )
If, furthermore, we have that for each m = ., My,

Re[C, )] and Re[C

dominant eigenvector, then equality holds in (41).

], [CN<2)] have the same

Proof:  From (39) it suffices to show that

M . )
Yot M([Cy]) € 302 M([Cp)). Applying Weyl's
inequality for eigenvalues of sums of Hermitian matrices



[56], we have

My

Z A1 (Re[CNu)])

m=1
M- km

= Z )\1 Z RG[CN;z)]
m=1 j=k(m—1)+1 i
M,y km

<> Y MRe[Cye))

(42)

The equality condition is verified from the definition of an
eigenvector. Let v,,, be the dominant eigenvector of Re[C Nm]

and Re[C, 2 J;+++ . [Cpr@]. It follows that for each m
k(m—1)+1 km
/\1 (RG[CN(1)]) Re[C (1)]Vm
km
= Z Re[CNJ@)]vm
j=k(m—1)+1
km
= Z A1 (Re[CNgz)]). 43)
j=k(m—1)+1 !
Therefore, equality holds in (42). ]

Remark 3: This theorem demonstrates that allowing more
antennas to be reconfigurable will increase the resulting chan-
nel norm. At the two extremes, we see that per-element recon-
figurabililty will lead to the highest norm, and reconfiguring
the array as a whole will result in the lowest norm. We show
equality holds in Lemma 2 for single-path propagation when
the antennas in each array have the same gain patterns. We
will examine transmit polarization reconfiguration and take
C = C,. For this case, we assume that all transmit antennas
have the same gain pattern and assume likewise with the
receive antennas. We further assume that each receive antenna
is identically polarized with angle 6, in this example. We
define the matrix R(6) as

cos? 6 cos fsin 0
R(6) = cos @ sin @ sin? 0 (a4)
Then,
Crnm = No|B P Jwr]? T X* Q) TIIR(6,)IT Q1) X ..

(45)

Each C, ,, is not dependent on n and, therefore, all share
the same eigenvectors. From the conditions in Lemma 2, the
optimal polarization reconfiguration at each transmit antenna
achieves the same channel norm as optimal polarization recon-
figuration of the array as a whole. This result is intuitive since
the receive antennas are identically polarized and the transmit
antenna polarizations only need to be matched for the single
path.

C. Joint polarization optimization

So far, we have derived the optimal polarization angle
at one transceiver to maximize the channel norm given the
polarization at the other end is fixed. We now leverage the
derived expressions to find the optimal polarization angle at
the other end of the link.

For clarity, we describe the algorithm from the perspective
of the receiver, but the procedure can be applied at the
transmitter as well. The optimal polarization angle at the
transmitter is computed in terms of the matrix C; defined in
(28). This matrix can be expressed in terms of the polarization
angle at the receiver and the unpolarized channel matrix Hyp 1.
Using the definition of the unpolarized channel entries in (17),
C, n.n, 18 expressed as

SR

k=1n,=1

Recalling (33), the optimal channel norm after unilateral
reconfiguration is determined by the elements of C, ,, n,.
Because of this, the optimized channel norm can be written in
terms of the polarization angles 6, ,,,. Closed-form expressions
for the channel norm in terms of 6, ,, can be obtained by
expanding the matrix product in (46) but are omitted due to
space limitations.

For joint optimization, the system, therefore, first solves the
problem

up,k,nr,ne *R(ar nr)Hup,k,n,,nt~ (46)

rnt nt

Or.0pt = ATgMAX tr (PT(Hopt(C,(H,)))C,P(Bopt(C,(O,)))) ,

6,co,

(47)
where the dependence of C, on 6, is explicitly stated.
Once the optimal receive polarization is found, the system
computes C, and the optimal transmit polarization angle
0: opt(C:). The dimensionality of the optimization can be
significantly reduced through subarray method. In this case,
the system sets the appropriate constraints on the receive
polarization angle and solves the joint optimization as before.
Let P, {Mm} . be the set of receive subarrays with M,
elements and Pt{./\/t m} t, the set of transmit subarrays
with M; elements. The systems first finds the optimal receive
polarization angle with the appropriate subarray constraint as

8, o (48)
= argmax tr (PT(Bopt,Pt(Cr(er)))crp(eopt,ﬂ(Cr(erD))
0,€0,

s.t. Gr,i = 9,,]- if 2,5 € M,ma vm=1,2,..., M,.

