
Noctua: Towards Automated and Practical

Fine-grained Consistency Analysis

Kai Ma
University of Science and Technology

of China (USTC)

Cheng Li
University of Science and Technology

of China (USTC)

Enzuo Zhu∗
UC Riverside, USA

Ruichuan Chen
Nokia Bell Labs, Germany

Feng Yan
University of Houston, USA

Kang Chen
Tsinghua University, China

Abstract

Relaxing strong consistency plays a vital role in achieving
scalability and availability for geo-replicated web applica-
tions. However, making relaxation correct in modern im-
plementations, typically written in dynamic languages and
utilizing high-level object-oriented database abstractions,
remains a challenge, despite the existence of numerous pro-
posed analysis tools.

Here, we present a fully automated verification framework
Noctua for understanding fine-grained consistency seman-
tics in web applications. At its core is a simple intermediate
representation SOIR that bridges the semantic gaps between
high-level languages, database interactions and SMT solver’s
verification. Noctua’s lightweight program analyzer reuses
the ability of the language runtime and framework to trans-
late consistency-related effects and application invariants
from codebases into SOIR code. Finally, Noctua’s verification
backend maps SOIR code into SMT verification conditions
with a new SMT encoding that decouples order information
and thus allows more database semantics to be covered.
We have implemented Noctua1 for a popular dynamic

language, Python, and evaluated its correctness and appli-
cability with two synthetic and four existing Python web
applications. The evaluation results highlight that Noctua is
able to understand consistency semantics considerably fast
from the real codebases with no user input. For synthetic
applications that existing solutions can be applied, Noctua’s
delivered consistent analysis results.

∗Work done during his study at USTC.
1Source code available at https://github.com/noctua-sys/noctua.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04
https://doi.org/10.1145/3627703.3629570

CCS Concepts: •Computer systems organization→Dis-

tributed architectures; • Software and its engineering

→ Formal methods.

Keywords: Fine-grained distributed consistency, Program
analysis, Consistency verification

ACM Reference Format:

Kai Ma, Cheng Li, Enzuo Zhu, Ruichuan Chen, Feng Yan, and Kang
Chen. 2024. Noctua: Towards Automated and Practical Fine-grained
Consistency Analysis. In European Conference on Computer Systems
(EuroSys ’24), April 22–25, 2024, Athens, Greece. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3627703.3629570

1 Introduction

The ever-growing user base complicates the design and de-
ployment of modern web applications. These web applica-
tions often leverage geo-replication to serve data from the
replica closest to users, providing high availability, scalabil-
ity, and fast responses. However, there exists a fundamental
tension between maintaining strong consistency and achiev-
ing good system performance since strong consistency (e.g.,
View-stamped replication [29], Paxos [21], and Raft [31])
incurs high cross-replica coordination for serializing opera-
tions. To close this gap, recently, various weak consistency
models [7, 8, 20, 23, 24] have been proposed to eliminate the
ordering constraints as much as possible.

However, the safe use of weak consistencymodels requires
careful reasoning about the outcomes of all possible concur-
rent execution of any pair of operations. This is because
some harmful executions could lead to property violations,
including state divergence and invariant violation, which
should be avoided via adding runtime coordination. This pro-
cess can be extremely time-consuming and error-prone [36].
Therefore, it is desirable to design a tool with full automa-
tion to relieve developers’ burdens, which can leverage the
power of SMT solvers to formally verify consistency-related
semantics encoded in a large body of application operations
written by high-level languages.

The use of dynamic languages (like Python [4] and PHP [3])
and high-level database abstractions (like Django [1] and
Laravel [2]) are popular among modern web applications so
as to achieve rapid evolution. Therefore, we must extract
the database interactions from each code path to understand

704

https://orcid.org/0009-0001-7607-4896
https://orcid.org/0000-0001-7064-6120
https://orcid.org/0009-0002-7796-7431
https://orcid.org/0009-0006-5060-8411
https://orcid.org/0000-0001-9840-7754
https://orcid.org/0000-0002-8368-1109
https://github.com/noctua-sys/noctua
https://doi.org/10.1145/3627703.3629570
https://doi.org/10.1145/3627703.3629570
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3629570&domain=pdf&date_stamp=2024-04-22

Source code of

the web application analyzer

Python

interpreter

Path finder

and translator

Framework

integration

SOIR code for

each code path

SMT solver

SMT encoding

verifierConsistency

requirements

restrictions

Figure 1. The architecture of the Noctua framework

the effect on the database state precisely because these in-
teractions are executed on all replicas of the underlying
geo-replication storage. Given the nature of dynamic lan-
guages, the characteristic of real-world web applications,
and the expectation of the usefulness of the results, the fully
automated system meets unique challenges for modern web
applications.
(C1) Language Challenge: Existing static analysis ap-

proaches do not work for dynamic languages. For example,
dynamic languages can change the variable type or import a
module at any time during execution, i.e., such information
is not available for a static analyzer. In addition, certain im-
portant widely-used features, like mixins, depend critically
on dynamic features provided by the language. Such features
cannot be statically analyzed.
(C2) Semantic Challenge: There are semantic gaps be-

tween the source language and the language for SMT solvers,
which are used for consistency verification. In contrast to
the source dynamic language, where one can make free use
of external modules, mutable states, control flows, etc., the
input of an SMT solver is a static description of a code path in
first-order logic. Given their vast differences, it is not obvious
how to bridge the two.
(C3) Coverage Challenge: A verifier needs to cover as

many semantics as possible to output fewer but correct re-
strictions to improve the overall performance of the underly-
ing geo-replicated storage. Unfortunately, prior works usu-
ally assume an orderless, purely key-value model, leading to
more false positive results (unnecessary restrictions) [41].
Existing approaches cannot either achieve our goals of

full automation or tackle the above challenges. For example,
domain-specific languages and specification verifiers require
substantial user input or rewriting existing code. Though
the Rigi [41] analyzer works on unmodified source code,
it assumes explicit and static SQL queries, which is not a

realistic assumption in practice since database abstraction
libraries construct SQL queries dynamically and lazily.

In response to the above challenges, we propose the Noc-
tua framework, whose architecture is shown in Figure 1. Noc-
tua reads the unmodified source code and outputs the fine-
grained consistency restrictions (ordering constraints)for
the underlying geo-replicated storage. ❶ The key in Noc-
tua framework is its intermediate language design, called
SMT-verifiable Object Language (SOIR). SOIR captures the
database interactions from the automatic program analy-
sis to address the semantic challenge (C2). SOIR has a rich
set of primitives that correspond well to the abstractions
shared by most object-oriented database abstractions. Mean-
while, our design also keeps SOIR simple to facilitate the
ease of generation and verification. ❷ For automatic pro-
gram analysis, our Analyzer is a plugin in the language
runtime/interpreter/virtual machine to extract the database
interaction from the source code, drawing inspiration from
dynamic symbolic execution [12]. The plugin approach sim-
plifies program analysis and covers more language semantics
thanmanually developed independent tools, as it can harness
the power of language runtime, addressing the language chal-
lenge (C1). ❸ The last component of Noctua is the Verifier,
which generates the verification conditions, as the inputs
for the integrated SMT solver, from the IR code in SOIR for
each operation extracted according to a set of pre-defined
checking rules. These rules are determined by the required
consistency model and desired system properties, including
state convergence and invariant preservation. Finally, the
Verifier invokes the integrated SMT solver (such as Z3 [14])
to identify the set of conflicting pairs (the restriction set).
Each invocation uses one rule and a pair of encoded opera-
tions. To address the coverage challenge (C3), we propose
a new encoding schema for database tables, which includes
order information. Such encoding also decouples the order
information from the row data of the table, enabling more
efficient array-based encoding for common cases where no
order information is needed.
We implement the Noctua framework for Python and

Django to verify its effectiveness. Four real-world and two
synthetic applications are used to evaluate the correctness
and applicability of the framework. The largest application,
OwnPhotos, contains 9,174 lines of Python code and 545
code paths. The total CPU time for analysis and verification
takes less than 6 hours without human intervention. This
paper has made the following contributions:

1. We automate the program analysis and consistency
verification using a modular framework, Noctua, for
modern real-world web applications. Noctua can verify
their fine-grained consistency semantics and generate
proper ordering restrictions over their operations so
as to avoid paying high coordination latency within
the underlying geo-replicated storage.

705

Geo-replicated

Data Stores

Web server

W
eb

serverW
eb

se

rv
er

Client

Site 1

Site 2Site 3

Figure 2.Web applications with geo-replicated storage span-
ning three sites

2. Noctua integrates several novel designs. The SOIR is
an intermediate language to address the gap between
the database operations and the back-end SMT solver
for consistency verification. Other designs include an
embedded approach to analyze source code with full
language features and a novel decoupling encoding
schema that help the SMT solver cover more semantics.

