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Abstract

Text-to-image diffusion models have achieved widespread
popularity due to their unprecedented image generation ca-
pability. In particular, their ability to synthesize and mod-
ify human faces has spurred research into using generated
face images in both training data augmentation and model
performance assessments. In this paper, we study the effi-
cacy and shortcomings of generative models in the context
of face generation. Utilizing a combination of qualitative
and quantitative measures, including embedding-based met-
rics and user studies, we present a framework to audit the
characteristics of generated faces conditioned on a set of so-
cial attributes. We applied our framework on faces generated
through state-of-the-art text-to-image diffusion models. We
identify several limitations of face image generation that in-
clude faithfulness to the text prompt, demographic disparities,
and distributional shifts. Furthermore, we present an analyt-
ical model that provides insights into how training data se-
lection contributes to the performance of generative models.
Our survey data and analytics code can be found online at
https://github.com/wi-pi/Limitations of Face Generation

Introduction

Text-to-image (TTI) diffusion models have become popular
due to their unprecedented image-generation capability. Tak-
ing a textual prompt as input, these models generate realistic
images which align with user intentions. Their ability to syn-
thesize and modify human faces has spurred research into
using generated face images in training data augmentation
and model performance assessments (Dixit et al. 2017; Tra-
bucco et al. 2023). For example, face recognition systems
can benefit from synthetic datasets that exhibit more demo-
graphic diversity than existing natural datasets (Smith et al.
2023; Friedrich et al. 2023).

This work analyzes the quality of synthetic datasets for fa-
cial recognition applications and whether they exhibit demo-
graphic disparities. Achieving this objective requires generat-
ing a large set of identities belonging to diverse demographic
groups and generating multiple (different) faces for each iden-
tity. Existing diffusion models are incapable of meeting this
objective for two reasons. First, aligning the generated faces
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Figure 1: Samples of the non-celebrities dataset using Real-
ism model for four demographic groups: ‘East Asian Male’,
‘Black Female’, ‘Indian Male’, and ‘White Female’. ‘Source’
refers to images generated from Realism using the prompt
template. The second to sixth columns show transformed
images when an attribute is applied to ‘Source’ using SEGA.

with the provided prompt is challenging (Tsaban and Passos
2023; Brack et al. 2023). Second, generating multiple faces
with the same identity in a one-shot fashion is typically infea-
sible (Tsaban and Passos 2023; Brack et al. 2023). Limited
research exists in this space. Previous works either optimize
the diffusion model to a particular demographic group, gener-
ate faces without a notion of identity, or limit their objectives
to frequency analysis of the demographics of the generated
images (Perera and Patel 2023).

In this work, we propose a new framework to generate
synthetic face images, as shown in fig. 1. Our face-generation
pipeline takes as input demographic attributes, applies custom
prompts to generate identities for each demographic attribute,
and utilizes image editing models (Brack et al. 2023) to
generate diversified faces for each identity. The resulting
dataset, which we manually verify, resembles a natural face
image dataset, albeit demographically balanced by design.

We then apply a three-pronged approach to assess the
synthetic face image dataset’s quality through face verifica-
tion (Schroff, Kalenichenko, and Philbin 2015), quantitative



quality metrics (Ruiz et al. 2023), and a user study. Our
evaluation shows that generated images exhibit demographic
disparities in the eyes of face recognition systems. Results
from our user studies show disparity in quality of the gener-
ated faces for different demographics, with images belonging
to majority demographics rated as higher quality. We also
study the efficacy of edit correctness metrics built on CLIP
and DINO (Brooks, Holynski, and Efros 2023; Zhang et al.
2023). We find these metrics do not correlate with human
preferences in facial semantic changes. Research is needed
to develop perceptually aligned metrics.

Finally, our findings suggest that methods intended to mit-
igate bias exhibit demographic disparities in the quality of
generated images. Through an analytical model, we show that
generative models mimic the demographic disparities in the
existing data, typically sampled from the Internet. We also
develop sample complexity and data sampling conditions to
overcome this inherent bias.

