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ABSTRACT: We describe a general formalism for quantum dynamics and show how this formalism subsumes several quantum
algorithms, including the Deutsch, Deutsch−Jozsa, Bernstein−Vazirani, Simon, and Shor algorithms as well as the conventional
approach to quantum dynamics based on tensor networks. The common framework exposes similarities among quantum algorithms
and natural quantum phenomena: we illustrate this connection by showing how the correlated behavior of protons in water wire
systems that are common in many biological and materials systems parallels the structure of Shor’s algorithm.

1. INTRODUCTION
The promise of solving complex problems efficiently using
quantum computing hardware and associated software is a
rapidly evolving research frontier.1−4 While we are in the very
early stages of this upcoming quantum revolution, there are a
diverse set of important scientific and technological areas that
may greatly benefit from such developments. One key quantum
algorithm that started this entire debate approximately 25 years
ago is Shor’s algorithm.5,6 Here, a quantum system can, in
principle, factorize large integers into prime factors using

N N N((log ) (log log )(log log log ))2 fast multiplications.5

Since this is exponentially faster than the traditional classical

approach, which requires e( )N N1.9(log ) (log log )1/3 2/3
operations,

the promise of a second quantum revolution was born.
Orthogonally, the sister fields of atomic andmolecular physics

and quantum chemistry have learned to wonder if atoms and
molecules store and propagate quantum information. While it
has been known that such “information” indeed evolves in time
as per the laws of quantum theory, one may also ask if chemical
reactions and chemical transformations are indeed algebraic
transformations that “compute” new information not dissimilar
from quantum algorithms. That is, is the time evolution of a
molecular process to be interpreted as a computational protocol
that is “programmed” by nature or through clever use of
synthetic techniques? However, the study of molecular
dynamics is complicated by the fact that molecules contain

many correlated degrees of freedom. For example, with
degrees of freedom and basis representation per degree of
freedom, the complexity of information grows approximately as

. As a result, quantum chemical dynamics is thought to be
exponentially hard.
To alleviate this rather catastrophic situation, tensor networks

(TNs)7,8 have recently become popular. Tensor networks have
roots in the tensor decomposition field of multilinear algebra,9,10

are a general framework for data compression,11−14 and have
proven to be effective for efficient representation of many-body
quantum states in strongly correlated systems.7,15−25 While a
tensor network treatment adaptively truncates the Hilbert space
based on the intrinsic entanglement within the problem, given
the advent of novel quantum computing algorithms, tensor
networks have also proved to be a natural resource for
developing new quantum algorithms.26−29 The approach has
been shown to have applications for low-energy states of local,
gapped Hamiltonians, which are characterized by satisfying a so-
called area law of entanglement.7,30,31 The introduction of the
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density matrix renormalization group (DMRG)32−35 was
perhaps the catalyst for the excitement in the TN methodology,
proving to be very useful for the simulation of one-dimensional
quantum lattices,36−39 electronic structure calculations,40−48

approximations to vibrational states,49−56 open-quantum
systems25,57,58 and image processing,11−14,59 and even machine
learning applications.60−62

In this paper, we cast the basic structure present in a family of
quantum algorithms that includes Shor’s algorithm in an abstract
fashion using the language of tensor networks.7 This
presentation exposes parallels to more general quantum
processes that occur in multidimensional quantum dynam-
ics63−71 and in quantum dynamics of open systems57,72−82 that
are of significance to many chemical, biological, and materials
problems. Hence, we will then show how such an abstraction
applies directly to many natural and synthetic chemical
processes, thus drawing a connection between existing quantum
algorithms and chemical and natural processes.83−87 At the end
of this exposition, we are forced to ask if natural processes exist
that may represent mathematically constructed, number-
theoretic algorithms.
Given this overarching theme, this paper is organized as

follows. In Section 2, we review the textbook presentation of
Shor’s algorithm and generalize it in Section 3, using tensor
networks to arbitrary multipartite systems. The formalism used
in that generalization leads to our central result in Section 4,
which derives the correspondence to generalized Shor-like
circuits applicable to general quantum chemical dynamics
problems. In Section 5, we exploit it to show that multidimen-
sional quantum dynamics in protonated water clusters such as
wire systems that are present in many biological ion channels
and enzyme active sites and are also the subject of several state-
of-the-art experimental88−91 and multidimensional correlated
quantum dynamics studies92−94 can be mapped to the circuit
model exhibiting the same structure as the family of quantum
algorithms under study. Section 6 concludes.

