Dynamics of a Predator-Prey System with Wind Effect and Prey Refuge

Article in Journal of Applied Nonlinear Dynamics · May 2023

DOI: 10.5899/JAND.2023.09.001

CITATIONS

4 authors, including:

Eric M. Takyi
Ursinus College
17 PUBLICATIONS

SEE PROFILE

READS

628

Kasey Cooper
Ursinus College
2 PUBLICATIONS

SEE PROFILE

SEE PROFILE

Journal of Applied Nonlinear Dynamics

https://lhscientificpublishing.com/Journals/JAND-Default.aspx

Dynamics of a Predator-Prey System with Wind Effect and Prey Refuge

Eric M. Takyi^{1†}, Kasey Cooper¹, Ava Dreher², Caroline McCrorey³

- ¹ Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA 19426, USA
- ² Department of Mathematics and Statistics, Binghamton University, Binghamton, NY 13902, USA
- ³ Department of Mathematics, Bellarmine University, Louisville, KY 40205, USA

Submission Info

Communicated by Jorge Duarte Received 26 September 2022 Accepted 28 November 2022 Available online 1 July 2023

Keywords

Wind effects
Prey refuge
Stabilization
Destabilization
Bifurcation analysis

Abstract

The natural environment of living organisms is not only affected by biotic factors but also by abiotic factors, including omnipresent wind. There has been less exploration on the effects of both biotic and abiotic factors on the dynamics of predator-prey interactions. In this work, we propose and study the dynamics of a predator-prey system incorporating wind effects and prey refuge. A refuge can be described as any strategy to avoid or reduce predation risks. We first prove positivity and boundedness of solutions for the system. We analyze the existence of equilibria under certain parametric restrictions. We also derive sufficient conditions for the global stability of the coexistence equilibrium using a suitable Lyapunov functional. Further dynamical analysis reveals that the system experiences local codimension one bifurcations including Hopf and transcritical bifurcations. Our findings show that when prev refuge is in use, it has a stabilizing effect on the system and also increases the equilibrium density of the prey population while the predator equilibrium density decreases. We also observe that the strength of wind flow has both stabilizing and destabilizing effects. We support our theoretical findings with numerical experiments and give their ecological implications.

©2023 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

The study of complex dynamics displayed by predator-prey interactions using mathematical models continues to be at the forefront of recent scientific inquiries. One of the easily observed interactions is predation, which involves direct killing of prey which reduces the prey population size [1,2]. Studies on predator-prey dynamics have evolved from the seminal work of Lotka and Volterra [3]. Later on, intensive studies in this field has progressed with collaborative efforts between biologists and mathematicians. In the ecological modeling of predator-prey dynamics, there has been a lot of attention paid to biotic factors in their modeling framework. Among these include migration [4–6], mutualism [7], cannibalism [8–10], group defense [11–14] and competition [15–17]. These factors have been shown to have complex dynamical effects on predator-prey relationships.

[†]Corresponding author.

Email address: etakyi@ursinus.edu

In reality, population dynamics are not only affected by biotic factors. Abiotic themes also play crucial roles in the ecosystem. It is important to investigate abiotic effects on living organisms as there are widespread expected changes in the abundance, distribution and interaction of species resulting from ongoing global climatic change [18]. Limited abiotic factors have been investigated by ecologists in the pursuit to better understand predator-prey dynamics, including temperature and wind [18]. A growing body of literature has shown how abiotic factors such as wind, influence predator-prey relationships [19–25]. Wind is found everywhere in the ecosystem and blows in different patterns and speed intensity [26]. For example, increased wind intensity has an inhibitory effect on the flight control of aerial invertebrate insect predators. On the other hand, vertebrate aerial predators benefit from this intensity as their hunting timespan is increased [19]. The strength and directionality of wind flow can either cause an increase or a decrease in predation risk. Experiments conducted in [27] showed that wind can reduce predation risk in southern mule deer. This is due to the wind carrying the scent and sound of the approaching predator to the prey, as well as the wind hindering the advancement of the predator by virtue of wind noise and moving vegetation. Opposingly, the strength and direction of wind can decrease a prey's capability of detecting a predator since the wind can aid in masking the scent and sound of the approaching predator, thus increasing its predation risk. For example, at high wind speeds, lions are successful in hunting springbok and zebras [28]. In all, Cherry et al [19] concluded that wind speed can alter the dynamics of the food web and also weakening or strengthening its top-down control. In addition, wind can cause environmental disturbances such as loss of habitats and destruction of abodes which expose prey to predation [29]. The effect of wind as an abiotic factor affects behavior of mammals in forested environments. The behavior of three boreal forest mammals including free-ranging red squirrels, snowshoe hares and Canada lynx were found to have altered their behavioral response to average daily wind speeds in winter [30]. For example, the number of feeding events of lynx increased by 40% on windy days. Rothschild et al [31] suggested that the effects of wind inducing small-scale turbulence is an important component of plankton trophodynamics including larval fish. They analytically showed that the feeding rates of zooplankton may be underestimated in the assessment of the potential frequency of interactions between predators and prey when wind effects are not considered. Sundby et al [32] reported that winds impacted on the feeding rates of cod larvae. Their feeding rate was two-fold increased when winds were $6 ms^{-1}$ compared to times when winds were only 2 ms⁻¹. MacKenzie et al [33] also used an empirical turbulence model to estimate the contact rates between fish larvae and prev using multiple combinations of wind speed and water depth.