To the best of our knowledge, this paper is the first work
that: (1) provides an end-to-end pipeline, utilizing a TTI
diffusion model, to generate batches of synthetic faces anno-
tated with fine-grained attributes; (2) evaluates the quality of
large-scale batch-generated faces using a user study; and (3)
assesses the fidelity of recently proposed TTI quality metrics
on face images. Our findings are further discussed in our
long-form report1.

Related Work

In the following, we describe recent works in the context of
synthetic face image generation and associated biases.

Synthetic Face Image Generation

TTI diffusion models, such as DALL-E (Ramesh et al. 2021)
and Stable Diffusion (Rombach et al. 2021), rely on internal
randomness to generate high-quality examples through de-
noising steps. They employ CLIP (Radford et al. 2021) or its
variants as text encoders. Thus, a text prompt is sufficient to
control the output of a TTI diffusion model.

Two challenges arise in prompt-based face generation.
The first is aligning the generated faces with the provided
prompt (Tsaban and Passos 2023; Brack et al. 2023). The sec-
ond is generating multiple faces belonging to the same iden-
tity in a one-shot fashion (Tsaban and Passos 2023; Brack
et al. 2023). There exist methods to better control image
generation. These methods include segmentation masks and
inpainting (Zhang et al. 2023); text-inversion, which learns
a text token that corresponds to certain image concept (Gal
et al. 2022a); model fine-tuning and embedding optimiza-
tion (Kawar et al. 2023). While these techniques are generally
effective, they are unsuitable for large-scale generation of
diverse faces. They often disrupt the fast and natural interface
that differentiates TTI diffusion models.

In this work, we aim to analyze the synthetic faces gener-
ated by TTI diffusion models. This objective requires generat-
ing a large set of identities belonging to diverse demographic
groups and generating multiple (different) faces for each iden-
tity. We devise a novel pipeline that employs semantic guided

1https://arxiv.org/abs/2309.07277

attention (SEGA) (Brack et al. 2023), fixed seeds, and special-
ized prompts. The pipeline, described within the Framework
section, depends on neither inversion nor fine-tuning.

Bias in Face Image Generation

Recent works (Friedrich et al. 2023; Seshadri, Singh, and
Elazar 2023; Smith et al. 2023) have studied the bias of TTI
face generation by analyzing the proportions of demographics
in generated images. Seshadri et al. found that generative
models amplify the discrepancies in training data (Seshadri,
Singh, and Elazar 2023). One example is gender-occupation
bias, where Stable Diffusion can generate highly biased face
distributions from a gender-neutral prompt about occupations.
Friedrich et al. mitigated these biases with a post-processing
technique called Fair Diffusion (Friedrich et al. 2023). When
the user inputs their prompt, a model detects the potential
bias in the prompt and steers the output to a fairer region,
leveraging a lookup table of instructions and the semantic
image-editing technique SEGA (Brack et al. 2023). Similarly,
Smith et al. utilized InstructPix2Pix (Brooks, Holynski, and
Efros 2023), an instruction-based image editing model, to edit
existing images to be demographically balanced. While this
dataset debiasing technique results in finer-grained control
over demographic attributes, it introduces a distribution shift
between natural and synthetic images. It also stacks the biases
of different models (Smith et al. 2023).

Luccioni et al. performed a different bias characterization
that relies on correlating model outputs in the embedding
space with social attributes (Luccioni et al. 2023). The au-
thors found three popular TTI models are biased toward
masculine and white concepts. Struppek et al. studied an-
other source of bias resulting from non-Latin scripts (Strup-
pek, Hintersdorf, and Kersting 2022). They found that using
special non-Latin characters better exposes the internal bi-
ases of models and proposed using homoglyphs to mitigate
this bias. Muñoz et al. analyzed the bias in relatively older
face generation models trained on the CelebA and FFHQ
datasets (Muñoz et al. 2023). Using quantitative metrics,
including demographic frequencies, face recognition verifi-
cation, and Fréchet inception distance, they found that the
generative models are biased.

These conclusions are consistent with earlier GAN litera-
ture, where Maluleke et al. found them to generate racially
biased distributions of faces (Maluleke et al. 2022). Maluleke
et al. went one step further by analyzing the quality of gener-
ated faces through a user study, where generated faces from
minority groups (e.g., Black) exhibited lower quality.