2. QUANTUM ALGORITHMS
Most quantum algorithms that are thought to be exponentially
faster than their best-known classical counterparts are
algorithms for solving instances of hidden subgroup problems.
This family of algorithms includes the textbook quantum
algorithms of Deutsch, Deutsch−Jozsa, Bernstein−Vazirani,
Simon, and Shor95−102 and are all solved using the same
approach illustrated in Figure 1. All of the algorithms start by
creating an equal superposition of all relevant possibilities,
applying the Uf block to the superposition, and analyzing the
result using the quantum Fourier transform (QFT). The Uf
block, often called the “oracle,” is uniformly defined as

U x y x f x y( ) ( )f | | = | | (1)

for the specific function f of interest. The circuit template uses
the QFT uniformly as the last step, although�with the notable
exception of Shor’s algorithm�the low precision approximation
of QFT (which is the Hadamard gate103) is often sufficient.

2.1. Shor’s Algorithm.To be concrete, Figure 2 instantiates
the general template to the quantum circuit for an instance of
Shor’s algorithm for factoring the number N. In Stage (1), two
registers are prepared: the top (input) register of q qubits is
initialized to an equal superposition ii

1
2 0

2 1
q

q

|= . In the bottom

(output) register of m qubits, each qubit is initialized to |0⟩. In
Stage (2), the initial state,

l
mooo
nooo

|
}ooo
~ooo

i1
2

0
q

i 0

2 1q

| |
= (2)

is evolved through a reversible circuit that computes [ax (mod
N) ]. The resulting state is

i a N1
2

(mod )
q

i

i

0

2 1q

| |
= (3)

Equation 3 represents a highly entangled state. The degree to
which the two sets of registers above is entangled is probed by
computing the Schmidt number from a tensor network
decomposition of the unitary evolution operations that lead to
eq 3, as detailed in ref 104
At Stage (3), a measurement of the output register produces

some value w; this measurement collapses the input register to a
superposition of these states |i⟩ where ai (mod)N = w. Let the
number of those states be W; the input register state is then

i
W i

W1
0

1 |= for those states |i⟩ whose mapping by the function
ax (mod)N produces the same value w. Since the function
ax(mod)N is periodic, all of these states are guaranteed to be of
the form |a + ks⟩ for some starting offset a and somemultiple k of
the period s. Put differently, the state of the input register is

s
W

a ks
k

W s

0

( / ) 1

| +
= (4)

It is important to note that a different measurement w′ of the
output register would only change the starting offset a and the
total number of states W in the superposition, but it would not
change the period s. Critically, the QFT is largely insensitive to
the starting offset and the total number of states in the
superposition. Its main effect is to transform a superposition of
periodic states |a + ks⟩ to states in the Fourier basis |υ̃⟩ such that
υ is close to a multiple ofW/s. When the period s is a power of 2,
the Fourier states are perfectly aligned with the multiple ofW/s,
as shown by the formula below:

i

k
jjjjjj

y

{
zzzzzz

s
W

a ks
s

e sQFT
1

mW /
k

W s

m

s
i s ma

0

( / ) 1

0

1
(2 / )| + = |

= =
(5)

When the period is not a power of 2, the Fourier states with the
largest probabilities are the ones close to amultiple ofW/s. From
such a measurement, some classical postprocessing succeeds,
with high probability, in determining the period s and hence the
factors of the number N.

2.2. Factoring Examples.We illustrate the algorithm for N
= 15 and 21. In the first simpler example of factoring N = 15, we
proceed as follows. In a classical preprocessing step, we choose aFigure 1. Template circuit for hidden subgroup problems.
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value for a that is coprime with 15 (say 2), calculate the needed
number of qubits q = 4 and m = 4, and generate the modular
exponentiation circuit for f(x) = 2x mod15 using adders and
multipliers.105 The execution of the quantum circuit proceeds as
follows. The input register is initialized to the (unnormalized)
equal superposition of |0⟩ + |1⟩ + ··· + |15⟩. At barrier (2), the
two registers are entangled, producing the (unnormalized) state
|0⟩|1⟩ + |1⟩|2⟩ + |2⟩|4⟩ + |3⟩|8⟩ + |4⟩|1⟩ + ··· + |15⟩|8⟩. A
measurement of the output register may produce 1, 2, 4, or 8
with equal probability. Say wemeasure 4. The input register then
collapses to the (unnormalized) state |2⟩ + |6⟩ + |10⟩ + |14⟩. The
QFT of this state is |0̃⟩ + |4̃⟩ + |8̃⟩ + 12| . Say wemeasure 12| . By
properties of the QFT, we know that 12 is a multiple m of 16/s,
where s is the period we seek, i.e., 12m = 16/s or 12/16 = m/s.
The idea is that m/s is guaranteed to be a small irreducible
fraction that approximates 12/16. In this case, we get the exact
approximation 3/4, from which we infer that the period is 4.
From the period, we calculate the two factors of 15 using gcd(15,
as/2 ± 1), i.e., gcd(15, 3) = 3 and gcd(15, 5) = 5.
We follow the previous development with N = 21, a = 10, q =

