This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Generic, High-Performance,
Compression-Aware Framework for Data
Parallel DNN Training

Hao Wu, Shiyi Wang, Youhui Bai, Member, IEEE, Cheng Li, Member, IEEE, Quan Zhou, Jun Yi, Feng
Yan, Member, IEEE, Ruichuan Chen, Yinlong Xu, Member, IEEE,

Abstract—

Gradient compression is a promising approach to alleviating the communication bottleneck in data parallel deep neural network (DNN)
training by significantly reducing the data volume of gradients for synchronization. While gradient compression is being actively adopted
by the industry (e.g., Facebook and AWS), our study reveals that there are two critical but often overlooked challenges: 1) inefficient
coordination between compression and communication during gradient synchronization incurs substantial overheads, and 2) developing,
optimizing, and integrating gradient compression algorithms into DNN systems imposes heavy burdens on DNN practitioners, and ad-
hoc compression implementations often yield surprisingly poor system performance. In this paper, we propose a compression-aware
gradient synchronization architecture, caSync, which relies on flexible composition of basic computing and communication primitives.
It is general and compatible with any gradient compression algorithms and gradient synchronization strategies and enables high-
performance computation-communication pipelining. We further introduce a gradient compression toolkit, CompLL, to enable efficient
development and automated integration of on-GPU compression algorithms into DNN systems with little programming burden. Lastly,
we build a compression-aware DNN training framework HiPress with Casync and CompLL. HiPress is open-sourced and runs on
mainstream DNN systems such as MXNet, TensorFlow, and PyTorch. Evaluation via a 16-node cluster with 128 NVIDIA V100 GPUs and
a 100Gbps network shows that HiPress improves the training speed over current compression-enabled systems (e.g., BytePS-onebit,

Ring-DGC and PyTorch-PowerSGD) by 9.8%-69.5% across six popular DNN models.

Index Terms—Data parallel DNN training, gradient compression

1 INTRODUCTION

T O efficiently train large DNN models over the continu-
ously growing datasets, it has been a norm to employ
data parallel DNN training to explore massive parallelism
in an increasingly large cluster of GPU nodes [20], [55],
[57], [78], [102]. In a typical data parallel setting, each node
iterates over its data partition in parallel, and exchanges a
large volume of gradients with other nodes per iteration via
a gradient synchronization strategy like Parameter Server
(PS) [33], [38] or Ring-allreduce [9].

However, in recent years, the fast-growing computing
capability, driven by the booming of GPU architecture inno-
vations [60] and domain-specific compiler techniques [16],

e Hao Wu, Shiyi Wang, Youhui Bai (corresponding author), Cheng Li
(corresponding author), Quan Zhou and Yinlong Xu are with the De-
partment of Computer Science and Technology, University of Science and
Technology of China, Hefei, China. Cheng Li and Yinlong Xu are also with
the Anhui Province Key Laboratory of High Performance Computing, and
Institute of Artificial Intelligence, Hefei Comprehensive National Science
Center.

E-mail: {mark14, wsy0111,
{chengli7, ylxu}@ustc.edu.cn

e Feng Yan is with the Computer Science Department and Electrical and
Computer Engineering Department of University of Houston.

E-mail: fyan5@central.uh.edu

e Ruichuan Chen is a Distinguished Member of Technical Staff at Nokia
Bell Labs.

E-mail: ruichuan.chen@nokia-bell-labs.com

Manuscript received April 19, 2005; revised August 26, 2015.

byh0912, zzqq2199)@mail.ustc.edu.cn,

[19], [70], [72], tends to result in more frequent and heavier
gradient synchronization during data parallel DNN train-
ing. This trend puts high pressure on the slower-growing
bandwidth and reduces the chance of pipelining computa-
tion and communication during training. We have found
that, even with the latest highly-optimized BytePS [33] and
Ring-allreduce [78] synchronization strategies, the commu-
nication time for gradient synchronization still accounts for
63.6% and 76.8% of the total time for training the Bert-large
and Transformer models across 16 AWS EC2 instances, each
with 8 NVIDIA V100 GPUs, in a 100Gbps network. Thus,
there is a fundamental tension between gradient communication
and computation in data parallel DNN training [75].

Gradient compression algorithms have a great potential
to relieve or even eliminate the above tension, since they can
substantially reduce the data volume being synchronized
with a negligible impact on training accuracy and conver-
gence [5], [44], [84], [94], [96]. This practice of gradient com-
pression is being adopted by the industry. In fact, the efforts
from Facebook and AWS to bring gradient compression to
mainstream DNN systems have begun since June 2020 [6],
[51], [53]. However, our experiment shows that the actual
training speedups of compression-enabled DNN systems
are far behind their expectations. For instance, applying
gradient compression to the aforementioned Transformer
training achieves only a 1.3x speedup, 38.1% lower than
the expected performance. The gap becomes even larger
in a lower-bandwidth network. This surprising observation

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

drives us to rethink gradient compression from the system
perspective.

To fully unleash the benefits of gradient compression,
only an efficient compression algorithm is not sufficient.
The compressed gradients are not directly aggregatable, and
they are not compatible with common optimizations (such
as gradient partitioning and batching) used in the conven-
tional gradient synchronization strategies. In the current
compression-enabled DNN system designs, the computa-
tional overhead introduced by gradient compression is often
overlooked and could be greatly amplified along the gradi-
ent synchronization path. Therefore, the first challenge we
have to address is how to amortize the extra computational
overhead along the communication steps during gradient
synchronization, whereby the computation and communi-
cation may have data dependencies. This requires us to
revisit the original design choices across existing gradient
synchronization strategies to identify the right granularity
of combining and coordinating various gradient compres-
sion and communication operators. Second, a sophisticated
systematic support for compression awareness is generally
lacking. Without such a support, DNN practitioners cannot
live up to the full promise of gradient compression to accel-
erate DNN training. The adoption of gradient compression
also becomes difficult because substantial system expertise
and manual efforts are required for developing, optimiz-
ing, and integrating individual compression algorithm into
DNN systems.

In this paper, we address these systems challenges to
bridge the gap between gradient compression and synchro-
nization in data parallel DNN training. We first propose a
general, composable gradient synchronization architecture,
called CaSync, which enables a compression-aware gradi-
ent synchronization with a composition of decoupled com-
munication, aggregation, and compression primitives. This
fine-grained composition allows us to strike a balance be-
tween 1) the effective pipelining of computational and com-
munication tasks to hide communication overhead behind
compression-related computation and vice versa, and 2)
the efficient bulky execution of smaller tasks. Furthermore,
CaSync employs a selective compression and partitioning
mechanism to decide whether to compress each gradient
and how to partition large gradients (before compression)
to optimally leverage pipelining and parallel processing.
It is worth mentioning that our CaSync architecture is
intentionally designed to be general and not tie to spe-
cific gradient compression algorithms and synchronization
strategies (e.g., PS or Ring-allreduce) so that its benefits are
applicable to existing and potentially future compression
algorithms and synchronization strategies.

Second, we advocate that the on-GPU compression is the
preferred approach for gradient compression considering
GPU has much higher bandwidth and processor density
than CPU, and gradients are produced in GPU directly.
This creates new opportunities to further optimize the
compression-communication pipeline during gradient syn-
chronization. However, developing and optimizing gradient
compression algorithms on GPU is non-trivial and usually
requires significant system expertise and manual efforts. To
relieve the burden on DNN practitioners, we design and
develop a gradient compression toolkit named CompLL,

2

which facilitates the compression algorithm development
and its integration on GPU. CompLL provides a unified API
abstraction and exposes a library of highly-optimized com-
mon operators that can be used to construct sophisticated
gradient compression algorithms. CompLL also offers a do-
main specific language to allow practitioners to specify their
algorithm logic, which is then converted into efficient low-
level GPU implementation and automatically integrated
into DNN systems with little human intervention.

For easy adoption, we build a compression-aware data
parallel DNN training framework called HiPress, with
both CaSync and CompLL. HiPress is compatible with
mainstream DNN systems (i.e., MXNet, TensorFlow, and
PyTorch), and we have open-sourced it at [2].

We evaluate HiPress extensively. First, we use Com-
pLL in HiPress to construct six state-of-the-art compres-
sion algorithms (i.e., onebit [76], TBQ [84], TernGrad [94],
DGC [44], GradDrop [5] and PowerSGD [87]) with only
22 lines of CompLL code on average, and they achieve
significant performance speedups over open-source coun-
terparts. We train six widely-used DNN models across the
computer vision and natural language processing fields
using a 16-node cluster on AWS EC2 with 128 NVIDIA
V100 GPUs and 100Gbps network links. Experimental re-
sults show that HiPress achieves speed improvements
of 17.3%-110.5% and 9.8%-69.5% compared with non-
compression systems (including the latest BytePS) and
current compression-enabled systems (e.g., BytePS-onebit,
Ring-DGC and PyTorch-PowerSGD), respectively. The re-
sults in a lower-end 16-node cluster with 32 1080Ti GPUs
and 56Gbps network show a similar trend. Lastly, HiPress
does not sacrifice the convergence and accuracy claims of
exercised algorithms.

2 BACKGROUND AND MOTIVATION
2.1 Data Parallel DNN Training

A DNN model typically consists of multiple neural network
layers, each of which contains a large number of parameters.
Training a DNN model needs to iterate over a dataset many
times (i.e., epochs) towards convergence [97]. Each epoch is
further split into iterations. Data parallel DNN training en-
ables each training node to consume data from its own parti-
tion of the training dataset. In each iteration, training nodes
independently run forward and backward propagation to
generate gradients, which are then synchronized with other
nodes to update the global model parameters collectively.
This group coordination can be done synchronously or
asynchronously. The former case often acts as a distributed
barrier for convergence guarantees [106], while the latter
case eliminates the negative impact of stragglers at the
cost of possibly not converging. We focus on synchronous
coordination because of its wide adoption [1], [15], [35], [69].

2.2 Gradient Synchronization

Parameter Server (PS) [38], [68] and AllReduce [9], [78] are
two widely-adopted gradient synchronization strategies.

Parameter Server. In Figure la, each node acts as a server
or a worker [38]. Model parameters and gradients are often
partitioned across multiple servers for load balancing. When

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Server, ,- Worker, ~.
@/ " @8
,'I @gﬂ ‘\‘
Worker, Worker,

Worker,

Worker, Worker,

(a) Parameter Server (PS) (b) Ring-allreduce

Fig. 1: Gradient synchronization strategies. For Parameter
Server (PS), we only show interactions between Servery and
workers for clarity.

local training completes, each worker pushes gradients to
servers (@), which are then aggregated and updated to
model parameters. Afterward, each worker pulls the up-
dated results from servers to trigger the next iteration (®).
AllReduce. This strategy uses collective communica-
tion primitives. One representative example is Ring-
allreduce [9], where all nodes are workers and form a logical
ring. In Figure 1b, it takes NV — 1 communication steps along
the ring to aggregate gradients (0-@) and another N — 1
steps to disseminate the updated gradient (®-®), where N
is the number of workers. Furthermore, Ring-allreduce can
batch gradients which are then partitioned again for load
balancing. Following this, at each synchronization step, each
worker simultaneously sends a partition to its successor and
receives another partition from its predecessor to best utilize
its bi-directional network bandwidth [67].

2.3 Computation and Communication Tension

Modern DNN systems pipeline computation and communi-
cation for better performance, e.g., via running the gradient
communication and DNN backward computation of two
DNN layers in parallel to hide the former overhead behind
the latter when possible. However, there exists a fundamen-
tal tension between computation and communication [75].

The recent DNN accelerator booming [60] and domain-
specific compiler advancement [16], [19], [70], [72] have
significantly improved the single-node training speed. Such
fast-advancing computing capabilities typically lead to more
frequent gradient synchronization and thus put high pres-
sure on the network infrastructure. However, the network
upgrade does not keep up the pace of the computation-
related advancements [46], [48], [64], [95]. The imbalance
between the fast-advancing computing capability and the
slower-advancing communication capability increasingly
reduces the chance of pipelining the gradient communica-
tion and computation.

A few software approaches have been recently proposed
to optimize the computation-communication pipeline, rang-
ing from priority-based gradient scheduling and partition-
ing [69] to advanced synchronization architectures [33], [78].
However, as shown in Table 1, the latest highly-optimized
BytePS [33] and Ring-allreduce [78] only achieve scaling
efficiencies! of 0.71 and 0.47, when training two popular
DNN models (Bert-large and Transformer) in a cluster of

. actual_performance
1. Scaling efficiency is defined as Xeinglo OGP U performance’ Where

N is the total number of GPUs, with 1 being the best (i.e., linear scaling).

3

TABLE 1: Training performance of Bert-large and Trans-
former with 16 AWS p3dn.24xlarge instances (8 V100 GPUs
each), 100Gbps, BytePS 0.2.5, Horovod 0.19.2, fp32 precision.

System Scaling Communication
configurations efficiency ratio
Rlng—allreduc.e 047 76.8%

w /0 compression
former | Ring-allreduce w/ | (29.8%1) | 70.3% (8.5%1)
OTMET | DGC compression | ' o 20 AR
BytePS 0.71 63.6%
Bert- w/0 compression
ert
large BytePS w 0.76 (7.0%1) | 60.9% (4.2%.)
& onebit compression ’)))

16 nodes on AWS EC2 with 128 NVIDIA V100 GPUs and
a 100Gbps network. The communication time accounts for
up to 76.8% of the total training time for training these two
models, with a significant portion not being hidden behind
DNN computation. This highlights the fundamental tension
between gradient computation and communication persists
in data parallel DNN training, even with state-of-the-art
approaches and recent bandwidth advancements.

2.4 Gradient Compression

Gradient compression is a general approach for reducing
the transmitted data volume during gradient synchroniza-
tion [44], [87], [94], and has a great potential to alleviate
the aforementioned communication bottleneck. Indeed, it
is being adopted by the industry, and a number of recent
efforts from Facebook and AWS have started to integrate
gradient compression into modern DNN systems since June
2020 [6], [51], [53].