3. Evaluations show that our Noctua framework can ef-
fectively deal with real-world web applications with-
out human intervention.

2 Background and Motivation

2.1 System Model

Figure 2 shows that a target web application consists of web
servers and database daemons, where the former implements
the application logic, which manipulates and visualizes the
application states stored in the latter. A geo-replicated de-
ployment of such an application spans several geographically
dispersed sites, each of which runs a web server and a data-
base replica. Database replicas form a reliable storage tier
for fault tolerance via operation replication and necessary
coordination. In contrast, web servers run in parallel without
knowing each other. Specifically, a user request is routed
to the web server in the nearest site and speculatively ex-
ecuted against that site’s local state to determine whether
the request can be accepted, according to specific consis-
tency models. Upon acceptance, the request’s side effect, i.e.,
state mutations, will be propagated to all remote sites and
replicated across every database replica.

2.2 Fine-grained Distributed Consistency

Relaxed consistency models [7, 8, 20, 23, 24] reduce cross-
replica coordination by removing unnecessary coordination
from execution. PoR consistency [24] captures the notion of

fine-grained consistency by restricting pairs of operations
from unsafe concurrency, that is, a pair of operations 𝑃 and
𝑄 are coordinated so they run in order if their concurrent
execution may lead to state divergence or invariant viola-
tion. Formally, the ordering constraints of a system can be
expressed as a set of pair-wise restrictions 𝑅 on𝑈 ×𝑈 , where
𝑈 is the set of operations defined within the corresponding
system. In a PoR-consistent system, the local history of each
site will be restricted by a partial order 𝑂 = (𝑈 , ≺) with the
constraint: ∀𝑃,𝑄 ∈ 𝑈 , (𝑃,𝑄) ∈ 𝑅 =⇒ 𝑃 ≺ 𝑄 ∨ 𝑄 ≺ 𝑃 .
An operation 𝑃 is said to conflict with another 𝑄 , if the pair
(𝑃,𝑄) is restricted. PoR consistency is flexible enough for
most web applications and allow them to strike the balance
between strong and eventual consistency, depending on the
choice of the restriction set. For example, if all possible pairs
are restricted, the system will be strongly consistent. We
assume PoR consistency in our work.

2.2.1 Checking rules Assuming PoR consistency, to un-
derstand the consistency from the source code automatically
is to identify the minimal restriction set, that is, to find the
minimal set of pairs of operations that break desired system
properties, including state convergence and invariant preser-
vation. We expect that (1) all replicas converge to the same
state after running the same set of operations, and (2) the
system state always satisfies the application’s invariants.
It is straightforward to find all pairs of operations that

lead to state divergence by the commutativity check over
a pair (𝑃,𝑄). It checks whether for all valid system state
𝑆 , any instantiations of 𝑃 and 𝑄 can be reordered without
making the final state diverge. Denote the arguments of an
operation by a vector ®𝑥 , and the application of an operation
on the state 𝑆 by 𝑆 + 𝑃 (®𝑥), and then we can formally state
the commutativity check as follows,

∀𝑆, ®𝑥, ®𝑦, 𝑆 + 𝑃 (®𝑥) +𝑄 (®𝑦) = 𝑆 +𝑄 (®𝑦) + 𝑃 (®𝑥) (1)

We say the pair (𝑃,𝑄) passes the commutativity check if rule
1 holds, and fails if not.

The commutativity check alone does not guarantee safety,
as the invariants must be preserved as well. Prior works [10,
16, 18] usually assume explicitly provided invariants for the
sake of verification, but Rigi [41] shows that for serializ-
able applications, the invariants are already implied by path
conditions, and thus need not be specified by application
developers. This is a realistic assumption, because many web
frameworks, including Django, readily wrap HTTP respon-
der functions in transactions to achieve serializability. We
use the same semantic check, formulated as follows,

NotInvalidate(𝑃,𝑄) ∧ NotInvalidate(𝑄, 𝑃) (2)

where:

NotInvalidate(𝑃,𝑄) = ∀𝑆, ®𝑥, ®𝑦,𝑔𝑃 (®𝑥, 𝑆) =⇒ 𝑔𝑃 (®𝑥, 𝑆 +𝑄 (®𝑦))
Here, 𝑔𝑃 (𝑆, ®𝑥) is the precondition for this operation to be

committed, that is, whether 𝑃 called with arguments ®𝑥 can

706

run to completion in the state𝑆 . Intuitively, NotInvalidate(𝑃,𝑄)
means that any effect of 𝑄 cannot stop 𝑃 from running by
invalidating 𝑃 ’s precondition. Similarly, we say that (𝑃,𝑄)
passes the semantic check if rule 2 holds, and fails if not.
For example, if 𝑄 deletes an object that 𝑃 reads, clearly 𝑄

invalidates the precondition of 𝑃 that requires the object to
exist, and hence this pair fails the semantic check.
The minimal restriction set that guarantees state conver-

gence and invariant preservation in a serializable and geo-
replicated system is the set of pairs that fail either check [41].

2.2.2 State encoding. To make SMT solvers work on the
above check rules, we have to encode system states that are
involved in the pre- or post-conditions of an operation, and
also manipulated during operation execution and replication.
The state of a relational database relevant to consistency

verification is constituted of records of tables. There are
two ways to encode a database table, namely, list-based and
array-based encodings.
The list-based encoding (e.g. Qex [40]) encodes a table

as a list of tuples. The advantage of this encoding is that
it allows all database primitives to be defined without loss
of their semantics, but SMT solvers do not usually prove
enough facts when being used with this kind of encoding.
This is because SMT solvers have weak support for inductive
reasoning [26, 33].

The array-based encoding (e.g. Rigi [41]) views a table as
a mapping from primary keys to data tuples. SMT solvers
usually come with a decision procedure for the array the-
ory [11, 14], and thus this kind of encoding methods enable
more facts to be derived automatically than the list-based
ones. However, they discard the ordering information com-
pletely, and thus the verification of queries with the ORDER
BY keyword is not supported within such verification sys-
tems. This ignorance can lead to unnecessary restrictions
due to being conservative.
In summary, there is a dilemma between the verifiability

and the coverage of supported semantics, and prior works
made different trade-offs. We show that the tension can be re-
lieved by incorporating an additional, separately maintained
ordering information into the array-based encoding (see de-
tails in Section 4). This design is valid since order-related
queries are relatively rare in updating operations, while the
array-based encoding works well for the vast majority cases
without cost for ordering information.

2.3 Modern Web Application Development

A common practice of modern web development is (1) to use
a dynamic, object-oriented programming (OOP) language,
like Python or PHP, and (2) to store persistent data in a
geo-replicated relational database, as shown in Figure 2.
The geo-replicated database is often a database system

that provides a relational data model. However, this cre-
ates an object-relational impedance mismatch [19] between

1 class User(Model):
2 name = TextField(primary_key=True)
3 class Article(Model):
4 url = TextField(unique=True)
5 author = ForeignKey(User, on_delete=SET_NULL)
6 title = TextField()
7 content = TextField()
8 created = DateTimeField(default=datetime.now)
9 class Comment(Model):
10 user = ForeignKey(User)
11 article = ForeignKey(Article)
12 text = TextField()
13 def batch_update(request, username):
14 user = User.objects.get(name=username)
15 articles = Article.objects.filter(author=user)

16 if request.POST['action'] == 'delete':
17 articles.delete()
18 elif request.POST['action'] == 'transfer':
19 to_user = User.objects.get(
20 name=request.POST['to_user'])
21 articles.update(author=to_user)
22 else:
23 raise RuntimeError()

Figure 3. A blog application designed within Django

the source language and the relational data model. To mit-
igate the mismatch, web applications commonly use high-
level database abstractions, making the persistent data easy
to query and update. Object-Relational Mapping (ORM for
short) is one of the most popular abstractions in practice [30,
39].

ORM creates an automatic, bidirectional mapping between
the set of objects in the host language (like Python) and
a relational database like SQL. It hides and encapsulates
the SQL queries into objects and query sets, instead of SQL
queries, so that the developers can directly use the objects
to access the stored data.
Let’s consider a multi-user blog application, where each

article can only be authored by a single user. The model def-
initions using the Django framework are shown in Figure 3.
In this system, we define two models, User and Article,
and a view function, batch_update. A model is a special
kind of classes whose instances can be persistently stored in
a database. An instance of a model is called an object. A view
function is usually an HTTP endpoint which handles HTTP
requests. In this case, the view function batch_update ei-
ther deletes all posts of a user, or transfers the authorship
of them to another user, depending on the value of POST
parameter action.