5, and m = 5. At barrier (2), the (unnormalized) state is |0⟩|1⟩ +
|1⟩|10⟩ + |2⟩|16⟩ + |3⟩|13⟩ + |4⟩|4⟩ + |5⟩|19⟩ + |6⟩|1⟩ + ··· +
|31⟩|10⟩. Say we measure 13 at the output register. The input
register collapses to the (unnormalized) state |3⟩ + |9⟩ + ··· + |
27⟩. The QFT is not as perfect this time. We get the following
distribution:

• |0̃⟩,
Ù
16| with probability 16%.

• |5̃⟩, Ù
11| , 21| , 27| with probability 11%.

• other states with negligible probabilities.

Say we measure 27| . We know that 27m is close to 32/s.
Equivalently, we are looking for a small irreducible fraction close
to 27/32. A classical calculation produces the approximation 5/
6, yielding the period 6. From the period, we calculate gcd(21,
103 + 1) = 7 and gcd(21, 103 − 1) = 3.

3. MULTIPARTITE QUANTUM DYNAMICS AS TENSOR
NETWORKS

The quantum algorithms of Section 2 and the tensor networks
approach share some apparent similarities. In both cases, the
systems are composed of multiple correlated parts that evolve
quantum mechanically in a system-dependent manner and are
interrogated using scenarios that measure one part of the system.
This measurement affects the remaining parts of the system,
whose spectral properties can then be inferred using the QFT. In
this section, we make this intuitive correspondence precise,
opening the door for richer connections between mathemati-
cally constructed algorithms and systems occurring in nature.
3.1. Multipartite Quantum Systems. We begin by

considering a multidimensional quantum system represented
asA⊕ B composed of two correlated parts,A and B. Here,A and
B can be multiple parts of a complex correlated quantum
system,63 or alternately, A⊕ B can together represent a complex
condensed-phase quantum dynamics problem,77,78 where it may

be more appropriate to refer to these as system and bath
variables. The development here includes both descriptions.
Such a system can be modeled in the tensor network formalism
using a family of orthogonal states that represent subsystem A,
referred to as {|ψi

A⟩}, that may be correlated to (or entangled
with) a family of mutually orthogonal states representing B and
referred to as {|ψi

B⟩}. The overall wave function is then written as
a tensor product, or correlated sum, of the two components,
namely,

C
i j

i j i
A

j
B

,
,| = | |

(6)

The coefficients Ci,j capture the degree to which the parts, A and
B, are correlated to each other. For example, when Ci,j is zero for
all but one value of i and j, then A and B are completely
decoupled, and a product approximation suffices. However,
when this is not the case, the degree to which A and B influence
each other is often important in physical systems. Another
popular example of eq 6 are the well-known Bell states6 for two-
qubit systems, which are a sum of product states,

1
2

0 1 1 0Bell
1| = [| | ± | | ]

(7)

or

1
2

0 0 1 1Bell
2| = [| | ± | | ]

(8)

Equation 6 may also be rewritten using the Schmidt
decomposition,7 as

i
i i

A
i
B| = | |

(9)

which is essentially a bipartite matrix product state (MPS)33

type tensor network7,32 decomposition and is usually obtained
by applying a sequence of singular value decomposition steps on
the Tucker-form7,106 of the entangled states in eq 6. Such states
are common in quantum dynamics,43,49,55,56,68,107 electronic
structure,32−35,43,108 and more recently, in quantum comput-
ing,26 where the degree of correlation or entanglement between
parts A and B are gauged using the {αi}-values. For the so-called
maximally entangled states (such as Bell states and the
Greenberger−Horne−Zeilinger (GHZ) states), αi is a constant
value for all i. (Compare eq 9 with eqs 7 and 8.) In quantum
chemical dynamics, such highly correlated states are not
common, and in general, the αi-values may decay in some
fashion when the sets of states {|ψi