Therefore it is important to include the effects of abiotic factors such as wind in population dynamics modeling to understand how they affect the strength and nature of species interactions. Recently, Barman et al [22] modeled the effect of wind and herd behavior in a predator-prey system. The temporal system is given by

$$\frac{dx}{dt} = rx(1 - \frac{x}{K}) - \frac{\alpha x^{\delta} y}{(1+w)[1+b(1+w)x^{\delta}]},$$

$$\frac{dy}{dt} = \frac{\beta x^{\delta} y}{(1+w)[1+b(1+w)x^{\delta}]} - my,$$
(1)

where x and y denote the prey and predator population respectively. The parameters δ and w also respectively represent the prey herd shape and the strength of the wind flow. We refer the reader to [22] for a detailed derivation of the model and a description of the system parameters. The system (1) was shown to possess very rich dynamics. The spatial version of the system did not exhibit Turing patterns but rather irregular patchy chaotic patterns were observed. Research done by Panja in [25] also showed that the effects of wind direction and the anti-predator behavior of prey can have a stabilizing impact on the system's dynamics.

In recent times, the survival of species has emerged as a topic of concern in population dynamics,

with the aim of exploring strategies to maintain ecological population balance. In predator-prey interactions, there are several defense mechanisms that prey populations exhibit in order to avoid predation. Included among these are prey defense, herd behavior, migration, prey counter attack, group defense and refuge [4-6, 14, 34-39]. Refuge can be defined as a strategy to avoid harm or lessen the predation rate of predators. For example, in a wolf-ungulate system, ungulates migrate to seek refuge at regions which are outside the core domain of wolves [40]. Other examples of refuge include spatial refuges (burrows, heavy vegetation), prey aggregation and reduced search activities by prey, all of which function to minimize contact with predators. This positively affects the growth of prey populations and reduces that of predator populations. It therefore plays an important role on the coexistence of prey and predator populations. The impact of prey refuges on population ecology can be very complex. Due to refuges being safe, they can lead to a reduction in the birth rate of the prey population since the refuges hardly offer mating and feeding opportunities [37]. Several mathematical models in literature have studied the effect of prey refuge in predator prey interactions [37, 38, 41, 42]. Sih [41] showed that, prey refuges have a stabilizing effect when the proportion of prey in refuges reduce with an increasing prey density or increase when predation pressure and predator density are both increasing. Similar results of the stabilizing effect of prey refuge can be found in [43–45]. Research done by Chen et al [38] showed that prey refuge had no impact on the persistent property of a predator prey-system with a Leslie Gower functional response incorporated into the modeling construct. Similar results were obtained in [46]. Ma et al [37] also showed that, under some parametric restrictions, prey refuge has a destabilizing effect on the dynamical system. Refuge has also been shown to be an effective tool in controlling chaotic dynamics in predator-predator systems [47]. Interestingly, prey refuge can cause even more chaotic, random-like dynamics in discrete predator-prey model with Holling type I functional response [48]. Spatially explicit predator-prey models have also been studied to explore the impacts of prey refuge. The development of spatiotemporal patterns were found to be controlled by prey refuge [39, 49]. To the best of our knowledge, very little or no studies has been done to explore the impact of prey refuge together with abiotic factors such as wind effects on predator-prev dynamics. This motivates the work done in this paper. In the real ecological system, the combined effects of wind and prey refuge can result in complex dynamics and is worth investigating. As such, we propose and study the dynamics of a predator prey model incorporating wind effects and prey refuge. In this manuscript, we report the following:

- Prey refuge has a stabilization effect on the dynamics of the system.
- The strength of wind can stabilize or destabilize the system.
- Under certain parametric restrictions, the coexistence equilibrium is globally stable via Theorem 6.
- The system experiences a Hopf bifurcation and a transcritical bifurcation via Theorem 7 and 8 respectively.

The rest of the paper is organized as follows: Section 2 deals with the formulation of the model. We perform mathematical analysis of the model including local bifurcation analysis in Section 3 and corroborate our theoretical results with numerical simulations in Section 4. We finally present a discussion and conclusion of our work in Section 5.

2 Model formulation

We revisit the model by Barman et al [22] and its derivation therein and study the model without herd behavior but with a prey refuge. We denote the prey and predator populations with the state variables

Parameter	Description
b	half saturation constant when there is no wind flow
c_1	prey consumption rate by predator
c_2	food conversion rate of prey by predator
δ	natural death rate of predators
K	carrying capacity of the environment
m	prey refuge size
r	growth rate of prey
w	wind flow strength

Table 1 Parameters used in Eq. (2).

u and v at any time instant t. The nonlinear system of ordinary differential equations modeling the impact of wind and prey refuge is given by

$$\frac{du}{dt} = ru(1 - \frac{u}{K}) - \frac{c_1 u(1 - m)v}{(1 + w)[1 + b(1 + w)u(1 - m)]},$$

$$\frac{dv}{dt} = \frac{c_2 u(1 - m)v}{(1 + w)[1 + b(1 + w)u(1 - m)]} - \delta v,$$
(2)

with positive initial conditions $u(0) = u_0$ and $v(0) = v_0$. All parameters used are assumed positive and their descriptions are given in Table 1. The prey is assumed to grow logistically with a growth rate r. We incorporate a refuge which protects mx of prey, where $m \in [0,1)$ is a constant. This makes (1-m)x of the prey available to the predator.

3 Mathematical analysis

3.1 Positivity and boundedness

We first ensure that solutions to system (2) are positive and bounded, indicating solutions are biologically meaningful. Here, positivity of solutions implies that the population survives over some time domain. Since available resources are scarce, the population sizes of both prey and predator population cannot grow unboundedly and hence restricted. The following theorem relates to the positivity and boundedness of solutions to system (2).

Theorem 1. All solutions to the system (2) lie in the positive octant $\Sigma = \{(u,v) \in \mathbb{R}^2_+ : u(0) > 0, v(0) > 0\}.$

Proof. For t > 0, we can write system (2) as

$$u(t) = u(0)e^{\int_0^t \left[r(1-\frac{u}{K}) - \frac{c_1(1-m)v}{(1+w)[1+b(1+w)u(1-m)]}\right]ds} > 0,$$

$$v(t) = v(0)e^{\int_0^t \left(\frac{c_2u(1-m)}{(1+w)[1+b(1+w)u(1-m)]} - \delta\right)ds} > 0.$$

Therefore u(t) > 0, v(t) > 0 whenever u(0) > 0, v(0) > 0.