The gradient compression algorithms generally fall
within the sparsification, quantization and low-rank categories.
Sparsification leverages the sparsity of gradients and fil-
ters out insignificant elements in the gradient matrix [5],
[35], [44], and quantization decreases the precision of gra-
dients [84], [94], [96]. For instance, a 1-bit quantization
enabled by onebit algorithm [76] could reduce the trans-
mitted data volume by 96.9%. Unlike them, the low-rank
methods decompose the original gradient matrix into mul-
tiple smaller matrices [18], [87], [89], [103]. For example,
PowerSGD [87] aims to approximate the gradient with
size NxM by multiplying two matrices with size NxR
and RxM respectively. Obviously, the compression ratio of
PowerSGD is % Many of these algorithms either
theoretically prove or empirically validate that adopting
them does not affect model convergence and imposes only
a negligible impact on accuracy, i.e., a compression-enabled
DNN training converges to approximately the same accu-
racy through the same number of iterations compared with
a non-compression training [44], [84], [94].

2.5 System Challenges and Opportunities

Surprisingly, our study reveals that, without proper system
support, the gradient compression’s benefits are diluted
significantly at the best, and could even negatively affect
the overall DNN training throughput at the worst.

One important reason for this surprising observation
is that gradient compression requires non-negligible com-

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

putational overhead. Alongside the gradient synchroniza-
tion path, an encode operator must precede sending fully
or partially aggregated gradients, and a decode operator
must follow when receiving compressed gradients. There
could be up to 3N — 2 extra operators for each gradient
synchronized across N workers. These extra operators are
needed because it is impossible to directly aggregate over
compressed gradients for most of the sparsification and
quantization algorithms, due to the existence of metadata (in
sparsification-based algorithms) or the potential overflow
of operating low-precision numbers (in quantization-based
algorithms).

The accumulated compression-related computational
cost during gradient synchronization can significantly dilute
its benefits of reducing the transmitted data volume. To
demonstrate this, we train Bert-large with the onebit com-
pression [76] developed by AWS and integrated into MXNet
with BytePS.? Table 1 shows that BytePS-onebit achieves
a very limited improvement over BytePS. As another ex-
ample, the DGC compression [44] with 0.1% compression
rate (where it is integrated into TensorFlow with the Ring-
allreduce synchronization strategy) achieves only a 1.3x
training speedup for the Transformer model. We discover
that such limited improvements are mainly due to the co-
design of BytePS and Ring-allreduce with the compression
algorithms, whereby the compression logic is separated
and scattered across gradient synchronization. Such a co-
design also makes it difficult to verify the correctness of
the implemented algorithms as well as to generalize to
other gradient compression algorithms and synchronization
strategies. To enable a general approach, it is important to
separate the design of compression algorithms from that of
synchronization strategies.

The first challenge to address the aforementioned issues
lies in designing a general approach to amortize the extra
computational overhead brought by gradient compression
(e.g., encode and decode operators) along the communica-
tion steps during gradient synchronization. This is difficult
due to non-trivial factors including, for instance, the data
dependencies between gradient computation and commu-
nication, the communication topology such as a bipartite
graph for PS and a ring for Ring-allreduce, the compression
speed and ratio of different compression algorithms, to
name a few. To address this challenge, the key is to identify
the right granularity of combining and coordinating various
gradient compression and communication operators.

Take Ring-allreduce as an example. It coordinates the
communication of all training nodes by running a global,
atomic, bulk synchronization operation to complete 2(/N —1)
point-to-point communication steps for batched gradients.
While this design is bandwidth-optimal [67], such a coarse-
grained approach fails to hide the compression-related over-
head behind the communication overhead. Unlike Ring-
allreduce, the PS synchronization strategy (including the
latest BytePS) exchanges gradients via micro point-to-point
communication steps. While such a fine-grained approach
facilitates a better computation-communication pipelining

2. The open-source onebit was implemented only on CPU [13]. For
a fair comparison, we have implemented and integrated a highly-
optimized on-GPU onebit into BytePS.

4

to hide compression-related computational overhead, it in-
curs a larger number of communication steps and in turn a
proportionally growing extra computational overhead.

The second challenge is to provide systematic sup-
port for developing, optimizing, and integrating gradient
compression algorithms into DNN systems. Without this
support, the real-world adoption of gradient compression
algorithms requires significant system expertise and man-
ual efforts to perform various ad-hoc development and
optimization, which is particularly challenging for DNN
practitioners. Thus it is quite difficult, if not impossible,
for gradient compression to live up to its full promise of
accelerating DNN training.

To provide general system support for various algo-
rithms, one critical question to answer is where to perform
their computation, e.g., on CPU or GPU? We observe that
compression algorithms typically need to scan large gradi-
ent matrices multiple times to filter out insignificant gradi-
ents, decrease the precision of gradients, or decompose them
into multiple sub-matrices with reduced sizes. Therefore,
they are extremely memory-intensive and require massive
parallelism to achieve fast compression (and decompres-
sion). We believe the on-GPU gradient compression is the
preferred approach considering GPU’s high memory band-
width and many-core architecture. Furthermore, given that
gradients produced by DNN computations are inherently
in the GPU memory, the on-GPU compression can greatly
alleviate the bandwidth tension of the PCle bus between
GPU and host. As an example, for the onebit compression
algorithm [76], its CPU implementation runs 35.6x slower
than the GPU-oriented counterpart (our implementation);
using the same experimental setup as Table 1, BytePS with
the on-CPU onebit introduces 95.2% training overhead than
its on-GPU counterpart. Despite of on-GPU advantages, de-
veloping, optimizing and integrating on-GPU compression
algorithms puts heavy burden on DNN practitioners, and
doing it well requires extensive system expertise and the
understanding of lower-level GPU hardware and CUDA
programming details.

In summary, the above two challenges motivate us to
rethink the abstraction for both gradient compression algo-
rithms and compression-aware synchronization strategies,
as well as to identify the common design patterns to support
easy development, optimization, and integration of com-
pression algorithms in DNN systems for real-world use.

3 COMPRESSION-AWARE SYNCHRONIZATION

We propose CaSync, a compression-aware gradient syn-
chronization architecture that provides a general support
for gradient compression algorithms and synchronization
strategies.

3.1 Composable, Pipelined Synchronization

As motivated in Section 2.5, a proper granularity of ab-
straction for gradient compression algorithms and synchro-
nization strategies is the key to achieve a general yet high-
performance gradient synchronization. To identify the right
granularity, we employ a composable approach which first
decouples all gradient synchronization primitives in a fine-
grained manner, and then combines and coordinates them

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Worker or Aggregator at Node;
gares ' IQca,......, @ Metadata Global
Qc I_I_I_I_l_l_j—> Coordinator
e (Sec.3.2)
o ® Gradient batches &
E ©) Tasks communication plans
@ Pluggable on-GPU Executor ———> Other networked
compression Library (Sec. 4) — peers
@ Notification J, Notification DNN system

runtime

B
Topologies

e
PyTorch

Fig. 2: The CaSync architecture design, where the DNN
system runtime is omitted.

Task manager

[Dependencv Graph) [Role+Workrow)

Selective Compression/
Partitioning Planner (Sec. 3.3)

according to their data dependencies and order constraints
to build an efficient computation-communication pipeline.

We first decouple the communication topology from gra-
dient synchronization strategies. We represent the topology
as a directed graph, where the vertex set contains training
nodes and the edge set specifies the connections between
these nodes. In gradient synchronization, there are funda-
mentally two node roles, namely, worker and aggregator (with
potentially other roles serving for optimizations only). A
worker produces gradients from its local DNN computa-
tion and initiates the gradient synchronization process. An
aggregator aggregates gradients and then relays the aggre-
gate result to workers or other aggregators. Take PS and
Ring-allreduce as two examples of gradient synchronization
strategies. As shown in Figure 1, for PS, we build bipartite
connections between servers (i.e., aggregators) and workers;
for Ring-allreduce, each node serves both roles and the
clockwise connections are built between these nodes.

We then split the gradient synchronization process into
five general primitives, namely, encode, decode, merge,
send and recv. Specifically, ‘encode’ and ‘decode’ are
two computing primitives for compressing and decom-
pressing gradients, respectively. ‘merge’ is another com-
puting primitive for aggregating multiple gradients into
one. ‘send” and ‘recv’ are two communication primitives
for sending and receiving gradients to and from other
nodes, respectively. With these general primitives, we can
conveniently specify a compression-aware workflow at each
worker and aggregator, which defines proper data depen-
dencies or order constraints between these primitives. For
instance, ‘encode’ precedes ‘send’ at the worker because
of the data dependency that the worker has to compress a
gradient before sending it.

Figure 2 shows an overview of the CaSync design. With
the aforementioned abstraction, we are able to design a
holistic gradient synchronization architecture for both work-
ers and aggregators. Each worker or aggregator employs
a task manager to schedule and execute computing and
communication tasks. Specifically, according to the node
role, the task manager consults the specified workflow
to select which series of computing and communication
primitives to execute during gradient synchronization. Af-
terwards, according to the communication topology (e.g.,
a PS bipartite graph or a ring), the task manager informs
the communication primitives where to send and receive

Coordinator
Per-link task queues
No—> N, [c]
No—> N, ([e]] [-]
N;—> No
N;— N, (L] O]
Na—> No
M N Ny
{l,rn frof':,(/VJ
2

Node,
worker

[+]
[+]
]
[2]
]

Qcommu Metadata

LU LN

‘ <a, N;> ‘<b, N1>‘<e, NZ>‘ ‘

fe]
=]
[-]
]

and/or
aggregator

Qeommu Metadata

‘ <f, N> ‘<c, N1>‘<d, N1>‘ ‘

<~
Non-conflicting links
with batched gradients
of balanced sizes
No— N; [a[b[c]
Ny— N, [[k]
N,— No [n[o[p]

Node,

Node, ‘ worker]and/ar[aggregator] Rj:c;:’ fimj ¢ N
Uk} from 2
'm N,

Fig. 3: The workflow of the compression-aware, coordinated
bulk synchronization.

compressed gradients.

The above fine-grained abstraction creates opportuni-
ties to pipeline computing and communication tasks for
improved performance. As shown in Figure 2, at Step
@, the task manager pushes tasks into two task queues:
Qcomp for computing tasks, and Q comm. for communication
tasks. Tasks in Qcomp and Qcommy are executed in an
asynchronous manner for efficient use of computing and
networking resources. However, as tasks are spread in two
independent task queues and are executed asynchronously,
there is a high risk that the data dependencies between
tasks are violated. Therefore, one challenge here is how
to preserve data dependencies and order constraints when
executing tasks from Qcomp and Qcommw asynchronously.

To ensure the proper order, the task manager maintains
a dependency graph to manage data dependencies between
tasks at runtime. For instance, for a compressed gradient,
its ‘recv’ task must first write to a memory buffer and
only then it can be read by the ‘decode’ task. Upon the
completion of a computing task from Qcom; (step @), it no-
tifies the task manager to clear the following tasks’” pending
dependencies, and then promotes the execution of any task
if all its pending dependencies are cleared (step ®). In doing
so, the asynchronous execution of gradient synchronization
is driven by the dependency graph among tasks. Note that,
the step @-® correspond to a coordinated, compression-
aware bulk synchronization mechanism in the next section.

3.2 Compression-aware Bulk Synchronization

While the above composable, pipelined synchronization can
already improve the training performance significantly, it
does not explore the opportunities brought by bulk synchro-
nization — an important feature that is supported by most
modern DNN systems. Instead of computing and communi-
cating each gradient at a time, bulk synchronization handles
gradients in a batched manner to better take advantage of
parallelism and reduce the execution overhead [78]. Here,
we extend the conventional bulk synchronization to be
compression-aware, and additionally introduce batch com-
pression to compress gradients in a batched manner. Our
main goal is to reduce the compression and communication
overheads. Compression-aware bulk synchronization is par-
ticularly important for small gradients as their compression

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

and communication overheads are difficult to be compen-
sated by the size reduction brought by compression.

The batch compression in CaSync batches a sequence of
compression-related tasks from Qcomp and schedules them
together to GPU for compression. This allows a single call-
back function for a batch of gradients and thus also reduces
the CPU-GPU coordination overhead. This is feasible as
modern DNN systems often employ the operation fusing
technique to produce multiple gradients at once [7].

The bulk communication in CaSync parallelizes the net-
work transmission across training nodes to amortize the
communication overheads across gradients. However, de-
ciding the appropriate bulk granularity for communication
is challenging. As discussed in Section 2.5, there are pros
and cons for both fine-grained and coarse-grained granular-
ity, and a proper balance needs to be struck. Our high-level
design is that we slice the gradient synchronization process
into monotonically increasing time slots, and select a group
of network-idle nodes to join each time slot. In a slot, to
avoid bandwidth contention, each selected node sends its
gradients to only one other node via its uplink and receives
gradients from its downlink. Note that, the transmitted
gradients in a time slot may correspond to different commu-
nication steps (see Figure 1) in the gradient synchronization
process. Together, the goal of this design is to enable the
adaptive granularity of communication and the optimized
node coordination during gradient synchronization.

Specifically, we introduce a global coordinator to adapt
the communication of all gradients indiscriminately (com-
pressed or not) and determine an optimal, coordinated com-
munication plan. The plan should fulfill two goals: 1) max-
imize the utilization of network bandwidth between pairs
of nodes, and 2) balance the size of transmitted gradients.
The design of the global coordinator is shown in Figure 3.
Each node (e.g., Nodey or Ny) can serve as a worker or
an aggregator or both, and it periodically sends the meta-
data (gradient name, gradient_size, destination_node) of
the tasks in its communication task queue Qcommu to the
global coordinator, e.g., ‘gradients a, b, ¢, and d to node N;’
and ‘gradients e and f to node Ny’ (gradient sizes omitted
for clarity). Upon arrival, the coordinator places these tasks
into their respective per-link task queues. Afterward, the
coordinator looks up these queues and selects a set of
non-conflicting links between nodes (e.g., 3 of 6 links are
selected). The coordinator then batches the gradients that
need to be transmitted over each selected link with balanced
batch sizes, amortizing the communication overhead across
gradients. The size of each batch is decided based on a
specified timeout or a size threshold, whichever is met first.

Finally, the coordinator broadcasts the information of
these gradient batches and coordinated communication
plans to the relevant nodes (step ® in Figure 2), so that
the executor on each node can execute these plans in a
coordinated manner and notify its task manager to clear the
dependencies of the tasks in each batch accordingly (step
®). Altogether, our compression-aware, coordinated bulk
synchronization enables both efficient batch compression on
GPU and efficient communication of small gradients.