In summary, existing works focus primarily on fre-
quency analysis to characterize bias in TTI models, propose
embedding-based metrics to evaluate the quality of gener-
ated images, and utilize synthetic data to mitigate bias. In
our work, we characterize the synthetic datasets, showing
that methods intended to mitigate bias exhibit demographic
disparities in the quality of generated images. We go beyond
frequency analysis by rating image quality in a user study. We
also utilize the user study results to assess embedding-based
metrics in characterizing the quality of the generated images.



Framework

We develop a framework, as depicted in fig. 2, to audit the
characteristics of generated face images. This framework
consists of choosing the demographic conditions, prompting
diffusion models to generate identities according to these
conditions, followed by evaluating the generated images both
quantitatively and qualitatively.

Notation

We first prescribe the notation used within this paper. There
exists a sample space X ⊆ R

d and label set Y . A sample
x ∈ X is a d-dimensional vector. If x is an RGB image, then
d equals 3 × h × w, which corresponds to the number of
channels multiplied by the number of pixels in the image. In
the context of face recognition, we assume each face image
x depicts an identity y ∈ Y . A face recognition model f :
X → Y is trained on a finite dataset S ∈ X × Y . S is
drawn i.i.d. from distribution D. Sometimes, when clear from
context, S refers to an unlabeled dataset. A metric embedding
network fk : X → R

k is often internal to deep-network based
classifiers. Metric embedding network fk maps inputs to a
k-dimensional embedding space. If two samples have low
pairwise distance, they are assumed to be more similar in the
associated label space.

We analyze disparities in generative models across social
attributes. To analyze these disparities, we examine synthetic
face image quality and the performance of generated images
in face recognition tasks. A common class of social attributes
is demographics. With respect to demographics, we use termi-
nology consistent with Buolamwini and Gebru (Buolamwini
and Gebru 2018), a work among the most cited in the space
of face recognition fairness. Face images are annotated by
sex and ethnicity. Sex annotations are “Male” and “Female.”
Ethnicity annotations are “White,” “Black,” “East Asian,”
and “Indian.” The set of demographic groups is denoted as G,
where g is a placeholder for a demographic group in G. In this
paper, we study eight demographic groups, corresponding to
sex-ethnicity combinations.

Given a text prompt p from the space of prompts P , a text-
to-image model hq : P → X returns the image prescribed by
its textual prompt p, where the random seed q is a real number.
Because diffusion models have internal randomness, each q
generates a different realization of the same prompt p. In our
framework, we encode the identity y and its demographic
group g in the textual prompt p, and we vary the seed q to
generate multiple images of the same identity. We use a fixed
set of seeds to ensure the reproducibility of generated images.

Generative Models

We generate synthetic faces using two TTI Diffusion models:
the open-source Stable Diffusion v2.1 model by Stability AI
and the finetuned Realistic Vision Model2, hereafter referred
to as SDv2.1 and Realism, respectively. We analyze the im-
ages generated by these models individually to assess their
efficacy in face-generation pipelines.

2https://huggingface.co/SG161222/Realistic Vision V4.
0 noVAE

Figure 2: Our data generation pipeline: (1) generate N names
(identities) belonging to each demographic group g ∈ G and
insert them into the prompt template p, (2) TTI generates K
images per identity, using K seeds, (3) SEGA steers the TTI
generation to incorporate each of the T semantic attributes.

SDv2.1 is finetuned from the Stable Diffusion v2 (SDv2)
checkpoint, which was trained from scratch on a subset of the
LAION-5B dataset. SDv2.1’s training dataset contains more
faces than that of SDv23. Hence, SDv2.1 performs better
in generating faces than SDv2. Realism is among the many
openly available fine-tuned models from the checkpoints of
Stable Diffusion. However, its exact implementation details
are not known. We treat both SDv2.1 and Realism as grey-
box models. Both models are capable image generators with
differing performance characteristics, and our framework is
agnostic to their implementation details. The design of the
system shown in fig. 2 can be used with any relevant text-
to-image generative model to synthesize scalable batches of
facial data useful for training data augmentation or as tailored
test sets for face recognition applications.