A⟩} and {|ψi
B⟩} are

appropriately ordered.
For a system containing separate parts labeled as Aγ,

1= ··· , one may write the overall wave function in a form
similar to eq 6:

C
i j

i j i
A

j
A A

, ,
, , ,

1 2| = | | ···|
···

···
(10)

Figure 2. Quantum circuit for Shor’s algorithm.
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where Ci j, , ,··· is a rank- tensor and encodes the correlations
between the constituents, {Aγ}. In fact, eq 10 is the starting point
for the well-known multiconfigurational time-dependent Har-
tree (MCTDH) approach commonly used in multidimensional
quantum dynamics67,70,107 and vibrational spectroscopy.70,92

The matrix product state representation of eq 10, obtained from
a sequence of bipartite singular value decomposition steps,
yields the MPS state

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

l
m
ooo
n
ooo

|
}
ooo
~
ooo

i
i
A

i i i
A

i i i
A

i
i i

A
i i
A

i
A

,

1

1

1

2

,

1

1

1 1 2

2

2 1 1

1

1

1 1

| = | | ··· |

= | | |
= =

+
(11)

where the coefficients {βi dγ
} take on a generalization of the αi in

eq 9 and capture entanglement in a system with parts.
3.2. Time Evolution of Multipartite Quantum Systems.

InA⊕ B systems occurring in quantum dynamics and electron−
nuclear dynamics, we are often interested in learning about the
influence of each part on the other. Toward this goal, without
loss of generality, we begin by introducing an initial state of theA
⊕ B system that is an uncorrelated bipartite simplification of eq
9, that is,

A B
0 0 0| = | | (12)

The time evolution of the state |ψ0⟩ is given using a unitary
evolution operator,

A B
0 0 0| = | | (13)

which may be further explicated by writing the time-evolution
operator texp / as a correlated matrix product
operator7,41,109,110 or a tensor product operator,

A B=
(14)

where, again, the multiple parts of the system are coupled by the
overall Hamiltonian (and the time-evolution operator). Thus,

A A B B A B
0 0 0| = [ | ][ | ] = | |

(15)

The structure of the Hamiltonian and the associated time-
evolution operator result in the system correlations that are
captured within the time-evolution process. This is represented
by the sum of product states on the right side of eq 15. It must be
noted here that while is required to be unitary, in general, no
such restrictions are present on ;A B{ }. This implies that
while |ϕα

A⟩ and |ϕα
B⟩ may not, in general, be normalized, the

overall propagated state is always normalized. For most physical
systems, has an explicit time dependence and is given by the
exponential of a Hermitian operator as noted above, and hence
(|ϕα

A⟩; |ϕα
B⟩) → (|ϕα

A(t)⟩; |ϕα
B(t)⟩). In such cases, the nonunitary

nature of ;A B{ }, combined with the unitary nature of ,
yields a flow of probability between parts A and B. When only
one term is present on the right side of eq 14, the two partsA and
B are uncorrelated, and in such cases, |ϕα

A(t) ⟩ and |ϕα
B(t) ⟩

remain individually normalized, and there is no flow of
information between the two parts.
Since the input states for each part of the system may be

chosen from a complete set of states, {|ψi
A⟩} and {|ψi

B⟩}, we may
expand the final states, |ϕα

A⟩ and |ϕα
B⟩, using these as basis

functions to obtain the general form of the composite state after
time evolution as
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j
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j j
j
A

j
B

j
A

j
B

0
, ,

,

, ,

| = | |

= | |
(16)

where cj
A

j
A A A,

0= | | , and similarly for cjB,α. Thus, it is the
coefficient tensor,∑α cjA,α cj′B,α that builds in the correlations in eq
6 and is obtained here through time evolution by . At this
stage, the two parts of the system are completely correlated to
the extent allowed by the propagator . In fact, the extent of
such a correlation may be precisely defined by the number of
elements in the summation in eqs 14 and 16.