6

TABLE 2: Notation in selective compression and partition-
ing.

Notation | Interpretation

m Gradient size in bytes

K Number of gradient partitions

N Number of workers or aggregators

r Compression rate
Tenc(m) | Time for compressing an m-byte gradient
Tgec(m) | Time for decompressing an m-byte gradi-

ent

Tsena(m) | Time for transmitting an m-byte gradient

TABLE 3: Synchronization parameters and their values.

[Algorithm | a [B 1 v
Spars.
CaSync-Ring Quant. 2N 1) N N
Low-rank 1 1
Spars.
CaSync-PS Quant. 9N K+1 | N+1
Low-rank 1 1

3.3 Selective Compression and Partitioning

Reducing data volume being transmitted does not always
offset the compression-related overhead even with opti-
mized synchronization strategies. It is more complicated
when large gradients require partitioning to leverage par-
allelism before compression. Therefore, we design a selective
compression and partitioning mechanism with a cost model to
analyze the time cost of synchronizing gradients with and
without compression, and then make a selective decision
to avoid over-compression penalties and further leverage
parallelism and load balancing. The cost model is simple
yet unified, and is applicable to different CaSync synchro-
nization strategies.

There are a few parameters used in the cost analysis as
defined in Table 2. Here, the compression rate r, as well
as the compression cost Te,.(m) and decompression cost
Tyec(m), are specific to compression algorithms and can
be easily profiled. Moreover, Tsenq(m) denotes the network
transmission time for an m-byte gradient. We omit merge
operators as they are compression-irrelevant.

We first analyze the original time to synchronize an
m-byte gradient with K partitions but without compres-
sion, denoted as 79,9 (m, K). Here, we use PS and Ring-
allreduce designed within CaSync as examples, denoted
as CaSync-PS and CaSync-Ring. For simplicity, let N
be the number of their respective workers or aggregators.
We assume the common practice used in real world where
all nodes are homogeneous [68], [69]. Also, the number
of gradient partitions, K, is between 1 and N for both
strategies, with a discussion of larger K values later. We
calculate 79" (m, K) as follows:

sync

ori m
Tsy'n.si(m7 K) =ax Tsend(?)‘ O

Here, o denotes the total number of serial communication
steps for synchronizing a gradient, and its value depends on
the given synchronization strategy. As shown in Table 3, the
« value of CaSync-Ring is 2(N — 1), since it takes N — 1
steps for gradient aggregation and another N — 1 steps to
disseminate the updated gradient (see Figure 1b), and all K

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

gradient partitions are synchronized in parallel. Similarly,
the a value of CaSync-PS is 2N, where the communication
of gradient partitions is well coordinated so that no network
links used are conflicting, i.e., all aggregators run in parallel
and each takes N steps to receive gradient partitions from
N workers and another NN steps to return results (see
Figure 1a).

Next, we calculate the time, TSP (m, K'), to synchronize

sync
an m-byte gradient with K partitions and compression:

- m m m
Tifne(m, K) = a X Toena(r X 22) + 8 X Tene(52) + 7 X Taee(r x 22)-
()

Here, the o value remains the same, but the communication
cost is reduced to Tsena(r X %) because one needs to send
only the compressed gradient partition of the reduced size
r X % This, however, comes with an extra compression-
related computational cost. We denote the number of en-
code and decode operators that do not overlap with gra-
dient transmission as 8 and -y, whose values are described in
Table 3. When using CaSync-Ring to globally synchronize
quantized and sparsified gradients, its first aggregation
phase requires N —1 encode and N — 1 decode operators,
and they are non-overlapping because a node can compress
a gradient partition only after it has decompressed and
aggregated the partition received from its predecessor (i.e.,
data dependencies). Its second dissemination phase requires
only one encode and N — 1 decode operators. However,
all decode operators except the last one can overlap with
gradient transmission. Therefore, 3 = (N —1)+1 = N and
alsoy=(N-1)+1=N.

However, the application of CaSync-Ring to gradients
compressed by low-rank methods behaves differently and
leads 8 and < to be 1. This is due to the unique char-
acteristics of this kind of gradient compression algorithm;
compressed gradients can be directly aggregated along the
synchronization path, and thus only one encode operator
and one decode operator are needed to compress the target
gradient at the first step and decompress the aggregated
compressed sub-matrices at the final step, respectively. We
omit the analysis for CaSync-PS due to space limit. Note
that, our cost model can be relaxed to split a gradient
into beyond N partitions to leverage the compression-
communication pipeline enabled by CaSync further. To
do so, we simply adapt the calculation of TP) (m, K) by
grouping K partitions into [£] batches.

Based on the comparison of Tg/%(m,K) and
Thh.(m, K), we decide whether it is beneficial to enable
compression for a gradient. If so, we also compute the
optimal number of partitions for the best performance. This
is feasible because: 1) all parameters in Table 2 can be easily
obtained or profiled via GPU and network measurements,
where we launch the GPU kernels and peer-to-peer com-
munication tasks with respect to different gradient sizes
to fit the compression and network cost curves, respec-
tively; 2) the values of o, 5 and ~ in Table 3 needed to
analyze TPl (m, K) are determined once a DNN system
with its CaSync synchronization strategy is given, and 3)
the expressions 1 and 2 are convex functions which make it
straightforward to identify the best setting for each gradient.
It is worth mentioning that, our cost model assumes a
homogeneous environment where all GPUs and network

—_

void encode(float+ input, uint8+ output, params);
2 |void decode(uint8+ input, float+ output, params);

Fig. 4: Unified compression-related API abstraction.

links have the same capacities, and the profiling results are
obtained without considering the variance or interference of
network and GPUs. We leave the exploration of the impacts
of dynamics on the profiling accuracy of our cost model as
future work.

Note that most, if not all, gradient compression algo-
rithms (including the six state-of-the-art ones we evaluate)
are layer-wised. We impose a strict partition-compress-batch
order which is applied to each DNN layer independently,
and thus it does not affect the accuracy and convergence of
original compression algorithms. For few non-layer-wised
compression algorithms, we simply turn off the selective
compression and partitioning, thus incurring no negative
impacts on accuracy and convergence of these algorithms.

4 COMPRESSION LIBRARY AND LANGUAGE

As discussed in Section 2.5, on-GPU compression can
greatly accelerate compression-related computation, allevi-
ate the bandwidth tension between GPU and host, and
create new opportunities to further optimize the gradient
synchronization process. However, developing and optimiz-
ing gradient compression algorithms on GPU is non-trivial,
and integrating them into DNN systems usually requires
substantial system expertise and manual efforts. Thus, we
design a toolkit CompLL, which allows practitioners to eas-
ily develop highly-optimized compression algorithms using
GPU capability. The CompLL-generated code is then con-
sumed by CaSync, thus enabling an automated integration
of compression algorithms with CaSync into DNN systems.

4.1 Unified API Abstraction

CompLL provides a unified API abstraction for implement-
ing gradient compression algorithms. As shown in Figure 4,
CompLL has two simple APIs: encode and decode, as well
as a few algorithm-specific parameters (e.g., compression
rate for sparsification, bitwidth or precision for quantization
and rank size for low-rank). The encode API takes as input
a gradient matrix and generates a compressed gradient as
output. In particular, we use uint 8 as the type of the output
matrix, because we can then cast one or multiple uint8 to
any type in CUDA. On the other hand, the decode API
unfolds a compressed gradient into its original form.

4.2 Common Operator Library

By studying the state-of-the-art compression algorithms,
we observe that they can generally be specified using a
few common operators [5], [12], [18], [44], [76], [84], [85],
[87], [89], [94], [96], [103]. For instance, these algorithms all
need to scan the elements of a gradient. Alongside scan-
ning, they all need to perform operations such as filtering
or reducing the scanned elements to produce compressed
gradients. With this observation, we generalize a library of
common operators that can be used to construct gradient

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 4: List of common operators. G is a gradient matrix,
and o is the rank size required by low-rank methods.

Operator | Interpretation

sort(G, udf) Sort elements in G w.r.t the order given
by the user-defined function udf

filter(G, udf) Select elements from G via udf

map(G, udf) Return H where H[i] =udf(Gl[i])

reduce(G, udf) Return a reduced value of G via udf

Return a random int/float in [a,b)
Concatenate values together into a vector
Extract metadata from the compressed G’
Return P, Q such that PQ" ~ G, where
G eR"™™, PeR"™°, and Q € R™*°
Matrix multiplication of G and G

random(a, b)
concat(a, - -)
extract(G")

decomp(G, 0)

matmul(Go, G1)

compression algorithms, as listed in Table 4. For instance,
the reduce (G, maxAbs) operator with a user-defined
function maxAbs computes the maximum absolute value
of the gradient matrix G, and the decomp (G, o) operator
decomposes G into two smaller matrices with their sizes
properly calculated. We have carefully optimized these com-
mon operators regarding memory access and bank conflicts
in GPU [27], so that any algorithm implementation based
on these operators can automatically inherent our GPU
optimizations (see details in Section 5).

4.3 Code Synthesis and Domain-specific Language

We provide two ways for practitioners to implement algo-
rithms using CompLL. They can invoke our common opera-
tor library directly in their algorithm implementation. This,
however, requires them to be familiar with the low-level
CUDA programming. To further relieve the burden, we
design a simple, C-like domain-specific language (DSL) for
practitioners to easily implement their algorithms with the
unified API abstraction filled with common operators, with-
out worrying about hardware-oriented implementation and
optimization. Specifically, our DSL supports basic data types
such as uintl, uint2, uint4, uint8, int32, float,
and array, as well as simple numerical computations and
function calls to the common operators. Though not sup-
ported, our practice shows that it is often unnecessary to
include loops in the DSL code as the iterative processing
semantics have already been covered by the implementation
of common operators.

To show how DSL works, we use it to implement the
classic TernGrad compression [94] as an example in Figure 5.
Line 1-3 specify bitwidth as the algorithm parameter to
determine compression rate. Line 5-8 specify a user-defined
function floatToUint to compress a float number into a
bitwidth-sized integer. The TernGrad'’s logic to implement
our encode API begins at line 9, and takes the original
gradient as input and outputs the compressed gradi-
ent. Through line 11-14, the algorithm metadata which is
essential for decompression is generated. At line 15, we pass
the user-defined function floatToUint to the common
operator map to generate the compressed gradient matrix Q.
Finally, at line 16, we use the common operator concat to
combine all metadata and Q into the output compressed
gradient. We omit the implementation of the TernGrad’s
decompression code in the interest of space.

8
1 | param EncodeParams{
2 uint8 bitwidth; // assume bitwidth = 2 for clarity
3 |}
4 | float min, max, gap;
5 | uint2 floatToUint(float elem) {
6 float r = (elem — min) / gap;
7 return floor(r + random<float>(0, 1));
8 |}
9 |void encode(float+ gradient, uint8+ compressed, \
10 EncodeParams params) {
11 min = reduce(gradient, smaller);
12 max = reduce(gradient, greater);
13 gap = (max — min) / ((1 << params.bitwidth) — 1)
14 uint8 tail = gradient.size % (1 << params.
bitwidth);
15 uint2+ Q = map(gradient, floatToUint);
16 compressed = concat(params.bitwidth, tail, \
17 min, max, Q);
18 |}

Fig. 5: TernGrad’s compression logic specified using the API,
common operators and DSL of CompLL.

TABLE 5: Comparison of implementation and integration
costs (measured in lines of code) between open-source (OSS)
and CompLL-based compression algorithms.

0SS CompLL
Algo- - -
. . integ- . # common | integ-
rithm logic) logic | udf)
ration operators ration
onebit 80 445 21 9 4 0
TBQ 100 384 13 18 3 0
TernGrad 170 513 23 7 5 0
DGC 1298 1869 29 15 6 0
GradDrop | N/A | N/A 29 21 6 0
PowerSGD | 307 211 15 10 2 0

Next, CompLL’s code generator parses the gradient com-
pression algorithm specified in our DSL, traverses its ab-
stract syntax tree, and automatically generates the CUDA
implementation. When encountering a function call to com-
mon operators, CompLL directly substitutes it with our
highly-optimized CUDA implementation and then converts
the specified parameters into their desired formats. For
other operations such as numerical computations, CompLL
declares specified variables and copies the necessary numer-
ical computation code accordingly, as our DSL supports a
subset of C’s syntax. For a variable of type (such as uint1)
which is not supported in CUDA, CompLL uses a byte to
store it and uses bit operations to extract the actual value.
If it is an array of variables of unsupported type, CompLL
uses consecutive bits of one or more bytes to represent this
array compactly, with the minimal zero padding to ensure
the total number of bits is a multiple of 8.

4.4 Case Studies and Discussions

To demonstrate the easy algorithm development enabled by
CompLL, we use it to implement six state-of-the-art compres-
sion algorithms: onebit [76], TBQ [84], and TernGrad [94] are
quantization algorithms; DGC [44] and GradDrop [5] are
sparsification ones; PowerSGD [87] is a low-rank algorithm.
Onebit, TBQ, TernGrad, DGC and PowerSGD have open-
source (OSS) implementations.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[User script] [User script] [User script]I

| MX adaptor | | TF adaptor | | PT adaptor |
! ! !
CASync ComplLL ComplL
(PS / Ring-allreduce) (Library) (Language+
HiPress Runtime CodeGen)

MXNet (MX) | |TensorFIow(TF)| | PyTorch (PT)

Fig. 6: The overview of HiPress. The shadow boxes are the
new components introduced by HiPress.

Auto-generated code. Table 5 summarizes the comparison
between the open-source and CompLL-based implementa-
tions of these algorithms. The open-source implementations
need a lot more code to implement these algorithms, and
spend substantial effort to integrate them into DNN sys-
tems. In contrast, with CompLL, we use only 3 to 6 common
operators to implement these algorithms with fewer than 21
lines of code for user-defined functions and fewer than 29
lines of code for algorithm logic. The algorithm is then trans-
lated into GPU code via our code generator and integrated
into DNN systems by CompLL without manual efforts. We
leave the detailed performance evaluations in Section 6.4
to compare the encode and decode operations between
CompLL’s auto-generated implementations and three open-
source (OSS) baselines.

