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Abstract: In this work, we propose a predator-prey system with a Holling type II functional response

and study its dynamics when the prey exhibits vigilance behavior to avoid predation and predators

exhibit cooperative hunting. We provide conditions for existence and the local and global stability of

equilibria. We carry out detailed bifurcation analysis and find the system to experience Hopf, saddle-

node, and transcritical bifurcations. Our results show that increased prey vigilance can stabilize the

system, but when vigilance levels are too high, it causes a decrease in the population density of prey

and leads to extinction. When hunting cooperation is intensive, it can destabilize the system, and can

also induce bi-stability phenomenon. Furthermore, it can reduce the population density of both prey

and predators and also change the stability of a coexistence state. We provide numerical experiments

to validate our theoretical results and discuss ecological implications.

Keywords: vigilance; hunting cooperation; bifurcation; global stability

1. Introduction

Interactions between individuals are a crucial aspect of life history traits for many species [1].

Predator-prey systems have been used to study various ecological population interactions [2–5]. The

effect of the presence of predators does not only directly impact prey through killing and consumption,

but also induces non-lethal effects such as fear. This fear can drive the prey to use tactics to secure

their lives [6]. One such tactic is vigilance. Vigilance is the act of keeping a careful watch in an

environment for any possible harm. Vigilance involves a concerted effort by the prey population to
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actively avoid predation by means of avoiding competition, approaching group cohesion, and detecting

and avoiding predators, [7] thereby reducing predation risks [8]. Vigilance behavior has been observed

in several species, including elk [9], seals [10], and mother cheetahs, who protect their young [11].

When prey live in a group, vigilance behavior is beneficial to them because, while their proximity

to the group increases their conspicuity, their grouping helps reduce predation risks [12]. When prey

adopt anti-predator behavior such as vigilance, their rate of food intake is reduced due to less time spent

foraging [13, 14]. Interestingly, this also affects the food intake rate of predators as prey decrease their

predation risks [15]. In intraguild predation, an intermediate predator can exhibit vigilance behavior to

avoid predation by a top predator. This behavior can lead to a reduced efficiency in hunting for shared

prey species. For example, field experiments conducted by Durant [16] revealed that when cheetahs

listened to the playbacks of lion vocalizations, they were less likely to make a kill or hunt after hearing

the playback. They move just as far from the area of the playback. Mathematical models have been

used to gain insights into the effects of prey vigilance. Kimbrell et al. [17] studied the influence of

vigilance on intraguild populations. Their results showed that when top predators kill intermediate

predators without eating them, it can increase the level of vigilance by the intermediate predator or

influence the vigilance behavior of the shared prey, which may aid in the stability of the ecological

community. Hossain et al. [18] also studied vigilance dynamics in a three-species food chain model.

Their model produced rich dynamics, including a Hopf bifurcation, shrimp-shaped periodic structures,

and multiple coexisting attractors. Their results also suggested that too much vigilance can lead to

species extinction. This is because the prey will starve and/or reproduce less, and hence reduce its

lifetime reproductive fitness [19].

As said earlier, vigilance behavior in prey can impact the food intake rate of predators as a result of

a decrease in prey vulnerability. Therefore, many predators enhance their predation efficiency when

they engage in cooperative hunting. Hunting cooperation is the combined effort of several individuals

to capture and share prey [20]. Many predators, especially carnivores, work together to hunt and to

forage [21]. Carnivores such as lions [22], African wild dogs [23], chimpanzees, [24] and wolves [25]

have been documented to engage in cooperative hunting. Hunting cooperation comes with its benefits.

Included are increased hunting success rates with the number of adults, decreased chasing

distance [23, 26], more effective utilization of food resources [27], high likelihood of capturing large

prey [28], less time finding food [29], and also protection of food (carcasses) from being stolen by

other predators [30]. There are several continuous time models which have studied the impacts of

hunting cooperation among predators. Alves and Hilker [21] found that hunting cooperation can

destabilize the system and lead to a collapse of the predator population. Berec [31] studied hunting

cooperation effects in relation to population oscillations and concluded that the stability of

coexistence states could change due to cooperation. Pal et al. [32] studied a modified Leslie-Gower

predator-prey model with hunting cooperation among predators and fear effect in prey. Their findings

revealed that hunting cooperation can induce both subcritical and supercritical Hopf bifurcations.

Spatially explicit models have also been used to explore hunting cooperation effects. A variety of

spatio-temporal dynamics such as spots, stripe patterns, and mixed patterns (spots and stripes) were

observed for different intensities of the rate of hunting cooperation among predators [33]. The

spatially explicit model in [34] cannot produce Turing patterns when hunting cooperation is absent,

whereas the model with hunting cooperation can. Discrete-time models have also been used to study

cooperative hunting effects in predator-prey relationships. Pal et al. [35] showed that hunting
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cooperation is able to stabilize a chaotic discrete-time system and can induce strong demographic

Allee effects.

Many researchers have studied the impact of hunting cooperation [21, 31, 32, 35, 36] and vigilance

[17, 18, 37] in predator-prey systems separately. However, their combined effects in predator-prey

dynamics is yet to be studied. The aim of this paper is to explore the dynamics when both vigilance

behavior in prey and hunting cooperation in predators are present. We organize our paper as follows:

We present our proposed modeling framework with its underlying ecological assumptions in Section 2.

Preliminary results on positivity and boundedness of solutions are presented in Section 3. Section 4

is dedicated to finding feasible equilibria and performing stability analysis on our proposed model.

We derive local codimension 1 bifurcation results in Section 5. In Section 6, we provide numerical

experiments to validate our theoretical findings. We study the dynamics of our proposed model when

predators do not hunt cooperatively in Section 7. We conclude the paper with a discussion of our

results and possible future work in Section 8.

2. Model formulation

Here, we consider an unstructured prey and predator population. We let x and y denote the prey and

predator population respectively at any time instant t. We take into account the following assumptions

in our model formulation:

(i) The prey population grows logistically in the absence of predators and vigilance behavior.