The optimal transmit polarization is then given as O oot =
Oopt. P, (Ct(0; opt)). The transmit subarray constraint is also
included in the objective function. In Section VI, we show
that the subarray method achieves performance close to that
of per-element reconfiguration.

IV. PERFORMANCE BOUNDS

In this section, we derive upper bounds on the sum channel
Frobenius norm. We leverage the bounds to derive a low-
complexity method for joint optimization of the transmit and
receive polarization angles. The key result of this section



is given in the Lemma 3, which gives an upper bound for
unilateral reconfiguration in terms of C, or C;. An upper
bound for joint reconfiguration is also given in Lemma 4.

Lemma 3. Let 0, be a fixed polarization angle vector at the
receiver. For any transmit polarization angle vector 0, we
have the following upper bound:

K
ST(He(6:, 80| < tx(C).

(49)
k=1
Likewise, if 0y is fixed, then
K 2
Z||Hk(0,,0t)||F < tr(Cy) (50)
k=1
for any 6,.
Proof: From (29), we have that
K 2
ZHPrTHupyth = (PtTCrPt) . (51)
k=1

We will use the Poincaré Separation Theorem [57, p. 190] to
bound (51). Let A be an arbitrary M x M Hermitian matrix,
and let B be a M x N semi-unitary matrix such that N < M
and B*B = I. The Poincaré Separation Theorem states that

Nivm-n(A) < N(BTAB) < \(A). (52)

Applying (52) to (29) with A = C, and B = P, we have

2Ny
tr (PtT CrPt) =Y A.(PICPy

ny=1

< Z An (Cr)

ny=1

=tr(C,), (53)

where we have used the fact that C, is rank N;. Similar steps
are applied to obtain (50). ]

Lemma 4. For any polarization angle vectors 8, and 6., the
following inequality holds:

K 2 K 2
S8 02 < [
k=1 k=1

Proof: We start with the inequality in the previous theo-

(54)

rem

K K
ST IH(6:,60) |7 < tr(Co) = S tr(PTHup i HY, 1 Po).
k=1 k=1

(55)

We again apply the Poincaré Separation Theorem to (55) to
obtain

K K N,
>~ tr (PTHupHy, Py ) < ZZ - (HupiHip )
k=1 k=1n,=1
K
= Zt (Hup kHup k)
k=1
i 2
= 2 _[Hupe
k=1
which completes the proof. [ ]

Remark 4: The inequalities in Lemmas 3 and 4 are tlghter
than what would be obtained by applying the bound || AB||? » <
[IA]l FHB|| 7. For example, applying this bound would result
in

IH(8,. 0| < NNy Hup % (56)

which is larger than the proposed bound and becomes worse
as we scale the number of antennas.

In Lemma 3, we have essentially bounded the sum channel
Frobenius norm in terms of the unpolarized channel H,;, 5, and
the polarization angle at the receiver or transmitter. Rather
than performing the joint optimization by solving (47), the
system optimize the upper bound in Lemma 3 and then use
this angle to find the polarization at the other end. We again
describe the algorithm from the perspective of the receiver
and attempt to maximize the upper bound tr(C,). We have
that tr(C,) = tlr(PrT(Xj,cK:1 HypxHup x)P;). Therefore, the
system applies the same algorithm as in Section III-A to find
the receive polarization angle that maximizes this upper bound.
We denote this approach as the bound maximization (BM)
approach.

We let 6, gv denote the receive polarization vector that
maximizes tr(C,), given as

K
0, gm = argmax tr(C,) = Oopt Z ij_kHup,k . (37
6,€0, pt '

The system uses this angle to compute P(6,gm) and get
the optimized matrix C,, denoted as C, gm. The system then
computes the transmit polarization angle vector as

Ot,BM - aopt(Cr,BM)-

As in the previous cases, this method can be combined with
the subarray method at either or both of the arrays.

The BM approach does not require the system to solve a
complicated optimization, as both 6, gm and 6; gy is com-
puted using the closed-form expressions in Section III-A. As
shown in the numerical results, the BM approach achieves
performance close to that of the joint polarization optimization
and is therefore a viable method for a practical polarization
reconfiguration.