An object (the source object) can hold references to one or
more other objects (the target objects) thanks to relations. A
relation is defined by a specific related key, throughwhich the
user retrieves the related objects, similar to a pointer. Each

707

related key creates a corresponding reversal related key in the
target model. In Figure 3, Article’s author is a related key,
and the corresponding reversal related key article_set is
automatically created in Article. The articles written by a
user john can be retrieved using john.article_set.
The related keys enable nested filters across multiple ob-

jects. Say we would like to find out the comments for articles
authored by John, which can be expressed within Django
with the following command:

Comment.objects.filter(
article__author__name="John")

where the first step is to look up the target user whose name
is John, followed by filtering out articles authored by John
(via the related key author), and the final step is to further
filter out comments which are made to the set of selected
articles (via article). In contrast, with SQL, one has to join
the three tables, namely, users, comments, and articles.

Besides the programming convenience, the utility classes
provided by ORM libraries enable expressing rich applica-
tion semantics. For example, a PositiveIntegerField can
only take values of positive integers, while the value of a
ChoiceField should be one of a set of fixed choices. We
need to understand them all since they may be relevant to
consistency semantics.

2.4 ORM-enabled Consistency Analysis

The key to understanding the fine-grained consistency se-
mantics of ORM-based applications lies in extracting the
database interactions for consistency understanding. This
is because only the database is geo-replicated, not the inter-
nal states of the application. For each code path, we extract
the effects of the path on the database, and then they are
SMT-encoded for automated verification.

The database interfaces directly supported by the verifier
may not correspond to those used in realistic application
code, and this mismatch can considerably complicate the
process to extract database interactions. Consider the ex-
treme case where the verifier only accepts key-value access,
and apparently to analyze code that uses relational database,
the code path analyzer must manually translate SQL queries
into low-level Get and Put calls. Prior works make differ-
ent choices of the database interfaces. Rigi [41] provides
key-value-like abstractions, and ANT [15] does not support
first-class query sets.
Fortunately, the widely-used ORM readily expresses a

large fraction of database interaction semantics. The main
purpose of ORM is to establish a bidirectional mapping be-
tween database entities and objects. Furthermore, it provides
a set of query primitives, such as filter, which are highly
flexible and composable to express complex queries. The
popularity, flexibility and rich semantics of ORM open door
to seize, and inspires the design of our SMT-verifiable object
language SOIR as follows.

3 The SOIR Language

The goal of designing an IR for database interactions is to
close the semantic gap between the source language and the
SMT solver’s language. This is made possible by the fact that
we need only to reason about the application’s effects on the
geo-replicated database.

We design SOIR tomodel the database interaction of a code
path in the original application code, motivated primarily by
(1) the similarities between different ORM frameworks, and
(2) the need of decoupling of analysis and verification. At
the high level, SOIR is a simply-typed, imperative language
designed with easy generation and efficient verification of
verifiable conditions in mind.

3.1 Syntax and Semantics

The syntax of SOIR is presented in Table 1, with three pri-
mary syntactic categories, namely, types, expressions, and
commands. Note that the analysis results of an application
is a set of code paths encoded in SOIR, and each code path
consists of three components: (1) arguments, (2) path con-
ditions, and (3) commands. The semantics of a code path is
defined as executing commands serially, making queries and
changes to the replicated database during execution, until it
runs to completion or aborts.

3.1.1 Types and constants. SOIR types mirror the SQL
data types, with the addition of ORM abstractions, including
objects Obj<𝜇>, query sets Set<𝜇> , and references Ref<𝜇>,
where an object is a record of fields, whose types are defined
in the corresponding model. A query set is an ordered set of
homogeneous objects, while a reference represents a tuple
corresponding to the primary key of an object. All values
are immutable.

3.1.2 Expressions. SOIR expressions model local compu-
tations and database queries that do not change the replicated
database state, and are constructed from the database query
primitives and basic operations defined on the data types.
The basic operations include conventional ones such as

arithmetic, string concatenation, as well as operations on ob-
jects and query sets. The data contained in the field 𝑓 of the
object 𝑜 can be retrieved with o.f, while a new object can be
constructed from a given object 𝑜 with its field 𝑓 transitioned
to be 𝑣 (a new value) via setf(f,v,o). Furthermore, objects,
references, and query sets can be converted between each
other. For example, singleton turns an object into a single-
ton set, deref converts a reference to its corresponding full
object, and any selects an arbitrary object from a set.

SOIR database queries are constructed from database query
primitives. The fundamental query primitive is all<𝜇>, which
is a constant query set that evaluates to the current state
of the model 𝜇, and filter selects a subset of a query set
which matches the provided criteria. For example, the query
set articles in Figure 3 can be stated as follows

708

Co
ns
ta
nt
sa

nd
ty
pe
s

Bool, Int, Float,
String, Datetime Conventional data types

List<𝑇> A list of 𝑇 values
Obj<𝜇> An instance of model 𝜇
Set<𝜇> A query set for the model 𝜇
Ref<𝜇> the ID type for 𝜇 objects

Comparator >, <, >=, <=, . . .

DRelation Relation + direction
Order ascending, descending

Aggregation max, min, sum, cnt, avg

Ex
pr
es
si
on

sa
nd

Q
ue
ry

Pr
im

iti
ve
s

all<𝜇: Model>(): Set<𝜇>
The current state of model 𝜇.

singleton<𝜇: Model>(𝑜𝑏 𝑗 : Obj<𝜇>): Set<𝜇>
deref<𝜇: Model>(𝑟𝑒 𝑓 : Ref<𝜇>): Obj<𝜇>
any<𝜇: Model>(𝑞𝑠: Set<𝜇>): Obj<𝜇>
Convert between objects, query sets, and references.

follow<𝜇: Model, 𝑟𝑠 : List<DRelation> >(qs: Set<𝜇>):
Set<𝜇>
Successively follow each relations in 𝑟𝑠 .

filter<𝜇: Model, 𝑟𝑠 : List<DRelation>, 𝑓 𝑙𝑑 : Field,
𝑜𝑝: Comparator>(𝑣𝑎𝑙 : Expr, 𝑞𝑠: Set<𝜇>): Set<𝜇>

Find a subset 𝑥𝑠 ⊆ 𝑞𝑠 such that each object 𝑥 ∈ 𝑥𝑠

satisfies that 𝑦.𝑓 𝑙𝑑 𝑜𝑝 𝑣𝑎𝑙 for each 𝑦 in follow<𝜇,
𝑟𝑠>(singleton(𝑥)).
orderby<𝜇: Model, 𝑓 𝑙𝑑 : Field, 𝑜𝑟𝑑 : Order>(𝑞𝑠: Set<𝜇>)
Order objects in 𝑞𝑠 .
aggregate<𝜇: Model, 𝑎𝑔: Aggregation, 𝑓 𝑙𝑑 : Field>
(𝑞𝑠: Set<𝜇>): Any
Aggregate by the field 𝑓 𝑙𝑑 on 𝑞𝑠 . The true return

type is determined by 𝑓 𝑙𝑑 and 𝑎𝑔.

Co
m
m
an
ds

guard(𝑐𝑜𝑛𝑑 : Bool)
Abort if 𝑐𝑜𝑛𝑑 is false.
update(𝑞𝑠: Set<𝜇>)
Merge changed objects in 𝑞𝑠 into the current state.
delete(𝑞𝑠: Set<𝜇>)
Delete objects in 𝑞𝑠 from the current state.
link<𝜌 : Relation>(𝑓 𝑟𝑜𝑚: Obj<𝜇1>, 𝑡𝑜 : Obj<𝜇2>)
delink<𝜌 : Relation>(𝑓 𝑟𝑜𝑚: Obj<𝜇1>, 𝑡𝑜 : Obj<𝜇2>)
Link or delink 𝑓 𝑟𝑜𝑚 and 𝑡𝑜 in relation 𝜌 .
rlink<𝜌 : Relation>(𝑓 𝑟𝑜𝑚: Set<𝜇1>, 𝑡𝑜 : Obj<𝜇2>)
Link all objects in the set 𝑓 𝑟𝑜𝑚 with object 𝑡𝑜 .
clearlinks<𝜌 : Relation>(𝑜𝑏 𝑗 : Obj<𝜇>)
Remove all existing linkings in relation 𝜌 .

Table 1. The syntax of SOIR. <...> denotes static information
which does not contain client-provided runtime arguments.
Some parts of the syntax are omitted for brevity.

filter(author=filter(name=username,all(User)),
all(Article))

There are some other primitives such as orderby, first,
last and aggregate. orderby reorders objects belonging

to a query set according to the value of a specified field,
first (or last) selects the object in a query set that has the
smallest (or largest) order number, and aggregate computes
on all objects in a query set for the total number of objects,
or the maximum/minimum/average of a field.

