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ABSTRACT: We present a graph-theory-based reformulation of
all ONIOM-based molecular fragmentation methods. We discuss
applications to (a) accurate post-Hartree−Fock AIMD that can be
conducted at DFT cost for medium-sized systems, (b) hybrid DFT
condensed-phase studies at the cost of pure density functionals, (c)
reduced cost on-the-fly large basis gas-phase AIMD and
condensed-phase studies, (d) post-Hartree−Fock-level potential
surfaces at DFT cost to obtain quantum nuclear effects, and (e)
novel transfer machine learning protocols derived from these
measures. Additionally, in previous work, the unifying strategy
discussed here has been used to construct new quantum
computing algorithms. Thus, we conclude that this reformulation
is robust and accurate.

1. INTRODUCTION
The accurate treatment of molecular properties often requires
the correlated treatment of the electronic and nuclear degrees
of freedom. However, even in the electronic structure, the size
of systems that can be considered by standard post-Hartree−
Fock approaches is strongly influenced by the intrinsic, steep,
algebraic computational scaling of electron correlation
methods as well as the number and quality of basis functions
needed. For the study of electron correlation in most
molecular systems, chemical accuracy may be achieved using
the well-known CCSD(T) method1 with an associated
computational cost that scales as N( )7 , where N represents
the number of electronic basis functions. The quantum
dynamical treatment of nuclei, on the other hand, is thought
to be exponentially complex.2−5 As a result, the correlated
study of molecular systems has several challenges. (a) The cost
associated with obtaining accurate electronic potential surfaces
needed to describe the nuclear degrees of freedom depends on
the number of nuclear configurations needed to represent the
potential surfaces; these may grow exponentially with the
number of nuclear dimensions,6−11 (b) the storage and action
of the operators such as the quantum propagator as well as
nuclear wavepackets also may grow exponentially with

dimensions,12−15 (c) the intrinsic electronic structure for
each nuclear configuration, as noted above, may itself be a
steeply algebraic computational task for most chemical
systems, and finally (d) as an intermediate, if classical
description of nuclear degrees of freedom is sufficient, as
would be the case of many chemical problems, even here the
number of electronic structure calculations needed along with
nuclear gradients becomes catastrophic as longer-time scale
dynamics becomes a requirement to model many chemical and
biological processes.
Despite algorithmic improvements for treating electron

correlation,16−21 the post-Hartree−Fock electronic structure
presents a significant challenge for systems of chemical interest.
Density functional theory has allowed us to bridge this gap but
significant challenges remain.22−24 The use of composite
electronic energy expressions has grown significantly recently
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and involves the treatment of local interactions with post-
Hartree−Fock methods.25−42 These are complementary to
many-body methods43−51 that have also greatly contributed
toward the development of reduced scaling methods.
In this paper, we focus on one family of molecular

fragmentation methods that use ONIOM-type52 corrections
to improve the computational scaling and accuracy of complex
electronic structure calculations. Such fragmentation methods
are closely connected to many-body treatment43,53,54 and local
correlation methods27,51,55,56 and include the multicentered
QM:QM formalism,38,57 the molecular tailoring approach
(MTA),58 ONIOM-XO,55 the molecules-in-molecules (MIM)
methodology,33,59−62 HMBI63,64 and the method of incre-
ments.65,66 The idea has been shown to be very powerful and
perhaps the most impact from these methods has been due to
Raghavachari’s MIM approach that has been used to compute
a variety of complex molecular properties including NMR
coupling constants,67,68 vibrational circular dichroism,69 and
protein−ligand binding interactions,70 at relatively low cost.
Here, we present an alternate reformulation of all ONIOM-

type molecular fragmentation methods and many-body
theories from a newly introduced graph-theoretic perspec-
tive,42,71−85 which allows us to derive new approaches for post-
Hartree−Fock ab initio molecular dynamics42,71−74 for gas-
and condensed-phase76,84 systems, computing high-quality
molecular potential surfaces for quantum nuclear dynam-
ics,75,78,79 efficient machine learning (ML) transfer learning
protocols,81,84 new algorithms for quantum computing,80,83,85