3.3. Final-State Analysis. At this stage in quantum
chemical dynamics,111 there are several analysis techniques
available to gauge correlations within eq 16. There are two basic
types of questions asked of the propagated state in eq 16. In one
case, it is of interest to directly Fourier transform eq 16 in the
time domain since these now provide the spectroscopic
signatures of the Hamiltonian and, hence, the eigenspectrum
of the Hamiltonian that governs the dynamics. This is common
when only a few degrees of freedom are involved and tends to
become prohibitive when the number of dimensions grow.
Second, along the lines of the topic here, one is often interested
in how the subsystem A evolves and is coupled to the properties
of subsystem B. In a system-bath context, subsystem B may be
considered as the bath degrees of freedom, whereas in a
multidimensional quantum system or a reactive problem,
subsystem B may contain modes that facilitate a chemical
process or transition. This is a general problem and includes
both condensed-phase quantum dynamics as well as electron−
nuclear dynamics. It may also include chemical and biological
sensing phenomena as signified by molecular binding processes.
Correspondingly, we project eq 16 onto a specific bath state

|ψk
B⟩, which is akin to performing a measurement on the bath

state, to yield
Ä
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c
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k
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0
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,

| | = |

= |
(17)

which represents the state after measurement on the bath state,
with the measurement outcome
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[| |{ | | }] = [| | | | ]

= * * {| |}

= *| |
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†

(18)
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Thus, while the result of measurement is the net probability of eq
16 along |ψk

B⟩, that is eq 18, the remaining state is as in eq 17. A
large number of such measurements on the bath state will yield
various outcomes

Tr ;j
B

j
B

0
2{ [| | | | ] | } (19)

where each outcome, j
B

0
2| | | | , for bath state, |ψj

B⟩, is
accompanied by the system remaining in the state given in eq 17.
In this manner, multiple measurements of B yield multiple states
for A. Fourier transform of each of these yield,
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c c cFT FT
j

j
A

k
B

j
A

k
B A, , ,| = |

(20)

essentially the state of A, and the degree of coupling, or
entanglement, between the system (A) and bath (B) state as
originally captured by eq 9. Equations 19 and 20 are critical to
multiple areas of metrology in physical and biological sciences.
In each case, the interpretation of systems A and B may be
different. In sensing, an analyte might bind to system B, which
collapses the system, and its Fourier transform (or a linear
transform) may provide information about the analyte binding
to B. Similar aspects exist in condensed-phase quantum
dynamics and chemical catalysis as well.
3.4. Generalized Phase Kickback. In eq 18, part B is

measured by using the same basis, {|ψk
B⟩}, as that used for the

original propagation. Suppose this was not the case and the
measurement was done using a specific ket, |χkB⟩ from within a
different basis {|χiB⟩} where

di
B

j
i j
B

j
B

,| = |
(21)

and di,jB = ⟨ψj
B|χiB⟩. In that case, eq 17, takes on a more general

form:
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Equation 23, as we show below, represents a generalized form
of the phase kickback property, which is commonly seen in
quantum information.6 This can be illustrated by considering
eqs 7 and 8 as our propagated states, 0| . That is, to make a
connection between the abstract tensor network formalism and
qubits:

0 ; 1i
A A A{| } {| | } (24)

and similarly for B. Furthermore,

;0 Bell
1

Bell
2{ | } {| | } (25)

The measurement basis for phase kickback is chosen as

;i
B B B{ { + } (26)

and therefore d 1/ 2i j
B
, = ± for all i,j. (See eq 21.) In that case,

as per eq 23, when measurement is constructed using | ± B⟩, one
finds

1
2

1
1
2

0B A A
Bell
1+ | = | ± |

(27)

and
1
2

1
1
2

0B A A
Bell
1| = | |

(28)

That is, system A is rotated onto the X basis as a result of this
measurement, or the phase angle in ⟨+B|is “kicked” into state A,
upon measurement. Likewise,

1
2

0
1
2

1B A A
Bell
2+ | = | ± |

(29)

and similarly ⟨−B|ψBell
2 ⟩.

These features are captured in a general way within eqs 22 and
23, where the appropriate generalization of the phase kickback is
in the terms dk,j′B * ≡ ⟨χkB|ψj′

B⟩ that represent the components of
the measurement basis of B with respect to the initial basis and
also the additional basis components that are “kicked-back” into
system A, as per eq 22, after measurement on B.
The broader implications of eqs 22 and 23 are as follows: if we

consider a general system containing two entangled parts, with
the degree of entanglement dictated by a unitary evolution
operator and hence an underlying Hamiltonian, a measurement
or projection on one part, chosen as A here, is also noted in B.
Thus, in some sense, B can “sense” the projection in A, but the
extent of such a sensing process is dictated by the extent of
entanglement present within 0| in eq 16. For the Bell state,
the information is directly transferred, whereas for the state in eq
22, the measurement information is convoluted with the extent
of entanglement.