To diversify generated faces, we employ the semantic-
guidance image generation technique SEGA (Brack et al.
2023). SEGA steers the TTI model towards generating
images that incorporate semantic concepts based on user-
provided textual edits while keeping the rest of the image
semantics intact, all without the need for fine-tuning the TTI
models. This technique proves valuable in creating faces with
diverse attributes, such as incorporating sunglasses. More-
over, recent works (Friedrich et al. 2023; Smith et al. 2023)
leverage SEGA and similar methods for fair face image gen-
eration by introducing demographics as semantic concepts
during image generation. Thus, we study the efficacy of in-
corporating SEGA in the image generation pipeline.

Data Generation Pipeline

To generate our facial datasets, we design a prompt that
specifies a demographic group and an identity associated
with that group. The prompt guides the model to generate a
set of diverse face images for each of these identities.

Identity. We found that when we explicitly mention the
demographic group in the prompt, like an Indian man, the
generated images exhibit limited diversity; i.e. identities look

3https://stability.ai/blog/stablediffusion2-1-release7-dec-2022



quite similar. To encourage the generation of more varied
identities, we employed names as indicators of different iden-
tities within demographic groups. We found that TTI models
interpret names as proxies for ethnicity and sex, and each
name carries a unique identity despite the randomness of the
generation process.

For each of the eight demographic groups we study in
this paper, we instructed GPT-3.5 to create two separate lists
of names—one comprising ‘celebrity’ names and the other
‘non-celebrity’ names. For the non-celebrity (celebrity) col-
lection, we generated 20 (30) names per demographic group.
The two lists reflect different levels of knowledge within the
TTI model: celebrity images are more likely to exist in the
training data of TTI, while non-celebrities are more likely to
be indirectly learned by the model.

Prompt. We desire prompts that guide the model to gen-
erate multiple and diverse face images with user-specified
semantics. Including a name within a prompt encodes both
identity and demographic information. Trial and error, com-
bined with our user study, led us to the below approach.

For Realism, we experimented with a set of prompts, and
we found this template to generate face images of high qual-
ity: “A photo of the face of {identity}.” We vary the TTI
generator seed to generate multiple images per identity and
prompt. We also add a set of negative prompts that steer the
model away from unrealistic, cartoon, or low-quality image
generation. These negative prompts are frequently used in
face image generation. For a fair comparison, we use this
prompt template along with a set of pre-selected five seeds to
generate images of all identities and demographic groups.

For SDv2.1, we observed that the prior template generates
images of poor quality on both celebrity and non-celebrity
identities. Thus, we expanded the prompt template as follows:
“A photo of the face of ({identity}:2.0). (realistic:2.0). (Face
shot only:2.0).” This revised prompt improved the generated
image quality of celebrity identities. However, it did not have
the same effect on non-celebrity images. Thus, we decided to
evaluate only the celebrity identities for the SDv2.1 model.

We manually validated that the generated images from
both models contain a face image, different seeds generate
diverse images of the same identity, and that identities are
distinct and belong to the intended demographic group. We
provide further details on the challenges of high-quality face
image generation in the long-form report.

Attributes. Using SEGA with Realism and SDv2.1, we
induce five attributes to the generated data: ‘young’, ‘old’,
‘facial hair’, ‘sunglasses’, and ‘smile.’ The details of SEGA’s
hyperparameters are in the long-form report. We refer to the
images obtained without SEGA as source images and with
SEGA as transformed images. All the synthesized images are
of 512× 512 resolution. For SDv2.1, to ensure better quality,
we generate the images at 768× 768 and then downsample
them to 512 × 512. Figure 1 shows a sample of the non-
celebrity images synthesized using Realism and SEGA.

In total, we generate 800 source and 4000 transformed
non-celebrity images, and we generate 1200 source and 6000
transformed celebrity images per model.

Evaluation Methods

We use three independent evaluation methods to assess the
quality of the generated datasets: quantitative metrics, face
verification, and user study.