Expressiveness and extensibility. Beside the classic algo-
rithms listed in Table 5, we exercise more gradient compres-
sion algorithms and find that they all can be easily specified
and auto-generated by CompLL. For instance, AdaComp [14]
needs map, reduce, filter, concat and extract com-
mon operators, while 3LC [43] needs reduce, map, concat,
filter and extract. As an example, it requires only
69 lines of CompLL’s DSL code to express the encode
function of 3LC, whose zero-run encoding logic is specified
by partitioning the target gradient and applying map and
filter over each partition. For future algorithms possibly
requiring new operators, CompLL is open and allows regis-
tering them into the common operator library for enjoying
our automated code generation and integration into DNN
systems.

5 HiPreEss FRAMEWORK

We incorporate the aforementioned coherent design into
an open-source framework HiPress [2] for compression-
aware data parallel DNN training. HiPress has 7.5k and
3.3k lines of code in C/C++ and Python, respectively, and is
composed of the following main components, as shown in
Figure 6.

5.1 Major System Components

CaSync. We implement CaSync using Horovod [78], a
popular gradient synchronization library used by almost all
mainstream DNN systems. CaSync currently supports both
PS and Ring-allreduce. We leverage the MPI_all_to_-
all [56] and NCCL_all_to_all [62] primitives to execute
the bulk communication step introduced in Section 3.2.

9

We deploy the global coordinator on one of the training
nodes. Though being a centralized component, its load is
always light and the coordination overhead is negligible
due to the following reasons: (1) only the gradient metadata
is exchanged, and (2) the coordination of one gradient
batch runs asynchronously with the bulk synchronization
of the previous batches, thus its cost can be always hidden
(confirmed in our experiments).

The selective compression and partitioning planer is
a standalone component for producing per-gradient com-
pression and partitioning plans. It obtains the variables
defined in Section 3.3 from the training scripts (including
the synchronization strategy and cluster configurations),
the network, and GPU-measurements via the first training
iteration. The produced plans are executed by CaSync at
runtime.

CompLL. We implement decompose common opera-
tor using LAPACK [37] and remaining operators using
Thrust [61], the CUDA C++ template library, with the
following optimizations. (1) CompLL reuses gradients pro-
duced by DNN computation and only allocates buffers
for the much smaller compressed gradients to avoid the
GPU memory contention. (2) CompLL uses fast share mem-
ory rather than global memory, and eliminates bank con-
flicts [27] by making each thread access disjoint memory
banks when possible. We also fuse the decode and merge
operators for better performance. To avoid computing re-
source contention, we allocate CUDA cores for compression-
related computation, while letting DNN computation ker-
nels make the full use of Tensor cores. Therefore, these
two types of computation can run concurrently with no
interference.

Local aggregation. For multiple GPUs per node, we first
aggregate the original gradients among local GPUs, and
then synchronize the compressed gradients across nodes.
This is because the bandwidth of intra-node connection
links (e.g., PCle, NVLink) is often orders of magnitude
higher than the inter-node links. Local aggregation reduces
the number of gradients exchanged across nodes for better
performance.

5.2 Training Integration and Execution Scheduling

HiPress integrates CaSync and CompLL-generated library
into three modern DNN systems TensorFlow, MXNet, and
PyTorch. First, Casync is integrated via Horovod. CompLL
creates wrapper functions for encode and decode prim-
itives to obtain pointers to gradients and the algorithm-
specific arguments from the training context. CompLL then
invokes the CompLIL-generated code. Second, we create
adaptors to make training workflows compression-enabled
by instrumenting the original training scripts with func-
tion calls to CaSync. The major challenge we identify
here is the mismatch between the existing execution mod-
els with coarse-grained dependency tracking mechanisms
in DNN systems and the new computation-compression-
communication pipeline HiPress introduces. To illustrate
the problem and our system adaptations, we consider the
following two cases.

MXNet and TensorFlow. The two systems have their own
task manager to overlap the gradient synchronization and

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

/)l Partition 0 | Partition 1 |<\\ 7| Partition 0 | Partition 1 If

1 \

) () () ﬁ

! v v ! 1

(o) () /| (o) ())

\\ = ;
Y

‘{Decode] [Decode b “{Decade) (Decode

Fig. 7: Ordering constraint optimization. Solid-line/dashed-
line arrows represent read/write dependencies, respec-
tively, and other arrows represent causal dependencies.

DNN computation ‘ T, ‘ ‘ T, ‘ ‘ T, ‘
Compression
Communication

(a) Non-overlapped pipeline, PyTorch Hook time
DNN computation ‘ T, ‘ T, ‘ T, ‘
Compression
Communication

(b) Ideal pipeline time

Fig. 8: The new DNN computation, compression, and com-
munication pipeline in HiPress.

DNN computation. We add a new task queue and a dedi-
cated CPU thread to schedule encode and decode operators
on GPU for further running compression-related compu-
tation and DNN computation in parallel, as we observe
that the former computation is often memory-intensive.
However, the asynchronous execution engines open a chal-
lenge, especially when considering gradient partitioning in
the context of compression. As described in Section 3.3,
our CaSync synchronization may partition gradients before
compression. To avoid expensive memory copying, instead
of allocating temporary spaces for partitioned gradients, we
use offsets pointing to the original gradient in GPU to mimic
partitioning. Without a proper design, however, we could
impose unnecessary ordering constraints on the synchro-
nization of all partitions. This is because the dependency
tracking in existing DNN systems is coarse-grained and not
aligned with our memory copying avoidance.

Figure 7 illustrates this problem. On the left side,
the synchronization-related operations (i.e., encode, comm
(communication) and decode) execute sequentially for a
partition. Partition 0’s decode has a write dependency on
the shared gradient, while the Partition 1’s encode imposes
a read dependency on the same gradient despite of different
partitions. This leads to a situation where the synchroniza-
tion of the two partitions is serialized (unnecessarily). In-
stead, on the right side, we divide the synchronization into
stages, group operations in one stage, and then pass them to
the next stage. This meets proper ordering constraints while
allowing for pipelining the synchronization across different
partitions of the same gradient.

PyTorch. Though the asynchronous execution is also sup-
ported, PyTorch does not rely on a task manager, instead,
it executes gradient synchronization in hook [52]. However,
directly calling CaSync in hook would lead to performance

10

degradation as it precludes the opportunity of overlapping
computation and communication, as shown in Figure 8a.
This is because the main process can launch the next DNN
computation operator as long as the operators in hook, such
as encode, bulk communication, and decode opera-
tors, complete their execution.

To address the hook issue, we implement a task man-
ager inspired by the execution engine of MXNet and
TensorFlow to enable the new computation-compression-
communication pipeline. This engine employs multiple
queues to manage different tasks, each assigned a dedicated
thread for task launching. In addition, we apply the above
fine-grained dependency tracking optimization that works
with gradient partitioning to PyTorch. Finally, the new
pipeline allows the DNN computation to overlap with both
compression and communication, as depicted in Figure 8b.

5.3 Choosing casync-PS or Ring?

Here, we discuss the performance behaviors of the two
compression-enabled gradient synchronization methods of-
fered by CaSync across the three categories of compression
algorithms. First, for the low-rank algorithms, CaSync-
PS has the same performance as CaSync-Ring, due to
the following reasons. On one hand, according to Table 3,
CaSync-PS takes the same number of transmission, com-
pression and aggregation steps as CaSync-Ring. This is
as expected since existing studies [33], [35] including ours
prove that their non-compression baselines are semantically
equivalent. Furthermore, when compression is enabled, at
every intermediate step, compressed gradients are directly
aggregatable, and there is no need to perform encode and
decode operators. On the other hand, we have implemented
CaSync-PS efficiently, which follows the common prac-
tice of Ring-allreduce to make use of high performance
collective communication primitives. Second, regarding the
quantization algorithms, the performance of CaSync-PS
is also similar to that of CaSync—Ring, due to the same
reasons above.

Finally, contrary to quantization and low-rank algo-
rithms, the two methods can deliver different performance
numbers for sparsification ones, mainly because of the data
inflation when aggregating gradients. In more detail, upon
receiving compressed sparse gradients, often containing
top K important elements, the worker or aggregator merges
them to form updated gradients, which will contain top
K’ elements, where K’ >= K. This inflation would lead
to increases in transmission latency and bandwidth con-
sumption. However, this impacts CaSync-PS less heavily
than CaSync-Ring due to the following reasons. CaSync-
Ps is implemented by the combined use of gather and
broadcast, and the inflation only affects the performance
of broadcast. As the gradients are partitioned, and bal-
anced across workers, the impacts are not heavy. Dislike this,
for CaSync-Ring, inflation happens at every step in its
aggregating phase (in total, N-1 steps). To make it comply
with the Ring-allreduce semantics, which requires gradients
to be same sized during all steps, we have to add an extra
encode operator following the merger operator to re-select
top K elements. However, this incurs additional compu-
tation overhead, compared to CaSync-PS. Note that we

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF KATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
TABLE 6: Statistics of trained models.

Name | Total size | Max gradient | # Gradients

VGGI19 [83] 548.05MB 392MB 38
ResNet50 [29] 97.46MB 9MB 155
UGATIT [34] 2558.75MB 1024MB 148
UGATIT-light [34] | 511.25MB 128MB 148
Bert-base [21] 420.02MB 89.42MB 207
Bert-large [21] 1282.60MB 119.23MB 399
LSTM [50] 327.97MB 190.42MB 10
Transformer [86] 234.08MB 65.84MB 185

can only observe visible performance differences between
CaSync-PS and CaSync-Ring when the sparsity rates
are considerably low. We leave the further exploration and
system optimizations in the future work.

6 EVALUATION

Our evaluation answers the following main questions:

e Can HiPress significantly improve the performance of
DNN data parallel training jobs over the baselines?

o What are the performance implications of synchronization
optimizations and the auto-generated compression code?

o What are the effects of compression rate and network
bandwidth?

o Can CompLL-generated compression algorithms outper-
form their open-source ones?

e Can CompLL-generated compression algorithms achieve
the same training accuracy as their original versions?

6.1 Experimental Setup

Machine configurations. We conduct experiments in both
AWS EC2 and local clusters to evaluate HiPress with both
high-end and low-end machines. We use 16 p3dn.24xlarge
EC2 instances with 128 GPUs. Each instance has 96 vCPU,
8 NVIDIA Tesla V100 GPUs (32GB memory, connected by
NVLink), and is connected by a 100Gbps network. We also
replicate the same experiments in our local cluster with 16
nodes and 32 GPUs. Each local node has two 16-core Intel
E5-2620 processors, 2 NVIDIA 1080 Ti GPUs (connected via
a PCle switch), and is connected by a 56Gbps Infiniband net-
work. EC2 instances and local nodes run Ubuntu 16.04 and
CentOS 7.6, respectively, with the remaining software being
identical, such as CUDA 11.1, OpenMPI 4.0.3, NCCL 2.10.3,
MXNet 1.5.1, TensorFlow 1.15.5, PyTorch 1.10.0, Horovod
0.20.3 and BytePS 0.2.5.

Baselines. We use TensorFlow (TF), MXNet, PyTorch with
BytePS and Ring-allreduce (Ring) as no-compression base-
lines. In the interest of space, we only demonstrate the end-
to-end performance with four out of six generated compres-
sion algorithms, namely, onebit, DGC, TernGrad and Pow-
erSGD, with different DNN systems. We use the recently
developed BytePS (0SS-onebit) [6], [13], Ring (0SS-
DGC) [66] and PyTorch (0SS—-PowerSGD) [54] from in-
dustry as compression-enabled baselines with open-source
(OSS) quantization, sparsification and low-rank algorithms
respectively. Note that for a fair comparison, we use our
highly optimized on-GPU implementation instead of the
original on-CPU implementation for onebit algorithm de-
noted by CompLL-onebit.

11

TABLE 7: Compression and partitioning plans of CompLL—
onebit. In each tuple, the first value decides whether to
compress a gradient and the second value indicates the
number of partitions.

Gradient CaSync-PS CaSync-Ring
size 4Nodes [16 Nodes | 4 Nodes [16 Nodes
4MB <yes, 2> <yes, 1> <yes, 1> <no, 16>

16MB <yes, 4> <yes, 6> <yes, 4> <yes, 5>
392MB <yes, 12> | <yes, 16> | <yes, 4> | <yes, 16>

Models and datasets. Following the literature [33], [75], we
choose six widely-used DNN models with three computer
vision (ResNet50, VGG19 and UGATIT) and three natu-
ral language processing (Bert, Transformer and standard-
LSTM). We train ResNet50 and VGGI19 with the Ima-
geNet dataset [74], and the remaining models with the
selfie2anime [73], RTE [11], WMT17 [77] and wikitext-
2 [49] dataset, respectively. We additionally deploy Bert
and UGATIT under their light mode with fewer parameters
to meet the GPU memory constraint in our local cluster,
denoted as Bert-base and UGATIT-light, respectively. The
model details are summarized in Table 6.
Metrics. We measure the total number of samples processed
per second as the training throughput, the latency break-
down of the key steps in the computation-synchronization
pipeline, speedups of encode and decode, and the training
accuracy and convergence speed.
System configurations. We tune the configurations of base-
lines for their best performance, e.g., co-locating aggregators
and workers for BytePS and CaSync-PSs. We deploy all
systems with RDMA enabled except BytePS on EC2. This is
because BytePS does not support the Elastic Fabric Adapter
(EFA) used by EC2 instances at the moment. We keep the
per-GPU batch size constant as the number of GPUs are
scaled up (weak scaling). We set batch sizes across different
models by following literature [21], [36], [50], [86], instead
of setting them to the largest value that a single GPU can
sustain, since a too large batch size may lead to convergence
problems [47], [75]. For all four compression algorithms, we
inherit the parameter settings from their original papers.
Table 7 shows the optimal thresholds for compressing
a gradient and the optimal partition numbers, produced by
CaSync based on CompLL-onebit algorithm. According to
two synchronization strategies CaSync currently supports
and their cluster deployment configurations, we set the
value of ¢, 8 and « for Casync-PS as 2(N — 1), K and N,
respectively. This assignment is slightly different from the
numbers in Table 3. This is because the evaluated CaSync—
PS in Section 6 co-locates aggregators and workers, and
the local workers do not need to send its gradients to the
co-located aggregator via network activities. For CaSync—
Ring against sparsification and quantization algorithms,
we set three parameters as 2(N — 1), N, and N, while
for CaSync-Ring against the PowerSGD algorithm, we set
three parameters as 2(N —1), 1, and 1 respectively. The opti-
mal thresholds of selective compression and partition sizes
are produced by our cost analysis model. With 16 nodes,
CaSync suggests compressing gradients larger than 4MB
and splitting the largest VGG gradient into 16 partitions
before compression for AWS EC2 platform.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

12

led led
5.5 B Byteps 4] @ Byteps
Ring Ring

Y 2.0 == Byteps0ss-onebit) 9 == Ring(0SS-DGC)
b BN BytePS(CompLL-onebit) y3
a 1.5 ™A HiPress-CaSync-Ring(CompLL-onebit) w Linear-Scaling
[e HiPress-CaSync-PS(CompLL-onebit) (] >
% 1.04 Linear-Scaling g
E £

05 !