and new algorithms for performing quantum nuclear dynamics
with tensor networks.82 We briefly highlight some of these
aspects in this publication.
The article is organized as follows: In Section 2, we present

our graph-theory-based projection operator scheme, which
divides a molecular Hamiltonian into several fragment
Hamiltonians; critically, the projection provides an approx-
imate resolution of identity using a set-theoretic or graph-
theoretic procedure. Connections to the many-body theory are
discussed in Section 2.1, and connections to other
fragmentation procedures are described in Section 2.2. Studies
describing extended Lagrangian- and Born−Oppenheimer-
based molecular dynamics studies arising from the procedure
given in Section 2 are described in Section 4, applications to
molecular potential surfaces are provided in Section 3, and
finally, ML applications are provided in Section 5. Conclusions
are provided in Section 6.

2. GRAPH-THEORETIC DECOMPOSITION OF
MOLECULAR SPACE DECOMPOSITION AND
ASSOCIATED PROJECTION OPERATORS

We begin here with a set-theoretic decomposition of molecular
space.86 This approach is then adapted to a graph problem and
used to decompose arbitrary molecular systems into a family of
independent operations eventually leading to the many-body
approximation.
We begin with a Venn diagram that divides a coordinate

representation {|x⟩} into physical regions depicted here as A,
B, and C. For our purposes, this coordinate representation {|
x⟩} is essentially a basis representation of molecular space. We
could have equally well replaced {|x⟩} with an atom-centered
Gaussian basis set, which bears the signature of locality in
molecular space, but for simplicity, we will retain {|x⟩}. The
regions, A, B, and C, may have overlaps and in Figure 1, we
have superimposed the Venn diagram on a protonated water

cluster. The Venn diagram divides the system into regions that
may not, in general, be spatially orthogonal to each other, but
as we will see below, this does not present a problem.
We then use the principle of inclusion−exclusion86 from the

set theory to resolve the identity that composes the Hilbert
space, {|x⟩}, as depicted within the Venn diagram

| |

= | | + | |+ | | |

| | | | |

+ | |

= + + +

x x x

x x x x x x x x x x x

x x x x x x x

dx x x

I d

d d d d

d d

A B C

A B C A B

A C B C

A B C

A B C A B A C B C A B C
(1)

through integrals involving the dyadic terms, |x⟩⟨x|, with
domains within any chosen subset. Thus, we also introduce
projection operators

| |x x xdA
A (2)

for portions of the Hilbert space in eq 1. If atom-centered basis
sets were used here instead of the |x⟩ representation, this
would complicate the discussion a little, given the non-
orthogonality of atom-centered Gaussians. In that situation,
one may need to resort to a Löwdin87 or Cholesky88

representation and the resultant basis functions may be
considered to be some analogue of |x⟩.89
While eq 1 arises from the inclusion−exclusion in set

theory,86 an alternate approach is obtained by introducing a
graph decomposition of the molecular structure. To begin
with, a molecular assembly is partitioned into independent
units that will be treated as nodes or vertices used to create a
graph. These nodes may be determined based on chemical
intuition or through numerical protocols. First-order inter-
actions between these discrete units may be captured by
creating edges that connect these nodes and may be
considered as a union of atoms that are present within nodes.
Once the nodes and edges are defined, the system is

represented as a graph, an illustration of which is provided in
Figure 2.
The set of nodes described above is represented here as V0,

and the family of edges is represented as V1. Consequently,
these define a graph, { }V V;0 1 (see Figure 2). However,
now the graph also comprises higher order, rank-r objects,
known as simplexes.90−92 Simplexes are geometric objects with
an arbitrary number of vertices, where all pairs of vertices are

Figure 1. An illustration of the sets A, B, and C in (a) is superimposed
on a protonated water cluster (b) that is then used to construct eq 1.
A graph representation corresponding to (b) is shown in (c).
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connected.90−92 The set of such rank-r objects is represented
as Vr