4. CIRCUIT MODEL FOR MULTIPARTITE QUANTUM
DYNAMICS

The development in the previous section can be recast in the
circuit model to make the parallels with Shor’s algorithm more
explicit. We begin with Figure 3, which provides an instance of

the general formalism as a quantum circuit closely relating to the
description of Shor’s algorithm in Section 2. Specifically, the
initial state in eq 12 is chosen to be a direct product state and
represents Stage (1) in Figure 3. (Compare eqs 2 and 12.) It
must be noted that this initial state, depicted at the end of Stage
(1) in Figure 2, was obtained from a set of Hadamard transforms
that essentially provide equal weights to all components of the
computational basis embedded within the first wire stream of
Figure 2.

Figure 3. Quantum circuit version of bipartite quantum chemical
dynamics problems. Beyond stage 3, the measurement box “??” signifies
the fact that based on different measurements, connections between
known quantum algorithms and chemical dynamics problems can be
established.
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Thus, equivalently, A in Figure 3 may be entangled at Stage
(1), but importantly, A and B are uncorrelated at this initial
stage, and in this sense, eq 12 resembles the initial state for all of
the quantum algorithms shown above. This state is then time-
evolved as dictated by eq 14, leading to eqs 15 and 16, and is
represented as Stage (2) in Figure 3. Similarly, theUf operator in
Figure 2 plays the same role as the propagator in Figure 3 and
presents a correlated (or entangled) state, given by eq 3 and
represented at Stage (2) in Figure 2. Following this time
evolution leading to eqs 15 and 16, a measurement is
constructed in all scenarios. We have presented only the
analogue to Shor in Figure 3, complemented by the discussion in
Section 3.3. The resultant state in Figure 3, given by eq 17, now
represents a general and abstract interpretation of the resultant
state of Shor’s algorithm at Stage (3), prior to the QFT step.
The next step, as per Figures 2 and 3, is a Fourier transform of

the state of the system, A, as described by eqs 19 and 20, which
yields the momentum representation of the resultant state in
subsystem A. In a sense, this also presents a more abstract form
of the output from the top wire in Figure 2, and one may be
induced to ask if we indeed obtain a similar “momentum
representation” for the states captured in the top wire (natural
numbers) in Figure 2. Thus, at the end of this process, if the
Hamiltonian represented within the propagator in eq 14 (or in
Shor’s algorithm) entangles the A and B dimensions, then a
measurement of B projects it onto a specific state. Following this,
a Fourier transform of A yields the momentum representation
and, in fact, the power spectrum of A for the specific projection
of B.
Such a Fourier transform captures the entanglement within

the composite A ⊕ B supersystem by probing the Fourier space
structure of one part of the supersystem, namely, systemA, for all
possible measurement outcomes of system B (assuming that
multiple measurements are done on B). For the specific choice
of unitary in Shor’s algorithm, this Fourier spectrum of A is
always the same for any measurement of B. This may not, of
course, be the case for naturally occurring or physicochemical
systems.
Finally, we note a set of problems that may benefit from the

analysis above. We will explore these connections in detail in
future publications. Equation 6 resembles the total nonadiabatic
electron−nuclear wave function112−115 for molecular systems
and may be written as an expansion in the complete set of
electronic wave functions with the coefficients being functions of
nuclear coordinates.113 In multidimensional correlation spec-
troscopy,116 vibrational mode coupling may be studied using
similar partitioning schemes as in eq 6, where bath variables
influence the dynamics of a chosen system. In fact, the example
chosen in the next section is related to problems in
multidimensional correlation spectroscopy.117 In chemical
catalysis, ligands that surround an active site may influence the
reactive process. Such ideas are commonly used in catalyst
design.118 In chemical sensing of atmospheric and biological
analytes, a perturbation to part A through a chemical binding
process may result in a change in the state of B, given the extent
of correlation in eq 6. In all such cases, one is always interested in
the role that, for example, subsystem B in eq 6 plays in
influencing the state of the remaining parts that are enclosed
within A. The resulting analysis allows one to probe the
correlations between subsystems A and B and has numerous
practical applications in the set of examples.