(ii) We let the parameter v denote the level of prey vigilance where v ∈ [0, 1]. Also, the lethality of

predation is 1
l

when vigilance is absent.

(iii) We suppose that predators cooperate when they hunt the prey.

(iv) We use the Holling type II functional response to describe the relationship between the predator

and its prey.

(v) We assume natural death rates ¶ for the prey and ¶1 for the predator.

The following nonlinear system of ordinary differential equations satisfies our assumptions:

dx

dt
= rx

[

(1 − v) −
x

K

]

− ¶x −
(q + cy)xy

(1 + x)(l + µv)
,

dy

dt
=
µ(q + cy)xy

(1 + x)(l + µv)
− ¶1y,

(2.1)

with positive initial conditions x(0) = x0 and y(0) = y0. We assume all parameters used are positive,

and their descriptions are provided in Table 1.

3. Preliminary results

This section provides basic results on the positivity and boundedness of solutions to system (2.1)

for biological meaningfulness.

3.1. Positivity of solutions

We recap the following result which guarantees the positivity of solutions from [38, 39].
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Lemma 3.1. Consider the following system of ODEs:

dx

dt
= X(x, y) = rx

[

(1 − v) −
x

K

]

− ¶x −
(q + cy)xy

(1 + x)(l + µv)
,

dy

dt
= Y(x, y) =

µ(q + cy)xy

(1 + x)(l + µv)
− ¶1y.

Non-negativity of solutions is preserved with time, that is

x(0), y(0) g 0⇒ (∀t ∈ [0,Tmax), x(t) g 0, y(t) g 0)

if and only if

∀x, y g 0

and thus we have

X(0, y) = 0, Y(x, 0) = 0.

Table 1. Parameters used in model (2.1).

Parameter Description

r prey growth rate

v level of prey vigilance

K prey carrying capacity

¶ prey natural death rate

q predator encounter rate

c predator hunting cooperation rate

¶1 predator natural death rate
1
l

predation lethality in the absence of prey vigilance

µ effectiveness of vigilance

µ energy gain from predation

3.2. Boundedness of solutions

The boundedness property of solutions to system (2.1) ensures that populations do not grow

unboundedly due to scarce food resources and limited habitat space.

Theorem 3.2. Solutions to system (2.1) are bounded when they initiate from R+
2
.

Proof. By considering Lemma 3.1,

dx

dt
f rx

[

(1 − v) −
x

K

]

.

Using the comparison principle and simple calculations,

lim sup x(t) f (1 − v) K

as t → ∞.
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Let W(t) = x(t) + 1
µ
y(t). Then, for large t we have

dW

dt
=

dx

dt
+

1

µ

dy

dt

= rx

[

(1 − v) −
x

K

]

− ¶x −
¶1

µ
y

f r(1 − v)x − ¶x −
¶1

µ
y

f r(1 − v)2K − ¶x −
¶1

µ
y

f r(1 − v)2K − ϵ

(

x +
1

µ
y

)

where ϵ = min(¶, ¶1).

Therefore,
dW

dt
+ ϵW f r(1 − v)2K.

As t → ∞, lim sup W(t) f
r(1−v)2K

ϵ
and hence all solutions starting from R+

2
are bounded. □

4. Equilibria and stability analysis

4.1. Equilibria

To obtain the equilibria for system (2.1), we solve X(x, y) = 0 and Y(x, y) = 0 simultaneously. The

system possesses the following non-negative equilibria:

(a) E0 = (0, 0),

(b) E1 = (x∗
1
, 0) where x∗

1
= K

(

1 − v − ¶
r

)

. We note that E1 is feasible when 1 − ¶
r
> v.

(c) E2 = (x∗, y∗) where y∗ = 1
c

(

(1+x∗)¶1
Ax∗

− q
)

, A =
µ

l+µv
, and x∗ is a positive real root of the following

third-order equation

r

K
x∗3 − (r (1 − v) − ¶) x∗2 −

¶1

µcA
(Aq − ¶1) x∗ +

¶2
1

µcA
= 0. (4.1)

This is obtained by substituting q + cy∗ =
¶1(1+x∗)

Ax∗
into the right-hand side of dx

dt
. E2 is feasible

when
(1+x∗)¶1

Ax∗
> q. Thus, 0 < x∗ < ¶1

Aq−¶1
. This implies that Aq − ¶1 > 0.

We consider three cases in determining the number of positive real roots to Eq (4.1) using Descartes’

rule of signs. These cases are when

(I) r(1 − v) − ¶ > 0

(II) r(1 − v) − ¶ < 0

(III) r(1 − v) − ¶ = 0.

In each of the cases above, the number of possible non-negative real roots for Eq (4.1) is 2. Therefore,

when x∗ is obtained from Eq (4.1) and substituted into y∗, we may either have two feasible interior

equilibria or one feasible interior equilibrium point.
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Figure 1. Nullcline plots showing various equilibria for system (2.1). Parameters used are

r = 0.5, ¶ = 0.15, q = 0.15, µ = 0.3, µ = 0.05,K = 10. In (a) and (b), l = 0.8, ¶1 = 0.01. In

(c), l = 0.8, ¶1 = 0.1, and in (d), (e), and ( f ), l = 0.4, ¶1 = 0.01. E2 is a spiral sink in (d). The

red and green colors represent the prey and predator nullclines respectively. The magenta

color denotes a stable limit cycle. The blue color represents the equilibrium points.

4.2. Global stability analysis

Define Ç =
µr(1−v)2K

ϵ
. Using results from Theorem 3.2, we have y(t) f Ç. We state the following

theorem:

Theorem 4.1. The predator-free state E1 is globally stable if 1 <
(l+µv)¶1
µx∗

1
(q+cÇ)

.