Quantitative Metrics The metrics below are used to evalu-
ate overall quality of the source and the transformed images.

• Image-Image Metrics: These are mainly used to verify
identity retention under SEGA transformation. CLIP-I and
DINO-I measure the cosine similarity between the source
and transformed images’ CLIP (Radford et al. 2021) and
DINO-v2 (Oquab et al. 2023) embeddings, respectively.
Higher similarity implies that the identity is preserved.

• CLIP-directional: CLIP-directional (Gal et al. 2022b)
intends to identify the correctness of the semantic change
in the transformed image. It measures the similarity of the
change between the embeddings of the source and trans-
formed images and the change between their captions.

Face Verification Face verification accuracy utilizes pair-
wise face comparisons to measure embedding space quality.
The embeddings of two faces depicting the same identity are
expected to be close to each other. We analyze face verifi-
cation performance on Facenet (Schroff, Kalenichenko, and
Philbin 2015), a well-studied face recognition network.

Our analysis of face recognition models focuses on veri-
fication accuracy. Given two face images x,x′, verification
accuracy VER is computed as:

VER(x, y,x′, y′) ≜ 1[y = y′] · 1
[

ρ(fk(x), fk(x
′)) < t

]

+ 1[y ̸= y′] · 1
[

ρ(fk(x), fk(x
′)) ≥ t

]

(1)

where 1 denotes the indicator function and threshold t is cho-
sen heuristically to minimize false verification rate. Further,
y and y′ are identities associated with x and x

′, respectively.
We report the average verification accuracy as computed
across sets of pairs. Within our evalutation, sets of pairs are
constructed so that half of the pairs correspond to the same
identity. When analyzing verification accuracy for the user
study, we implicitly assume that humans can perfectly distin-
guish identities of generated faces.

To study the effect of demographics on verification, we
report two notions of verification accuracy: same group and
any group. For a specified group g, same group verification
accuracy refers to the evaluation of VER on lists of pairs
in which both images x,x′ belong to group g. Any group
verification accuracy refers to the evaluation of VER where
only each pair’s first image x must be in group g.

We utilize the Labeled Faces in the Wild (LFW) dataset as
a baseline for natural faces verification. LFW is a canonical
dataset for face recognition tasks. The LFW dataset contains
13233 images and a total of 5749 unique identities. Demo-
graphic annotations for images in LFW were obtained from
the system introduced by Kumar et al. (Kumar et al. 2009).

User Study We conducted a human evaluation of the gen-
erated images from both models combined with SEGA. To-
ward that end, we designed an online Qualtrics survey for
each model-identity collection pair, resulting in three surveys:



(SDv2.1 Celebrities, Realism Celebrities, and Realism Non-
Celebrities). The surveys are approved by our IRB and are
conducted on the Prolific platform.

For each survey, we randomly sampled 15 identities per de-
mographic group, one image per identity; 120 images in total.
We paired each source image with its 5 transformed images
corresponding to the 5 semantic attributes. This results in 600
source-transformed image pairs per survey. We presented
each participant with a set of 21 blocks. Each block shows
two images: one source image (without SEGA), and one
transformed image (using SEGA), along with the transform
instruction used by SEGA. For each block, the participant an-
swers three questions: (1) whether the two images depict the
same person, (2) the consistency of the transformed image
with the edit instruction on a 5-point scale, and (3) how they
rate the quality of the two images on a 5-point Likert scale.

For each study, we recruited 85 participants, and each
image pair received three ratings on average. Each partici-
pant was compensated $3.5 for their effort, with an average
completion time of 15 minutes. The study was distributed
evenly to male and female participants. The participants’ de-
mographic distribution is discussed in our long-form report.