3.1.3 Commands. A command models a transition of the
system state during the execution of a code path. Each com-
mand take expressions as arguments, where database queries
can be made, and can possibly make changes to the underly-
ing replicated database.
Each command has a defined semantics regarding its ef-

fect on the system state. guard can abort the execution if
the boolean expression carried with it evaluates to false.
Database queries can be made in the expression. For exam-
ple, in Figure 3, the high-level expression User.objects.-
get(name=username) is translated into a deref expression,
while the additional condition that this object exists will be
translated into a guard command,
guard(exists<User>(username));

delete and update both take a single query set as their
argument, removing objects from, or updating objects in,
the current system state, regardless of their existence in the
system state.

SOIR does not offer a dedicated insert command because
it can be covered by update. To insert a new object 𝑜 , the
object 𝑜 should be considered an additional argument of this
code path, with an extra condition that it does not yet exist,
and then the insertion is implemented as merging 𝑜 into the
current system state.
We defer the discussion of link, delink, rlink, clear-

links to the next subsection.

3.2 Relations

SOIR support relations through two primitives (follow and
filter), and four commands (link, delink, rlink, clear-
links). The primitives read existing relation states, and the
commands possibly change them.
A relation is represented as a set of associations in SOIR,

where an association is a pair of a 𝜇1 object and a 𝜇2 object.
Given a relation 𝜌 from model 𝜇1 to 𝜇2, and a 𝜇1 query set 𝑥𝑠 ,
the set of objects associated with (at least one) objects in 𝑥𝑠

by 𝜌 can be found using the expression follow(forward, 𝜌,
xs), or xs.𝜌+ for short. Given a 𝜇2 set 𝑦𝑠 , we can follow the
relation backwards to find the the set of objects associated
with objects in 𝑦𝑠 , using the expression follow(backward,
𝜌, ys), or ys.𝜌− for short.
Similar to the flexible filter provided by ORM, SOIR

filter can also be nested through the use of multiple rela-
tions. For example, the high-level expression filter(author+.
name="John", all(Article)) finds a subset of articles
which are authored by users whose name is John. This gener-
alizes to caseswhere there aremultiple relations, e.g. filter(
relation1[+−].relation2[+−]....field=value, qs).

709

Finally, unlike query sets, SOIR does not expose relations
directly, and they can only be manipulated through the four
commands. Both link and rlink create new associations
between objects of two related models, delink removes an
association, and clearlinks removes all associates with
regard to an object.
Note that SOIR does not allow finding associated objects

directly of a given object, e.g. o.𝜌+ is not valid. Instead, SOIR
demands the use of query sets, and objects must be wrapped
into a query set with singleton(o). This design deviates
from conventional ORM abstractions, where obj.related_
key is usually allowed, and can be an object or a query set
depending on the type of the related key. SOIR lifts all rela-
tion operations to the level of query sets, and unifies many
corner cases. The uniformity in handling relations simplifies
the verification process.

3.3 Discussions and Limitations

The main design consideration of SOIR is to make the data-
base semantics easy to verify. However, some features of
general purpose languages, such as unrestricted looping,
make the language undecidable and unverifible, and thus
should be excluded from a verification language [25].
Non-supported features. There are two primary classes
of features missing in SOIR:

1. Sources of unverifiability are not supported, including
unrestricted loops, recursions, etc.

2. Features that conflict with the way our analysis works,
including closures. Furthermore, an operation can only
have finite number of arguments and commands.

3. Other features of the source language are naturally
desugared during the program analysis, such as branch-
ing, user-defined functions, and user-defined data types.

Though absent from the IR, the third class is supported by
Noctua through the program analysis, detailed in Section 4.1.
Implications of missing features. There are some im-
plications from the deliberate absence of the non-supported
features:

1. Due to lack of closures, some higher-level primitives
such as map and reduce are not supported.

2. Because of their unverifiability or conflicts with the
analysis strategy, some paradigms are impossible to
represent in SOIR. Examples include updating or in-
serting an unbounded number of objects. This further
implies that Noctua works best when batch operations
are performed through query set interfaces directly,
instead of iteration on query sets.

It’s worth noting that some valid SOIR IR may not be
supported by the verification backend. For instance, a recent
version of Z3 (4.12.1 as of writing) still does not support
set cardinalities, making it impossible to verify high-level

Symbolic

user request

Symbolic

value

Concrete

value

Symbolic

value

Concrete

value

Other unmodified

source code

Function in a debugger
PathFinder

Analyzer

Path events

Next path

Figure 4. The architecture of Analyzer

expressions that contain len(queryset). Other examples
include aggregation that involving averages.
When faced with these limitations, we expect that the

analyzer resorts to a conservative analysis to preserve sound-
ness, that is, represent the results of unsupported high-level
expressions as opaque, unknown values in the generated
verification conditions, or simply restrict the code path from
any possible concurrency.

4 Design Overview

Based on the IR language, we can facilitate a streamlined
translation process from the source language down to the
verification conditions. Both the analyzer and the verifier
are simplified. In this section, we present the key ideas of
the designs to address the challenges in program analysis
and consistency verification.

4.1 Embedded Program Analyzer

The first step of the consistency analysis process is to analyze
the source code to translate database accesses in each code
path that updates system state into SOIR code. We call such
code paths effectful. Each view function can contain zero or
more than one effectful code path, and each of them will be
checked in later steps independently. For example, the view
function batch_update in Figure 3 corresponds to three
code paths, only two of which (the POST parameter action
is “delete” or “transfer”) are effectful, to which we refer as
BU_delete and BU_transfer respectively.

However, dynamic languages are hard to analyze statically,
and the difficulty is not neglible in analyzing real applica-
tions, because ORM frameworks make free use of language
features, such as closures, mixins, and metaclasses. For ex-
ample, Django offers a feature, viewsets, that construct view
functions (as closures) at run-time. Even if they are analyz-
able, replicating language semantics is a major engineering
undertaking.

To address the analysis challenge, we propose an embed-
ded, debugger-based, framework-integrated analyzer design,
taking inspiration from dynamic symbolic execution [12].

710

1 debugger = newDebugger();
2 curState = newOrderedDict();
3 func AnalyzeApp() {
4 paths, fns = getApiEndpoints();
5 debugger.initialize()
6 debugger.setHookOnBranch((cond) => {
7 if (cond is a concrete bool) {
8 return cond;
9 } else if (cond not in curState) {
10 return curState[cond] = True;
11 } else {
12 return curState[cond];
13 }
14 });
15 for (path, fn) in zip(paths, fns)
16 AnalyzeFunc(path, fn);
17 }
18 func AnalyzeFunc(path, fn) {
19 params = getQueryParams(path);
20 args = makeSymbolicArgs(params);
21 curState = newEmptyDict();
22 do {
23 debugger.run(fn, args);
24 while(curState.size() > 0) {
25 (condExpr, whichBranch) = curState.pop();
26 if (whichBranch == True) {
27 curState[cond] = False; //insert back
28 break;
29 }}
30 } while (curState.size() > 0);
31 }

Figure 5. The pseudocode for the analysis process, whose
entry is AnalyzeApp. AnalyzeFunc discovers all paths in a
function, and curState stores the current branching state
of the function, ie. if curState[cond] is true (or false), then
cond evaluates to true (or false) in the current path. There are
more paths to traverse if the length of curState is greater
than 0. The debugger defines a hook onBranch, which is trig-
gered whenever a branch is about to happen, and the return
value of the hook function is considered the result of the
condition expression. Non-symbolic condition expressions
are evaluated eagerly.

As shown in Figure 4, the analyzer is implemented as a li-
brary. It is loaded into a running interpreter process, running
alongside the application being analyzed, and actively col-
laborates with the runtime for the application configuration
and other information. To collect the trace of the execution
of a view function, the analyzer simulates the execution by
calling the function inside a controlled debugger with a sym-
bolic user request as the argument, where both symbolic
and concrete computations (e.g. those involving constants
defined in the source code) are carried out by the interpreter.
During the execution, the debugger notifies the path finder
of any branching event, while the path finder maintains the

1 class Sym {
2 IR.Expr expr; Type type; IR.Expr? bool_expr;
3 // ...
4 }
5 class SymInt extends Int, Sym;
6 class SymBool extends Bool, Sym;
7 class SymStr extends String, Sym;
8 Sym operator+(Sym a, Sym b) {
9 if (a.type == Int && b.type == Int) {
10 return SymInt(IR.Plus(a.expr, b.expr), Int);
11 } else { /* ... */ }
12 }
13 Sym operator+(Sym a, int b) {
14 return a + SymInt(IR.IntLiteral(b));
15 }

Figure 6. The pseudocode for the Sym class. Operations on
Sym objects are overridden to generate IR expressions. Con-
crete values are converted to be symbolic when used in
symbolic expressions.

current path state, and controls which path to take next. The
path finder guarantees that repeated calls of the function
will eventually traverse all the code paths in a function, as
long as there are only finite possible code paths.