(58)

V. FEEDBACK CONSIDERATIONS

Feedback of the optimal polarization angles enables po-
larization reconfiguration at the transmitter in scenarios in
which only the receiver has knowledge of the unpolarized
channel. In these cases, it may be practical to quantize the



polarization angles prior to transmission to reduce overhead.
In addition, the subarray method discussed in Section III-B
reduces overhead by decreasing the number of angles in the
feedback.

Quantization of the polarization angle can be restricted to
the range [—7/2,7/2) due to the periodicity of the effect of
polarization on the channel. Let b, denote the number of bits
used to quantize the polarization angle. Then the polarization
angle ¢ are quantized as 6, from the quantization set (2q as
follows:

—

0q = argmin (0 —6) mod 7|, (59)
0eQy,
where
B T T 7 (2% — )7 7
Qq—{—Q,%—Q«--,%—Z}- (€0

By quantizing the polarization angles to [—7/2,7/2) instead
of [0,27) (as discussed in [36]) we double the quantization
resolution for a given number of bits.

Due to the iterative nature of the optimization methods we
have discussed, quantization can be performed pre-transmit-
optimization or post-transmit-optimization. In pre-transmit-
optimization quantization, the receiver quantizes the optimal
receive polarization angles, transmit these to the transmitter,
and let the transmitter optimize its own polarization based
on the feedback. In post-transmit-optimization, the receiver
optimizes both the transmit and receive polarizations, and then
feeds forward the quantized transmit polarization angles to the
receiver. We focus on post-transmit-optimization quantization,
since the alternative requires having at least partial knowl-
edge of the unpolarized channel matrix. While pre-transmit-
optimization quantization may be preferable in certain cases
due to computational complexity, we focus on post-transmit-
optimization quantization as it is more practically relevant.

The overhead required to feed back the quantized polariza-
tion angles depends on the number of quantization bits and
the number of subarrays used for polarization reconfiguration.
The number of feedback overhead bits bs are computed as

bf = bq + [logy(My)]. (61)

In a time-division duplexing system, the same polarization
angles can be used for both uplink and downlink. To inform the
transmitter of the precoder, the receiver either feeds back the
channel state information after applying the calculated transmit
and receive polarization or a quantized precoder. We leave
the precoder quantization and feedback overhead as a topic
for future work. In the following section, we show simulation
results for different quantization and subarray resolutions and
compare the corresponding feedback overheads.

VI. NUMERICAL RESULTS

In this section, we provide some simulation results showcase
the performance of the proposed polarization reconfiguration
methods. We obtain results with channels generated using
the multi-ray geometric model described in Section II. We
also use the QuaDRiGa channel simulator to demonstrate
the efficacy of the polarization reconfigurable system using

measurement-based channels with more sophisticated path and
depolarization models.

A. Results with double-directional channel model

In this section, we use the double-directional channel model
described in Section II to generate the MIMO channel. We
assume that both the DOAs and DODs have azimuth angles
uniformly distributed in [—7, ) and elevation angles uni-
formly distributed in [—7/2,7/2). The antenna arrays are
modeled as UPAs with half-wavelength spacing at both the
transmitter and receiver. Unless otherwise stated, all antenna
gain patterns are assumed to be identical. The rotation angle
v is also uniformly distributed in the range [—m, 7). In
all methods, we perform waterfilling over the number of
subcarriers and Ny = 4 streams.

Channel depolarization changes the phase and amplitude of
the two signal polarization components, effectively changing
the polarization of the signal. To model channel depolarization,
we define x as the inverse XPD and a?B as the phase change
induced when going from polarization A to polarization B. We
then use a frequency-flat correlation model in which

el

[ 1 jo
XZ = P . VH \/)?evv .
L+x | /xe

e
Unless otherwise stated, the parameter x will be set to 0.2 as
in [45].

We also simulate antenna depolarization by including a
small amount of energy leakage from the co-polarization to
the cross-polarization. Each antenna is modeled identically,
and we assume that the antenna gain pattern does not change
as a function of the direction of arrival or departure. We
let the inverse XPD for the antenna be defined as yant, let
Gc = 1/v/T4 Xant and Gx = /Xant/1 + Xant- With these
definitions, we ensure |Gc|* +|Gx| = 1. In all simulations, we
set Xant = 0.1.