Evaluation

After generating the datasets, we apply the evaluation meth-
ods to analyze the associated demographic discrepancies.
Three questions guide this evaluation:

1. How does face verification on synthetic data compare to
natural data and does it exhibit demographic disparities?

2. Does the quality of synthetic face images depend on the
demographic group?

3. Can quantitative metrics replace expensive user studies
to assess the quality of synthetic face images?

Face Verification

Face verification performance is depicted in fig. 3. The fig-
ure shows the verification accuracy measured on LFW and
synthetic datasets. Across all demographics and datasets,
with one exception, we observe that generated faces per-
form worse than natural faces (LFW). Only in the White
demographic does a synthetic dataset, Realism Celebrities,
have better face verification performance than natural data.
We also observe that for each demographic and dataset pair,
same-demographic verification accuracy is often notably less
than its any-demographic counterpart. Hence, we conclude
that face recognition systems are demographically aware on
generated faces in a manner similar to natural faces.

Synthetic Face Image Quality

Table 1 presents the average survey scores in terms of image
quality and transformation correctness across all demograph-
ics and datasets. The scores suggest that image quality de-
pends on the identity’s demographic group. Moreover, SEGA
transformations drop the quality of all images, and the drop
is also demographic-dependent. We use one-way ANOVA in
an attempt to reject null hypotheses of forms:

Dataset
Demographic group

E Asian Black Indian White Female Male

M1

D1 4.463 4.401 4.394 4.515 4.428 4.459
D2 4.253 4.240 4.045 4.097 4.166 4.140
D3 4.121 4.149 4.112 4.039 4.112 4.099

M2

D1 0.195 0.122 0.187 0.184 0.244 0.098
D2 0.190 0.085 0.114 0.592 0.364 0.140
D3 0.100 0.156 0.123 0.123 0.154 0.098

M3

D1 4.020 3.972 4.144 3.945 3.954 4.092
D2 3.624 3.367 3.717 2.636 3.203 3.455
D3 3.747 3.197 3.516 3.325 3.492 3.412

M4

D1 87.5 84.6 90.3 83.8 85.5 87.7
D2 78.4 69.5 80.7 51.2 66.0 73.6
D3 79.9 65.2 72.3 69.9 72.2 71.8

Table 1: User survey average answers to the following mea-
sures: M1: source image quality on a 5-point scale, M2: drop
in image quality after SEGA transformation, M3: SEGA
transformation correctness on a 5-point scale, and M4: per-
centage (%) of correct transformation (transformation cor-
rectness score ≥ 3 out of 5). D1: Realism Non-Celebrities,
D2: Realism Celebrities, D3: SDv2.1 Celebrities. Highest
and lowest scores are highlighted in bold. E Asian denotes
the East Asian demographic group.

Null Hypothesis 1. The per-demographic distributions of
source image quality in 〈Dataset〉 are identical.

Null Hypothesis 2. The per-demographic distributions of
transformed image quality in 〈Dataset〉 are identical.

Null Hypothesis 3. The per-demographic distributions of
quality difference between source and transformed images in
〈Dataset〉 are identical.

On the Realism Non-Celebrities and Realism Celebrities
datasets, one-way ANOVA rejects null hypotheses 1 to 3
with p-values less than 0.05; corresponding p-values appear
in the long-form report. This test tells us that for these two
datasets, source image quality, transformed image quality,
and the difference between source and transformed image
quality have a dependence on demographics. The only dataset
for which image quality does not conclusively depend on
demographics is SDv2.1 Celebrities.

The same observation of demographic dependence applies
to the transformation correctness measures (M3, M4). It is
interesting to note that demographic groups that have higher
source image quality are not consistent with groups of higher
transformation correctness. This suggests that SEGA intro-
duces its own biases in the generative pipeline.

Quantitative Metrics vs. User Study

User studies are the most direct way to measure human
perception of generated faces. Unfortunately, they are pro-
hibitively expensive when implemented at scale. If we have a
metric serving as a proxy for human sentiment toward gen-
erated face quality, costs associated with generating realistic
face data could be drastically reduced. We analyze the corre-
lation between the different metrics and the questions posed



(a) Survey Responses (b) Same Demographic Pairs (c) Any Demographic Pairs

Figure 3: Verification Accuracy is plotted across four datasets. Each row is a demographic, and each dataset is depicted with a
different hue. Note that each plot is x-axis limited between 0.6 and 1.