Theorem 2. All solutions of system (2) which start from \mathbb{R}^2_+ are bounded.

Proof. Let us consider the function $W(t) = u(t) + \frac{c_1}{c_2}v(t)$. Then,

$$\begin{aligned} \frac{dW}{dt} &= \frac{du}{dt} + \frac{c_1}{c_2} \frac{dv}{dt}, \\ &= ru(1 - \frac{u}{K}) - \frac{c_1}{c_2} \delta v, \end{aligned}$$

Now, we let $\beta \in \mathbb{R}_+$, such that $\beta \leq \delta$. Then

$$\frac{dW}{dt} + \beta W = ru(1 - \frac{u}{K}) + \beta u - \frac{c_1}{c_2}(\delta - \beta)v,$$

$$\frac{dW}{dt} + \beta W \le (r + \beta)u - \frac{ru^2}{K},$$

$$\le \frac{K(r + \beta)^2}{4r} = M \text{ say.}$$

This implies that

$$W \leq \frac{M}{\beta} + (W(0) - \frac{M}{\beta})e^{-\beta t}$$

by standard theory in differential inequality. As $t \to \infty$,

$$\lim \sup W(t) \le \frac{M}{\beta}.$$
(3)

Therefore by Theorem 1 and (3), all solutions of (2) with initial conditions u(0) > 0 and v(0) > 0 are bounded in the region

$$\Pi = \{(u, v) \in \mathbb{R}^2_+ : W(t) \leq \frac{M}{\beta} + \epsilon, \text{for any positive } \epsilon\}.$$

Hence proof.

3.2 Equilibria and local stability analysis

We compute for the equilibria by solving $\frac{du}{dt} = \frac{dv}{dt} = 0$. The system (2) thus possesses the following non-negative equilibria:

- $E_0 = (0,0)$,
- $E_1 = (K, 0)$ and
- $E_2 = (u^*, v^*)$

where

$$u^* = \frac{\delta(w+1)}{(1-m)[c_2 - b\delta(w+1)^2]}$$

and

$$v^* = \frac{c_2 r(w+1) \left(\delta(w+1) \left(bK(m-1)(w+1)-1\right) + c_2 k(1-m)\right)}{c_1 K(m-1)^2 \left[c_2 - b\delta(w+1)^2\right]^2}.$$

We note that, the interior equilibrium E_2 exists provided $c_2 > b\delta(w+1)^2$.

After obtaining the steady states of system (2), we study its dynamics close to these states. A computation of the Jacobian of system (2) evaluated at an equilibrium point $E(u^*, v^*)$ is given as

$$J^* = \begin{pmatrix} J_{11} \ J_{12} \\ J_{21} \ J_{22} \end{pmatrix} \tag{4}$$

where

$$J_{11} = \frac{c_1(m-1)v^*}{(w+1)[b(m-1)u^*(w+1)-1]^2} - \frac{2ru^*}{K} + r,$$

$$J_{12} = -\frac{c_1(m-1)u^*}{(w+1)[b(m-1)u^*(w+1)-1]},$$

$$J_{21} = -\frac{c_2(m-1)v^*}{(w+1)[b(m-1)u^*(w+1)-1]^2},$$

$$J_{22} = \frac{c_2(m-1)u^*}{(w+1)[b(m-1)u^*(w+1)-1]} - \delta.$$

We use this computation in aiding us perform local stability analysis on the equilibria of system (2). We state the following theorem.

Theorem 3. The trivial equilibrium point E_0 is a saddle.

Proof. An evaluation of the Jacobian at E_0 yields

$$J_{E_0}^* = \begin{pmatrix} r & 0\\ 0 - \delta \end{pmatrix} \tag{5}$$

and its associated eigenvalues are $\lambda_1 = r > 0$ and $\lambda_2 = -\delta < 0$. Hence E_0 is a saddle point and thus locally unstable.

Theorem 4. The boundary equilibrium point E_1 is a saddle if $\frac{c_2K(1-m)}{(w+1)[1+bK(1-m)(w+1)]} > \delta$.

Proof. A similar evaluation of the Jacobian at E_1 gives

$$J_{E_1}^* = \begin{pmatrix} -r & -\frac{c_1 K(m-1)}{(w+1)[bK(m-1)(w+1)-1]} \\ 0 & \frac{c_2 K(m-1)}{(w+1)[bK(m-1)(w+1)-1]} - \delta \end{pmatrix}.$$
 (6)

The characteristic equation of J^* at E_1 is

$$(\lambda + r)\left(-\frac{c_2K(m-1)}{(w+1)[bK(m-1)(w+1)-1]} + \delta + \lambda\right) = 0.$$

Solving this yields $\lambda_1 = -r < 0$ and $\lambda_2 = -\delta + \frac{c_2K(1-m)}{(1+w)[1+bK(1-m)(1+w)]}$. If $\lambda_2 > 0$, then E_1 is a saddle point and locally unstable.

Theorem 5. The coexistence equilibrium point E_2 is locally stable if $\frac{c_2(1-m)u^*}{(w+1)[b(1-m)u^*(w+1)+1]} < \delta$.

Proof. Let $\frac{c_2(1-m)u^*}{(w+1)[b(1-m)u^*(w+1)+1]} < \delta$. It is enough to show that if the $\operatorname{Trace}(J_{E_2}^*) < 0$ and $\operatorname{Det}(J_{E_2}^*) > 0$, then E_2 is locally stable. It is obvious that $u(t) \leq K$ and therefore $J_{11} < 0$, $J_{12} < 0$, $J_{21} > 0$. Since $\frac{c_2(1-m)u^*}{(w+1)[b(1-m)u^*(w+1)+1]} < \delta$, we have that $J_{22} < 0$. Hence the $\operatorname{Trace}(J_{E_2}^*) < 0$ and $\operatorname{Det}(J_{E_2}^*) > 0$ and so E_2 is locally stable.