Proof. Suppose that 1 <
(l+µv)¶1
µx∗

1
(q+cÇ)

and consider the Lyapunov function V(t) = A1

[

x − x∗
1
− x∗

1
ln

(

x
x∗

1

)

+
y

µ

]

where A1 is a positive constant to be chosen. Clearly, V = 0 at (x, y) = (x∗
1
, 0). Also, V > 0 when

(x, y) , (x∗
1
, 0). Now, evaluating the derivative of V with respect to t yields

V̇ = A1

[(

1 −
x∗

1

x

)

ẋ +
1

µ
ẏ

]

= A1

[(

1 −
x∗

1

x

) (

rx

[

1 − v −
x

K

]

− ¶x −
(q + cy)xy

(1 + x)(l + µv)

)

+
1

µ

(

µ(q + cy)xy

(1 + x)(l + µv)
− ¶1y

)]

= A1

[

(x − x∗1)

(

r

[

1 − v −
x

K

]

− ¶ −
(q + cy)y

(1 + x)(l + µv)

)

+
1

µ

(

µ(q + cy)xy

(1 + x)(l + µv)
− ¶1y

)]

.
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Figure 2. Simulation showing the global stability of E1 under the stated conditions in

Theorem 4.1 using the following parameters: r = 0.8, v = 0.16, K = 3, ¶ = 0.05, q =

0.115, c = 0.1, ¶1 = 0.45, l = 0.89, µ = 0.88, µ = 0.114. In this case, x∗ = 2.3325.

We substitute r(1 − v) − ¶ =
rx∗

1

K
and x = x − x∗

1
+ x∗

1
. Then,

V̇ = A1

[

(x − x∗1)

(

r

[

1 − v −
x

K

]

− ¶ −
(q + cy)y

(1 + x)(l + µv)

)

+
1

µ

(

µ(q + cy)xy

(1 + x)(l + µv)
− ¶1y

)]

= A1

[

−
r

K
(x − x∗1)2 +

(q + cy)x∗
1
y

(1 + x)(l + µv)
−

1

µ
¶1y

]

.

Since y(t) f Ç,

V̇ f A1

[

−r(x − x∗
1
)2

K
+

(q + cÇ)x∗
1
y

l + µv
−

1

µ
¶1y

]

.

We choose A1 =
l+µv

x∗
1
(q+cÇ)

. Then,

V̇ f y

[

1 −
(l + µv)¶1

µx∗
1
(q + cÇ)

]

< 0.

Since our Lyapunov function satisfies the asymptotic stability theorem [40, 41], then by our theorem,

E1 is globally stable. This completes the proof. □

Theorem 4.2. The extinction state E0 is globally stable if v > 1 − ¶
r
.

Proof. We provide the proof in the Appendix. □

Remark 1. The conditions stated in Theorems 4.1 and 4.2 are sufficient conditions.

4.3. Local stability analysis

We compute the Jacobian of system (2.1) to aid in the local stability analysis of the feasible

equilibria. The Jacobian is given by

J∗ =















−
y(cy+q)

(x+1)2(l+µv)
− ¶ − 2rx

K
+ r(1 − v) −

x(2cy+q)

(x+1)(l+µv)
µy(cy+q)

(x+1)2(l+µv)
−¶1 +

x(q+2cy)µ

(1+x)(l+vµ)















.

We state the following:
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Figure 3. Simulation showing the global stability of E0 under the stated conditions in

Theorem 4.2 using the following parameters: r = 0.6, v = 0.3, K = 15, ¶ = 0.5, q =

0.2003, c = 0.015, ¶1 = 0.09, l = 0.897, µ = 0.35, µ = 0.2002.

Theorem 4.3. The predator-free state E1 is locally stable if v < 1 − ¶
r

and
µKq(r(1−v)−¶)

(l+µv)(K(r(1−v)−¶)+r)
< ¶1.

Proof. Suppose v < 1 − ¶
r

and
µKq(r(1−v)−¶)

(l+µv)(K(r(1−v)−¶)+r)
< ¶1. Evaluating J∗ at E1 gives

J∗E1
=















r(v − 1) + ¶ −
Kq(r(v−1)+¶)

(l+µv)(¶K+r(K(v−1)−1))

0
µKq(r(1−v)−¶)

(l+µv)(K(r(1−v)−¶)+r)
− ¶1















.

Since eigenvalues ¼1 = r(v − 1) + ¶ < 0 and ¼2 =
µKq(r(1−v)−¶)

(l+µv)(K(r(1−v)−¶)+r)
− ¶1 < 0, E1 is locally stable. □

In ecosystems, it is very common to see coexistence of species. Therefore it is important to study

the dynamics pertaining to the stability of the coexistence equilibrium E2 using standard linear stability

analysis. The characteristic equation for J∗E2
is given by

¼2 − tr(J∗E2
)¼ + det(J∗E2

) = 0

where

tr(J∗E2
) = r

(

1 − v −
2x∗

K

)

+
¶1 (µqx∗ − ¶1(x∗ + 1)(l + µv))

cµ2x∗
2
(x∗ + 1)

− ¶ + ¶1 −
µqx∗

(x∗ + 1)(l + µv)
(4.2)

and

det(J∗E2
) =

(

−
y∗(cy∗ + q)

(x∗ + 1)2(l + µv)
− ¶ −

2rx∗

K
+ r(1 − v)

) (

−¶1 +
x∗(q + 2cy∗)µ

(1 + x∗)(l + µv)

)

(4.3)

+
µx∗y∗(2cy∗ + q)(cy∗ + q)

(x∗ + 1)3(l + µv)2
.

Here, tr(J∗E2
) and det(J∗E2

) represent the trace and determinant of J∗ evaluated at E2. The stability

of E2 depends on the signs of tr(J∗E2
) and det(J∗E2

). Through the Routh-Hurwitz criteria, we state the

following theorem in connection to the local stability of E2.

Theorem 4.4. For 0 < x∗ < ¶1
Aq−¶1

with Aq − ¶1 > 0, the coexistence state E2 is locally stable if

tr(J∗E2
) < 0 and det(J∗E2

) > 0.
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We present numerical results for the findings in Theorem 4.4. We consider the parameters in

Figure 1(d). The coexistence equilibrium is E2(1.06618, 0.515449). Simple calculations show that

1.06618 = x∗ < ¶1
Aq−¶1

= 2.609. Evaluating J∗ at E2 yields

J∗E2
=

(

−0.00341475 −0.25115

0.00233986 0.00255749

)

. (4.4)

From Eq (4.4), tr(J∗E2
) = −0.000857263 < 0 and det(J∗E2

) = 0.000578922 > 0. Therefore,

E2(1.06618, 0.515449) is locally stable.