Dataset
Null hypothesis 4 Null hypothesis 5

CLIP-I DINO-I CLIP Directional

SDv2.1 Celebrities 0.147 0.107 0.128

Realism Celebrities 0.197 0.122 0.348

Realism Non-Celebrities 0.245 0.142 0.0908

Table 2: Spearman correlation coefficients for null hypothe-
ses 4 and 5. Each correlation coefficient is statistically signifi-
cant. Corresponding p-values appear in the long-form report.

in the user study regarding the quality of the source and trans-
formed images, the presence of semantic change, and identity
retention after applying the semantic change. We calculate
the Spearman correlation coefficients between the metrics
and the scores to the user-study questions and once again
make use of one-way ANOVA tests to reject null hypotheses:

Null Hypothesis 4. On 〈Dataset〉, there is no monotonic
relationship between image-image 〈similarity metric〉 and
maintenance of identity post application of semantic change.

Null Hypothesis 5. On 〈Dataset〉, there is no monotonic
relationship between CLIP-directional and appearance of the
semantic change.

On all three datasets, one-way ANOVA tests enable us to
reject null hypothesis 4 on image similarity metrics CLIP-I
and DINO-I. We also similarly reject null hypothesis 5 on the
CLIP Directional metric. Despite rejecting null hypotheses,
each Spearman coefficient is low, as evident from table 2.
Hence, in the context of face recognition, image quality met-
rics are not a suitable proxy for humans in performing both
identity verification and transformation verification tasks.
This result is partially surprising: the DINO-I metric is de-
signed to recognize differences between images of similar
description. However, CLIP-I metric exhibits difficulty in dis-
tinguishing images with similar text descriptions (Ruiz et al.
2023). Our findings also indicate a low correlation between
this metric and human assessment.

Analytical Model

We observed that verification accuracy degrades on synthetic
images. We attribute this to machine learning models being
trained on finite data. Typically these datasets are drawn from
the internet. Generative models, such as diffusion models,
thusly learn to generate images patterned on their internet-
based dataset. Because the internet is well-understood to be
a biased sample of the universe, a diffusion network trained
on an internet-sourced dataset is itself a biased sample gen-
erator. To understand how a biased, finite training set can
yield biased sample generation, we utilize a Gaussian Mix-
ture Model (GMM). A GMM is theoretically tractable proxy
through which we gain intuition about generative models.

In that model, an image in demographic group g is drawn
from N (µg,Σg). For brevity, we denote the distribution of
examples in group g by Dg. Without loss of generality, our
analysis considers two groups: a and b. Group a occurs with
probability α where α ∈ (0, 1). Thus, group b occurs with
probability 1−α. The universe’s distribution can be written as
D = αDa + (1− α)Db. As previously identified, generative
models are typically trained on a biased dataset. To model
this bias, we assume training dataset S is drawn i.i.d. from
biased data distribution DS . Samples in S are assumed to be
d-dimensional. The biased data distribution DS is a possibly
re-weighted mixture of Gaussians Da and Db. That is to say,
DS = βDa +(1−β)Db where β ∈ (0, 1). Distributions DS

and D are only equivalent if α = β. For notational brevity,
Sg denotes examples in S drawn from Dg.

The estimator of D learned from S is denoted D̂S . The
quality of estimator D̂S is measured with total variation dis-
tance, a notion of distributional discrepancy. Our use of total
variation distance as a notion of distribution estimator quality
is motivated by its use in generative model literature (Lin
et al. 2018; Sajjadi et al. 2018).

Definition 1 (Discrepancy). Consider a measure space
(Ω,F). If ν1 and ν2 are continuous probability distributions,



(a) Black (b) White (c) Hispanic

Figure 4: User Verification Accuracy. The y-axis captures
queried image demographics. Each subfigure depicts a re-
spondent demographic. Note that each plot is x-axis limited
between 0.6 and 1.

then the discrepancy is computed as

ρTV(ν1, ν2) = sup
z∈F

|ν1(z)− ν2(z)| (2)

Utilizing definition 1, we can show that two distinct factors
contribute to discrepancy. The first factor is the finite size of
S. The second factor is S being a non-representative sample
of D. Both factors are formalized in proposition 1, its proof
is in our long-form report. We assume the process yielding

D̂S is an empirical Bayes estimator, such as the Expectation-
Maximization algorithm. This process learns five parameters
about the distribution: the group proportion β, the means and
covariances of groups a and b: µa, Σa, µb, and Σb.