Theorem 6. The coexistence equilibrium point E_2 is globally stable if $\frac{r}{K} \geq \frac{c_1(1-m)^2bv^*}{[1+b(1+w)u^*(1-m)]}$.

Proof. Let us consider the Lyapunov function $F(t) = A[u(t) - u^* - u^* \ln(\frac{u(t)}{u^*})] + B[v(t) - v^* - v^* \ln(\frac{v(t)}{v^*})]$ where A and B are positive constants to be determined later. We can easily see that F = 0 at $(u, v) = (u^*, v^*)$ and also F > 0 when $(u, v) \neq (u^*, v^*)$. Taking the time derivative yields

$$\begin{split} \dot{F} &= A(1 - \frac{u^*}{u})\dot{u} + B(1 - \frac{v^*}{v})\dot{v}, \\ &= A(u - u^*)[r(1 - \frac{u}{K}) - \frac{c_1(1 - m)v}{(1 + w)[1 + b(1 + w)u(1 - m)]}] + B(v - v^*)[\frac{c_2(1 - m)u}{(1 + w)[1 + b(1 + w)u(1 - m)]} - \delta]. \end{split}$$

We use the following results:

$$\frac{c_1(1-m)v^*}{(1+w)[1+b(1+w)u^*(1-m)]} = r(1-\frac{u^*}{K}), \quad \delta = \frac{c_2(1-m)u^*}{(1+w)[1+b(1+w)u^*(1-m)]}.$$

The time derivative of F becomes

$$\begin{split} \dot{F} = &A(u-u^*)[-\frac{r}{K}(u-u^*) + \frac{c_1(1-m)}{(1+w)}(\frac{-(v-v^*) + b(1+w)(1-m)[uv^* - u^*v]}{[1+b(1+w)u^*(1-m)][1+b(1+w)u(1-m)]})] \\ &+ B(v-v^*)[\frac{c_2(1-m)u}{(1+w)[1+b(1+w)u(1-m)]} - \frac{c_2(1-m)u^*}{(1+w)[1+b(1+w)u^*(1-m)]}], \\ = &A(u-u^*)[-\frac{r}{K}(u-u^*) + \frac{c_1(1-m)}{(1+w)}(\frac{-(v-v^*) + b(1+w)(1-m)[v^*(u-u^*) - u^*(v-v^*)]}{[1+b(1+w)u^*(1-m)][1+b(1+w)u(1-m)]})] \\ &+ \frac{B(v-v^*)c_2(1-m)(u-u^*)}{[1+b(1+w)u^*(1-m)][1+b(1+w)u(1-m)]}, \\ = &-A(u-u^*)^2[\frac{r}{K} - \frac{c_1(1-m)^2bv^*}{[1+b(1+w)u^*(1-m)][1+b(1+w)u(1-m)]}] \\ &+ \frac{(1-m)(v-v^*)(u-u^*)}{(1+w)[1+b(1+w)u^*(1-m)][1+b(1+w)u(1-m)]}[Bc_2 - Ac_1(1+(1-m)bu^*(1+w))]. \end{split}$$

We can choose $B = \frac{Ac_1}{c_2}[1 + (1-m)bu^*(1+w)]$ and obtain

$$\dot{F} = -A(u - u^*)^2 \left[\frac{r}{K} - \frac{c_1(1 - m)^2 b v^*}{[1 + b(1 + w)u^*(1 - m)][1 + b(1 + w)u(1 - m)]} \right],
= \frac{-A(u - u^*)^2}{1 + b(1 + w)u(1 - m)} \left[\frac{r}{K} (1 + b(1 + w)u(1 - m) - \frac{c_1(1 - m)^2 b v^*}{1 + b(1 + w)u^*(1 - m)}) \right].$$
(7)

Next, if we impose the condition $\frac{r}{K} \ge \frac{c_1(1-m)^2bv^*}{[1+b(1+w)u^*(1-m)]}$ on Eq.(7) then $\dot{F} < 0$. Therefore the coexistence equilibrium E_2 is globally stable. Hence proof.

3.3 Bifurcation analysis

Bifurcation analysis is important in studying how systems transition in their qualitative behavior when parameters are continuously varied. Depending on a chosen set of parameteric values, equilibrium points can be created or destroyed and their stability status can change. In this section, we are concerned with the effects that wind strength and prey refuge parameters have on the dynamics of system (2) respectively. We explored local codimension-one bifurcations and obtained a Hopf and a transcritical bifurcation.

3.3.1 Hopf bifurcation

This subsection focuses on the conditions that guarantees the existence of a Hopf bifurcation around the interior equilibrium for system (2) in the preceding theorem. We choose the prey refuge parameter m as our bifurcation parameter.

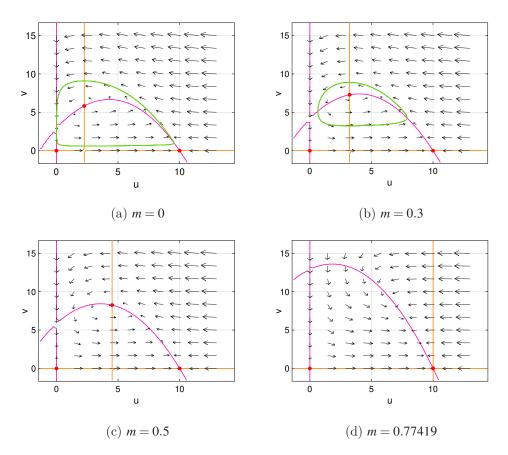


Fig. 1 Phase plots showing dynamics for various constant prey refuge sizes. Parameters used are $r = 0.5, K = 10, w = 2.5, b = 0.2, c_1 = 0.6, c_2 = 0.4, \delta = 0.1$. The magenta and orange colors depict the prey and predator nullcline respectively. The green closed loop is a stable limit cycle.