0.0

o

8 16 32 64 128 3 16
The Number of GPUs

(a) MXNet, VGG19, BS = 32

le5

8 HiPress-CaSync-Ring(CompLL-DGC)
—

The Number of GPUs

(b) TensorFlow, ResNet50, BS = 32

P:@ BytePS
Ring
mmm pyTorch(OSS-PowerSGD)
HiPress-CaSync-Ring(CompLL-PowerSGD)
BN HiPress-CaSync-PS(CompLL-TernGrad)
[Linear-Scaling

N
&)

N
=}
\

Images/sec
- -
o

o
n

o
IS)

32 64 128 8 16 32 64 128
The Number of GPUs

(c) PyTorch, UGATIT, BS = 2

led

BytePS BytePS 44 @ BytePS
ub Ring 2.0 Ring 5 Ring
2 BytePS(OSS-onebit)b 8 Ring(0SS-DGC) o mmm PyTorch(OSS-PowerSGD)
5 B}/tePS(CompLchne it) _ % 1.5 HiPress-CaSync-Ring(CompLL-DGC) ») 31 WA HiPress-CaSync-Ring(CompLL-PowerSGD)
g HiPress-CaSync-Ring(CompLL-onebit) m . " v Bl HiPress-CaSync-PS(CompLL-TernGrad)
g HiPress-CaSync-PS(CompLL-onebit) c Linear-Scaling 8 -
[J] [Linear-Scaling o 1.0] 24 Linear-Scaling
=] X =}
52 © g
3 0.5 3 14
0 N 4 IS 00 L 04 ‘8 IS
8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

The Number of GPUs

(d) MXNet, Bert-large, BS = 32

The Number of GPUs

(e) TensorFlow, Transformer, BS = 2048

The Number of GPUs

() PyTorch, LSTM, BS = 80

Fig. 9: Throughput comparison of image processing and natural language processing models atop MXNet, TensorFlow,
and PyTorch. AWS EC2 V100 instances. 100Gbps cross-node RDMA network. BS stands for per-GPU batch size.

In addition, for the baseline synchronization strategies
like BytePS and Horovod (Ring-allreduce enabled), we use
their default settings. These baselines are able to tune the
number of partitions for maximizing the overall perfor-
mance [33], [63].

6.2 End-to-End Performance
6.2.1 AWS EC2 Results

Figure 9 compares the end-to-end training throughput of
HiPress and baselines with MXNet, TensorFlow and Py-
Torch as the underlying DNN system, respectively, using a
total of 128 GPUs.

Atop MXNet. We demonstrate the throughput compari-
son results using MXNet in Figure 9a and 9d. For the
VGG19 model, Ring outperforms BytePS by 31.3-50.3%
across all cluster sizes. When not using RDMA, Ring still
outperforms BytePS by 19.3-36.6%. These results are not
consistent with the BytePS paper, but valid. This is due
to we use a newer version of NCCL library that both
BytePS and Ring relies on, and we also disable intra-node
aggregation in Ring, which leads to better performance. For
the Bert-large model, BytePS outperforms Ring by up to
8.9% across all cluster sizes. However, enabling the onebit
compression algorithm within BytePS does not bring ex-
pected speedups. With the native on-CPU onebit imple-
mentation, BytePS (0SS-onebit) performs the worst, and
runs far slower than all other system configurations. When
migrating compression-related computation from CPU to
GPU, BytePS (CompLL-onebit) catches up with non-
compression baselines, but brings only limited improve-
ments over the best-performed one, e.g., only up to 7.3% im-
provement over BytePS. Such surprising result verifies the
importance of implementing fast compression algorithms
on GPU and designing a compression-aware synchroniza-
tion strategy to release the full potential of compression
algorithms.

—_ 120 —— Ring HiPress —_ 120

100 1 NAAA A4 JPIRANAY 10N Vo
M

HiPress
100 g) 4y

AT

©
S
o
(=]

o
S
I
S

Percentage (%
D
S
Percentage (%
D
(=}

[5o]
(=}

(5=
==

0 2000 4000 6000 8000 ‘2000 4000 6000 8000
Time (ms) Time (ms)
(a) Bert-large (b) UGATIT

Fig. 10: GPU utilization of Ring and HiPress when train-
ing Bert-large and UGATIT. The configurations of HiPress
are the same as those used in Figure 9d and 9c.

Unlike limited speedups brought by the latest synchro-
nization strategies and open-source versions of compression
algorithms, HiPress significantly improves the training
throughput over all baselines across all cases. E.g., with
128 GPUs, for VGG19 and Bert-large, HiPress—-CaSync-
PS (CompLL-onebit) outperforms BytePS, Ring and
BytePS (CompLL-onebit) by 110.5% and 32.3%, 60.4%
and 44.1%, 69.5% and 23.3%, respectively. HiPress-
CaSync-Ring (CompLL-onebit) performs similarly to
HiPress—-CaSync-PS (CompLL-onebit), and also signif-
icantly outperforms all baselines. One important observa-
tion is that the improvements of HiPress become larger
when the number of GPUs increases. This implies that when
the cluster size expands, the communication overhead of
the communication-intensive models increases, and thus
HiPress becomes even more beneficial.

Atop TensorFlow. We evaluate the integration with Ten-
sorFlow using the ResNet50 and Transformer models. In
Figure 9b, the non-compression BytePS and Ring perform
similarly for ResNet50. In contrast, for Transformer, Ring
outperforms BytePS by up to 30.9% and 23.5%, when
switching on/off RDMA. Transformer’s scaling efficiency is

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

significantly lower than that of ResNet50, since it is more
communic-ation-intensive and exchanges more gradients
than ResNet50.

Note that BytePS (0SS-onebit) cannot be directly

applied to TensorFlow, since it is tightly coupled
with MxNet. Thus, we exercise DGC, integrated into
Ring-allreduce and TensorFlow. To compare with
Ring (0SS-DGC), we configure HiPress with CaSync—
Ring rather than CaSync-PS. For the Transformer model,
Ring (0SS-DGC) outperforms BytePS and Ring by up
to 42.8% and 22.1%, respectively, though brings almost
no improvement for ResNet50. Because of the opti-
mized compression-aware synchronization strategy design
and the highly-efficient on-GPU DGC code generated by
CompLL, HiPress—CaSync-Ring (CompLL-DGC) outper-
forms Ring (0SS-DGC) by up to 41.1%, and the non-
compression baselines such as BytePS and Ring by up to
101.4%, for Transformer. Interestingly, even for ResNet50,
HiPress improves its training speed by up to 20.7% over all
baselines. This implies that when the cluster size expands,
the communication cost of the computation-intensive mod-
els also increases, and can benefit from HiPress.
Atop PyTorch. Here, we exercise the UGATIT and LSTM
models. Here, we choose PyTorch (0SS-PowerSGD) as the
compression-enabled baseline, while BytePS and Ring as
the non-compression ones. In Figure 9c and 9f, similar to
the results of HiPress atop both MxNet and TensorFlow,
HiPress over PyTorch with CaSync-PS the CompLL-
TernGrad algorithm obtains a speedup up to 2.1 X com-
pared to BytePS and Ring, for UGATIT and LSTM. Such
consistent results verify that HiPress is a general and high
performance compression-aware data parallel framework.

Though the two models are communication-intensive,
the open-source PyTorch (0SS-PowerSGD) only outper-
forms the best-performed Ring baseline by up to 23.3%
and 11.6% respectively. This is mainly due to the sequential
execution introduced by the hook mechanism (see Sec-
tion 5.2) and the lack of local aggregation in the native
communication library of PyTorch. In contrast, HiPress—
CaSync-Ring (CompLL-PowerSGD) further brings 22.9%-
39.3% and 9.8%-22.7% improvement for the two DNN mod-
els across all setups with different numbers of GPUs in-use,
compared to PyTorch (0SS-PowerSGD), thanks to its fine-
grained task management, local aggregation optimization
and high performance auto-generated PowerSGD operators.
GPU utilization. Figure 10 compares the GPU re-
sources used for the DNN-related computation of the
non-compression baseline Ring and the best-performed
HiPress configurations (Figure 9d and 9c). Here, we use
nsight instead of nvidia-smi to measure the GPU uti-
lization of training jobs, since the latter does not distinguish
the GPU resources used for the DNN computation and
gradient synchronization. For the Bert-large and UGATIT
model, both Ring and HiPress can use nearly 100% GPU
computing resources at the peak. However, the overall
GPU usage of Ring is more sparse than HiPress. This is
because Ring’s GPU utilization drops to zero during gradi-
ent transmission, which is time-consuming in data parallel
training. However, within HiPress, the fast compression-
aware gradient synchronization eliminates the communica-
tion bottleneck, which leads the system to spend more time

13

w
o

m Ring
BytePS(OSS-onebit)

mm= HiPress-CaSync-Ring(CompLL-onebit)

W HiPress-CaSync-PS(CompLL-onebit)

[Linear-Scaling

N
%

N
o

-
u

/|

=
o

<
wn

/|
|

Bert-base

Speedups normalized to
the BytePS(non-compression)

o
o

“ NNNNNNNNN

VGG1

Fig. 11: Training speedup normalized to BytePS atop
MXNet system, in a 16-node local cluster connected via
56Gbps Infiniband network with RDMA enabled.

VGG19, BytePS vs. CaSync-PS Bert-base, Ring vs. CaSync-Ring

Default P e@®x 3022 20 o o X
+On-CPU Avavava
+On-GPU [=®ee®

L O > DO X X X X X|

+Pipeline {AAYAY o
+Bulk Sync P58 e:
+SeCoPa AVAYAA Synchronization VANV
. N ati
Linear pvawawaw, 54N Computation A AN AN A A A AV

0 250 500 750 0 200 400 600
Time Cost(ms) Time Cost(ms)

Fig. 12: Impacts of enabling synchronization optimizations
on the time cost of computation and synchronization.

doing useful work.

6.2.2 Local Cluster Results.

In addition to the high-end servers, low-end clusters with
earlier generations of GPUs than V100 and commodity
networks slower than the 100Gbps links in AWS have been
still in widespread use [8], [23], [41], [42]. To test the ap-
plicability of HiPress to low-end servers, we replicate all
above experiments in our local cluster with low-end GPUs
and RDMA-enabled 56Gbps network links. Similar to the
performance improvements of HiPress in the high-end
AWS cluster, in our local cluster tests, the combinations of
two CaSync synchronization strategies and various Com-
pLL-generated algorithms in HiPress significantly outper-
form all baselines, and HiPress’s performance advantages
become more obvious with more GPUs. In the interest
of space, we only show the performance speedups of all
system configurations when training Bert-base and VGG19
over MXNet, normalized to the non-compression baseline
BytePS, see Figure 11. We use the onebit algorithm to
reduce the transmitted data volume like in Figure 9a and
9d. Due to the GPU memory constraint, we run Bert-base, a
light variant Bert with fewer parameters. With 16 nodes and
32 GPUs, for both communication-intensive models, sur-
prisingly, the state-of-the-art compression-enabled baseline
BytePS (CompLL-onebit) runs even 8.5% slower than the
non-compression Ring. By contrast, HiPress outperforms
the non-compression baselines (i.e.,, BytePS and Ring)
and the compression-enabled baseline BytePS (CompLL-
onebit) by up to 133.1% and 53.3%, respectively. Thus,
HiPress could benefit training jobs with diverse soft-
ware/hardware configurations, as long as the communica-
tion is the bottleneck.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14
3000 B 240 = 0SS-TernGrad|™ g o
" 2000 » 120 CompLL-TernGrad| 12373
%1000 a,
3 —§ OSS-TBQ[Tt
& 15 a 2 CompLL-TBQ[™ o=
12 ﬂ H) 085-DGC == Comp.
0 ,ﬁ ﬂ ,ﬁ — [m 0 |_| H O m CompLL-DGC|[1171 = Syne.
Size(MB)l 4 16256 1 4 16256 1 4 16256 g, g1 4 16256 1 4 16256 1 4 16256 0 700 406 2400
TernGrad TBQ DGC TernGrad TBQ DGC Time Cost (ms)
(a) Speed of encode (b) Speed of decode (c) Training speed using HiPress

Fig. 13: Speeds of CompLL-TBQ, TernGrad, and DGC normalized to open-source baselines and training performance
effects. The subfigure (c) represents the timeline diagram of the DNN computation (Comp.) and gradient synchronization
(Sync.) pipeline. The pipeline is shorter, and the performance is better.

6.3 Effectiveness of Various Optimizations

Next, we evaluate the individual performance gains of
various synchronization and compression optimizations we
introduced. We report the latency breakdown when en-
abling optimization one by one for training VGG19 and
Bert-base across 16 local nodes in Figure 12 (the AWS
results look similar and thus are not shown here). We use
HiPress (CompLL-onebit) as an example with the same
setup as Figure 11 (results using other algorithms look
similar). We synchronize gradients of VGGI19 via CaSync—
PS, and Bert-base via CaSync-Ring. Default are baselines
where the state-of-the-art BytePS or Ring is used without
compression.