5. APPLICATIONS: PROTONATED WATER WIRE
SYSTEMS

We now exploit the formalism presented above to explore
parallels between quantum algorithms and natural phenomena
in physical, chemical, and biological systems.
Protonated water wires such as those in Figure 4a,b are

encountered in a large variety of biological ion channels,

catalytic sites, light-harvesting systems, and fuel cells and form
the central part of many condensed-phase chemical processes.
Such systems are found in confined media such as ion channels.
Quantum effects play a critical role in contributing to the rate of
proton transport119,120 and in determining vibrational proper-
ties.88,121

5.1. Coupled Stretch Modes in Protonated Water
Dimer. In this section, we provide a tensor network description
of such protonated systems, beginning with the simple case of
two protons and extending to a longer water wire chain of
multiple shared protons.
We begin with an analysis of the two shared proton

dimensions marked as R1 and R2 in Figure 4b. Using the
Schmidt decomposition,7 the wave function for this two-
dimensional system may be written as

x x x x( , ) ( ) ( )
i

i i i1 2
1

1
2

2=
(30)

Here, {ψi
1(x1)} represents a family of functions that depicts the

distribution of dimension R1; this family is coupled to the family
of functions, {ψi

2(x2)} that depicts the distribution of dimension
R2. Additionally, ⟨ψi

1|ψj
1⟩ = ⟨ψi

2|ψj
2⟩ = δi,j and thus these functions

form an independent orthonormal basis for the two separate
dimensions. For a (H2O)3H+ water wire subsystem with degrees
of freedom R1 and R2, the wave function components are
calculated as shown in Figure 5a,b.
Several techniques can be used to investigate such systems. A

basic one is to perform ameasurement on one of the dimensions,
say R1. This interrogation could be done by projecting the
system onto a specific state of R1, say, ψk

1(x1). We then obtain

x x x x( ) ( , ) ( )k k k
1

1 1 2
2

2| = (31)

based on the orthogonality conditions stated above. The
associated measurement outcome is

k k
2 2 2| | (32)

and for k = 1, this quantity is close to 1, as indicated by the values
of {αi} provided in the caption for Figure 5.
More generally, we could also envision a more sophisticated

measurement where the interrogation could be performed using
the state x x x( ) 1/ 2 ( ) ( )1

1 1
1

1 2
1

1[ + ] leading to a final
state:

x x x x x( ) ( , )
1
2

( ) ( )1
1 1 2 1 1

2
2 2 2

2
2| = [ + ]

(33)

Figure 4. Protonated water wire with shared protons is treated
quantum mechanically along the grid dimensions shown.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00404
J. Chem. Theory Comput. 2023, 19, 6082−6092

6087

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00404?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00404?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00404?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00404?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00404?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In this case, the superposition in the interrogation state is
transferred to the outcome

1
2

0.51
2

1
2 2

2
2

2
2 2[| | + | | ]

(34)

In both interrogation scenarios, the measurement of one
dimension influenced the other. Thus, the form of the state in eq
30 has a significant impact on the result of the observation. If one
of the states that is already within the family included in eq 30 is
used as the measurement basis, the outcome is the
corresponding state within that family. However, when a
combination of states is used as the measurement basis, the
phase kickback mechanism causes the complex phase included
in this combination to make its appearance in the measured
outcome.
5.2. Coupled Stretch Modes in Protonated Water

Pentamer. In biological systems, the water wire described
above is often partially confined within an active site or inside an
ion channel, as illustrated in Figure 6. In this section, we analyze
an instance of such a system consisting of four degrees of
freedom.

Deferring the confinement modeling for a moment and
focusing on the four degrees of freedom, thematrix product state
for the coupled wave function has the form,

x x x x x x x

x

( , , , ) ( ) ( ) ( )

( )

i i i
i i i i i i i i

i

1 2 3 4
, ,

1
1

1
,

2
2

2
,

3
3

3

4
4

1 2 3
1 1 1 2 2 2 3 3

3

=

(35)

The quantities αi dj

j in the equation above represent weights for the
bond dimensions.

As we did in the previous section, we can model various
interrogation scenarios. We show the result of performing a
measurement on dimension R1. This reduces eq 35 to produce

x x x x x

x x x

( ) ( , , , )

( ) ( ) ( )
k

i i
k k i i i i i i

1
1 1 2 3 4

,

1
,

2
2

2
,

3
3

3 4
4

2 3
2 2 2 3 3 3

|

=
(36)

and the corresponding measurement outcome is simply the
magnitude of the vector in eq 36:

x x x x x x x x x x( , , , ) ( ) ( ) ( , , , )k k1 2 3 4
1

1
1

1 1 2 3 4| | (37)

This simple analysis ignored the fact that in most biological
systems (especially ion channels as well as enzyme active sites),
the water molecules that encapsulate dimensions R2 and R3 have
a limited degree of flexibility. This results in a limited degree of
projection of dimensions R2 and R3 into, for example, a subspace
given by

x x x x( , ) ( ) ( )k
i i

i i k i i i2 3
,

, ,
2

2 ,
3

3

2 3

2 3 2 2 3
(38)