In Fig.2 we plot the spectral efficiency of different polariza-
tion reconfiguration methods compared to the transmit SNR,
which is defined as SNR = P/02. We simulate a wideband
4 x 4 MIMO system. We model a channel with L = 2 paths
as in [58]. The number of subcarriers is set to X = 64 and the
number of channel taps is D = 16. The pulse-shaping filter
is assumed to be a raised-cosine pulse with rolloff factor 0.3.
Since reconfiguration changes the norm of the channel, we
normalize the unpolarized channel as Zszl E[||Hup7k|’§] =
4K N, N; to ensure a fair comparison. As baselines, we em-
ploy static methods in which the respective array retains its
polarization. In this setting, we simulate a static array as
having all of the antennas horizontally polarized. If both array
polarizations are optimized, then the solution is obtained from
the joint polarization optimization in Section III-C. The brute
force approach works by searching over possible polarization
angles to directly maximize the achievable rate expression in
(22). The proposed method in Sec. III-C optimizes the sum
channel norm, while the brute force search maximizes the
achievable rate.

The results demonstrate that any level of polarization recon-
figuration noticeably increases the system performance, while

(62)
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Fig. 2: Spectral efficiency vs. SNR for different polarization
reconfiguration methods in a wideband 4 x 4 MIMO system.
Frequency-flat polarization reconfiguration achieves gains over
the static method even in a wideband setting.
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Fig. 3: Spectral efficiency for different MIMO sizes. We simu-
late N, = 4,16, 64,256 and N; = 4,16, 64, 256. Optimization
at both ends of the link becomes more important for larger
array sizes.

reconfiguration at both ends of the link achieves the highest
performance. Both the BM method and the joint optimiza-
tion method perform close to the brute force optimization.
Even though polarization reconfiguration is frequency-flat, it
achieves a gain over the static method.

The effect of the number of antennas on the system on
the polarization reconfiguration methods is shown in Fig.
3. We use the same parameters for the wideband setting
as in the previous simulation, but the number of channel
paths is set to L = 2 and the SNR is fixed as 0 dB. We
compare the performance of polarization optimization at one
end compared to the BM method. For the BM method, we
examine two cases in which the entire array is forced to

have the same polarization and another in which each antenna
has individual polarization control. Even though the subarray
method only reconfigures a single parameter, it achieves very
close to the individual reconfiguration technique. Polarization
reconfiguration at both ends becomes more relevant as the size
of the arrays increases.

B. Results with QuaDRiGa

In this section, we present simulation results using the
realistic channel simulator QuaDRiGa [59]. The simulator gen-
erates cluster-based double-directional channels by randomly
generating channel parameters using distributions obtained
from measurement campaigns. Arbitrary antenna patterns
and array configurations can also be specified. We leverage
QuaDRiGa to provide a more realistic depolarization and
antenna model with which to validate the proposed methods.

QuaDRiGa generates the continuous-time complex channel
response for each transmit/receive antenna pair, which must be
converted to the frequency domain unpolarized channel. To
obtain the unpolarized channel, each array element consists
of two co-located antennas with orthogonal polarizations.
As described in Section II-B, this creates the virtual dual-
polarized channel, which will be converted to the physical
channel through the polarization matrices. We choose the
corresponding antenna polarizations to be locally horizontal
and vertical.

The effects of pulse-shaping and sampling must be in-
corporated into the QuaDRiGa channel output to obtain a
channel matrix corresponding to (19). QuaDRiGa outputs the
continuous-time channel coefficients corresponding to each
path Hl(,f,) and the corresponding path delays 7,. The bandlim-
ited baseband channel Hyy,(7) is obtained by convolving the
channel response with the pulse-shaping filter as

L
Hyp (1) = %U(T) « | > HES(r — ) (63)
/=1
L
= Z (T — Tg)Hl(Jf,). (64)

~
Il

1

The frequency-domain response is obtained by sampling and
taking the discrete Fourier transform,

L
Hupe = Y ve[KJH. (65)
=1
The expressions in (13) and (65) are used to convert the
QuaDRiGa outputs HE.? and 7, to the frequency domain
channel Hyp 5. The unpolarized channel is normalized as
discussed in the prior section.