CompLL auto-generation. Compared to Default, surpris-
ingly, directly using the open-source on-CPU onebit (de-
noted as on-CPU) results in 32.2% more gradient synchro-
nization cost for BytePS on VGGI19. This is because the
overhead of on-CPU compression operators largely exceeds
the communication savings. However, this does not apply
to Bert-base since Ring uses GPU and does not work with
on-CPU compression. In contrast, our CompLL-onebit (de-
noted as on-GPU) reduces the synchronization cost by 41.2%
and 10.0% for VGG19 and Bert-base, respectively. We also
observe that on-GPU CompLL-onebit imposes negligible
negative impact on the local DNN computation time, even
though they share GPU.

Pipelining. Compared to on-GPU, pipelining compression
and communication in CaSync further improves the syn-
chronization performance of VGG19 and Bert-base by 7.8%
and 10.6% respectively. This is because: (1) the conventional
Ring-allreduce precludes pipeline, and (2) although BytePS
enables pipelining, it incurs multiple extra memory copies,
which are eliminated by CompLL’s memory-centric opti-
mizations.

Bulk synchronization. Our compression-aware bulk syn-
chronization in CaSync achieves 26.1% and 6.6% further
synchronization performance improvements for VGG19 and
Bert-base, respectively. This is because our bulk synchro-
nization approach improves the network utilization, pro-
motes parallel compression, and reduces the overhead of
small tasks. The improvement on VGG19 is higher than
Bert-base because BytePS does not coordinate data trans-
mission while Ring-allreduce does.

Selective compression and partitioning. Judicious com-
pression and partition decisions (denoted as SeCoPa) fur-

ther reduces the synchronization cost of VGG19 and Bert-
base by 19.9% and 7.4%, respectively. Bert-base benefits
more from selective compression since 62.7% of its gradi-
ents are below 16KB, where the over-compressing penal-
ties are eliminated. VGG19 contains a few large gradients
(the largest is 392MB), and thus fine-grained partitioning
leads to significant performance boosts. When all the four
optimizations are stacked up, HiPress pushes the scaling
efficiency of training VGG19 and Bert-base up to 0.90, which
is 133.1% and 28.6% higher than the two Default baselines,
respectively.

6.4 Importance of Compression Speed

Figure 13a and 13b compare the speed of the encode and
decode operations between our auto-generated implemen-
tations and open-source baselines within our local cluster.
Our implementations achieve constantly lower latency for
compressing or decompressing gradients than baselines. For
instance, the encode of CompLL-TBQ runs over 12X faster
than 0SS-TBQ, which needs to take 38.17ms to compress
a 256M B gradient. CompLL-TernGrad achieves up to an
impressive 3400 (229) x speedup for compressing (decom-
pressing) gradients compared to the open-sourced CPU
implementation. Even though 0SS-DGC is highly tuned, our
auto-generated CompLL-DGC still significantly outperforms
the encode of 0SS-DGC by up to 5.1x.

Faster compression/decompression speed has positive
impacts on the computation-synchronization pipeline and
thus on the overall end-to-end training performance. Fig-
ure 13c summarizes the pipeline breakdown latencies for
training VGG19 across 16 machines using both open-source
version and our auto-generated version of TBQ, TernGrad
and DGC within HiPress. Other experimental setup is
the same as Figure 11. Our auto-generated TernGrad, TBQ,
and DGC reduces the synchronization cost by 94.7%, 36.8%
and 42.6%, respectively, compared to their open-sourced
counterparts. In addition, our faster TBQ and DGC imple-
mentation also alleviates the tension between compression
and training computation at workers, e.g., they reduce the
local computation time by 27.6% to 18.4%. All these benefits
are reflected on the overall training speedup by up to 13.4x.

6.5 Discussion of Other Factors

Cost model accuracy. Figure 14a compares the gradient
synchronization latencies with or without compression sim-

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

m 0 o - KA
£ 108 — Tl _sim 14| =A Rgal % %
E 79 real w12 Sim <
c] e Thre_sim = o10 a "4
Z102 - E g 2
© TSfne_real - = E &9
5 : < B L i
v * 4 TR
c 10! ¢ ¢ X
& : oo
K -
0 32KB 128KB256KB 1MB 4MB 16MB 64MB128MB

32KB 128KB 512KB 2MB 8MB 32MB 128MB
Gradient Size

Gradient Size

(a) Latency comparison with
K =1.

(b) Comparison of the recom-
mended partition number K.

Fig. 14: The accuracy investigation of the cost model pre-
sented in Section 3.3. The underlying compression algorithm
is CompLL-TBQ. Figures 14a and 14b compare gradient
synchronization latencies and optimal partition numbers
simulated by the cost model or profiled. The parameters to
drive the cost model are: N = 16, r = 1/16, and m varies
from 32 KB to 128 MB.

ulated by the cost model against the numbers measured in
real experiments. To do so, we first profile the time costs of
Tor'9 real and T<Dr . _real by synchronizing m-sized gradi-
ents via CaSync-PS and CaSync-PS (CompLL-TBQ) in
our local 16-node cluster, connected via 56Gbps RDMA,
with one GPU on each physical server. The compression
rate 7 is 1/16, while we assume gradients are not parti-
tioned (K is 1) for simplicity. Then, we simulate latency
numbers, denoted as Ts"yr,i%_sim and TPV ._sim, by feeding
Equations 1 and 2 with profiled T¢,,, Tijec and Tsepnq values,
following the instructions presented in Section 3.3. The
results highlight that our cost model can accurately predict
the gradient synchronization time costs, and reveal that
compression brings performance benefits only for gradients
equal to or beyond 1MB, when partitioning is not enabled.
Below that threshold, the original synchronization strategy
performs sufficiently good and the compression-related cost
becomes non-negligible.

Figure 14b further investigates the accuracy of our cost
model for suggesting the optimal number of partitions in
conjunction with compression. Our cost model suggests
not to partition gradients equal to or below 1MB when
compression is enabled, while using 16 partitions for 64MB
and 128MB gradients, consistent with the real results pro-
duced by profiling. For 4MB and 16MB gradients, our cost
model behaves slightly aggressive, and suggests a more
fine-grained partitioning. This gap leads to a performance
loss of less than 5% in the synchronization time cost, but we
still observe visible gains, compared to the non-compression
baseline.

Pipeline validation. Here, we explore if the compression-
related cost can be hidden in the new pipeline we intro-
duced in Section 5.2. To this end, we use Nsight to pro-
duce execution traces for training the VGG19 model with
the CompLL-PowerSGD compression enabled across two
physical GPU servers for simplicity. We use the PyTorch-
native TorchDDP [54] synchronization library as the base-
line without pipeline optimization, and compare it against
HiPress with CaSync-PS. The raw traces, and detailed
configurations and analysis are presented in the repo [3]. To
summarize, combining TorchDDP and CompLL-PowerSGD
would lead communication, compression, and DNN com-

15

N
=}

Bm¥A Low Bandwidth
High Bandwidth

KX

=
o

g
o

Images/sec

o
wn

Speedups normalized to
the BytePS(non-compression)

0220000000

o
o

2bits 4bits 8bits 0.001 0.01 0.05
DGC

,_
o
8
@

(a) Diff. network bandwidth (b) Diff. compression rates

Fig. 15: Training performance comparison using different
network bandwidth and compression rates. Figure 15a and
15b use Bert-base and VGG19, respectively.

putation to be serialized. For instance, a single training
iteration within TorchDDP takes 904ms, roughly equal to
the sum of the time cost of DNN computation (168ms),
gradient communication (299ms), compression (148ms), and
bubbles (266ms). In contrast, within HiPress DNN compu-
tation takes the same time cost, but gradient synchroniza-
tion becomes 62% faster while compression-related com-
putations are almost all overlapped with DNN computa-
tion and communication. We also replicate the same ex-
periments with MXNet and obtain the same conclusion
that the new pipeline within HiPress is able to amortize
the compression-related costs and improve compression-
enabled, small-gradient-dominating synchronization.

Impacts of network bandwidth. Figure 15a compares the
performance of training Bert-base model using HiPress
with identical GPU configurations but two different net-
works. For EC2 instances, we use 100Gbps and 25Gbps as
the high and low bandwidth networks, while 56Gbps and
10Gbps for local nodes. HiPress-CaSync-PS (CompLL-
onebit) delivers similar speedups when using different
networks in both 16-node EC2 and local clusters (CaSync—
Ring has similar trends). Thus, HiPress can achieve
near-optimal performance without expensive investment on
high-end/specialized networks.

Impacts of compression rate. In Figure 15b, we compare the
throughput of TernGrad and DGC algorithms generated by
CompLL on VGGI19 using CaSync-PS with the same setup
as Figure 11. For TernGrad, when increasing bitwidth
from 2 to 4 and 8-bit, the speedup achieved by HiPress
decreases by 12.8% and 23.6%, respectively. As the compres-
sion cost remains the same with different precisions, the
performance drops are mainly due to the increasing data
communication volumes. Varying the compression rate of
DGC from 0.1% to 1% and 5% also results in a performance
drop of 6.7% and 11.3% respectively, due to the increasing
compression and data communication cost. This implies
that CasSync still enables fast compression-aware gradient
synchronization even with lower gradient size reduction.

Convergence validation. We conduct the convergence val-
idation experiments in our local cluster with 16 nodes,
32 1080Ti GPUs and 56Gbps RDMA network. We re-
port the convergence results in Figure 16, which shows
that HiPress-CaSync-Ring(CompLL-DGC) and HiPress-
CaSync-PS (CompLL-Ter-nGrad) converge to almost the
same perplexity or accuracy for LSTM and ResNet50 as no-
compression baselines but with up to 28.6% less time.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

o
©

——Ring-Allreduce
----- HiPress-CaSync-Ring(CompLL-DGC)

N
o
S

o

o

Perplexity
g

BytePS
————— HiPress-CaSync-PS(CompLL-TernGrad)

o
)

Top-1 Accuracy
o
>

o

0 200 400 600 800 0 200 400 600
Time(sec) Time(min)

Fig. 16: Convergence time of LSTM (left) and ResNet50
(right). The target perplexity for LSTM is 86.28 and the target
accuracy for ResNet50 is 77.11% [24], [25].

7 RELATED WORK

Other than gradients compression, there are other ap-
proaches aiming at addressing the communication bottle-
neck in data parallel training, such as using RDMA [101],
adopting Ring-allreduce [9], [10], [32], co-designing gradient
synchronization with the physical topology [40], [45], and
priority-based scheduling [28], [31], [69]. Blink generates
optimal communication primitives [88], and BytePS uses
spare CPU and bandwidth resources in the cluster and has
already incorporated some of the above optimizations [33].
However, they are all compress-ion-agnostic approaches,
and some of them rely on high-end networks. In con-
trast, HiPress enables fast compression-aware data parallel
training via software innovations, and can be combined
with most existing techniques.

Some recent works optimize specific gradient compres-
sion. Poseidon [104] synchronizes sufficient factors, which
are compressed forms of gradients of fully connected layers
in CV models. Parallax [35] focuses its optimization on
sparse gradients, and shows superior performance when
training NLP models where sparse gradients dominate.
We significantly differ from these works by targeting at
general gradient compression algorithms for any DNN
models. Grace [99] studies the impacts of gradient com-
pression algorithms, but it does not study nor address
the system challenges for alleviating the tension between
performance gains and programming overheads. Accordion
dynamically sets compression rates to balance accuracy and
performance [4], which can be employed by HiPress as an
advanced feature.

There are some work share the same goal as CaSync
to accelerate the speed of synchronizing compressed gradi-
ents [22], [59], [71], [81], [82]. However, almost all of them
focus on the sparsification algorithms. In contrast, CaSync
is more general and covers algorithms ranging from spar-
sification, quantization, to low rank, due to its decoupled
design from the compression algorithm logics. Furthermore,
most of these proposals are complementary to CaSync and
their specific optimizations can be easily incorporated into
CaSync for better performance.

Similar to HiPress, a few recent approaches aim to
address the system challenges when incorporating gradi-
ents compression into distributed DNN training. For in-
stance, ByteComp [92] and OMGS-SGD [80] formulate some
optimization problems to improve the new compression-
enabled training pipeline, e.g., merging gradient sparsifi-
cation, tuning parameters for selective compression strate-
gies, offloading compression to CPU, etc. DeepReduce [100]

16

adopts sparse tensors organized by either keys or values,
and applies different compression strategies to them. Em-
bRace [39] focuses on NLP models with large embedding
tables. However, most of them neglect the development
and integration effort of various compression algorithms
and the cross-layer optimization opportunities, which have
been, however, managed by HiPress. Furthermore, some
optimization directions are orthogonal with HiPress and
can be used to further extend HiPress’s applicability.
Model Parallelism [17], [79] and Pipeline Parallelism [58] are
often combined with Data Parallelism for large-scale deploy-
ment [90], [91], which can benefit from HiPress. Although
HiPress focuses on Bulk Synchronous Parallel (BSP) in
this paper given its wide adoption [35], [57]. HiPress is
expected to work with other synchronization methods such
as ASP [26] and SSP [30], [93], [98]. Finally, some compo-
nents in HiPress are inspired by other works, such as
dependency graph is inspired by Daydream [105], and fine-
grained task management is inspired by MonoTasks [65].

8 CONCLUSION

Driven by CaSync and CompLL HiPress addresses the
fundamental tensions imposed by gradient compression.
CaSync innovates a general, composable, and adaptive
gradient synchronization architecture that is compression-
aware. CompLL facilitates an easy development of highly-
optimized on-GPU gradient compression and an automated
integration into modern DNN systems with minimal man-
ual efforts. HiPress is open-sourced, and achieves a scaling
efficiency of up to 0.92 and a training speed improvement
up to 110.5% over the state-of-the-art baselines across six
popular DNN models in a cluster of 16 nodes with 128
NVIDIA V100 GPUs and 100Gbps network.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments. This work is supported in part by the National
Natural Science Foundation of China under Grant No.:
62141216, 62172382 and 61832011, the Open Fund of PDL
under Grant No.: WDZC20215250115, the USTC Research
Funds of the Double First-Class Initiative under Grant No.:
YD2150002006, the University Synergy Innovation Program
of Anhui Province under Grant No.: GXXT-2022-045, and
National Science Foundation under Grant No.: CAREER-
2048044. We also thank the technical support from Shanghai
HPC-NOW Technologies Co., Ltd.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In Proceedings of OSDI, volume 16, pages 265—
283, 2016.