Theorem 7. Consider the Jacobian of system (2). Then the system (2) undergoes a Hopf bifurcation at E_2^* with respect to the bifurcation parameter $m=m^*$ if $m^*>1-\frac{\delta(w+1)}{k[c_2-b\delta(w+1)^2]}$ and $\frac{2c_2}{b\delta(1+w)^2-c_2}<1$ and the following hold,

- (i) $Tr(J^*)|_{E_2^*} = 0$,
- (ii) $Det(J^*)|_{E_2^*} > 0$,
- (iii) $\frac{d}{dm}(Tr(J^*))|_{E_2^*} \neq 0$ at $m = m^*$.

Proof. We begin the proof by evaluating the Jacobian of system (2) at E_2^* and obtain

$$J_{E_2^*}^* = \left(\begin{array}{c} \frac{\delta r(w+1)(\frac{bk(m-1)(w+1)-1}{c_2} - \frac{2}{b\delta(w+1)^2 - c_2})}{k(m-1)} & -\frac{c_1\delta}{c_2} \\ \frac{c_2k(m-1)r - \delta r(w+1)(bk(m-1)(w+1)-1)}{c_1k(m-1)} & 0 \end{array} \right).$$

Let $m^* > 1 - \frac{\delta(w+1)}{k[c_2 - b\delta(w+1)^2]}$ and $\frac{2c_2}{b\delta(1+w)^2 - c_2} < 1$. The trace of $J_{E_2^*}^*$ is

$$Tr(J^*)|_{E_2^*} = \frac{\delta r(w+1)(\frac{bk(m-1)(w+1)-1}{c_2} - \frac{2}{b\delta(w+1)^2 - c_2})}{k(m-1)}.$$

Clearly, $Tr(J^*)|_{E_2^*}=0$ when $m^*=1+\frac{1}{bk(1+w)}(\frac{2c_2}{b\delta(1+w)^2-c_2}+1)$. We have $m^*>0$ since $\frac{2c_2}{b\delta(1+w)^2-c_2}<1$. Recall that E_2^* exists provided $c_2>b\delta(w+1)^2$. It is therefore clear that $m^*>1-\frac{\delta(w+1)}{k[c_2-b\delta(w+1)^2]}$. The determinant of $J_{E_2^*}^*$ is given by

$$Det(J^*)|_{E_2^*} = \delta r(1 - \frac{\delta(w+1)(bk(m-1)(w+1)-1)}{c_2k(m-1)}).$$

For $J_{E_2^*}^*>0$, we require that $1>\frac{\delta(w+1)(bk(m-1)(w+1)-1)}{c_2k(m-1)}$. Simple calculations show that, $J_{E_2^*}^*>0$ when $m^*>1-\frac{\delta(w+1)}{k[c_2-b\delta(w+1)^2]}$. Furthermore, by the transversality condition of the Hopf bifurcation theorem [50], we have

$$\frac{d}{dm}(Tr(J^*))|_{E_2^*} = -\frac{2\delta r(w+1)}{k(1-m)^2[b\delta(w+1)^2 - c_2]} < 0.$$

Hence, the system (2) experiences a Hopf bifurcation around E_2^* with respect to the bifurcation parameter m at $m = m^*$.

3.3.2 Transcritical bifurcation

A transcritical bifurcation occurs when two equilibrium points collide and exchange their stability. We will investigate the possible occurrence of a transcritical bifurcation in the next theorem when the prey refuge parameter m is varied.

Theorem 8. The system experiences a transcritical bifurcation around the predator free equilibrium state E_1^* when the prey refuge size is $m = m^* = 1 - \frac{\delta(1+w)}{k(c_2 - b\delta(1+w)^2)}$ and $c_2 \neq b\delta(1+w)^2$.

Proof. Let $c_2 \neq b\delta(1+w)^2$. When we evaluate the Jacobian matrix of system (2) at E_1^* and $m=m^*=1-\frac{\delta(1+w)}{k(c_2-b\delta(1+w)^2)}$, we obtain

$$J_{E_1^*} = \left(egin{array}{c} -r - rac{c_1\delta}{c_2} \ 0 & 0 \end{array}
ight).$$

The associated eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = -r$. Therefore $J_{E_1^*}$ has a zero eigenvalue at $m = m^*$. Now, we let $X(x_1, x_2)^T$ and $Y(y_1, y_2)^T$ represent the eigenvectors corresponding to the zero eigenvalues of the the matrices $J_{E_1^*}$ and $J_{E_1^*}^T$ respectively. By direct computation, we obtain $X = (-\frac{\delta c_1}{rc_2}, 1)^T$ and $Y = (0, 1)^T$. Now we let $N = (N_1, N_2)^T$ where

$$N_{1} = ru(1 - \frac{u}{K}) - \frac{c_{1}u(1 - m)v}{(1 + w)[1 + b(1 + w)u(1 - m)]},$$

$$N_{2} = \frac{c_{2}u(1 - m)v}{(1 + w)[1 + b(1 + w)u(1 - m)]} - \delta v.$$
(8)

We proceed to validate the transversality condition using Sotomayor's theorem [51].

$$Y^{T}N_{m^{*}}(E_{1}^{*},m)=(0,1)(0,0)^{T}=0.$$

Also,

$$Y^{T}[DN_{m}(E_{1}, m^{*})X] = (0 \ 1) \begin{pmatrix} 0 \ \frac{c_{1}k(c_{2} - b\delta(w+1)^{2})^{2}}{c_{2}^{2}(w+1)} \\ 0 - \frac{k(c_{2} - b\delta(w+1)^{2})^{2}}{c_{2}(w+1)} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$
$$= -\frac{k(c_{2} - b\delta(w+1)^{2})^{2}}{c_{2}(w+1)} \neq 0,$$