This design is motivated by the inadequacy of static anal-
ysis, and inspired by concolic testing, though our usage is
largely different, since our ultimate goal is not to analyze
reachability of unsafe code paths, and thus we do not drop
any code path and simply re-invoke the function with exactly
the same symbolic arguments.
The pseudocode of the analysis process is presented in

Figure 5. We will again use the blog example in Figure 3 for
illustration.
Initialization. The program analysis begins with a call
to AnalyzeApp, which first queries the runtime for a list
of defined HTTP endpoints and their view functions, and
then sets up the debugger for controlling control flow by
replacing the logic of branching with a special hook, where
symbolic condition expressions can be true or false depend-
ing on the current path state. Finally, Analyzer begins the
collection of traces of code paths by calling AnalyzeFunc on
each function.
Traverse code paths. Code paths are discovered at the
point of branching, which includes not only if but also
while and other constructs such as list comprehensions. Be-
fore actually running the function in the debugger, Analyze-
Func first constructs the symbolic arguments from the HTTP
endpoint. For instance, batch_update in Figure 3 requires
an additional username parameter, which is usually supplied
from the URL /batch_update/<username>.
During the execution of the function, all computations

are carried out by the same interpreter, including symbolic
ones. The execution continues, until L19 where the first

711

branching happens. At this point, the path finder returns true
because this symbolic expression is new. The interpreter then
continues to L20, where the deletion happens. The analysis of
the code path BU_delete concludes when the view function
returns, and AnalyzeFunc adjusts the currently known path
states, so that upon the second invocation, the branch at L19
will return false, leading the control flow to L21 and then
through L24, corresponding to the code path BU_transfer.
Likewise, the third invocation will go through L26.
Translate queries and record effects and arguments. To
construct SOIR code from normal execution, we take advan-
tage of the operator overloading feature commonly found in
dynamic languages, through the Sym class in Figure 6. When
Sym values participate in an computation, the result becomes
a new Sym object which contains the corresponding IR code
in its expr field. For example, in batch_update, the variable
user is a symbolic object corresponding to the IR expression
deref(username).

To collect effects of a code path, effectful methods of query
sets and objects are overridden such that they do not make
actual database calls, but instead notify path finder about
the events. The path finder then records these effects in the
analysis results of the path.
Likewise, additional arguments of paths are also discov-

ered with the help of the symbolic values, rather than de-
clared, during the analysis.Whenever a new POST parameter
is accessed, it is automatically recorded as an additional ar-
gument of this code path. For example, when batch_update
accesses the “action” parameter of the POST data, a new
argument arg_POST_action will be recorded, even though
it is not part of the function argument list.

4.2 Order-aware Array-based SMT Encoding

The purpose of consistency analysis is to relax as many
unnecessary restrictions as possible. However, if there are
code patterns that cannot be analyzed, the verifier will resort
to a conservative strategy, which could result in unnecessary
false positives. Therefore, it is desirable that we can make
the verifier aware of as much code semantics as possible.
To allow SMT solvers work efficiently and effectively, it

is much desired to use an array-based encoding: a table is
considered a mapping from object IDs to object data. This
encoding, however, discards order information. In contrast, a
list-based encoding can faithfully support all of the database
accesses, but are ineffective due to SMT’s lack of support for
inductive reasoning.
Here, we propose an encoding that incorporates order

information, but pay for the cost only when it’s needed. The
key idea of our encoding is to decouple order from object
data out of the encoding of a model state, which is inspired
by the observation that order information is not frequently
used in web applications, that is, most operations simply

Table 2. The SMT encoding for the threemodel-related types.
[𝜏] denote the corresponding SMT sort for an IR type 𝜏 .

IR type Part SMT encoding
𝜇 ref the sort for the actual type, e.g. Int
𝜇 obj a tuple of all data fields

𝜇 set
ids Set<[𝜇 ref]>
data Array<[𝜇 ref], [𝜇 obj]>

order Array<[𝜇 ref], Int>

retrieves some objects and update them. The encoding of a
query set is presented in Table 2.

The encoding of a model state is a tuple of three elements:
(1) ids, a set of object IDs; (2) data, an array from object IDs
to object data; (3) order, an array from object IDs to integers.
We define the ordering between objects 𝑥 ≺ 𝑦 in a query

set 𝑞𝑠 via the order array of 𝑞𝑠:

𝑥 ≺ 𝑦 ⇐⇒ order[𝑥] < order[𝑦]
modulo the difference between objects and object IDs, as-
suming both 𝑥 and 𝑦 exist in the query set 𝑞𝑠 .

It is noteworthy that the actual integer order[𝑥] does not
matter. This flexibility enables a straightforward encoding
for reverse and orderby.
reverse(qs) reverses the order of objects in the query set

𝑞𝑠 . By the encoding above, the resulting order array, named
order′, can be specified by order′ [𝑥] = −order[𝑥] for any ID
𝑥 .

orderby(f, ord, qs) orders the objects in the query
set 𝑞𝑠 by field 𝑓 in ascending or descending order according
to ord, which can be asc or desc. Suppose we are to order
𝑞𝑠 by 𝑓 in ascending order, the resulting order array can
be specified by order′ [𝑥] = data[𝑥] .𝑓 , if the type of 𝑓 is
integer-like.

To merge two query sets, the order array of the result must
also be specified. It is trivial when there are no new objects,
since the order is not changed at all. However, the order of
new objects can be ambiguous. In this case, we conserva-
tively discard the original order information by generating
an opaque, unknown order array for the result query set.

5 Implementation Details

We implement the Noctua framework in Python and inte-
grate it with the Django framework. Table 3 summarizes the
implementation costs. The design of Noctua is general, and
it can also be implemented for other languages and ORM li-
braries. This section discusses some notable implementation
choices.

5.1 Analyzer

Analyzer is responsible for discovering all code paths and
translating each code path into its SOIR representation. Ana-
lyzer does the translation by simulating the execution of the

712

Table 3. The implementation costs of each module of the
SOIR framework

Module Lines of Python Code

Analyzer (path traversal) 795
Analyzer (Django integration) 577

Analyzer (misc.) 112
Verifier 2434

code path with an unknown, symbolic user request object
on the symbolic database state. For each code path, there
are three kinds of information to be collected: (1) a list of
arguments, (2) a list of path conditions, and (3) a list of effects.
The collection of them have been discussed in section 4.
Entry discovery. The first step is to discover all entries of
user request handlers. Django and Django-Rest Framework
do not require the user to list all of the entries statically, but
allows dynamic construction of these request handlers by
means of mixins, closures, or other dynamic features. It is
impossible to find entries statically by just looking at the
source code.

We address this difficulty by integrating the analyzer with
the framework itself. The analyzer is implemented as a man-
agement command, installed as a separate module in the
application to analyze, and the user can invoke the com-
mand to start the consistency analysis process. When the
command handler is invoked, the application is already ini-
tialized, and the analyzer can query the framework for a list
of all HTTP endpoints, and find their corresponding view
functions.
Path discovery. Python offers a shortcutway for the onBranch
hook through the __bool__ magic function. Whenever a
branching is about to happen, the condition expression’s
__bool__ is called to determine the truth value. The Sym class
overrides __bool__ to communicate with to path finder to
return the appropriate truth values in order to control which
code path to enter.
Object existence. The existence of Django’s objects can be
checked using bool(obj), which is implemented by __bool__.
Unfortunately, the bool magic function is already reserved
for the path exploration. We add an extra field, bool_expr,
to the Sym class in Figure 6, which will be used in place of
the default path condition logic. For example, the expression
user = User.objects.first() can carries a bool_expr
with the IR expression not(empty(all<User>)), and then
if user will be handled as if it is written as if not User-
.objects.empty().