[2] USTC ADSL. Code of HiPress. https://gitlab.com/hipress/
hipress, 2021. [Online; accessed Feb-2023].

[3] USTC ADSL. Overlapping Profiling Results of HiPress. https://
gitlab.com/hipress/hipress-overlapping-profiling-results, 2023.
[Online; accessed Feb-2023].

[4] Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram
Venkataraman, and Dimitris Papailiopoulos. Accordion: Adap-
tive gradient communication via critical learning regime identifi-
cation, 2020.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://gitlab.com/hipress/hipress
https://gitlab.com/hipress/hipress
https://gitlab.com/hipress/hipress-overlapping-profiling-results
https://gitlab.com/hipress/hipress-overlapping-profiling-results

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(5]

6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

Alham Fikri Aji and Kenneth Heafield. Sparse communication
for distributed gradient descent. arXiv preprint arXiv:1704.05021,
2017.

Amazon. Gradient Compression in AWS. https:
/ /docs.google.com/presentation/d/1Dt1Sh2ixVF8Or_
Q31zUMS81F4Thj5LT8Xw6QjUle6iwQ/ edit#slide=id.p, 2021.

[Online; accessed Feb-2023].

Arash Ashari, Shirish Tatikonda, Matthias Boehm, Berthold Rein-
wald, Keith Campbell, John Keenleyside, and P Sadayappan. On
optimizing machine learning workloads via kernel fusion. ACM
SIGPLAN Notices, 50(8):173-182, 2015.

Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran
Ramjee, and Nipun Kwatra. Varuna: scalable, low-cost training
of massive deep learning models. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 472-487, 2022.
Baidu. Bringing HPC Techniques to Deep Learning. https:
// github.com /baidu-research/baidu-allreduce, 2017. [Online;
accessed Feb-2023].

Baidu. PaddlePaddle GitHub Source Code. https:/ /github.com/
PaddlePaddle/Paddle, 2021. [Online; accessed Feb-2023].

Luisa Bentivogli, Bernardo Magnini, Ido Dagan, Hoa Trang
Dang, and Danilo Giampiccolo. The fifth PASCAL recogniz-
ing textual entailment challenge. In Proceedings of the Second
Text Analysis Conference, TAC 2009, Gaithersburg, Maryland, USA,
November 16-17, 2009. NIST, 2009.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and
Anima Anandkumar. signsgd: Compressed optimisation for non-
convex problems. arXiv preprint arXiv:1802.04434, 2018.

BytePS. Open-source Implementation of onebit algo-
rithm. https:/ /github.com /bytedance/byteps/blob/master/
byteps/common/compressor/impl/onebit.cc, 2021. [Online; ac-
cessed Feb-2023].

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal,
Wei Zhang, and Kailash Gopalakrishnan. Adacomp : Adaptive
residual gradient compression for data-parallel distributed train-
ing. 12 2017.

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
Revisiting distributed synchronous sgd. In Proceedings of Interna-
tional Conference on Learning Representations Workshop Track, 2016.
Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei
Hu, Luis Ceze, et al. Tvm: An automated end-to-end optimizing
compiler for deep learning. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages
578-594, 2018.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik
Kalyanaraman. Project adam: Building an efficient and scalable
deep learning training system. In Proceedings of 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), pages 571-582, Broomfield, CO, October 2014. USENIX As-
sociation.

Minsik Cho, Vinod Muthusamy, Brad Nemanich, and Ruchir
Puri. Gradzip: Gradient compression using alternating matrix
factorization for large-scale deep learning. In NeurIPS. 2019.
Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram
Bobba, Matthew Brookhart, Avijit Chakraborty, Will Constable,
Christian Convey, Leona Cook, Omar Kanawi, Robert Kim-
ball, Jason Knight, Nikolay Korovaiko, Varun Kumar, Yixing
Lao, Christopher R. Lishka, Jaikrishnan Menon, Jennifer Myers,
Sandeep Aswath Narayana, Adam Procter, and Tristan J. Webb.
Intel ngraph: An intermediate representation, compiler, and ex-
ecutor for deep learning, 2018.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul
Tucker, Ke Yang, et al. Large scale distributed deep networks.
In Proceedings of Advances in neural information processing systems,
pages 1223-1231, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805,
2018

Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo
Sapio. Efficient sparse collective communication and its applica-
tion to accelerate distributed deep learning. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, pages 676-691, 2021.
Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu,
and Jiwu Shu. Mobius: Fine tuning large-scale models on com-

[24]
[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

17

modity gpu servers. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pages 489-501, 2023.

Gluon. gluoncv Homepage. https://cv.gluon.ai/model_zoo/
classification.html, 2021. [Online; accessed Feb-2023].

Gluon. gluonnlp Homepage. https://nlp.gluon.ai/model_zoo/
language_model/index.html, 2021. [Online; accessed Feb-2023].
Ido Hakimi, Saar Barkai, Moshe Gabel, and Assaf Schuster.
Taming momentum in a distributed asynchronous environment.
CoRR, abs/1907.11612, 2019.

Mark Harris. Bank conflict in GPU. https://devblogs.nvidia.
com/using-shared-memory-cuda-cc/, 2013. [Online; accessed
Feb-2023].

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Camp-
bell. Tictac: Accelerating distributed deep learning with commu-
nication scheduling. arXiv preprint arXiv:1803.03288, 2018.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,
2016.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu
Kim, Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P
Xing. More effective distributed ml via a stale synchronous
parallel parameter server. In Proceedings of Advances in neural
information processing systems, pages 1223-1231, 2013.

Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fe-
dorova, and Gennady Pekhimenko. Priority-based parame-
ter propagation for distributed dnn training. arXiv preprint
arXiv:1905.03960, 2019.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong
Rong, Feihu Zhou, Ligiang Xie, Zhenyu Guo, Yuanzhou Yang,
Liwei Yu, et al. Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes. arXiv
preprint arXiv:1807.11205, 2018.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and
Chuanxiong Guo. A unified architecture for accelerating dis-
tributed DNN training in heterogeneous gpu/cpu clusters. In
14th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 20), pages 463-479. USENIX Association,
November 2020.

Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwang Hee
Lee. U-gat-it: Unsupervised generative attentional networks
with adaptive layer-instance normalization for image-to-image
translation. In International Conference on Learning Representations,
2020.

Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji
Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong Jeong, and Byung-
Gon Chun. Parallax: Sparsity-aware data parallel training of
deep neural networks. In Proceedings of the Fourteenth EuroSys
Conference 2019, page 43. ACM, 2019.

Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich,
Luo Mai, Paolo Costa, and Peter Pietzuch. Crossbow: scaling
deep learning with small batch sizes on multi-gpu servers. arXiv
preprint arXiv:1901.02244, 2019.

LAPACK and INTEL Math Kernel Library teams. Linear Algebra
PACKage. https://netlib.org/lapack/explore-html/index.html,
2022. [Online; accessed Feb-2023].

Mu Li, David G Andersen, Jun Woo Park, Alexander] Smola,
Amr Ahmed, Vanja Josifovski, James Long, Eugene] Shekita,
and Bor-Yiing Su. Scaling distributed machine learning with the
parameter server. In Proceedings of OSDI, volume 14, pages 583—
598, 2014.

Shengwei Li, Zhiquan Lai, Dongsheng Li, Xiangyu Ye, and
Yabo Duan. Embrace: Accelerating sparse communication for
distributed training of nlp neural networks. arXiv preprint
arXiv:2110.09132, 2021.

Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander
Schwing, and Jian Huang. Accelerating distributed reinforcement
learning with in-switch computing. In Proceedings of the 46th
International Symposium on Computer Architecture, ISCA '19, page
279-291, New York, NY, USA, 2019. Association for Computing
Machinery.

Youjie Li, Amar Phanishayee, Derek Murray, and Nam Sung Kim.
Doing more with less: Training large dnn models on commodity
servers for the masses. In Proceedings of the Workshop on Hot Topics
in Operating Systems, pages 119-127, 2021.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://docs.google.com/presentation/d/1Dt1Sh2ixVF8Or_Q3lzUM81F4Thj5LT8Xw6QjU1e6iwQ/edit##slide=id.p
https://docs.google.com/presentation/d/1Dt1Sh2ixVF8Or_Q3lzUM81F4Thj5LT8Xw6QjU1e6iwQ/edit##slide=id.p
https://docs.google.com/presentation/d/1Dt1Sh2ixVF8Or_Q3lzUM81F4Thj5LT8Xw6QjU1e6iwQ/edit##slide=id.p
https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://github.com/bytedance/byteps/blob/master/byteps/common/compressor/impl/onebit.cc
https://github.com/bytedance/byteps/blob/master/byteps/common/compressor/impl/onebit.cc
https://cv.gluon.ai/model_zoo/classification.html
https://cv.gluon.ai/model_zoo/classification.html
https://nlp.gluon.ai/model_zoo/language_model/index.html
https://nlp.gluon.ai/model_zoo/language_model/index.html
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://netlib.org/lapack/explore-html/index.html

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[42]

(43]

[44]

(45]

[46]

[47]

[48]

(49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

Youjie Li, Amar Phanishayee, Derek Murray, Jakub Tarnawski,
and Nam Sung Kim. Harmony: Overcoming the hurdles of gpu
memory capacity to train massive dnn models on commodity
servers. arXiv preprint arXiv:2202.01306, 2022.

Hyeontaek Lim, David Andersen, and Michael Kaminsky. 3lc:
Lightweight and effective traffic compression for distributed
machine learning. 02 2018.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William] Dally.
Deep gradient compression: Reducing the communication band-
width for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and
Arvind Krishnamurthy. Parameter hub: a rack-scale parameter
server for distributed deep neural network training. In Proceed-
ings of the ACM Symposium on Cloud Computing, pages 41-54.

ACM, 2018.
MARVELL. MARVELL White Paper for 25Gb Ether-
net. https:/ /www.marvell.com/content/dam/marvell /

en/public-collateral /ethernet-adaptersandcontrollers /
marvell-ethernet-adapters-fastling-25gb-ethernet-white-paper.
pdf, 2021. [Online; accessed Feb-2023].

Dominic Masters and Carlo Luschi. Revisiting small batch train-
ing for deep neural networks. arXiv preprint arXiv:1804.07612,
2018.

Mellanox. Mellanox Corporate Update. https:/ /www.mellanox.
com/related-docs/company/MLNX_Corporate_Deck.pdf, 2021.
[Online; accessed Feb-2023].

Stephen Merity. The wikitext long
pendency language modeling dataset.
www.salesforce.com/products/einstein/ai-research/
the-wikitext-dependency-language-modeling-dataset/,
[Online; accessed Feb-2023].

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Reg-
ularizing and optimizing Istm language models. arXiv preprint
arXiv:1708.02182, 2017.

term de-
https://

2016.

Meta. Gradient Compression in Meta. https://github.com/
pytorch/pytorch/issues/39272, 2021. [Online; accessed Feb-
2023].

Meta. Hook of PyTorch. https://pytorch.org/docs/stable/

generated /torch.Tensor.register_hook.html, 2021. [Online; ac-
cessed Feb-2023].

Meta. Gradient Compression in PyTorch. https://pytorch.org/
docs/stable/ddp_comm_hooks.html, 2022. [Online; accessed
Feb-2023].

Meta. PyTorch PowerSGD Communication Hook.
https:/ /pytorch.org/docs/stable/ddp_comm_hooks.html#
powersgd-communication-hook, 2022. [Online; accessed
Feb-2023].

Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U.-Chupala,
Yoshiki Tanaka, and Yuichi Kageyama. Imagenet/resnet-50 train-
ing in 224 seconds. ArXiv, abs/1811.05233, 2018.

MPICH. MPI_Alltoall. https://www.mpich.org/static/docs/
latest/www3/MPI_Alltoall.html, 2021. [Online; accessed Feb-
2023].

msalvaris. Distributed training of deep learning models on
Azure. https://docs.microsoft.com/en-us/azure/architecture/
reference-architectures/ai/training-deep-learning, 2021. [On-
line; accessed Feb-2023].

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Se-
shadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons,
and Matei Zaharia. Pipedream: Generalized pipeline parallelism
for dnn training. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP '19, page 1-15, New York, NY,
USA, 2019. Association for Computing Machinery.

Truong Thao Nguyen, Mohamed Wahib, and Ryousei Takano.
Topology-aware sparse allreduce for large-scale deep learning.
In 2019 IEEE 38th International Performance Computing and Com-
munications Conference (IPCCC), pages 1-8. IEEE, 2019.

NVIDIA. A Timeline of Innovation for NVIDIA. https:
//www.nvidia.com/en-us/about-nvidia/corporate-timeline/,
2021. [Online; accessed Feb-2023].

NVIDIA. The API reference guide for Thrust, the CUDA C++
template library. https://docs.nvidia.com/cuda/thrust/index.
html, 2021. [Online; accessed Feb-2023].

NVIDIA. NCCL_Alltoall. https://docs.nvidia.com/
deeplearning/nccl/user-guide/docs/usage/p2p.html#all-to-all,
2022. [Online; accessed Feb-2023].

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

18

NVIDIA. NCCL Allreduce Source Code. https:
/ / github.com/NVIDIA /nccl/blob/master/src/ collectives/
device/all_reduce.h, 2023. [Online; accessed Feb-2023].

OpenAlL Al and Compute. https:/ /openai.com/blog/
ai-and-compute/, 2021. [Online; accessed Feb-2023].

Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott
Shenker. Monotasks: Architecting for performance clarity in data
analytics frameworks. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP "17, page 184-200, New York,
NY, USA, 2017. Association for Computing Machinery.

Yuechao Pan. Deep gradient compression implementation in
the common layer using CUDA. https://github.com/horovod/
horovod/pull/453, 2018. [Online; accessed Feb-2023].

Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce
algorithms for clusters of workstations. Journal of Parallel and
Distributed Computing, 69(2):117-124, 2009.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and
Chuanxiong Guo. Optimus: An efficient dynamic resource sched-
uler for deep learning clusters. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys '18, pages 3:1-3:14, New York, NY,
USA, 2018. ACM.

Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi,
Chang Lan, Chuan Wu, and Chuanxiong Guo. A generic com-
munication scheduler for distributed dnn training acceleration.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (ACM SOSP 2019), Huntsville, Ontario, Canada, October
27-30, 2019, 2019.