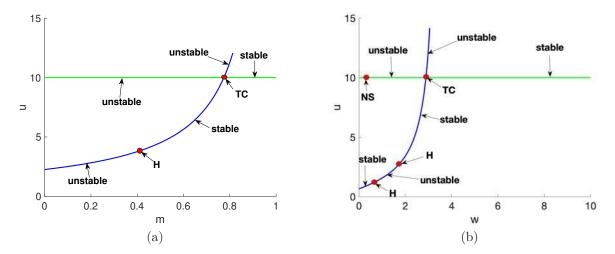


Fig. 2 Plot showing existence of a Hopf bifurcation and a transcritical bifurcation for the parameters $r = 0.5, K = 10, b = 0.2, c_1 = 0.6, c_2 = 0.4, \delta = 0.1$. In (a), w = 2.5 and initial condition was chosen as $(u_0, v_0) = (1, 1)$. Also, m = 0.6 was used and an initial condition $(u_0, v_0) = (6, 4)$ were chosen in plot (b). Multiple Hopf bifurcations and a transcritical bifurcation are observed therein. (Note: H=Hopf point, TC=Transcritical point, NS=Neutral Saddle (not a bifurcation point).)

and

$$Y^{T} \left[D^{2}N(E_{1}, m^{*})(X, X) \right] = \left(0 \ 1 \right) \begin{pmatrix} -\frac{2bc_{1}^{2}\delta^{3}(w+1)^{2}}{c_{2}^{3}kr} \\ \frac{2c_{1}\delta^{2}\left(b\delta(w+1)^{2}-c_{2}\right)}{c_{2}^{2}kr} \end{pmatrix}$$
$$= \frac{2c_{1}\delta^{2}\left(b\delta(w+1)^{2}-c_{2}\right)}{c_{2}^{2}kr} \neq 0.$$

Therefore by the Sotomayor's theorem system (2) experiences a transcritical bifurcation at $m = m^* = 1 - \frac{\delta(1+w)}{k(c_2 - b\delta(1+w)^2)}$ around E_1^* .

Theorem 9. The system experiences a transcritical bifurcation around the predator free equilibrium state E_1^* when the wind strength crosses a critical threshold $w = w^*$.

Proof. The proof is similar to the proof of Theorem 8 and is therefore omitted.

4 Numerical simulations

We perform numerical simulations with the help of PPLANE8 and MATCONT softwares [52]. The numerical simulations show various dynamics of system (2) and also corroborate our theoretical findings. From Fig.1, when there is no prey refuge in a windy environment, the system is unstable and there is an occurrence of a stable limit cycle. From Fig.2(a), a further increase in m results in system (2) experiencing a Hopf bifurcation around the coexistence equilibrium $E_2(u^*, v^*) = (3.798, 7.852)$ at $m^* = 0.40553$. With the help of Matcont software, the first Lyapunov coefficient was calculated as $\sigma = -5.25578106e^{-3}$ and hence the Hopf bifurcation is supercritical. A further increase in the constant refuge size m leads to a loss in stability of the coexistence equilibrium point and a gain in stability of the boundary equilibrium point via a transcritical bifurcation around $E_1(u^*, v^*) = (10,0)$ when $m^* = 0.77419$. In this case, the constant refuge size m has a stabilizing effect.

Remark 1. A gradual increment in the size of the prey refuge stabilizes the coexistence equilibrium and also increases the density of the prey population size. Here, the predator free equilibrium is unstable. A further increase in the refuge size leads to a loss in stability of the coexistence equilibrium, an increase in prey population density and a decrease in the density of predators leading to their extinction. At this point, the predator free equilibrium gains stability and the prey population grows to its carrying capacity. Therefore prey refuge aids in prey species conservation.

Furthermore, from the bifurcation diagram seen in Fig.2(b), we observe multiple Hopf bifurcations and a transcritical bifurcation for the strength of wind effect w. The system (2) experiences a Hopf bifurcation at $w^* = 0.63655$ and transitions from a stable coexistence to an unstable coexistence state at $E_2^* = (1.180997, 3.4717386)$. The first Lyapunov coefficient is given by $\sigma = -2.101887e^{-3}$ and thus the Hopf bifurcation is supercritical. A further increase in the wind strength leads to the system transitioning from oscillatory dynamics to stable dynamics via a Hopf bifurcation around the coexistence equilibrium $E_2^* = (2.7048593, 6.577443)$. Similar computation of the Lyapunov coefficient is given by $\sigma = -3.393e^{-3}$, thus, the obtained Hopf bifurcation is supercritical as well. This indicates that, the strength of wind has both a stabilizing and a destabilizing effect on the population dynamics. When w is further increased to $w^* = 2.890598$, the coexistence equilibrium E_2^* and the predator free equilibrium E_1^* collide and exchange their stability via a transcritical bifurcation at $E_1^* = (10,0)$. Thus E_2^* becomes unstable and E_1^* becomes stable.

Remark 2. When the prey population is offered some level of protection through a refuge, a gradual increment in wind strength stabilizes the coexistence equilibrium. A further increase in the wind strength destabilizes the coexistence equilibrium and the populations go through self sustained periodic oscillations. An extra increase in the wind speed enables the coexistence equilibrium gain stability again. In each of these incremental stages of the wind strength, the density of the prey population increases and the predator free equilibrium remains unstable. A final additional increase in the wind strength causes the coexistence equilibrium to exchange stability with the predator free equilibrium which becomes stable. At this point, the prey population grows to carrying capacity. Therefore, the strength of wind also helps in prey species conservation in the presence of prey refuge.

5 Discussion and conclusion

In this present work, we proposed a system of ordinary differential equations which model the effect of wind strength and prey refuge in a predator prey system. Preliminary results such as positivity and boundedness results were derived. Conditions for biological meaningfulness of equilibrium points were also obtained and subsequent stability analysis of these equilibria were carried out. We established global stability results on the coexistence equilibrium point under certain parametric restrictions. See Theorem 6. Once this parametric restriction is met, it implies that the two species will continue to persist and/or coexist. Our investigations revealed that increasing the size of prey refuge had a stabilizing effect on the dynamics of the prey population, transitioning from an unstable to a stable state via a Hopf bifurcation. From Fig.1, we observed that when the prey refuge size is large enough, the prey are well protected. Since it is difficult for the predators to attack the prey, the prey population density increases while the predator population decreases to extinction via a transcritical bifurcation. See Fig.2(a). We provided rigorous proofs for both Hopf and transcritical bifurcations. See Theorem 7 and Theorem 8.