Remark 2. If tr(J∗E2
) f 0 or > 0 and det(J∗E2

) < 0, then E2 is a saddle.

5. Bifurcation analysis

Bifurcation analysis plays an important role in providing insights into the qualitative behavior of

a system when parameters are varied continuously. We focus on the effects of prey vigilance levels

and the rate of hunting cooperation on the dynamics of system (2.1). Therefore, we explore local

codimension 1 bifurcations and find the occurrence of Hopf, saddle-node, and transcritical bifurcations.

Theorem 5.1. Suppose that E2 exists and consider the Jacobian of system (2.1). Then, system (2.1)

experiences a Hopf bifurcation at E2 with respect to the bifurcation parameter c if the following hold:

(i) tr(J∗E2
) = 0,

(ii) det(J∗E2
) > 0,

(iii) d
dc

(

tr(J∗E2
)
)

, 0.

Proof. Simple calculations show that tr(J∗E2
) = 0 when

c = c∗ =
¶1K(l + µv) (µqx∗ − ¶1(x∗ + 1)(l + µv))

µ2x∗
2

(K(l(x∗ + 1)(¶ + r(v − 1)) + µqx∗ + µv(x∗ + 1)(¶ + r(v − 1))) − p1)
(5.1)

where p1 = ¶1K(x∗ + 1)(l + µv) + 2rx∗(x∗ + 1)(l + µv). The Jacobian evaluated at E2 with c = c∗ is

J∗E2
=















µqx∗

(x∗+1)(l+µv)
− ¶1

qx∗

(x∗+1)(l+µv)
−

2¶1
µ

µ
(

r(1 − v − 2x∗

K
) − ¶ + ¶1 −

µqx∗

(x∗+1)(l+µv)

)

¶1 −
µqx∗

(x∗+1)(l+µv)















. (5.2)

Now, det(J∗E2
) =

p2

K(x∗+1)(l+µv)
where

p2 = ¶1 (−K(2l(x∗ + 1)(¶ + r(v − 1)) + µqx∗ + 2µv(x∗ + 1)(¶ + r(v − 1))) + p3) + p4

with p3 = ¶1K(x∗+1)(l+µv)−4rx∗(x∗+1)(l+µv) and p4 = µqx∗(K(¶+r(v−1))+2rx∗), respectively. We

let p2 > 0. We proceed to validate the transversality condition of the Hopf bifurcation theorem [42,43]

by letting É1 = −
2r
K
−

µ

(l+µv)(x∗+1)2 −
¶1q(2x∗+1)

µc∗(x∗(x∗+1))2 +
2¶2

1
(l+µv)

µ2c∗x∗3
and É2 =

¶2
1
(l+µv)

(µc∗x∗)2 −
¶1q

µc∗2 x∗(x∗+1)
, and ensuring that

d

dc
(tr(J∗E2

))|c=c∗ = É1

dx∗

dc
+ É2 , 0. (5.3)

Hence, system (2.1) undergoes a Hopf bifurcation around E2 with respect to the bifurcation

parameter c. □

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2768–2786.



2777

For system (2.1) to experience a saddle-node bifurcation around E2 for the parameter c, it is required

that det(J∗) = 0. To obtain this, we give an implicit expression for c as c = c∗ =
¶2

1
K(l+µv)

µ2 x∗
2

(K(¶+r(v−1))+2rx∗)

since E2(x∗, y∗) depends on c. We state the following theorem accordingly:

Theorem 5.2. Suppose that E2 exists. Then, system (2.1) experiences a saddle-node bifurcation around

the coexistence equilibrium E2 at c = c∗ when tr(J∗) < 0 and det(J∗) = 0 are satisfied by system

parameters.

Proof. Let c = c∗ =
¶2

1
K(l+µv)

µ2 x∗
2

(K(¶+r(v−1))+2rx∗)
and

(K(¶+r(v−1))+2rx∗)(µqx∗−2¶1(x∗+1)(l+µv))

¶1K(x∗+1)(l+µv)
<

µqx∗

(x∗+1)(l+µv)
− ¶1. We use

Sotomayor’s theorem [43] to show that system (2.1) experiences a saddle-node bifurcation at c = c∗. At

c = c∗, we can have det(J∗) = 0 and tr(J∗) < 0 when
(K(¶+r(v−1))+2rx∗)(µqx∗−2¶1(x∗+1)(l+µv))

¶1K(x∗+1)(l+µv)
<

µqx∗

(x∗+1)(l+µv)
− ¶1.

This shows that J∗ admits a zero eigenvalue. Define G = (g1, g2)T and H = (h1, h2)T to be the nonzero

eigenvectors of J∗ and J∗T corresponding to the zero eigenvalue, respectively. Then,

G =
(

−
¶1K

µ(K(¶+r(v−1))+2rx∗)
, 1

)T
and H =

(

µ(µqx∗−¶1(x∗+1)(l+µv))

µqx∗−2¶1(x∗+1)(l+µv)
, 1

)T
.

Furthermore, let Z = (z1, z2)T where

z1 = rx

[

(1 − v) −
x

K

]

− ¶x −
(q + cy)xy

(1 + x)(l + µv)
,

z2 =
µ(q + cy)xy

(1 + x)(l + µv)
− ¶1y.

(5.4)

Now,

HT Zc(E2, c
∗) =

(

µ (µqx∗ − ¶1(x∗ + 1)(l + µv))

µqx∗ − 2¶1(x∗ + 1)(l + µv)
, 1

) 











−x∗y∗
2

(1 + x∗)(l + µv)
,

µx∗y∗
2

(1 + x∗)(l + µv)













T

=
µx∗y∗

2

(1 + x∗)(l + µv)

(

1 − µqx∗ + ¶1(x∗ + 1)(l + µv)

µqx∗ − 2¶1(x∗ + 1)(l + µv)

)

, 0

provided 1 − µqx∗ + ¶1(x∗ + 1)(l + µv) , 0 and µqx∗ − 2¶1(x∗ + 1)(l + µv) , 0. Furthermore,

HT [D2Z(E2, c
∗)(G,G)] , 0.