{ | = ···} { ···}rV V V V0,1,2, , , ,r 0 1 2 (3)

and these capture higher-order interactions between the nodes.
An equivalent expression for the resolution of the identity in

eq 1 may now be obtained in terms of projectors that
encompass nodes, edges, and higher-order simplexes as

= + ···

=
=

I

( 1)
r

r r
r

V V V

V

0
,0

1
,1

2
,2

0
,

0 1 2

r

(4)

and here

[ ]
=

p( 1)r

m r

m r m,

(5)

The quantity pα
r,m is the number of times the αth rank-r term

(in set Vr) appears in all rank-m terms (in set Vm), for m ≥ r.
Thus, r is an overcounting correction for the number of
times the αth rank-r term appears in objects of rank greater
than or equal to r.
The parallels between eqs 4 and 1 may be explicated by

rewriting eq 4 in decreasing order of rank, that is

= {

+ + ···}

I ( 1)
V V

V V

,
1

, 1

2
, 2

3
, 3

1

2 3

(6)

where the appearance of alternating signs resembles that in eq
1. Additionally, for = 1, eq 6 becomes

= +I
V V

,1
0

,0

1 0 (7)

which, for the graph in Figure 1c, leads to an identical result as
in eq 1 but is easily applicable to more general situations such
as in Figure 2.
2.1. Many-Body Theory from Eqs 1 and 4. We now

begin with some molecular Hamiltonian that is represented
in the basis {|x⟩} and depicts the full molecular system, for
example, those in the figures above. However, the complexity
of such a system grows rapidly based on system size and this is
not only depicted by the linear increase in the number of basis

elements within {|x⟩} but also by the correlations captured
within , which increase in a steeply nonlinear and potentially
exponential manner. To overcome this issue, we may apply the
resolution of identity in eq 4 to (or that defined using the
set-theoretic expression in eq 1) to decompose into a family
of parallel systems given by

= [ ]

=

=

=

I ( 1)

( 1)

r

r r
r

r

r r
r

V

V

0
,

0
,

r

r (8)

where

{ }r r, , (9)

represent here a set of projected Hamiltonian, one for each
molecular subsystem obtained from the simplex (α,r) within
the graphical description. When a molecular system is divided
using the graph, the set { }r, yields one Hamiltonian for each
molecular fragment. This is illustrated in Figure 3.
We use the individual fragment molecular Hamiltonians,

{ }r, , or suitable approximations to these, to obtain a family
of fragment energies, for example, {Eα,r

CCSD}, that, when used in
eq 8, yields

Figure 2. Protonated water is represented as a graph that acts as a
distance-based truncation of many-body interactions.

Figure 3. Illustration of eqs 8 and 10. Using projection operators in
eq 8, the Hamiltonian, , is represented as a family of independent
fragment Hamiltonians, { }r, , and these are processed in parallel as
shown here.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c05630
J. Phys. Chem. A 2024, 128, 466−478

468

https://pubs.acs.org/doi/10.1021/acs.jpca.3c05630?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05630?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05630?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05630?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05630?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05630?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05630?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05630?fig=fig3&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c05630?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=
=

E E( 1)
r

r
r

r

V

graph CCSD

0
,

CCSD

r (10)

Equation 10 yields a stream of parallel computing processes
that are completely independent of each other that each
provides approximations to {Eα,r

CCSD}. This idea is presented in
Figure 3. Since these fragment Hamiltonians, { }r, , are for
much smaller as compared to the full system of interest, clearly,
the computational burden reduces substantially. This has
indeed been seen to be the case for several examples.
However, eq 10 is also closely related to the well-known

many-body expansions,43,45−48 which can be clarified by
writing out the appropriate form of eq 10 for = 1

= [ ]=E E E p p1
graph CCSD

edges
,1

nodes
,0

0,1 0,0

(11)

where pα
0,1 is the number of times the αth node (one-body

term) appears in all edges (or two-body interactions) and pα
0,0

is the number of times node α appears in all nodes, that is, pα
0,0

= 1. We may rewrite eq 11 as

= + [

]

=E E E

p E

1
graph CCSD

nodes
,0

edges
,1

nodes

0,1
,0

(12)