Furthermore, we observed the occurrence of multiple Hopf bifurcations for the strength of wind flow parameter w. The ecological implication of this result is that, the strength of wind flow has both a stabilizing and a destabilizing effect when some form of protection is offered to the prey. See Fig.2(b). When the strength of wind flow is increased, the coexistence equilibrium loses its stability after colliding

with the predator free equilibrium via a transcritical bifurcation. In this case the ecological implication is that increased wind flow strength can provide benefits to the prey via a reduction in predation risk. This phenomenon has been shown in experiments from [27]. A key biological significance of transcritical bifurcation is that, it provides useful information to stakeholders and ecologists on optimal or threshold control rates in management strategies invested in pest eradication, invasive species control and species conservation. For example, in our case, the transcritical bifurcation provides information on the optimal refuge size to provide the prey population to enable them to persist if we wanted to completely eradicate the predator population. It will be interesting to study system (2) with competition between predators when prey are offered some level of protection in a windy environment. It will also be interesting to study system (2) with different functional responses as well.

Statements and Declarations

Funding

EMT, KC, AD and CM would like to acknowledge valuable support from the National Science Foundation (NSF) via grant number 1851948.

Competing interests

The authors declare that they have no competing interests.

Author Contributions

EMT, KC, AD and CM contributed equally to the conceptualization of the problem and writing of this manuscript. All authors read and approved the final manuscript.

Availability of data and material

Not Applicable.

References

- [1] Creel, S. and Christianson, D. (2008), Relationships between direct predation and risk effects, *Trends in Ecology & Evolution*, **23**, 194-201.
- [2] Cresswell, W. (2011), Predation in bird populations, Journal of Ornithology, 152, 251-263.
- [3] Lotka, A.J. (1925), Elements of Physical Biology, Williams & Wilkins.
- [4] Sun, G.-Q., Jin, Z., Liu, Q.-X., and Li, L. (2008), Dynamical complexity of a spatial predator-prey model with migration, *Ecological Modelling*, **219**, 248-255.
- [5] Chen, Y. and Zhang, F. (2013), Dynamics of a delayed predator-prey model with predator migration, Applied Mathematical Modelling, 37, 1400-1412.
- [6] Liu, P.P. (2010), An analysis of a predator-prey model with both diffusion and migration, *Mathematical and Computer Modelling*, **51**, 1064-1070.
- [7] Rai, B., Freedman, H., and Addicott, J.F. (1983), Analysis of three species models of mutualism in predator-prey and competitive systems, *Mathematical Biosciences*, **65**, 13-50.
- [8] Al Basheer, A., Parshad, R.D., Quansah, E., Yu, S., and Upadhyay, R.K. (2018), Exploring the dynamics of a Holling-Tanner model with cannibalism in both predator and prey population, *International Journal of Biomathematics*, 11, 1850010.
- [9] Deng, H., Chen, F., Zhu, Z., and Li, Z. (2019), Dynamic behaviors of Lotka-Volterra predator-prey model incorporating predator cannibalism, *Advances in Difference Equations*, **2019**, 1-17.
- [10] Kumari, N. and Kumar, V. (2022), Controlling chaos and pattern formation study in a tritrophic food chain model with cannibalistic intermediate predator, *The European Physical Journal Plus*, **137**, 1-23.
- [11] Kim, S. and Antwi-Fordjour, K. (2022), Prey group defense to predator aggregated induced fear, The European