5.2 Verifier

Verifier is responsible for generating verification conditions
recognizable by an SMT solver (such as Z3) from the IR code

of a pair of operations and a specific checking rule. Verifier
invokes the SMT solver to automatically decide whether the
check is passed, and makes the final judgment whether the
pair should be restricted from running concurrently.
Generation. The checking rules were already given in
section 2.2, and to generate the verification conditions, the
checking rule must be instantiated. As an example, we con-
sider the case of the commutativity check:

∀𝑆, ®𝑥, ®𝑦, 𝑆 + 𝑃 (®𝑥) +𝑄 (®𝑦) = 𝑆 +𝑄 (®𝑦) + 𝑃 (®𝑥)
To prove this fact, we do not directly generate this ∀-

quantified formula, but transform it into an equivalent prob-
lem of finding counterexamples. That is, given some axioms,
we ask the SMT solver whether there is a counterexample,
and the fact is proven if none is found.
Verifier does not translate 𝑃 and/or 𝑃 (®𝑥) as an SMT

function. Instead, it computes 𝑆 + 𝑃 (®𝑥) directly and plugs in
the values.
Additionally, +𝑃 (®𝑥) implies that 𝑃 (®𝑥) is an effect gener-

ated somewhere else, and we thus further require that 𝑃 (®𝑥)
can be generated by asserting its precondition to be true on
another fresh system state.
Axioms. The encoding alone (Section 4.2) allows invalid
states: the set of primary keys included in object data may
not match the ID set carried by the queryset itself. Therefore,
each model state must satisfy the followingWell-formedness
axiom,

∀𝑞𝑠, 𝑖𝑑, 𝑞𝑠.data[𝑖𝑑] .𝑖𝑑 = 𝑖𝑑

An additional axiom is generated for each unique field 𝑓

and the model state 𝑞𝑠 ,

∀𝑥,𝑦, 𝑞𝑠.data[𝑥] .𝑓 = 𝑞𝑠.data[𝑦] .𝑓 =⇒ 𝑥 = 𝑦

Finally, we also require the order number to be unique, gen-
erating an axiom similar to the one above.
Unique ID optimization. Verifier can optionally gener-
ate special axioms for arguments that are marked as globally
unique. For example, when 𝑎1, 𝑎2, . . . , 𝑎𝑛 are all marked as
such, Verifier will assert an axiom

distinct(𝑎1, 𝑎2, . . . , 𝑎𝑛).
This is motivated by the fact that geo-replicated databases

can typically generate system-wide unique new IDs for new
objects. Consider a code path that simply inserts a new
record. If the unique ID feature is disabled, it will conflict
with itself, because the two object IDs could be equal, failing
the commutativity check and resulting in an unnecessary
restriction. This optimization removes this restriction.

5.3 Soundness and Completeness

In the absence of unrestricted loops and recursions, the anal-
ysis of Noctua is sound, in that the system will be free from
property-violating behaviors, such as state divergence and
invariant violation; but it is incomplete in that identified

713

restrictions can be unnecessary. This is because our path
exploration does not discard any possible paths (path ex-
ploration is complete), and the semantics of each path is
over-approximated. Therefore, the soundness of our analysis
is the same as the previous theoretical work developed under
the framework of static analysis [16, 41].

In practice, an implementation can be sound or unsound,
depending on the handling of these features. Our current
implementation is unsound, as it unrolls loops only for fi-
nite times. A more conservative implementation wishing to
preserve soundness may opt to mark all such operations as
conflicting with any other operations.

6 Evaluation

We understand the applicability, generality, and merits of the
Noctua framework by answering the following questions:

• Are the analysis results correct?
• How does the program analysis scale?
• How does the consistency verification scale?
• How effective is the encoding?
• Does the analysis improve end-to-end system perfor-
mance?

6.1 Experimental Setup

We evaluate our framework using four existing codebases
and two synthetic benchmarks in Python. All of them use the
Django framework. The basic statistics such as number of
lines of code and number of code paths are shown in Table 4.
The evaluated existing open-source applications are (1)

zhihu [13], a simple clone of a Quora-like Q&A site; (2) Post-
Graduation [38], a simple management system for postgrad-
uates; (3) OwnPhotos [28], an open source clone of Google
Photos; (4) django-todo [34], a toy todo list application. And
the evaluated standard benchmarks are (1) SmallBank [32],
and (2) Courseware [18]. We run these experiments on a 2019
MacBook Pro with a hexa-core Intel Core i7 CPU, and 16
GB 2400 MHz DDR4 RAM. We use Python 3.10.10, Z3 4.12.1,
Django 2.2.28, and Django-RestFramework 3.13.1. The time-
out of each check is 2 seconds.

6.2 Correctness

To evaluate the correctness of the results of Noctua, we
re-implement standard benchmarks, SmallBank and Course-
ware, using the Django framework, run Noctua analysis on
them, and compare the our results to the results reported by
prior works that use the same checking rules, Rigi [41] and
Hamsaz [18]. The baseline of Courseware is Hamsaz, and
the baseline of SmallBank is Rigi.

The comparison between Noctua and the baseline tool is
presented in Table 5. According to the table, we find that
the results of Noctua is on par with prior tools, as expected.
In fact, Noctua finds the same restriction set as the baseline
tools.

0

1

2

3
Todo

0

5

10

PostGraduation

1x 2x 3x
0

10

20

Zhihu

1x 2x 3x
0

200

400

OwnPhotos

Codebase size

Ti
m

e
(s

)

Figure 7.The analysis times of varying sizes of the codebases
of the four applications

SmallBank. SmallBank is a simple banking application. It
defines five operations, Amalgamate, Balance, DepositCheck-
ing, SendPayment, and TransactSavings. Each account has
two types of balances, checking and savings. These oper-
ations can transfer balances between the two types, and
between different accounts. Balance is a read-only opera-
tion (thus ignored), while others are effectful operations.
For SmallBank, both Noctua and the baseline tool (Rigi)
find 4 semantic failures, (TransactSavings,TransactSavings),
(SendPayment,SendPayment), (Amalgamate,Amalgamate),
and (Amalgamate,SendPayment), all of which arise from the
invariant that balances must be non-negative.
Courseware. Courseware as specified by Hamsaz defines
four effectful operations, Register, AddCourse, Enroll, and
DeleteCourse. This application only considers the referential
integrity. There are three models, Student, Course, and En-
rolment. Each Enrolment is a pair of a Student and a Course.
For Courseware, both Noctua and the baseline tool (Ham-
saz) find a commutativity failure (AddCourse,DeleteCourse),
because they can carry the same ID, and a semantic fail-
ure (Enroll,DeleteCourse), because the course can be deleted
before the enrolment, breaking referential integrity.

6.3 Applicability

To evaluate the applicability of Noctua on our target appli-
cations (using dynamic languages and high-level database
abstractions), we run Noctua on four real-world existing
codebases. Figure 7 depicts the bar graph for the analysis
times for the evaluated applications and those for the code-
base doubled and tripled by repeating the same set of HTTP
endpoints. We find that the analysis is sufficiently fast for
real-world codebases as large as 9k lines of code, and the
analysis times scale linearly with the size of the codebase

714

Table 4. Basic information about evaluated applications

Application Static information Analysis results

#LoC Time (ms) #Models #Relations Time (s) #Code Paths #Effectful Paths

Todo 434 503 1 0 1.355 18 10
PostGraduation 939 1792 8 4 8.266 40 19

Zhihu 1350 2672 14 25 8.743 51 17
OwnPhotos 3848 4081 12 46 87.880 545 120

SmallBank 346 386 1 0 0.004 17 4
Courseware 276 547 3 2 0.467 8 4

Table 5. Comparison of the analysis results produced by
Noctua and those of prior works. “Com. failures” and “Sem.
failures” are the number of failed commutativity checks and
the number of failed semantic checks, respectively.

Application Com. failures Sem. failures

Noctua Baseline Noctua Baseline

SmallBank 0 0 4 4
Courseware 1 1 1 1

Table 6. Overall verification results for the applications stud-
ied in this paper

Application #Checks #Restr. #Failures

Com. Sem.

Todo 55 31 28 3
PostGraduation 190 34 24 10

Zhihu 171 80 66 80
OwnPhotos 7260 3066 2572 2940

as expected, and nearly linearly with the number of code
paths. The current implementation of Analyzer works best
with pure Django codebases. The semantics of third-party
libraries are by default handled conservatively by Analyzer,
but we also added a few annotations in OwnPhotos that
override the default strategy when we feel it is not good
enough.
Figure 8 depicts the bar graphs for the verification times

for the evaluated applications. The overall verification results
of the four real-world codebases are summarized in Table 6.
The verification time is quadratic in the number of verified
code paths.

Finally, to evaluate the effectiveness of the order-decoupling
design, we modify the verifier to not use the order infor-
mation at all, and compare the verification times with and
without order for PostGraduation, which does not use order-
related primitives. There are no differences in the verification
results, and the verification times (Figure 9).

Todo PostGraduation Zhihu
0

100

200

300

400 Com.
Sem.

OwnPhotos
0

5000

10000

15000

20000

Application
Ti

m
e

(s
)

Figure 8. The verification times of the four applications

Table 7. The verification results for PostGraduation with
order enabled or disabled

Has order No order

#Com. failures 24 24
#Sem. failures 10 10

6.4 Case Study

We manually check the results of smaller applications like
zhihu and PostGraduation. We present some cases to confirm
that our results are expected. In the following case studies,
we will use CreateQuestion and FollowQuestion as the ex-
ample operations. CreateQuestion creates a new Question
object, and FollowQuestion subscribes a user to new activ-
ities in a question by (1) creating a new FollowQuestion
object with all fields initialized to empty or the supplied ar-
guments, and (2) increase the follow count of the question.
CreateQuestion and CreateQuestion. CreateQuestion
does not conflict with itself. This is due to our assertion
that new IDs are globally unique (Section 5.2), and thus this
pair is trivially commutative. If we remove this assertion,
CreateQuestion will conflict with itself due to semantic vi-
olation and commutativity violation, since the uniqueness
of ID will be invalidated by another effect with the same ID,
and they can write to the same object with different, e.g.,
titles.