PyTorch. PyTorch TVM. https://github.com/pytorch/tvm, 2021.
[Online; accessed Feb-2023].

Cedric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Al-
istarh, and Torsten Hoefler. Sparcml: High-performance sparse
communication for machine learning. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1-15, 2019.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron,
Summer Deng, Roman Dzhabarov, Nick Gibson, James Hege-
man, Meghan Lele, Roman Levenstein, Jack Montgomery, Bert
Mabher, Satish Nadathur, Jakob Olesen, Jongsoo Park, Artem
Rakhov, Misha Smelyanskiy, and Man Wang. Glow: Graph
lowering compiler techniques for neural networks, 2019.
Arnaud ROUGETET. selfie2anime in Kaggle. https://www.
kaggle.com/arnaud58/selfie2anime, 2019. [Online; accessed Feb-
2023].

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision,
115(3):211-252, 2015.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson,
Panos Kalnis, Changhoon Kim, Arvind Krishnamurthy, Masoud
Moshref, Dan Ports, and Peter Richtarik. Scaling distributed
machine learning with in-network aggregation. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), pages 785-808. USENIX Association, April 2021.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-
bit stochastic gradient descent and its application to data-parallel
distributed training of speech dnns. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich Germann,
Barry Haddow, Kenneth Heafield, Antonio Valerio Miceli Barone,
and Philip Williams. The University of Edinburgh’s neural MT
systems for WMT17. In Proceedings of the Second Conference
on Machine Translation, pages 389-399, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics.
Alexander Sergeev and Mike Del Balso. Horovod: fast and easy
distributed deep learning in tensorflow. CoRR, abs/1802.05799,
2018.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong
Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake
Hechtman. Mesh-TensorFlow: Deep learning for supercomput-
ers. In Neural Information Processing Systems, 2018.

Shaohuai Shi, Qiang Wang, Xiaowen Chu, Bo Li, Yang Qin,
Ruihao Liu, and Xinxiao Zhao. Communication-efficient dis-
tributed deep learning with merged gradient sparsification on
gpus. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 406—415. IEEE, 2020.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-25gb-ethernet-white-paper.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-25gb-ethernet-white-paper.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-25gb-ethernet-white-paper.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-25gb-ethernet-white-paper.pdf
https://www.mellanox.com/related-docs/company/MLNX_Corporate_Deck.pdf
https://www.mellanox.com/related-docs/company/MLNX_Corporate_Deck.pdf
https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
https://github.com/pytorch/pytorch/issues/39272
https://github.com/pytorch/pytorch/issues/39272
https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html
https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html
https://pytorch.org/docs/stable/ddp_comm_hooks.html
https://pytorch.org/docs/stable/ddp_comm_hooks.html
https://pytorch.org/docs/stable/ddp_comm_hooks.html#powersgd-communication-hook
https://pytorch.org/docs/stable/ddp_comm_hooks.html#powersgd-communication-hook
https://www.mpich.org/static/docs/latest/www3/MPI_Alltoall.html
https://www.mpich.org/static/docs/latest/www3/MPI_Alltoall.html
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/training-deep-learning
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/training-deep-learning
https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/p2p.html#all-to-all
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/p2p.html#all-to-all
https://github.com/NVIDIA/nccl/blob/master/src/collectives/device/all_reduce.h
https://github.com/NVIDIA/nccl/blob/master/src/collectives/device/all_reduce.h
https://github.com/NVIDIA/nccl/blob/master/src/collectives/device/all_reduce.h
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://github.com/horovod/horovod/pull/453
https://github.com/horovod/horovod/pull/453
https://github.com/pytorch/tvm
https://www.kaggle.com/arnaud58/selfie2anime
https://www.kaggle.com/arnaud58/selfie2anime

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(81]

(82]

(83]

[84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Shaohuai Shi, Qiang Wang, Kaiyong Zhao, Zhenheng Tang,
Yuxin Wang, Xiang Huang, and Xiaowen Chu. A distributed
synchronous sgd algorithm with global top-k sparsification for
low bandwidth networks. In 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), pages 2238-2247.
IEEE, 2019.

Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao Wang, Zilin
Zhu, Xue Huang, Xinan Jiang, Feihu Zhou, Zhenyu Guo, Ligiang
Xie, et al. Towards scalable distributed training of deep learning
on public cloud clusters. Proceedings of Machine Learning and
Systems, 3:401-412, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Nikko Strom. Scalable distributed dnn training using commodity
gpu cloud computing. In Proceedings of Sixteenth Annual Confer-
ence of the International Speech Communication Association, 2015.
Jun Sun, Tianyi Chen, Georgios Giannakis, and Zaiyue Yang.
Communication-efficient distributed learning via lazily aggre-
gated quantized gradients. In Proceedings of Advances in Neural
Information Processing Systems, pages 3365-3375, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, undefinedukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems,
NIPS'17, page 6000-6010, Red Hook, NY, USA, 2017. Curran
Associates Inc.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Pow-
ersgd: Practical low-rank gradient compression for distributed
optimization. Advances in Neural Information Processing Systems,
32,2019.

Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee,
Jorgen Thelin, Nikhil Devanur, and Ion Stoica. Blink: Fast and
generic collectives for distributed ml. In Conference on Machine
Learning and Systems (MLSys 2020), March 2020.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles,
Dimitris Papailiopoulos, and Stephen Wright. Atomo:
Communication-efficient learning via atomic sparsification. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Minjie Wang, Chien-Chin Huang, and Jinyang Li. Unifying data,
model and hybrid parallelism in deep learning via tensor tiling.
CoRR, abs/1805.04170, 2018.

Minjie Wang, Chien-chin Huang, and Jinyang Li. Supporting
very large models using automatic dataflow graph partitioning.
In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys
19, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

Zhuang Wang, Haibin Lin, Yibo Zhu, and T. S. Eugene Ng. Byte-
Comp: Revisiting Gradient Compression in Distributed Training.
(arXiv:2205.14465), June 2022.

Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui,
Gregory R Ganger, Phillip B Gibbons, Garth A Gibson, and
Eric P Xing. Managed communication and consistency for fast
data-parallel iterative analytics. In Proceedings of the Sixth ACM
Symposium on Cloud Computing, pages 381-394. ACM, 2015.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. In Proceedings of
Advances in neural information processing systems, pages 1509-1519,
2017.

Wikipedia. List of NVIDIA Graphics Processing Units.
https:/ /en.wikipedia.org/wiki/List_of_Nvidia_graphics_
processing_units, 2021. [Online; accessed Feb-2023].

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang.
Error compensated quantized sgd and its applications to large-
scale distributed optimization. arXiv preprint arXiv:1806.08054,
2018.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee,
Muthian Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush
Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, Fan Yang, and
Lidong Zhou. Gandiva: Introspective cluster scheduling for deep
learning. In Proceedings of 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 595-610,
Carlsbad, CA, October 2018. USENIX Association.

Eric P. Xing, Qirong Ho, Wei Dai, Jin-Kyu Kim, Jinliang Wei,
Seunghak Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and
Yaoliang Yu. Petuum: A new platform for distributed machine

[99]

19

learning on big data. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD 15, page 1335-1344, New York, NY, USA, 2015. Association
for Computing Machinery.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta,
El Houcine Bergou, Konstantinos Karatsenidis, Marco Canini,
and Panos Kalnis. GRACE: A Compressed Communication
Framework for Distributed Machine Learning. In Proceedings of
ICDCS’21, Jul 2021.

[100] Hang Xu, Kelly Kostopoulou, Aritra Dutta, Xin Li, Alexandros

Ntoulas, and Panos Kalnis. Deepreduce: A sparse-tensor com-
munication framework for federated deep learning. Advances in
Neural Information Processing Systems, 34:21150-21163, 2021.

[101] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang,

and Lidong Zhou. Fast distributed deep learning over rdma. In
Proceedings of the Fourteenth EuroSys Conference 2019, pages 1-14,
2019.

[102] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell,

Ruslan Salakhutdinov, and Quoc V. Le. Xlnet: Generalized
autoregressive pretraining for language understanding. CoRR,
abs/1906.08237, 2019.

[103] Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie

Li, Nam Sung Kim, Alexander Schwing, Murali Annavaram,
and Salman Avestimehr. Gradiveq: Vector quantization for
bandwidth-efficient gradient aggregation in distributed cnn
training. Advances in Neural Information Processing Systems, 31,
2018.

[104] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho,

Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P
Xing. Poseidon: An efficient communication architecture for dis-
tributed deep learning on gpu clusters. In Proceedings of USENIX
Annual Technical Conference 2017(USENIX ATC 17), pages 181-193,
2017.

[105] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko.

Daydream: Accurately estimating the efficacy of optimizations
for DNN training. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 337-352. USENIX Association, July
2020.

[106] Martin A. Zinkevich, Markus Weimer, Alex Smola, and Lihong

Li. Parallelized stochastic gradient descent. In Proceedings of
the 23rd International Conference on Neural Information Processing
Systems - Volume 2, page 2595-2603, Red Hook, NY, USA, 2010.

Hao Wu received the BS degree from the De-
partment of Computer Science from University of
Science and Technology of China (USTC), Hefei,
China in 2020. He is currently working toward
the MS degree in Advanced Data Systems Lab-
oratory at USTC. His research interests include
distributed Al Systems.

Shiyi Wang received the BS degree from the
School of Information and Communication En-
gineering of Xi'an Jiaotong University, Xi'an,
China. He is currently toward the MS degree in
Advanced Data Systems Laboratory at Univer-
sity of Science and Technology of China. His
research interests include distributed Al system.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3266246

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

N Ga .

9]
~—

o

1

Youhui Bai received the PhD degree from the
Department of Computer Science from Univer-
sity of Science and Technology of China (USTC),
Hefei, China, in 2021. He is currently working
together with Cheng Li in Advanced Data Sys-
tems Laboratory at USTC. His research interests
include distributed machine learning systems,
graph processing and storage systems.

Cheng Li received the PhD degree from the
Saarland University/Max Planck Institute for
Software Systems, Germany, in 2016. He has
been a pre-tenure professor with the Department
of Computer Science and Technology, Univer-
sity of Science and Technology of China, since
Fall 2017. His research interests include various
topics related to improving performance, con-
sistency, fault tolerance and availability of dis-
tributed systems. His work has been published
at various prestigious venues, including SOSP,

OSDI, ASPLOS, FAST, etc. He is the recipient of the ACM ChinaSys
Rising Star Award 2021.

—
= —
— —
—————
#

by

Quan Zhou received the BS degree from the
Department of Computer Science from Univer-
sity of Science and Technology of China (USTC),
Hefei, China, in 2018. He is currently working
toward the PhD degree in Advanced Data Sys-
tems Laboratory at USTC. His research interests
include distributed Al systems, graph processing
and storage systems.

Jun Yi Jun Yi received the bachelor and master
degrees from Southwest Jiaotong University in
2011 and 2014, respectively, and the PhD de-
gree in computer science and engineering from
the University of Nevada Reno in 2022. His re-
search interests include large scale distributed
systems, machine learning, graph neural net-
work and cloud computing. He is a member of
the IEEE.

Feng Yan received the Ph.D. degree in Com-
puter Science from the College of William and
Mary in 2016. He worked at Microsoft Research
(2014-2015) and HP Labs (2013-2014). He is
currently an Associate Professor of Computer
Science and Electrical and Computer Engineer-
ing at the University of Houston. His research
bridges the fields of big data, machine learning,
and systems. He is the recipient of the Best
Student Paper Award of IEEE CLOUD 2018, the
Best Paper Award of CLOUD 2019, and the Best

Student Paper Award of ITNG 2021, the NSF CAREER Award, the
NSF CRII Award, the Outstanding Service Award of IEEE ACSOS,
the Regents’ Rising Researcher Award, and the CSE Best Researcher

Award.

20

Ruichuan Chen received the Ph.D. degree in
computer science from Peking University, Bei-
jing, China, in 2009. He is currently a Distin-
guished Member of Technical Staff at Nokia Bell
Labs, Stuttgart, Germany. Before that, he was a
postdoctoral researcher at the Max Planck Insti-
tute for Software Systems, Kaiserslautern, Ger-
many. His current research centers around cloud
computing, machine learning systems, decen-
tralized systems, and privacy-preserving tech-
nologies. His work has been published at various
prestigious venues, including SOSP, OSDI, SIGCOMM, NSDI, among
others, and has led to real-world adoptions.

Yinlong Xu received the BS degree in mathe-
matics from Peking University, Beijing, China, in
1983, and the MS and PhD degrees in computer
science from the University of Science and Tech-
nology of China (USTC), Hefei, China, in 1989
and 2004, respectively. He is currently a profes-
sor with the School of Computer Science and
Technology, USTC. He served the Department
of Computer Science and Technology, USTC as
an assistant professor, a lecturer, and an asso-
ciate professor. He is currently leading a group
in doing some networking, storage and high performance computing
research. His current research interests include storage system, file
system, social network, and high performance 1/0. He was a recipient of
the Excellent PhD Advisor Award of the Chinese Academy of Sciences
in 2006 and Baosteel Excellent Teacher Award in 2014.

Authorized licensed use limited to: University of Houston. Downloaded on March 27,2024 at 04:13:55 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Background and Motivation
	Data Parallel DNN Training
	Gradient Synchronization
	Computation and Communication Tension
	Gradient Compression
	System Challenges and Opportunities

	Compression-Aware Synchronization
	Composable, Pipelined Synchronization
	Compression-aware Bulk Synchronization
	Selective Compression and Partitioning

	Compression Library and Language
	Unified API Abstraction
	Common Operator Library
	Code Synthesis and Domain-specific Language
	Case Studies and Discussions

	HiPress Framework
	Major System Components
	Training Integration and Execution Scheduling
	Choosing CaSync-PS or Ring?

	Evaluation
	Experimental Setup
	End-to-End Performance
	AWS EC2 Results
	Local Cluster Results.

	Effectiveness of Various Optimizations
	Importance of Compression Speed
	Discussion of Other Factors

	Related Work
	Conclusion
	References
	Biographies
	Hao Wu
	Shiyi Wang
	Youhui Bai
	Cheng Li
	Quan Zhou
	Jun Yi
	Feng Yan
	Ruichuan Chen
	Yinlong Xu