Therefore, by Sotomayor’s theorem, system (2.1) experiences a saddle-node bifurcation at c = c∗

around E2, which concludes the proof. □

Similarly we can give an implicit expression for v = v∗ =
µqx∗

¶1(x+1)
−l

µ
or v = v∗ =

cµ2 x∗2(K(r−¶)−2rx∗)+¶2
1
Kl

K(cµ2rx∗2−¶2
1
µ)

to ensure that det(J∗) = 0 since E2(x∗, y∗) depends on v. The conditions under which tr(J∗) < 0 can

easily be found. Next, we state the following theorem:

Theorem 5.3. Suppose that E2 exists. Then, system (2.1) experiences a saddle-node bifurcation around

the coexistence equilibrium E2 at v = v∗ when tr(J∗) < 0 and det(J∗) = 0 are satisfied by system

parameters.

Proof. The proof is similar to Theorem 5.2 and is therefore omitted. □

Theorem 5.4. Suppose that E1 exists. Then, system (2.1) experiences a transcritical bifurcation around

the predator-free state E1 when the level of vigilance is v = v∗ = 1 − ¶
r
.
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Proof. Suppose v = v∗ = 1 − ¶
r
. An evaluation of the Jacobian matrix for system (2.1) at E1 with v∗ is

J∗E1
=

(

0 0

0 −¶1

)

. (5.5)

The eigenvalues of the Jacobian matrix in Eq (5.5) are ¼1 = 0 and ¼2 = −¶1. Next, we represent

the eigenvectors corresponding to the zero eigenvalue of the matrices J∗E1
and J∗TE1

respectively by

L = (l1, l2)T and M = (m1,m2)T . Simple calculations show that L = (1, 0)T and M = (1, 0)T . Now,

let Z = (z1, z2)T as defined in Eq (5.4). We proceed to validate the transversality conditions using

Sotomayor’s theorem [43]. Now,

MT Zv(E1, v
∗) = (1, 0) (0, 0)T

= 0.

Also,

MT [DZv (E1, v
∗) L] =

(

1 0
)

(

−r 0

0 0

) (

l1

l2

)

= −r , 0

and

MT
[

D2Z (E1, v
∗) (L, L)

]

, 0.

Therefore, by the Sotomayor’s theorem, system (2.1) experiences a transcritical bifurcation at some

v = v∗ around E1. □

(a) (b)

Figure 4. One parameter bifurcation diagram showing how parameters v and c affect the

population dynamics. Hopf and saddle-node bifurcations are observed in both diagrams. A

transcritical bifurcation is also observed in (a). The blue color indicates a stable equilibrium

point, and red an unstable equilibrium. The parameters used in (a) are r = 0.5, c = 0.001,K =

50, ¶ = 0.01, q = 0.21, l = 0.3, µ = 0.35, µ = 0.195, ¶1 = 0.09. The parameters used in (b)

are r = 0.5, v = 0.2,K = 50, ¶ = 0.01, q = 0.5, l = 0.3, µ = 0.35, µ = 0.02, ¶1 = 0.03.

TC=Transcritical point, SN=Saddle-Node point, H=Hopf point, and BP=Branch Point
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6. Numerical experiments

In this section, we provide numerical simulations which support our theoretical results using the

Python programming language, Wolfram Mathematica 13.0, MATLAB version R2019a, and

MATCONT [44]. We show the existence of biologically feasible equilibria when the nullclines for the

prey and predator populations intersect for certain parameter choices for system (2.1). See Figure 1.

We provide experiments in Figures 2 and 3 respectively to validate sufficient conditions for global

stability results for the predator-free and extinction states. Applications of these results in this section

are discussed in Section 8. We show local codimension one bifurcations for the level of vigilance

parameter v and hunting cooperation parameter c.

Figure 4(a) shows the existence of Hopf, saddle-node, and transcritical bifurcations when v is

varied for certain parameter choices. When the vigilance level v is increased, the coexistence state

gains stability at the critical threshold v∗ = 0.386322 around E2 = (14.448794, 4.769456), and the

disappearance of oscillatory dynamics is observed. We used MATCONT to compute the Lyapunov

coefficient. This value is given by Ã1 = −8.447014e−4, and thus the bifurcation is supercritical. A

slight increase in v causes the system to experience a saddle-node bifurcation at v∗ = 0.405605. At

this level, two coexistence equilibria (a saddle and a node) collide and disappear. This bifurcation

occurs around E2 = (23.146242, 2.795123). A transcritical bifurcation occurs when the stable

coexistence equilibrium E2 collides and interchanges its stability property with the unstable predator

free state E1. Hence E2 becomes unstable and E1 gains stability. Here, this bifurcation is observed at

vigilance level v∗ = 0.399556 around E1 = (29.022207, 0). Similar bifurcations are seen in

Figure 4(b).

System (2.1) experiences saddle-node and Hopf bifurcations for the hunting cooperation parameter

c. See Figure 4(b). The saddle-node bifurcation occurs at c∗ = 0.032175 around

E2 = (22.139420, 2.488556). The Hopf bifurcation is seen to occur at c∗ = 0.033090 around

E2 = (19.226665, 2.534502), and the calculated Lyapunov coefficient is Ã2 = −1.758377e−3. The

Hopf bifurcation is supercritical.

7. Case where there is no hunting cooperation (c = 0)

We study a special case where predators do not cooperate when hunting. Thus, system (2.1) reduces

to

dx

dt
= rx

[

(1 − v) −
x

K

]

− ¶x −
qxy

(1 + x)(l + µv)

dy

dt
=

µqxy

(1 + x)(l + µv)
− ¶1y.

