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ABSTRACT: We present a physically appealing and elegant
picture for quantum computing, using rules constructed for a game
of darts. A dartboard is used to represent the state space in
quantum mechanics, and the act of throwing the dart is shown to
have close similarities to the concept of measurement or collapse of
the wave function in quantum mechanics. The analogy is
constructed in arbitrary dimensional spaces, that is, using arbitrary
dimensional dartboards, and for such arbitrary spaces this also
provides us a “visual” description of uncertainty. Finally,
connections between qubits and quantum computing algorithms
are also made, opening the possibility to construct analogies between quantum algorithms and coupled dart throws.

I. INTRODUCTION
The promise of solving exponentially complex problems
efficiently using quantum technologies1−3 and the development
of the associated software is a rapidly evolving research frontier.
While we are in the early stages of this emerging quantum
revolution, there is already a diverse set of problems that can
benefit from such developments. However, true progress can
only be achieved by a rigorous study facilitated by the
development of a competitive quantum workforce. As a result,
research and workforce development in the strongly inter-
disciplinary area of quantum information sciences has been
noted by the U.S. National Science Foundation (NSF) as one of
the “Big Ideas” and recognized through the introduction of the
National Quantum Initiative (NQI) from the White House.
Furthermore, the 2019 National Academies Report entitled
Quantum Computing: Progress and Prospects4 observes that
“[a]dvances in QC theory and devices will require contributions
from many fields beyond physics, including mathematics,
computer science, materials science, chemistry, and multiple
areas of engineering.” By contrast, regarding the present state of
the quantum information science (QIS) workforce, the
September 2018 National Science and Technology Council
report5 notes that “America’s current educational system
typically focuses on discrete disciplinary tracks, rarely emphasiz-
ing cross-disciplinary study that equips graduates for complex
modern questions and challenges, prominently including QIS.”
Emphasizing this point, Jeremy Hilton, Quantum Engineering
Lead at Google AI, wrote in Forbes6 that “one issue has everyone
united: There’s a shortage of quantum computing talent. This
shortage has a significant impact on the future of the industry. A

trained, well-rounded quantum workforce is the key to realizing
the full practical value of quantum computing. And yet, pundits
describe time and again the difficulty in recruiting talent. There
isn’t a direct pipeline from universities, and there’s fierce
competition for the limited workforce that is available...To
continue expanding the quantum ecosystem, we need to grow
the number of quantum-literate experts�now.”
Given these critical challenges, it is vital that we develop new

paradigms for quantum education that are accessible at multiple
levels of pedagogy. Strongly influenced by other similar
initiatives,7−11 here we present an approach where we utilize a
game of darts to discover the complexities of quantum
mechanics and eventually quantum computing. The first author
of this article is a high school senior who has deeply benefited
from this interdisciplinary initiative. In fact, the goal of this effort
can be labeled as “quantum computing without physics.” We
make the case that it may be possible to introduce quantum
theory without any background in physics at all.
This work is organized as follows. We will begin by discussing

Schrödinger’s cat problem along with a two-dimensional game
of darts with rules constructed to reproduce the cat-state
problem. Then, we will generalize this game of darts to multiple
dimensions and eventually to a Fourier space, which yields one
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visualization of uncertainty. Finally, we connect the game of
darts to measurements performed on a set of qubit states and
thus quantum computing and analyze a simple quantum circuit
by constructing an analogy to a game of darts.

II. FROM CATS TO DARTBOARDS: SETTING THE
STAGE

Schrödinger’s cat is a central thought experiment detailing the
following scenario: a cat is trapped in a box with a lethal device
for a certain duration of time. During this time, the device has
some probability of activation. Then, by the end of a fixed
duration of time, the box is opened, and the state of the cat (alive
or dead) is observed.
Schrödinger’s cat is as famous as it is because according to the

principles of quantum mechanics, at the moment just before the
box is opened, the cat is in a “super-position” state, that is, both
dead and alive. And somehow, when the box is opened, the cat
“collapses” to one of the two dead or alive states. Of course, this
sounds extremely odd. Even Schrödinger thought so. Yet, if we
consider this scenario as an analogy to the behavior of subatomic
particles, this thought experiment accurately describes and
presents the basis for much of contemporary nonrelativistic
physics and also provides us with an algorithm to computation-
ally inspect almost all phenomena in chemistry, biochemistry,
and material science.
To rationalize this idea and to set the stage for more general

prescriptions, wemay begin with a two-dimensional space where
one axis is labeled as “alive” and the other is labeled as “dead”.
Any point in this 2D space represents the unobserved state of the
cat prior to the box being opened. Thus, we may say