715

Yes No
0

50

100

150 Com.
Sem.

Order reasoning enabled?

Ti
m

e
(s

)

Figure 9. The verification times for PostGraduation when
order is enabled or disabled. The lower boxes (blue) represent
the total time for commutativity checks, and the upper boxes
(orange) for semantic checks.

CreateQuestion and FollowQuestion. FollowQuestion
conflicts with CreateQuestion due to the commutativity vi-
olation, as FollowQuestion will update the follow field of
the referenced question object, while CreateQuestion will
set its follow count to zero.
FollowQuestion and FollowQuestion. FollowQuestion
conflicts with itself due to the semantic violation. Follow-
Question asserts that the pair (user,question) is “unique
together”, and thus the effect of a preceding FollowQues-
tion operation will invalidate the precondition of a later
FollowQuestion by the same user on the same question.

6.5 End-to-End Performance

To evaluate how the analysis can be used to improve the
end-to-end system performance, we deploy two applications,
zhihu (ZH) and PostGraduation (PG), each as a three-node
system in a local network with an extra injected latency of
1 ms for cross-node communication. For each application,
we consider three different workloads depending on the per-
centage of operations that update system states. For example,
the “15%” workload means only 15% are “writes”, and the
remaining 85% read-only transactions are executed locally
immediately without any coordination. The baseline work-
load, strong consistency (SC), is implemented such that such
that all requests, including read-only ones, are coordinated.
Operations are initiated by sending random HTTP requests
continuously for an extended period of time.

For coordination, we implement a centralized coordination
service. The coordination service maintains a list of currently
active operations. An operation is allowed to proceed when
there are no conflicts. To simplify the implementation, we
did not use the full analysis results, but only consider the
HTTP endpoints and the parameters contained in the HTTP
requests. We note that this is not a full implementation, as
it does not consider the code path taken during the execu-
tion, but it should suffice to demonstrate the performance
improvement from removing unnecessary coordination over-
heads.

SC 85% 50% 15%
0

100

200

300
zhihu

SC 85% 50% 15%
0

100

200

300

PostGraduation

TP
S

Figure 10. The throughputs of different workloads

SC 85% 50% 15%
0

10

20

30
zhihu

SC 85% 50% 15%
0

10

20

PostGraduation

Av
g.

 L
at

en
cy

 (m
s)

Figure 11. The average user-perceived latency

The end-to-end throughput performance is presented in
Figure 10, and the average user-perceived latency in Fig-
ure 11. Compared to strong consistency, by relaxing consis-
tency, we achieve up to 2.8x speedup in the case of ZH. As
the write ratio decreases, it can be observed that the through-
puts of ZH and PG both increase as expected, due to less
coordination and network contention.

7 Related Work

Fine-grained consistency and its verification. Fine-grained
consistency models allow consistency to be specified at a
finer granularity, typically operations. RedBlue consistency [23]
assigns a consistency level (strong or causal) to each opera-
tion, and allows the two levels to co-exist in the same system.
Explicit consistency [9] is defined by a set of application-
specific invariants, and a conforming system can reorder
operations as long as no invariants are broken. The CISE
consistency [16] associates tokens to operations, and guar-
antees that operations with conflicting tokens do not run
concurrently. PoR consistency [24] expresses consistency as
a set of restrictions over pairs of operations exposed by the
system, and a conforming system will be coordinated such
that no restricted pairs run concurrently.
Fine-grained consistency models are harder to use than

their strong counterparts, since they require reasoning about
possible concurrent behaviors, and there are various tools
proposed for each model, but they demand non-trivial input
from the developers. Indigo [9] automatically derives the
Explicit consistency requirements of an application based

716

on the provided invariants, assuming a geo-replicated key-
value store. The CISE tool verifies whether an application
is CISE-consistent, given the complete specifications of the
application. In contrast, our work computes the weakest
preconditions and the strongest postconditions with little
developer assistance.
Conditions for coordination avoidance. The CALM the-
orem [17] formally captures the class of computations that
can be coordination-free from the perspective of query re-
sults. It states that a program can run safely without coordi-
nation if and only if it is monotonic.

Safe coordination avoidance requires preserving application-
specific invariants. I-confluence [6] is a sufficient condition
for invariant preservation of state-based replicated objects. It
states that every execution of a set of operations is invariant-
preserving if each operation in the set and the state merge
operation are invariant-preserving. Well-coordination [18] is
a sufficient condition for invariant preservation of operation-
based replicated objects. It defines that well-coordinated ex-
ecutions are locally permissible, conflict-synchronizing, and
dependency-preserving. Our work assumes an operation-
based model, but we only consider the conflicting relation-
ship between operations.
Domain-specific languages. Bloom [5] is built upon the
CALM theorem. Bloom is a domain-specific language em-
bedded in Ruby, and each Bloom program is restricted to
a Datalog-like form. A Bloom operation can safely avoid
coordination if it only contains monotonic operators.
Quelea [37] proposes a declarative programming model

for eventually consistent data stores, which is manifested
as a shallow embedding in Haskell. The user is expected to
specify fine-grained consistency properties in a provided
contract language. The specified contracts are substantially
lower-level, in that they are built upon primitives about
various orders.

MixT [27] is another domain-specific language, but is em-
bedded in C++, and associates consistency information with
data. It defines an information-flow-based analysis that pre-
vents less consistent data from flowing into strongly con-
sistent data. In contrast to domain-specific languages, our
work focuses on conventional programming languages, and
can be integrated into existing projects.
Program synthesizers. Hamsaz [18] is a program synthe-
sizerwhich automatically synthesizes a correct-by-construction
replicated object from user-supplied specifications based on
the notion of well-coordination. Different from Hamsaz, our
work focuses on the analysis and verification of existing
codebases, especially ones in dynamic languages. Moreover,
Hamsaz features a static analysis and protocol co-design,
where our work simply adopts an existing consistencymodel,
PoR consistency, since it is flexible enough for our use case
and has been studied extensively before.

Automated programanalyzers. SIEVE [22, 23] automates
the choice of consistency levels in the RedBlue consistency [23].
It assumes the use of CRDT [35], requiring the users to anno-
tate database schema with merge strategies, and thus does
not validate commutativity, (operations are commutative by
construction). It then computes the weakest precondition for
the effect of each operation. The runtime determines at run-
time with the weakest preconditions to determine whether
the current effect should be strongly or causally coordinated.

AutoGR [41] automates the analysis PoR consistency by in-
ferring a conflict table between operations using SMT solvers.
The key difference is that Rigi assumes explicit and static
SQL queries in source code, which are rare in practice. Our
work directly works on the high-level database abstractions
instead of SQL, and thus can work on more realistic applica-
tions.

ANT [15] proposes a static analysis for applications with
mixed consistency on a language called OOlang. It intro-
duces the problem of method call anticipation, that is, the
conditions under which two operations can be reordered.
It analyzes OOlang code and generates anticipation tables.
Like MixT, ANT associates consistency information with
data, and expects class fields in the source code to be anno-
tated with strong (strongly-consistent) or weak (eventually-
consistent). In contrast, our work does not support generat-
ing anticipation conditions and does not require additional
user input.

8 Conclusion

We present the Noctua framework, which is, to the best of
our knowledge, the first fully automated consistency ana-
lyzer that can work on realistic codebases using dynamic
language and high-level database abstractions. At the core of
the framework is a unified representation of the semantics of
object-oriented database applications, SMT-verifiable Object
Intermediate Representation. We built a fast and efficient
Python program analyzer embedded in the framework that
can extract application semantics from codebases as large
as 9k lines of real-world Python code. To improve the cover-
age of verifiable semantics, we designed a novel encoding
approach that decouples infrequently used primitives from
the frequent ones, without paying costs when they are not
required. A comprehensive evaluation confirms the correct-
ness and the applicability of our framework.

Acknowledgements

We sincerely thank all anonymous reviewers for their in-
sightful feedback and especially thank our shepherd Nuno
Preguica for his thorough guidance in our camera-ready
preparation. This work is supported in part by the National
Natural Science Foundation of China under Grant No. 62141216,
62172382, and 61832011. Cheng Li is the corresponding au-
thor.