These are essentially a one-body term that sums over all
nodes

E E1 body
level,1

nodes
,0

(13)

and the two-body correction that is captured within the square-
bracketed terms, [···], in eq 12. However, eq 10 includes many-
body contributions to arbitrary orders as can be seen by
constructing a similar n-body analysis for three-body
interactions ( faces) where one may use = 2 to obtain

= + [

] + [

+ ]

=E E E

p E E

p E p E

2
graph CCSD

nodes
,0

edges
,1

nodes

0,1
,0

faces
,2

edges

1,2
,1

nodes

0,2
,0

(14)

As for the case of eq 12, the last square-bracketed term in eq
14 captures the two-body corrections. Thus, eq 10 provides an
adaptive MBE recipe to compute interactions to arbitrary order
through an efficient graph-theoretic decomposition. A critical,
and as yet unstated, underpinning of our graph-theoretic
formalism is that simplexes are closed convex hulls.90,91 Thus, a
higher rank simplex includes within it all components, lower-
rank simplexes. For example, a rank-3 simplex has to be a
tetrahedron and includes all four of its component triangles
(rank-2 simplexes). These prescriptions directly follow from
the fact that simplexes are closed convex hulls and the edges of
any rank-r simplex are affinely independent.92 A rank-r simplex
is constructed from the family linearly independent rank-1
simplexes (edges) {ui} as

=
=

S ur
i

r

i i
0 (15)

where == 1 and 0i
r

i i0 .
This implies that the choice of spatial envelope which

determines the maximum edge length within the graph is a way
to control the maximum rank object considered. The
requirement of simplexes being convex hulls is the single
critical aspect that allows the mapping of our approach to the
many-body theory. The absence of this situation will allow
higher-order many-body interactions that do not then properly
cancel the lower-order contributions and are not consistent
with the set-theoretic inclusion−exclusion principle and many-
body theory.42,86

2.2. Improving Accuracy of MBE through ONIOM-
Type Extrapolation. The description presented above
provides a dynamic and flexible representation of local many-
body interactions. We now discuss a composite energy
measure25,93−96 that has been shown to converge faster as a
function of maximum rank 62,76,79 for ground state post-
Hartree−Fock energies, AIMD trajectories, and multidimen-
sional potentials. The energetic measure we begin
with42,59,71−79,82 is a composite expression93−96 and consists
of an ONIOM-type25,52 correction to a result from a lower
level of theory

= +E E E Ex x( ) ( )extrap CCSD DFT graph CCSD graph DFT

(16)

where the term E graph CCSD is defined in eq 10 and E graph DFT is
similarly defined as

=
=

E E( 1)
r

r
r

r

V

graph DFT

0
,

DFT

r (17)

and hence

= +

= +

=

=

E E

E E

E E

x x

x

( ) ( ) ( 1)

( )

( ) ( 1)

r

r

r r
r

r

r
r

r

V

V

extrap CCSD DFT

0

,
CCSD

,
DFT

DFT

0
,

r

r

(18)

where

=E E Er r r, ,
CCSD

,
DFT

(19)

Thus, the algorithm here envisions spawning out a family of
computing processes, and this is shown in Figure 3. The
resultant final energy in eq 18 is closely related to multiple
ONIOM-based,29,38,52,55,56,59,97 molecular fragmentation meth-
ods27,29,32,40,41,47,48,51,98−104 of which MIM has proved to be
remarkably versatile for a wide range of applica-
tions,33,60−62,105,106 as well as developments in the many-
body theory.43,45−48,50,53,54,107−110 Equations 10, 16, and 17
have also been actively gas-phase and condensed-phase AIMD,
multidimensional potential energy surfaces,42,71−79 and also
provide new ways to construct training protocols in ML81 and
for obtaining new quantum computing algorithms.80,85
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Finally, it is useful in illustrating the behavior of r , which
makes its appearance in eqs 10 and 18. As noted above,
following eq 5, r is an overcounting correction for the
number of times the αth rank-r term appears in all objects of
rank greater than or equal to r. To illustrate this quantity, in
Table 1, we present the behavior of r for various fragments

as we increase in eqs 10 and 18 and also the maximum edge
length allowed for the creation of the graph. The graphical
representations that lead to these values are given in Figure 4.
Clearly, as the value of is increased, more and more many-
body interactions, beyond the closest bonding interactions, and
also longer-range weaker interactions are included within the
approximation and the value of r grows significantly.