= · + ·cat alive dead( ) ( ) (1)

or formally

| = | + |cat alive dead (2)

This can be equivalently represented in a two-dimensional
vector space as

i
k
jjjj

y
{
zzzz (3)

assuming the first axis is the “alive” axis and the second is the
“dead” axis. The only additional condition on choosing the
specific point on the two-dimensional space is that the sum of
the squares of the “alive” and “dead” components, that is, the
length of the vector in eq 2, must equal 1. In the Coppenhagen
interpretation of quantum mechanics, this implies that the
probability that the cat is alive or dead is equal to 1. In other
words, the probabilities of the cat being found “alive” or “dead”
when the box is opened correspond to α2 and β2, respectively,
and we have

+ = 12 2 (4)

II.A. A Dartboard for Our Cat. Imagine a game of darts for
the above scenario. We will define the rules of the game as
follows:
Rule 1 The action of throwing the dart is designed to correspond

to the action of opening the box in Schrödinger’s
scenario. We thus require that the dart can only land
directly on one of the axes that defines our space. While
this requirement appears odd at this stage, we will see
later that this corresponds to a normal game of darts
when the number of dimensions grow.

Rule 2 When the dart lands on a certain axis, the distance from
the origin is noted. This distance, given eq 2, represents
one measurement of the quantity α or β depending on
the axis the dart lands on. Indeed, as per the discussion
that follows eq 3, the probability that the dart lands on
any given axis is proportional to the length α (or β).

Rule 3 Given eq 4, the net probability of the dart landing on
either axis is 1.

Rule 4 Whether the dart lands on the horizontal or vertical axes
is determined by the magnitude of α and β. The greater a
particular value is, the more likely that the dart lands on
that specific axis. More specifically, these likelihoods are
α2 and β2 as noted above.

Without loss of generality, our axes were chosen as the
horizontal and vertical axes, and we labeled these as “dead”
and “alive”. This is consistent with the original thought
experiment, where, when we observe the cat, it must be either
dead or alive. Thus, our dart throwmust also provide us with one
of the two results.
Furthermore, the result of a single throw of the dart is

completely random and can result in a dead state or an alive state
with probabilities α2 and β2. Thus, with a single dart throw, we
do not know much about the state of the cat prior to the throw.
However, with multiple such dart throws, the ratio of the
number of darts landing on the “alive” axis to the number of
darts landing on the “dead” axis would approach the ratio of the
probabilities, namely, α2/β2.

II.B. Game of Darts in N-Dimensions May Be
Interpreted as a Monte Carlo Problem. We may express a
function by enumerating its values at every single point on the
number-line as

i

k

jjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzz

y

y

yn

1

2

(5)

where the value yi represents the function’s value at xi. This
infinitely long vector is not dissimilar from that in eq 3.
The rules for the dartboard game in Section II.A when applied

to this vector space lead to an appealing interpretation. In our
game of darts discussed above, each value along the vector in eq
3 corresponds to one specific component that dictates the
probability that the dart lands on a given axis. The same set of
rules when applied to eq 5 yields a game of darts with n
orthogonal dimensions where the probability of the dart landing
on an axis labeled as xi, is given by yi. However, since eq 5 also
represents some function, we can re-express this multidimen-
sional game of darts as being played on a two-dimensional
coordinate system (see Figure 1), where every throw of the dart
can land anywhere along the horizontal axis, with the probability
of a given throw landing on a specific point along the horizontal
axis being given by the square of the vertical axis value at that
point as shown in Figure 1! This leads us to a natural
interpretation that appears similar to a Monte Carlo problem.