(7.1)

7.1. Equilibria

The feasible equilibria for system (7.1) are

(a) E′
0
= (0, 0),

(b) E′
1
=

(

K
(

1 − v − ¶
r

)

, 0
)

. E′
1

is feasible when 1 − ¶
r
> v.

(c) E′
2
=

(

¶1(l+µv)

µq−¶1(l+µv)
,
µ(l+µv)(¶1(l+µv)(¶K+r(K(v−1)−1))−µKq(¶+r(v−1)))

K(µq−¶1(l+µv))2

)

.
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(c) v = 0.4 (d) v = 0.2

Figure 5. Nullcline plots showing various equilibria for system (7.1). Parameters used are

r = 0.5, ¶1 = 0.01, ¶ = 0.15, q = 0.15, µ = 0.3, µ = 0.05,K = 10. In (a) and (b), l = 0.8, and

in (c) and (d), l = 0.4. In each of the plots c = 0. The red and green colors represent the prey

and predator nullclines, respectively. The blue color represents the equilibrium points, and

the magenta is a stable limit cycle.

E′
2

exists when µq > ¶1(l + µv) and ¶1(l + µv)(¶K + r(K(v − 1) − 1)) > µKq(¶ + r(v − 1)).

We state the following theorem pertaining to the global stability of the unique coexistence

equilibrium E′
2
. From E′

2
, we let y∗ =

µ(l+µv)(¶1(l+µv)(¶K+r(K(v−1)−1))−µKq(¶+r(v−1)))

K(µq−¶1(l+µv))2 .

Theorem 7.1. The coexistence state E′
2

is globally stable if y∗ <
r(l+µv)

Kq
.

Proof. Suppose that y∗ <
r(l+µv)

Kq
, and consider the Lyapunov function V(t) = A

[

x − x∗ − x∗ln
(

x
x∗

)]

+

B
µ

[

y − y∗ − y∗ln
(

y

y∗

)]

where A, B are positive constants to be determined. Clearly, V = 0 at (x, y) =

(x∗, y∗). Also, V > 0 when (x, y) , (x∗, y∗). Now, evaluating the derivative of V with respect to t yields

V̇ = A

[(

1 −
x∗

x

)

ẋ

]

+
B

µ

(

1 −
y∗

y

)

ẏ

= A

[(

1 −
x∗

x

) (

rx

(

1 − v −
x

K

)

− ¶x −
qxy

(1 + x)(l + µv)

)]

+
B

µ

(

1 −
y∗

y

) (

µqxy

(1 + x)(l + µv)
− ¶1y

)

= A

[

(x − x∗)

(

r

(

1 − v −
x

K

)

− ¶ −
qy

(1 + x)(l + µv)

)]

+
B

µ
(y − y∗)

[

µqx

(1 + x)(l + µv)
− ¶1

]

.
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Using the results r(1 − v) − ¶ = rx∗

K
+

qy∗

(1+x)(l+µv)
and

µqx∗

(1+x∗)(l+µv)
= ¶1, we have

V̇ = A(x − x∗)

[

rx∗

K
−

rx

K
+

qy∗

(1 + x∗)(l + µv)
−

qy

(1 + x)(l + µv)

]

+
B

µ

[

(y − y∗)

(

µqx

(1 + x)(l + µv)
−

µqx∗

(1 + x∗)(l + µv)

)]

= A

[

−
r

K
(x − x∗)

2
+ (x − x∗)

(

qy∗

(1 + x∗)(l + µv)
−

qy

(1 + x)(l + µv)

)]

+ B

[

q (y − y∗)

l + µv

(

x

1 + x
−

x∗

1 + x∗

)]

= A

[

−
r

K
(x − x∗)2 +

q

l + µv
(x − x∗)

(

y∗

1 + x∗
−

y

1 + x

)]

+ B

[

q

l + µv

(y − y∗)(x − x∗)

(1 + x)(1 + x∗)

]

= A

[

−
r

K
(x − x∗)2 +

q

l + µv
(x − x∗)

(

y∗(x − x∗) − (1 + x∗)(y − y∗)

(1 + x)(1 + x∗)

)]

+ B

[

q

l + µv

(y − y∗)(x − x∗)

(1 + x)(1 + x∗)

]

.

V̇ f A

[

−
r

K
(x − x∗)2 +

qy∗

1 + µv
(x − x∗)2 −

q

l + µv

(x − x∗)(y − y∗)

(1 + x)

]

+ B

[

q

l + µv

(y − y∗)(x − x∗)

(1 + x)(1 + x∗)

]

.

Here, we choose A = 1
1+x∗

and B = 1. Thus,

V̇ f (x − x∗)2

(

qy∗

(l + µv)(1 + x∗)
−

r

K(1 + x∗)

)

f
(x − x∗)2

1 + x∗

(

qy∗

l + µv
−

r

K

)

< 0.

Here also, the Lyapunov function satisfies the asymptotic stability theorem [40, 41], and by our

theorem, E′
2

is globally stable. This completes the proof. □

We omit the local stability analysis of all the equilibria for system (7.1) as well as global stability

results for the extinction state and the predator-free state for brevity.

8. Discussion and conclusions

In ecosystems, many species exhibit anti-predator behaviors such as vigilance to mitigate threats and

predation risks. When prey populations are vigilant, it makes predators spend more time and energy

in capturing them. In order to capture prey efficiently, predators cooperate during their hunt. In this

work, we explore the impacts of prey vigilance and hunting cooperation in a predator-prey system. Our

results show that, for certain parameter choices, an increase in the level of vigilance can stabilize the

system via a Hopf bifurcation for a fixed hunting cooperation rate. However, for a fixed prey vigilance

level, an increase in the rate of hunting cooperation can cause the system to destabilize. See Figures 1

and 4. We also observed from Figure 4(a) that too much vigilance by prey can have a negative effect,
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causing the extinction of the population due to a continuous decrease in population density. This

is because they trade-off between foraging and staying alert. This will cause starvation and reduce

lifetime reproductive fitness [19]. For example, the Nubian Ibex is now known to be vulnerable to

extinction [45] and is very vigilant when obstructed between their safety region and food patch [46].