Proposition 1 (Proposition). Let δ ∈ (0, 1). If

|S| = O

(

d2 log(2) log(2/δ)

[

H2(Da,Db)

]

−4)

(3)

then we have

P

[

ρTV(D̂S ,D) >
|α− β|

2
H2(Da,Db)

]

≥ 1− δ (4)

where H2 is the squared Hellinger distance, and

H2(Da,Db) =

(

1−
|Σa|

1/4|Σb|
1/4

|Σa+Σb

2
|1/2

)

× exp

{

−
1

8
(µa − µb)

T

(

Σa +Σb

2

)

−1

(µa − µb)

}

(5)

if Da,Db are each multivariate Gaussians.

This proposition suggests that even with a large number of
samples in S, it can be impossible to learn D exactly. This
is due to non-representative proportions being drawn from
each demographic group, i.e. when |α−β| > 0. On the other
hand, when α = β, and the number of samples in S is infinite,

D̂S and D are equal, so ρTV(D̂S ,D) tends to 0. The bound
also has a dependence on dimension squared: large dimen-
sion inputs require many more samples to train high-fidelity
generative models. Thus, we conjecture faces generated by
diffusion models trained upon larger datasets should close
the observed gap in verification accuracy between LFW and
datasets synthesized in this paper.

Discussion

Our user study provides direction for follow-on research
relating to the Own Race Effect (ORE). ORE refers to the
documented tendency of individuals to better recognize faces
from within their racial group (Tanaka, Kiefer, and Bukach
2004; Meissner and Brigham 2001). We observed that our
user survey seems to disagree with ORE as shown in fig. 4.
Hence, a rigorous study of perceived identity of images under
semantic transformations would be of research value.

As evidenced by the user study, mechanisms of human face
perception present unique challenges to the application of
generative models in face recognition. Moreover, automated
prompt design strategies require access to a metric quanti-
fying the quality of generated images. This does not detract
from techniques evaluating generative model performance,
rather, it opens a new research avenue: tuning face quality
metrics to better align with human preferences.

Though our analysis techniques generalize to other do-
mains, they assume CLIP functions as intended. Unfortu-
nately, CLIP and similar semantic-visual embedding models
are trained on internet data. Hence, their embedding space
contains biases. Further, CLIP is known to have trouble
constructing embeddings for uncommon or otherwise niche
words and phrases. Niche words and phrases, such as “inter-
eye distance” and “eyebrow slant”, which can affect human
perceived face identity (Tsao and Livingstone 2008), are
problematic for CLIP. Further analysis of semantic-visual em-
beddings is necessary to gain a full picture of text-to-image
generative models. Additionally, CLIP’s understanding of
cultural constructs is not entirely understood. For example,
it is unclear what an “intelligent face” or “beautiful face”
means to CLIP. Thus, the semantic transformations we study
are explicit face attributes.

Finally, our study does not negate the value of generative
approaches in model analysis. Generative examples can serve
as a targeted curated dataset. Tailored generation has the po-
tential to mitigate inherent biases found in existing datasets;
however, the effectiveness of this approach is closely tied
to the data used to train the generative model. It’s impor-
tant to remember that the generated examples are not i.i.d.
samples from the natural distribution. Instead, they represent
i.i.d. samples from a possibly skewed estimate derived from
a finite pool of realized examples within the training set.

Conclusion

Generative models have been the subject of much recent so-
cietal interest. Synthesized examples achieve near-realistic
quality. Though recent advances have increased the expres-
sive power of generative models, their performance charac-
teristics remain opaque, especially for face image generation.
We put forth a new framework to synthesize diverse face
images and evaluate them from multiple perspectives. Our
findings are boosted with intuition from an analytical model.
Our work demonstrates the need for further research into
properties of semantic-visual embeddings and human percep-
tion mechanisms upon generated faces.
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