III. FUNCTIONS IN FOURIER SPACE LEAD TO
COMPLEMENTARY FOURIER DARTBOARDS

Now, consider two real functions: cos(kx) and sin(mx), such
that k and m are integers. Since we’ve established above that we
can treat these functions as vectors, as in eq 5, that is
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i

k

jjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzz

kx

kx

kx

kx

cos( )

cos( )

cos( )

cos( )n

1

2

(6)

and similarly

i

k

jjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzz

mx

mx

mx

mx

sin( )

sin( )

sin( )

sin( )n

1

2

(7)

we can then express the dot product of these vectors as a sum of
products; that is

x kx mxd cos( )sin( )
(8)

which is identically zero. Thus, we may say that the sine and
cosine functions are essentially vectors that are orthogonal to
each other. A similar statement can be made for any two Cosine
or any two Sine functions as well, that is

=x kx mxd cos( )cos( ) k m, (9)

and

=x kx mxd sin( )sin( ) k m, (10)

where δk,m is the Kroneckar delta function. As a result, we may
use a family of Sine and Cosine functions, with different values
for k and m in eqs 6 and 7, to create an n-dimensional vector
space where each axis is labeled using eq 6 or 7. For example,
cos(x) and cos(2x) define a 2D vector space. If we add a third
function, such as cos(3x), we have a three-dimensional space
since cos(3x) is orthogonal to both cos(x) and cos(2x) and so
on. With n such functions, we have now created an n-
dimensional space, and as we let n → ∞, we have an infinite-
dimensional vector space. Thus, in a manner that is
complementary to eq 5, we may express any function as a linear
combination of the vectors that make up our new infinite
dimensional basis, which are the sinusoidal functions in the form
cos(kx) and sin(kx), where k :

= [ + ]
=

f x A k x B k x( ) cos( ) sin( )
i

i i i i
0 (11)

or to present this in a fashion complementary to eq 5:

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

A

A

A

B

B

B

n

n

0

1

0

1

(12)

which exemplifies the many findings we just made. The
coefficients {An; Bn} are evaluated by using the “dot” product:

=A x f x mxd ( )cos( )m (13)

As f(x) is made up of a certain amount of each wave, and we have
shown that these waves are independent of one another (their
dot product is 0), taking the dot product of f(x) and one wave
component, cos(nx) or sin(nx), will yield a numerical value
corresponding to the amount of that wave in f(x).

III.A. A Complementary N-Dimensional Dartboard in
Fourier Space. The rules for our game of darts discussed in
Section II.A when applied to eq 5 led to a Monte Carlo
interpretation in Section II.B. But we may apply the same rules
to eq 12 as represented by Figure 2. Based on “Rule 4” above,

this leads to the interpretation that the probability of the dart
landing on any given axis of our new basis space (or any given
point in the horizontal axis of Figure 2) is dictated by the extent
to which a specific frequency captured by the sine or cosine wave
is present in the function. Thus, rather than having just two axes
(the “dead” and “alive” axes from the first example), in Section
II.B and here, we now have an infinite number of orthogonal
axes. Each axis is labeled here by a wave�specifically, its
frequency. A point in this space, like in the first example, is
simply a linear combination of these axes. From the discussion of
Fourier components, we know that every function can be
uniquely represented in this space.
For example, given the function

= + +f x a x b x c x( ) cos( ) cos(2 ) sin(5 ) (14)

the probability of our dart throw landing along the cos(x) axis, or
at a point with ki = 1 in Figure 2, would be

+ +
a

a b c

2

2 2 2 . Similarly,
the probability of our dart throw landing along the cos(x) axis, or
at a point with ki = 2 in Figure 2, would be

+ +
b

a b c

2

2 2 2 , and so on.

Figure 1. An alternative image of the dartboard problem for eq 5. The
probability of a dart landing at xi is proportional to yi.

Figure 2. Dartboard problem for eq 12. The probability of a dart
landing at ki is proportional to Ai. A similar figure may be constructed
for the Sine functions.
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Notice how in the cat scenario the calculation of the
probabilities for landing on a specific axis is the same as the
calculation above. The “alive” probability would be

+

2

2 2 , and

the “dead” probability would be
+

2

2 2 . However, due to the

normalization condition, where α2 + β2 = 1, this simplifies to α2

and β2, respectively.