Other bifurcation results such as saddle-node and transcritical bifurcations were observed. We obtained

sufficient conditions for the global stability of the predator-free state and the extinction state with

rigorous proofs. Refer to Theorems 4.2 and 4.1. The transcritical and global stability results will

provide ecosystem managers with information on how best to provide structures and develop strategies

in conserving endangered species and thus promote their persistence. Furthermore, our results show

that hunting cooperation can change the stability of a coexistence state. Refer to Figure 1(d) and (e).

This supports the results obtained by Berec in [31]. Our proposed system exhibited rich dynamical

behavior including bi-stability between a stable limit cycle and the predator-free equilibrium. See

Figure 1(b). Prey and predator populations will go between oscillatory populations and stable levels. In

this case, prey vigilance levels and cooperative hunting play a role in maintaining ecosystem stability.

Therefore, the sensitivity to initial conditions will play a significant role in determining whether the

two species will continue to coexist or the predator population will die out. We also found that hunting

cooperation when intensified can cause a decrease in the population densities of both prey and predators

when vigilance levels are fixed. See Figure 1(d)–( f ). When prey are at low densities and predators hunt

cooperatively, it can lead to a reduction in the growth rate of the predator population and hence induce

an Allee effect. It will be interesting to study an extension of our temporal model by incorporating

Allee effects into both prey and predator populations. A study of such a mechanism will be useful in

biocontrol and species conservation programs. We will extend our temporal model to include spatial

effects to explore the possible occurrence of Turing patterns which provide insights on how hunting

cooperation and prey vigilance contribute to the patchy spread of species in space.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

EMT, CO, MC and NK would like to acknowledge valuable support from the National Science

Foundation via grant number 1851948.

Conflict of interest

The authors declare there is no conflict of interest.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2768–2786.



2783

References

1. F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford

University Press, 2008.

2. E. M. Takyi, K. Cooper, A. Dreher, C. McCrorey, The (de) stabilizing effect of juvenile

prey cannibalism in a stage-structured model, Math. Biosci. Eng., 20 (2022), 3355–3378.

https://doi.org/10.3934/mbe.2023158

3. E. M. Takyi, K. Cooper, A. Dreher, C. McCrorey, Dynamics of a predator–prey

system with wind effect and prey refuge, J. Appl. Nonlinear Dyn., 12 (2023), 427–440.

https://doi.org/10.5890/JAND.2023.09.001

4. R. D. Parshad, S. Wickramasooriya, K. Antwi-Fordjour, A. Banerjee, Additional food causes

predators to explode—unless the predators compete, Int. J. Bifurcation Chaos, 33 (2023),

2350034.

5. R. K. Upadhyay, R. D. Parshad, K. Antwi-Fordjour, E. Quansah, S. Kumari, Global dynamics

of stochastic predator–prey model with mutual interference and prey defense, J. Appl. Math.

Comput., 60 (2019), 169–190. https://doi.org/10.1007/s12190-018-1207-7

6. R. D. Alexander, The evolution of social behavior, Ann. Rev. Ecol. Syst., 5 (1974), 325–383.

https://doi.org/10.1146/annurev.es.05.110174.001545

7. S. Périquet, L. Todd-Jones, M. Valeix, B. Stapelkamp, N. Elliot, M. Wijers, et al., Influence of

immediate predation risk by lions on the vigilance of prey of different body size, Behavioral Ecol.,

23 (2012), 970–976.

8. A. Treves, Theory and method in studies of vigilance and aggression, Anim. Behav., 60 (2001),

711–722. https://doi.org/10.1006/anbe.2000.1528

9. S. Liley, S. Creel, What best explains vigilance in elk: characteristics of prey, predators, or the

environment?, Behav. Ecol., 19 (2007), 245–254. https://doi.org/10.1093/beheco/arm116

10. R. A. Martin, N. Hammerschlag, Marine predator–prey contests: Ambush

and speed versus vigilance and agility, Mar. Biol. Res., 8 (2012), 90–94.

https://doi.org/10.1080/17451000.2011.614255

11. T. M. Caro, Cheetah mothers’ vigilance: Looking out for prey or for predators?, Behav. Ecol.

Sociobiol., 20 (1987), 351–361. https://doi.org/10.1007/BF00300681

12. M. M. Dehn, Vigilance for predators: Detection and dilution effects, Behav. Ecol. Sociobiol., 26

(1990), 337–342.

13. D. Fortin, M. S. Boyce, E. H. Merrill, J. M. Fryxell, Foraging costs of vigilance in

large mammalian herbivores, Oikos, 107 (2004), 172–180. https://doi.org/10.1111/j.0030-

1299.2004.12976.x

14. A. W. Illius, C. Fitzgibbon, Costs of vigilance in foraging ungulates, Anim. Behav., 47 (1994),

481–484. https://doi.org/10.1006/anbe.1994.1067

15. C. D. FitzGibbon, A cost to individuals with reduced vigilance in groups of Thomson’s gazelles

hunted by cheetahs, Anim. Behav., 37 (1989), 508–510. https://psycnet.apa.org/doi/10.1016/0003-

3472(89)90098-5

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2768–2786.



2784

16. S. M. Durant, Living with the enemy: avoidance of hyenas and lions by cheetahs in the serengeti,

Behav. Ecol., 11 (2000), 624–632. https://doi.org/10.1093/beheco/11.6.624

17. T. Kimbrell, R. D. Holt, P. Lundberg, The influence of vigilance on intraguild predation, J. Theor.

Biol., 249 (2007), 218–234. https://doi.org/10.1016/j.jtbi.2007.07.031

18. M. Hossain, R. Kumbhakar, N. Pal, Dynamics in the biparametric spaces of a three-

species food chain model with vigilance, Chaos Solitons Fractals, 162 (2022), 112438.

https://doi.org/10.1016/j.chaos.2022.112438

19. M. Watson, N. J. Aebischer, W. Cresswell, Vigilance and fitness in grey partridges perdix perdix:

the effects of group size and foraging-vigilance trade-offs on predation mortality, J. Anim. Ecol.,

76 (2007), 211–221.