- Physical Journal Plus, 137, 1-17.
- [12] Sasmal, S.K. and Takeuchi, Y. (2020), Dynamics of a predator-prey system with fear and group defense, Journal of Mathematical Analysis and Applications, 481, 123471.
- [13] Luo, J. and Zhao, Y. (2017), Stability and bifurcation analysis in a predator-prey system with constant harvesting and prey group defense, *International Journal of Bifurcation and Chaos*, **27**, 1750179.
- [14] Kumar, V. and Kumari, N. (2021), Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response, Chaos, Solitons & Fractals, 147, 110964.
- [15] Haque, M. (2011), A detailed study of the Beddington-Deangelis predator-prey model, *Mathematical Biosciences*, **234**, 1-16.
- [16] Djilali, S. (2020), Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Mathematical Methods in the Applied Sciences, 43, 2233-2250.
- [17] Rinaldi, S. and Muratori, S. (1992), Slow-fast limit cycles in predator-prey models, Ecological Modelling, 61, 287-308.
- [18] Tylianakis, J.M., Didham, R.K., Bascompte, J., and Wardle, D.A. (2008), Global change and species interactions in terrestrial ecosystems, *Ecology letters*, **11**, 1351-1363.
- [19] Cherry, M.J. and Barton, B.T. (2017), Effects of wind on predator-prey interactions, Food Webs, 13, 92-97.
- [20] Barton, B.T. (2014), Reduced wind strengthens top-down control of an insect herbivore, Ecology, 95, 2375-2381.
- [21] Klimczuk, E., Halupka, L., Czyż, B., Borowiec, M., Nowakowski, J.J., and Sztwiertnia, H. (2015), Factors driving variation in biparental incubation behaviour in the reed warbler acrocephalus scirpaceus, Ardea, 103, 51-59.
- [22] Barman, D., Kumar, V., Roy, J., and Alam, S. (2022), Modeling wind effect and herd behavior in a predatorprey system with spatiotemporal dynamics, *The European Physical Journal Plus*, **137**, 1-28.
- [23] Barman, D., Roy, J., and Alam, S. (2022), Impact of wind in the dynamics of prey-predator interactions, Mathematics and Computers in Simulation, 191, 49-81.
- [24] Jawad, S., Sultan, D., and Winter, M. (2021), The dynamics of a modified Holling-Tanner prey-predator model with wind effect, *International Journal of Nonlinear Analysis and Applications*, 12, 2203-2210.
- [25] Panja, P. (2022), Impacts of wind and anti-predator behaviour on predator-prey dynamics: a modelling study, International Journal of Computing Science and Mathematics, 15, 396-407.
- [26] McVicar, T.R., Roderick, M.L., Donohue, R.J., Li, L.T., Van Niel, T.G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N.M., and Mescherskaya, A.V. (2012), Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation, *Journal of Hydrology*, 416, 182-205.
- [27] Bowyer, R.T., McCullough, D.R., and Belovsky, G.E. (2001), Causes and consequences of sociality in mule deer, Alces: A Journal Devoted to the Biology and Management of Moose, 37, 371-402.
- [28] Stander, P. and Albon, S. (1993), Hunting success of lions in a semi-arid environment, Symposia of the Zoological Society of London, 65, 127-143.
- [29] Wiley, J.W. and Wunderle, J.M. (1993), The effects of hurricanes on birds, with special reference to Caribbean islands, *Bird Conservation International*, **3**, 319-349.
- [30] Studd, E.K., Peers, M.J.L., Menzies, A.K., Derbyshire, R., Majchrzak, Y.N., Seguin, J.L., Murray, D.L., Dantzer, B., Lane, J.E., McAdam, A.G., and Humphries, M.M. (2022), Behavioural adjustments of predators and prey to wind speed in the boreal forest, *Oecologia*, **200**(3-4), 1-10.
- [31] Rothschild, B. and Osborn, T. (1988), Small-scale turbulence and plankton contact rates, *Journal of Plankton Research*, **10**, 465-474.
- [32] Sundby, S. and Fossum, P. (1990), Feeding conditions of Arcto-Norwegian cod larvae compared with the Rothschild-Osborn theory on small-scale turbulence and plankton contact rates, *Journal of Plankton Re*search, 12, 1153-1162.
- [33] MacKenzie, B. and Leggett, W. (1991), Quantifying the contribution of small-scale turbulence to the encounter rates between larval fish and their zooplankton prey: effects of wind and tide, *Marine Ecology Progress Seriesr*, 73, 149-160.
- [34] Parshad, R.D., Takyi, E.M., and Kouachi, S. (2019), A remark on "study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators" [chaos, solitons & fractals 120 (2019) 1-16], Chaos, Solitons & Fractals, 123, 201-205.
- [35] Saitō, Y. (1986), Prey kills predator: counter-attack success of a spider mite against its specific phytoseiid predator, Experimental & Applied Acarology, 2, 47-62.
- [36] Ghanbari, B. (2021), On detecting chaos in a prey-predator model with prey's counter-attack on juvenile predators, *Chaos, Solitons & Fractals*, **150**, 111136.
- [37] Ma, Z., Li, W., Zhao, Y., Wang, W., Zhang, H., and Li, Z. (2009), Effects of prey refuges on a predator-prey

- model with a class of functional responses: the role of refuges, Mathematical Biosciences, 218, 73-79.
- [38] Chen, F., Chen, L., and Xie, X. (2009), On a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Analysis: Real World Applications, 10, 2905-2908.
- [39] Wang, Y. and Wang, J. (2012), Influence of prey refuge on predator-prey dynamics, Nonlinear Dynamics, 67, 191-201.
- [40] Mech, L.D. (1977), Wolf-pack buffer zones as prey reservoirs, Science, 198, 320-321.
- [41] Sih, A. (1987), Prey refuges and predator-prey stability, Theoretical Population Biology, 31, 1-12.
- [42] Hassell, M.P. (2020), The Dynamics of Arthopod Predator-Prey Systems. (MPB-13), Volume 13, vol. 111. Princeton University Press.
- [43] Samanta, S., Dhar, R., Elmojtaba, I.M., and Chattopadhyay, J. (2016), The role of additional food in a predator-prey model with a prey refuge, *Journal of Biological Systems*, **24**, 345-365.
- [44] Mukherjee, D. (2016), The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey, *Nonlinear Analysis: Real World Applications*, **31**, 277-287.
- [45] Ma, Z.-H., Li, W.-L., Wang, S.-F., Li, Z.-Z., and Zhao, Y. (2009), Dynamical analysis of prey refuges in a predator-prey system with Ivlev functional response, *Dynamics of Continuous Discrete and Impulsive Systems: Series B; Applications and Algorithms*, 11, 741.
- [46] Chen, L., Chen, F., and Wang, Y. (2013), Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics, Communications in Nonlinear Science and Numerical Simulation, 18, 3174-3180.
- [47] Nath, B., Kumari, N., Kumar, V., and Das, K.P. (2019), Refugia and Allee effect in prey species stabilize chaos in a tri-trophic food chain model, *Differential Equations and Dynamical Systems*, 1-27.
- [48] Gkana, A. and Zachilas, L. (2013), Incorporating prey refuge in a prey-predator model with a Holling type I functional response: random dynamics and population outbreaks, *Journal of Biological Physics*, **39**, 587-606.
- [49] Han, R., Guin, L.N., and Acharya, S. (2022), Complex dynamics in a reaction-cross-diffusion model with refuge depending on predator-prey encounters, *The European Physical Journal Plus*, **137**, 1-27.
- [50] Marsden, J.E. and McCracken, M. (2012), The Hopf bifurcation and its applications, vol.19. Springer Science & Business Media.
- [51] Perko, L. (2013), Differential Equations and Dynamical Systems, 7, Springer Science & Business Media.
- [52] Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H. G.E., and Sautois, B. (2008), New features of the software matcont for bifurcation analysis of dynamical systems, *Mathematical and Computer Modelling of Dynamical Systems*, 14, 147-175.