717

References

[1] Homepage of Django. https://www.djangoproject.com/, 2023.
[2] Homepage of Laravel. https://laravel.com/, 2023.
[3] The PHP programming language. https://www.php.net/, 2023.
[4] The Python programming language. https://www.python.org/, 2023.
[5] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Mar-

czak. Consistency analysis in Bloom: a CALM and collected approach.
In Proceedings of the 5th Biennial Conference on Innovative Data Systems
Research (CIDR ’11), pages 249–260, January 2011.

[6] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. Coordination avoidance in database sys-
tems. Proc. VLDB Endow., 8(3):185–196, November 2014.

[7] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion
Stoica. The potential dangers of causal consistency and an explicit solu-
tion. In Proceedings of the Third ACM Symposium on Cloud Computing
(SoCC ’12), pages 1–7, San Jose, California, 2012. ACM Press.

[8] Peter Bailis and Ali Ghodsi. Eventual consistency today: Limitations,
extensions, and beyond. Commun. ACM, 56(5):55–63, May 2013.

[9] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting consistency
back into eventual consistency. In Proceedings of the Tenth European
Conference on Computer Systems (EuroSys ’15), pages 1–16, 2015.

[10] Valter Balegas, Nuno Preguiça, Sérgio Duarte, Carla Ferreira, and
Rodrigo Rodrigues. Ipa: Invariant-preserving applications for weakly-
consistent replicated databases. arXiv preprint arXiv:1802.08474, 2018.

[11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.
CVC4. In Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV ’11), volume 6806 of Lecture Notes in Computer
Science, pages 171–177. Springer, 2011.

[12] Alessandro Disney Bruni, Tim Disney, and Cormac Flanagan. A peer
architecture for lightweight symbolic execution. https://hoheinzollern.
files.wordpress.com/2008/04/seer1.pdf, 2011.

[13] Chaoyingz. zhihu github repository. https://github.com/Chaoyingz/
zhihu, February 2018.

[14] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[15] Marco Giunti, Hervé Paulino, and António Ravara. Anticipation of
method execution in mixed consistency systems. In Proceedings of the
38th ACM/SIGAPP Symposium on Applied Computing (SAC ’23), page
1394–1401, New York, NY, USA, 2023. ACM.

[16] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. ’Cause I’m strong enough: Reasoning about con-
sistency choices in distributed systems. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’16), page 371–384, New York, NY, USA, 2016.
ACM.

[17] Joseph M Hellerstein and Peter Alvaro. Keeping CALM: when dis-
tributed consistency is easy. Commun. ACM, 63(9):72–81, 2020.

[18] Farzin Houshmand and Mohsen Lesani. Hamsaz: Replication coordi-
nation analysis and synthesis. Proc. ACM Program. Lang., 3(POPL),
January 2019.

[19] Christopher Ireland, David Bowers, Michael Newton, and Kevin
Waugh. A classification of object-relational impedance mismatch.
In Proceedings of the First International Confernce on Advances in
Databases, Knowledge, and Data Applications (DBKDA ’09), pages 36–43.
IEEE, Mar 2009.

[20] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[21] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[22] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Ro-
drigues, and Viktor Vafeiadis. Automating the choice of consistency

levels in replicated systems. In Proceedings of the 2014 USENIX Annual
Technical Conference (USENIX ATC ’14), pages 281–292, 2014.

[23] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguiça, and Rodrigo Rodrigues. Making geo-replicated systems
fast as possible, consistent when necessary. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation
(OSDI ’12), pages 265–278, USA, October 2012. USENIX Association.

[24] Cheng Li, Nuno Preguiça, and Rodrigo Rodrigues. Fine-grained con-
sistency for geo-replicated systems. In Proceedings of the 2018 USENIX
Annual Technical Conference (USENIX ATC ’18), pages 359–372, Jul
2018.

[25] Mark Marron and Deepak Kapur. Comprehensive reachability refu-
tation and witnesses generation via language and tooling co-design.
Technical Report MSR-TR-2021-17, August 2021.

[26] Microsoft. Z3 will not prove inductive facts. https:
//microsoft.github.io/z3guide/docs/theories/Datatypes/#z3-will-not-
prove-inductive-facts, 2023.

[27] Matthew Milano and Andrew C Myers. MixT: A language for mixing
consistency in geodistributed transactions. ACM SIGPLAN Notices,
53(4):226–241, 2018.

[28] Hooram Nam. Ownphotos github repository. https://github.com/
hooram/ownphotos, January 2021.

[29] Brian M Oki and Barbara H Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed systems.
In Proceedings of the Seventh Annual ACM Symposium on Principles of
Distributed Computing (PODC ’88), pages 8–17, 1988.

[30] Elizabeth J O’Neil. Object/relational mapping 2008: hibernate and the
entity data model (edm). In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data (SIGMOD ’08), pages
1351–1356, jun 2008.

[31] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Annual Tech-
nical Conference (USENIX ATC ’14), pages 305–319, Jun 2014.

[32] Andy Pavlo. H-store benchmarks smallbank. https:
//github.com/apavlo/h-store/tree/master/src/benchmarks/edu/
brown/benchmark/smallbank/, July 2013.

[33] Andrew Reynolds and Viktor Kuncak. Induction for smt solvers.
In Proceedings of the 16th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI ’15), pages 80–98.
Springer, 2015.

[34] Shrey Shah. django-todo github repository. https://github.com/
shreys7/django-todo, November 2022.

[35] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
A comprehensive study of convergent and commutative replicated data
types. PhD thesis, Inria–Centre Paris-Rocquencourt; INRIA, 2011.

[36] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whip-
key, Eric Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina,
Stephan Ellner, John Cieslewicz, Ian Rae, Traian Stancescu, and Himani
Apte. F1: A distributed sql database that scales. Proc. VLDB Endow.,
6(11):1068–1079, Aug 2013.

[37] Kc Sivaramakrishnan, GowthamKaki, and Suresh Jagannathan. Declar-
ative programming over eventually consistent data stores. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’15), pages 413–424, Portland OR
USA, June 2015. ACM.

[38] Amine Smahi. Postgraduation github repository. https://github.com/
Amine-Smahi/PostGraduation, October 2019.

[39] Alexandre Torres, Renata Galante, Marcelo S Pimenta, and Alexandre
Jonatan B Martins. Twenty years of object-relational mapping: A
survey on patterns, solutions, and their implications on application
design. Information and Software Technology, 82:1–18, 2017.

[40] Margus Veanes, Nikolai Tillmann, and Jonathan De Halleux. Qex:
Symbolic sql query explorer. In Proceedings of the 16th International
Conference on Logic Programming and Automated Reasoning (LPAR ’10).

718

https://www.djangoproject.com/
https://laravel.com/
https://www.php.net/
https://www.python.org/
https://hoheinzollern.files.wordpress.com/2008/04/seer1.pdf
https://hoheinzollern.files.wordpress.com/2008/04/seer1.pdf
https://github.com/Chaoyingz/zhihu
https://github.com/Chaoyingz/zhihu
https://microsoft.github.io/z3guide/docs/theories/Datatypes/#z3-will-not-prove-inductive-facts
https://microsoft.github.io/z3guide/docs/theories/Datatypes/#z3-will-not-prove-inductive-facts
https://microsoft.github.io/z3guide/docs/theories/Datatypes/#z3-will-not-prove-inductive-facts
https://github.com/hooram/ownphotos
https://github.com/hooram/ownphotos
https://github.com/apavlo/h-store/tree/master/src/benchmarks/edu/brown/benchmark/smallbank/
https://github.com/apavlo/h-store/tree/master/src/benchmarks/edu/brown/benchmark/smallbank/
https://github.com/apavlo/h-store/tree/master/src/benchmarks/edu/brown/benchmark/smallbank/
https://github.com/shreys7/django-todo
https://github.com/shreys7/django-todo
https://github.com/Amine-Smahi/PostGraduation
https://github.com/Amine-Smahi/PostGraduation

Springer, Apr 2010.
[41] Jiawei Wang, Cheng Li, Kai Ma, Jingze Huo, Feng Yan, Xinyu Feng,

and Yinlong Xu. Autogr: Automated geo-replication with fast system

performance and preserved application semantics. Proc. VLDB Endow.,
14(9):1517–1530, May 2021.

719

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 System Model
	2.2 Fine-grained Distributed Consistency
	2.3 Modern Web Application Development
	2.4 ORM-enabled Consistency Analysis

	3 The SOIR Language
	3.1 Syntax and Semantics
	3.2 Relations
	3.3 Discussions and Limitations

	4 Design Overview
	4.1 Embedded Program Analyzer
	4.2 Order-aware Array-based SMT Encoding

	5 Implementation Details
	5.1 Analyzer
	5.2 Verifier
	5.3 Soundness and Completeness

	6 Evaluation
	6.1 Experimental Setup
	6.2 Correctness
	6.3 Applicability
	6.4 Case Study
	6.5 End-to-End Performance

	7 Related Work
	8 Conclusion
	References