20. M. L. Lührs, M. Dammhahn, An unusual case of cooperative hunting in a solitary carnivore, J.

Ethol., 28 (2010), 379–383. https://doi.org/10.1007/s10164-009-0190-8

21. M. T. Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419

(2017), 13–22. https://doi.org/10.1016/j.jtbi.2017.02.002

22. D. Scheel, C. Packer, Group hunting behaviour of lions: a search for cooperation, Anim. Behav.,

41 (1991), 697–709.

23. S. Creel, N. M. Creel, Communal hunting and pack size in African wild dogs, lycaon pictus, Anim.

Behav., 50 (1995), 1325–1339. https://doi.org/10.1016/0003-3472(95)80048-4

24. C. Boesch, Cooperative hunting in wild chimpanzees, Anim. Behav., 48 (1994), 653–667.

https://doi.org/10.1006/anbe.1994.1285

25. P. A. Schmidt, L. D. Mech, Wolf pack size and food acquisition, Am. Nat., 150 (1997), 513–517.

https://doi.org/10.1086/286079

26. P. E. Stander, Cooperative hunting in lions: The role of the individual, Behav. Ecol. Sociobiol., 29

(1992), 445–454. https://doi.org/10.1007/BF00170175

27. R. D. Estes, J. Goddard, Prey selection and hunting behavior of the African wild dog, J. Wildl.

Manage., 31 (1967), 52–70. https://doi.org/10.2307/1249030

28. J. C. Bednarz, Cooperative hunting Harris’ Hawks (parabuteo unicinctus), Science, 239 (1988),

1525–1527. https://doi.org/10.1126/science.239.4847.1525

29. T. J. Pitcher, A. E. Magurran, I. J. Winfield, Fish in larger shoals find food faster, Behav. Ecol.

Sociobiol., 10 (1982),149–151. https://doi.org/10.1177/019262338201000227

30. J. A. Vucetich, R. O. Peterson, T. A. Waite, Raven scavenging favours group foraging in wolves,

Anim. Behav., 67 (2004), 1117–1126. https://doi.org/10.1016/j.anbehav.2003.06.018

31. L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math.

Biol., 72 (2010), 94–121. https://doi.org/10.1007/s11538-009-9439-1

32. S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Fear effect in prey and hunting cooperation

among predators in a Leslie-Gower model, Math. Biosci. Eng., 16 (2019), 5146.

https://doi.org/10.3934/mbe.2019258

33. T. Singh, R. Dubey, V. N. Mishra, Spatial dynamics of predator-prey system with hunting

cooperation in predators and type I functional response, AIMS Math., 5 (2020), 673–684.

https://doi.org/10.3934/math.2020045

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2768–2786.



2785

34. D. Wu, M. Zhao, Qualitative analysis for a diffusive predator–prey model

with hunting cooperative, Phys. A Stat. Mech. Appl., 515 (2019), 299–309.

https://doi.org/10.1016/j.physa.2018.09.176

35. S. Pal, N. Pal, J. Chattopadhyay, Hunting cooperation in a discrete-time predator–prey system,

Int. J. Bifurcation Chaos, 28 (2018), 1850083. https://doi.org/10.1142/S0218127418500839

36. B. Mondal, S. Sarkar, U. Ghosh, Complex dynamics of a generalist predator–prey model with

hunting cooperation in predator, Eur. Phys. J. Plus, 137 (2021), 43.

37. M. Hossain, S. Garai, S. Jafari, N. Pal, Bifurcation, chaos, multistability, and organized structures

in a predator–prey model with vigilance, Chaos Interdiscip. J. Nonlinear Sci., 32 (2022).

38. M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan J.

Math., 78 (2010), 417–455. https://doi.org/10.1007/s00032-010-0133-4

39. M. Pierre, D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Rev.,

42 (2000), 93–106.

40. E. A. Barbashin, Introduction to the theory of stability, translated from the Russian by Transcripta

Service, London, T. Lukes Wolters-Noordhoff Publishing, Groningen, 1970.

41. J. L. Salle, S. Lefschetz, Stability by Liapunov’s direct method, Academic Press, New York and

London, 1961.

42. J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Springer Science &

Business Media, 2012.

43. L. Perko, Differential Equations and Dynamical systems, Springer Science & Business Media,

Springer-Verlag, New York, 2013.

44. A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, B. Sautois, New features of the

software matcont for bifurcation analysis of dynamical systems, Math. Comput. Modell. Dyn.

Syst., 14 (2008), 147–175. https://doi.org/10.1515/nf-2008-0101

45. L. M. Hassan, D. Arends, S. A. Rahmatalla, M. Reissmann, H. Reyer, K. Wimmers, et al., Genetic

diversity of Nubian ibex in comparison to other ibex and domesticated goat species, Eur. J. Wildl.

Res., 64 (2018), 1–10. https://doi.org/10.1007/s15033-018-1109-2

46. C. Iribarren, B. P. Kotler, Foraging patterns of habitat use reveal landscape of fear of Nubian ibex

Capra nubiana, Wildl. Biol., 18 (2012), 194–201. https://doi.org/10.2981/11-041

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2768–2786.



2786

Appendix

We provide the proof for Theorem 4.2.

Proof. Suppose that v > 1 − ¶
r
, and consider the Lyapunov function V(t) = µx(t) + y(t). Clearly, V = 0

at (x, y) = (0, 0). Also, V > 0 when (x, y) , (0, 0). Now, evaluating the derivative of V with respect to t

yields

V̇ = µ

[

rx

(

1 − v −
x

K

)

− ¶x −
(q + cy)xy

(1 + x)(l + µv)

]

+
µ(q + cy)xy

(1 + x)(l + µv)
− ¶1y

f µx(r(1 − v) − ¶) −
µrx2

K
− ¶1y

f µx(r(1 − v) − ¶)

< 0.

□
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