IV. THE UNCERTAINTY DILEMMA BETWEEN THESE
COMPLEMENTARY DARTBOARDS

Let us go back to Figure 1 and imagine that our function f(x),
represented by eq 5, is an exact Cosine wave, say cos(x). In such
a situation, eq 12 would have exactly one value, A1 = 1, and all
other values in eq 12 would be identically zero. Consequently,
while Figure 1 would display a wave with a single frequency,
where the dart may land anywhere along the horizontal axis, the
complementary form of Figure 2 would yield a single peak at k1 =
1, zero everywhere else, thus yielding a probability of “1” that the
dart lands at one precise point. Thus, while the outcome of every
throw of a dart is precisely dictated, with certainty in Figure 2, the
corresponding outcome of a single throw of darts may land anywhere
along the horizontal axis in Figure 1 and hence is uncertain!
Of course the description above is general and does not really

only apply to quantummechanics. But if we were equipped with
de Broglie’s wave−particle duality, where the momentum of a
particle is dictated by the frequency associated with its wave-
nature, it is clear from the above discussion that the function
cos(x) has a precisely defined momentum. However, given that
the game of darts in Figure 1 may land anywhere along the
horizontal axis, the corresponding position is infinitely
uncertain! Thus, one may say that using the game of darts, we
have picturized in Figure 2 amomentum space, and in Figure 1, a
complementary position space. But our development above did
not need the principles of quantum mechanics and is hence
expected to be more general. Indeed, it is well-known that a
similar time−frequency uncertainty exists in signal processing.12

V. SCHRÖDINGER’S CAT AS A QUBIT, DARTS AS
MEASUREMENTS

Now, let us move on to the connection to the quantum bits.
Quantum bits, also known as qubits, are similar to the
Schrödinger’s cat dartboard example that we began with earlier.
This time, instead of our two states being “dead” and “alive”, we
label the states as |0⟩ and |1⟩, which are again defined to be
orthogonal to each other as before. If we define |0⟩ along the
horizontal axis and |1⟩ along the vertical axis, then our qubit is
similar to our cat-state from Section II. We can express it in an
analogous fashion as in eq 2, and

| = | + |0 1 (15)

where |ψ⟩ represents a qubit state with components α and β
which dictate the probabilities of “collapsing” the state to the |0⟩
and |1⟩ directions, respectively, exactly as in the game of darts.
Note how qubits differ from standard bits. Standard bits can

only be 0 or 1. Qubits, on the other hand, can exist in a
superposition, as in eq 15. However, when measured, equivalent
to our earlier dart throws, these qubits collapse to a |0⟩ or |1⟩
state.
Now consider two qubits. Since these can both independently

reside on their respective |0⟩ and |1⟩ states, the two-qubit system
is a four-dimensional space with axes labeled as |00⟩, |01⟩, |10⟩,
and |11⟩. How would we be able to express this pair of qubits?

The key is in recognizing that these four states are similar to (a)
the |0⟩ and |1⟩ states for a single qubit, (b) the basis states for the
function in eq 5, and (c) the states in eqs 11 and 12, that is, the
states |00⟩, |01⟩, |10⟩, and |11⟩ are orthogonal. Four orthogonal
states implies a four-dimensional space, and a state

| = | + | + | + |q q q q q00 01 10 1100 01 10 11 (16)

is a point in this four dimensional space. Again, all of our
discussion on the dartboards applies to this state. The square of
the coefficients, as usual, corresponds to the probability of the
pair of qubits collapsing to one specific dimension in this four-
dimensional space. But, upon adding an extra qubit, we have an
expanded game of darts. If we were to add a third then we have
eight different possible basis states and in general we have 2N
orthogonal dimensions for N-qubits. In this fashion, the
complexity and the ability to store (and process) information
grows exponentially from a family of qubits.
Wemay also construct an analogy between eq 16 and the state

corresponding to two cats that may be independently “dead” or
“alive”. Thus

| = | + |

+ | + |

cats q alive alive q alive dead

q dead alive q dead dead

2 alive alive alive dead

dead alive dead dead

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

(17)

where for example the probability of recovering both cats as
living is proportional to |qalive d1alived2

|2.