We simulate an outdoor urban microcell (UMi) deploy-
ment operating at 2.6 GHz with a bandwidth of 5 MHz.
The transmitter transmits four data streams over K = 256
subcarriers. As in the previous section, a raised-cosine filter
with rolloff factor 0.3 is used for pulse-shaping filter. The
antenna arrays are comprised of triangular bowtie antennas
that are designed to operate at 2.6 GHz using the MATLAB™
Antenna Toolbox. The antennas are vertically polarized and



exhibit a weak pattern in the cross-pol direction. In all of
the following simulations, the transmitter and receiver are
both equipped with uniform linear arrays each composed of
four antennas spaced at half-wavelength. The transmitter is
located at the origin at a height of 1.5 m. Denoting D, as
the distance from the origin to the receiver in meters and
&, as the azimuthal angle, the receiver location is randomly
placed at a location (D, cos&,, D,sin&,,1.5m). We assume
D, is uniformly distributed in the range [50,250] m and &, is
uniformly distributed in [0, 27).

In Figs. 4, we compare the achieved spectral efficiencies
of the proposed polarization optimization algorithms. As an
additional baseline, we also include an alternating minimiza-
tion which iteratively uses the single-sided polarization at
the transmitter and the receiver. The algorithm uses a few
alternating optimizations using the output of the “Rx opt., Tx
static” algorithm. Results for a line-of-sight (LOS) scenario are
shown in Fig. 4(a), and results for a non-LOS (NLOS) scenario
with 20 paths are shown in Fig. 4(b). In both cases, the BM
algorithm achieves a significant gain in spectral efficiency
over the static and even alternating maximization algorithms.
Comparing both scenarios, the polarization reconfiguration
achieves higher gain in the LOS case because the number
paths in the NLOS case prevent polarization reconfiguration
from properly aligning with all of the paths. As before, the per-
array optimization performs nearly-identically to the individual
reconfiguration except for the alternating maximization algo-
rithm. This is because the optimization paths in the iterative
process quickly diverge for the two levels of reconfiguration.

The effect of quantization on polarization reconfiguration
is shown in Fig. 5. The number of bits is assumed to be the
same at both the transmitter and receiver. The BM method
showcases robustness to the effects of quantization and a
significant gain over the static method. By implementing the
BM method with one-bit polarization quantization and the per-
array method, a single bit of feedback can double the spectral
efficiency compared to the static case.

VII. CONCLUSION

We have developed strategies for efficient polarization re-
configuration in a wideband MIMO system. We leveraged
a double-directional channel model to show that adapting
the array polarization effectively performs a pre- or post-
coding operation on an unpolarized version of the channel. We
derived closed-form expressions for the unilateral polarization
configuration and highlighted the relationship between the op-
timal solution and the eigendecomposition of the unilaterally
polarized channel. We also developed upper bounds on the
system performance, and used these bounds to create a low-
complexity method for joint polarization optimization. Simu-
lation results demonstrate that simple polarization reconfigu-
ration techniques, such as the subarray method and the bound
maximization approach, achieve near-optimal performance in
a variety of settings.

The characteristics of polarization reconfigurable communi-
cation open up a number of relevant future research directions.
While we leveraged polarization reconfiguration to minimize
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Fig. 4: Spectral efficiency vs. SNR for different polarization
reconfiguration methods in a UMi wideband deployment with
LOS propagation in (a) and NLOS propagation in (b). The
number of paths slightly reduces the effectiveness of recon-
figuration compared to the LOS scenario.
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Fig. 5: Spectral efficiency vs. the number of quantization bits
at SNR = 10 dB. Successful polarization reconfiguration is
possible even with a single bit of overhead.



the polarization mismatch induced by the antennas and the
wireless channel, this mismatch could equivalently be maxi-
mized to mitigate interference in multi-user communication.
Polarization precoding codebooks can also be leveraged to
provide the benefits of polarization diversity while minimizing
overhead. This work also highlights the importance of esti-
mating the unpolarized channel matrix, which accounts for
wireless propagation across all possible polarizations. While
prior techniques on channel estimation could be used for this
purpose, polarization reconfiguration could also be used to
design efficient channel estimation algorithms that take advan-
tage of the common parameters in the channel for different
polarizations. Reconfigurable arrays increase communication
flexibility with a limited cost, and there are many open
opportunities to study their performance in the context of
MIMO.
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