Note that such a state is not dissimilar to the measurement basis
state used in the phase kickback scenario at the end of Section 3
and reduces the possible outcomes for x4. Thus, after projection
of eq 38 onto eq 36, we obtain

x( ) ( )
i i

i i k i i i
,

,
1 2 3 4

4

2 3

2 3 2 3 3
(39)

where the bracketed set acts as a combined coefficient that
curtails the set of possibilities for x4. Thus, based on the extent of
flexibility provided by the restrictions to βi d2,i d3

, there are a range of
possible outcomes at the far end depicted by x4.
This idea can be generalized for an arbitrary number of

degrees of freedom, where, using eq 39, we may write our final
result as

x( ) ( )
i i

i i k i i
N

i
N

N
, ,

, ,
1 2 1

N

N N N

2 1

2 1 2 1 1
···

···
···

(40)

5.3. Circuit Model for Protonated Water Wire.We now
analyze the results from the two sections above using the
quantum circuit model. The quantum circuits thus derived are
based on Figure 3 and are presented in Figures 7 and 8. As
discussed in Section 4, all parts of both systems are correlated at
the end of Stage (2) with wave functions given by eqs 30 and 35.
In the case of the protonated water dimer, a measurement along
dimension R1 follows, resulting in the projected state given by eq

Figure 5. Figures (a) and (b) show functions {ψi
1(x1)} and {ψi

2(x2)} that form the state in eq 30, where α1 = 0.9987, α2 = 0.0502, and α3 = 0.0022.
When measured with ψ1

1(x2), one obtains Figure (c), with probability given by eq 31.

Figure 6. Water wire is confined within the Gramicidin ion channel.
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31 at Stage (3), with the measurement probability given by eq
32.
The protonated pentamer problem is complicated due to the

phase kickback step resulting from basis rotations (eq 39 on the
(R2, R3) degrees of freedom, as shown in Figure 8). Specifically,
the correlated state at Stage (2) given by eq 35 undergoes
measurements at R1, with the outcome, eq 37, where the
corresponding resultant state is then projected onto a rotated
basis within dimensions R2 and R3, given by eq 38 to arrive at
Stage (3) at the state given by eq 39. Thus, Figures 7 and 8,
through the discussion accompanying Figure 3, provide a
detailed analogue to the Shor algorithm in Figure 2 by way of an
abstract formalism presented in Section 3.

6. CONCLUSIONS
In this article, we have developed an abstract formalism of tensor
network-based quantum dynamics applicable broadly for all
quantum systems, and we discuss how this general idea captures
the key signatures within the well-known Shor’s algorithm as
well as other well-known quantum algorithms. In essence, for a

general bipartite system, unitary evolution encodes within the
evolved state a characteristic correlation or entanglement that
bears the signature of the Hamiltonian that defines the evolution
operator. Thus, once we interrogate a specific part of a quantum
system, the remaining parts of that system automatically get
projected based on the extent of correlation that resides within
the system, and this is borne out of measurement.
This close resemblance of the general formalism of quantum

propagation of multipartite systems and the symmetry of
integers as captured by Shor’s algorithm begs the rather
profound question of whether natural systems exist or can be
designed that may perform the operations that we might
interpret as prime-factoring. We do not dwell on this general
question in this article, but we ask the opposite question of
whether we can exploit this connection to analyze quantum
chemical dynamics. Indeed, we find that when we apply this
concept along with the generalized definition of phase kickback
as obtained from the tensor network description of Shor’s
algorithm and quantum dynamics described here, the coupled
dynamics of protons in a protonated water wire naturally lends
itself to a projected transport interpretation. We find that
projection of states at one end of a water wire, along with phase
kickback-like constrained operations along the length of the
water chain, provide a general description for proton transport
that is commensurate with our description of Shor’s algorithm.
Future publications are currently planned to exploit this analogy
to probe electron−nuclear dynamics in the nonadiabatic setting.
Furthermore, given that the surrounding vibrational degrees of
freedom may be projected through phase kickback, as noted
here, to tailor the dynamics within one mode (R4 for the
protonated pentamer), perhaps chemical catalysis is another
area where these broad ideas may find application. These aspects
will be probed in future work.
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(20) Oruś, R. Tensor networks for complex quantum systems. Nat.
Rev. Phys. 2019, 1, 538−550.
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