VI. BELL STATES USING “ENTANGLED” DARTS
We now introduce a sophisticated concept in quantum
information known as entanglement, which is used in the
context of quantum teleportation. We developed a dartboard
analogue to this concept. For this we first introduce a Bell state2

which is created from a subset of the four vectors in eq 16,
namely

| = [| + | ]q
1
2

00 11B (18)

Thus, by comparison with eq 17, when cat-1 is recovered to be
alive, this is also the case for cat-2 and vice versa. Thus, in some
sense, the outcomes of the throw of darts corresponding to the
two cats have not become “entangled”. That is, the outcome
from the first dart throw also dictates and influences the second
dart. A quantum circuit that creates such a state is shown in
Figure 3. How does one create a picture of this using our
dartboard analogy?
Let us imagine two darts that, as we will discover, behave in a

very peculiar fashion. The two wires in Figure 3 represent the

Figure 3. A quantum circuit to create the Bell state in eq 18. An initial
state, |0⟩ ⊗ |0⟩, is propagated through a Hadamard transform of qubit

one to yield{ }[| + | ] |0 1 01
2

. Following this, application of a

CNOT gate yields the state shown in eq 18.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c04262
J. Phys. Chem. A 2023, 127, 7853−7857

7856

https://pubs.acs.org/doi/10.1021/acs.jpca.3c04262?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04262?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04262?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04262?fig=fig3&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c04262?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


two different dartboards where these darts are supposed to land.
We will also assume, as done in eq 17, that there exist two cats
whose lives are influenced by the outcome from these two darts
and their respective boards. Dartboard-1, the top wire in Figure
3, is preprocessed through a transformation given by the
Hadamard transform H in Figure 3. This Hadamard transform
simply rotates the state that dictates the dart landing
probabilities for Dartboard-1 by 45°. So our Dartboard-1 will
now present dart-1 with equal probabilities of landing along the
horizontal and vertical axis. Thus, in a sense, going back to our
cat states in eq 2, the Hadamard transform has created a state
that looks like [| ± | ]alive dead1

2
and notice then by

comparison with eq 2, that both α2 and β2 are equal. Thus,
after the Hadamard transform, Dart-1 is free to land on either
axis, with no bias.
Let us now presume that Dart-2 begins with a dartboard

where the dart throws are dictated by the probability, using the
cat-state analogy, α = 0 and β = 1. Thus, we know with certainty
that the state that dictates Dart-2 is, for example, the |0⟩ state, or
the cat represented here is, for example, |alive⟩with probability 1.
Thus, without influence from Dart-1, Dart-2 will always provide
an outcome where the cat is “alive”.
Now something very strange happens as a result of the

operation

in Figure 3. The two darts are not independent anymore. When
Dart-1 lands on the state |0⟩, that is, finds that the corresponding
cat is “alive”, Dart-2, dictated by the probabilities that control
Dartboard-2 discussed in the previous paragraph, recovers an
|alive⟩ or |0⟩ too. However, when Dart-1 lands on the state |1⟩,
that is, finds that the corresponding cat is “dead”, Dart-2
promptly f lips the probabilities in the state that dictates
Dartboard-2 and also recovers a |dead⟩ or |1⟩ state. Thus, the
behavior of Dart-2 is not independent from that of Dart-1, and
this property is called entanglement. This bizarre result is one of
the major hallmarks of quantum mechanics and is thought to be
central to a presumed advantage that a computer created from
the principles of quantum mechanics may have over those that
we currently use. We have attempted to reproduce this rather
bizarre result in our table-of-contents image on the first page of
this paper. At the center of this TOC image is the image from
Figure 3. On the left side is an illustration of a four-dimensional
object known as a tesseract. The two dartboards represent the
two qubits and are shown along orthogonal dimensions of the
tesseract. On the right side of the quantum circuit, we show two
“entangled” darts that control each other and perform the role of
themeasurement discussed above. This is a visual representation
of the entanglement process within our dartboard game
formulated here.

VII. CONCLUSION
We develop an approach to discuss the fundamental under-
pinnings of quantum mechanics and quantum computing using
the concept of dart throws onto the two axes of two-dimensional
space. The concept of qubits and measurement is related to
these dart throws, and the process, when generalized, yields
visual descriptions of uncertainty and Fourier transforms. We
follow the prescriptions of this game and develop a way to relate

these concepts to fundamental notions in quantum information
storage and processing, including analogues to quantum circuits
and Bell states.
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