3. MOLECULAR POTENTIAL SURFACES FROM EQ 16
In refs 42, 71−76, we have discussed the efficient evaluation of
correlation energy and basis-set extrapolation using the
formalism above, but the graphs that are defined based on
instantaneous molecular geometries connectivities may change
when atoms move during dynamics or potential energy surface
calculations. This may create singularities in potential surfaces
and in refs 75, 78, 82, a new approach is introduced to
compute potential surfaces using a weighted set of graphs. For
one geometry, multiple representations of eq 16 may be
considered depending on the graphical representation of the
system such that x̅ and together map to provide an estimate

for eq 16, E x( ),
extrap CCSD , that is

x E x( , ) ( ; ),
extrap CCSD

(20)

When considering a family of such graphical representations,
{ }, with respective maximum ranks, , the energy of the

system becomes a probabilistic sum over { }E x( ; ),
extrap CCSD .

The graphs considered can be thought of as “valence
bond”111−113 constructs or “diabatic states,”114−121 reminiscent
of nonadiabatic electronic structure theory.122 The energy of
the system from multiple graphs (or a single hyper graph91,123)
is obtained from a probabilistic sum

= ·E x x E x( ) ( ) ( ; ),
extrap CCSD

(21)

In refs 75, 78, and 82, we introduce a variational procedure
to obtain ρβ(R). Generalizations to multiple dimensions are
discussed in refs 78 and 82.

3.1. Computing Smooth Potentials in AIMD in a
Fashion Inspired by Eq 21. The use of dynamic and flexible
representations of local many-body interactions for the
computing of potential surfaces for AIMD is known to yield
discontinuities in energy and forces. This problem is quite
similar to that of the full potential energy surfaces but with the
caveat that the smoothing on the surfaces must be done on the
fly in a more adaptive manner following the dynamic evolution
of the molecular degrees of freedom during the trajectory. To
achieve such a dynamic smoothening of the potential energy
surface, one may obtain, just one would in eq 21, a family of
graphs { }. Each graph provides a different set of energy and
gradients, then this family of graphs are combined to obtain
the overall energy by

= +{ }
=

i

k
jjjjjjj
y

{
zzzzzzz

E E

E

x x x

x

( ) ( ) ( ) ( 1)

( )

r

r

r
r

V

,
DFT

0

, , ,
r (22)

where the square-bracketed term (···) is the substitution of eq
19 into eq 17. This combination of terms is added to the full-
system DFT leading to an equation analogous to eq 18, with
the distinction that the terms E x( )r, , and r

, now have
{ } dependence. This approach differs from eq 21 where the
energy of the system is a probabilistic sum over multiple
fragmentation topologies (or graphs); eq 22, by contrast, uses
a numerical weighting scheme to obtain smooth energies and
gradients as discussed in ref 79.

Table 1. r Values for H3O+, H5O2
+, H7O3

+, and H9O4
+ from

within a Protonated 21-Water Cluster Systema

r values for H3O+

R 4.5 Å 7.0 Å full graph

1 −5 −13 −19
2 5 67 171
3 −1 −184 −969
4 −1 301 3876

r values for H5O2
+

R 4.5 Å 7.0 Å full graph

1 1 1 1
2 −3 −9 −18
3 1 32 152
4 −1 −59 −817

r values for H7O3
+

R 4.5 Å 7.0 Å full graph

1 0 0 0
2 1 1 1
3 −2 −8 −17
4 −1 24 136

r values for H9O4
+

R 4.5 Å 7.0 Å full graph

1 0 0 0
2 0 0 0
3 1 1 1
4 1 −5 −16

aThe respective graphical depictions are shown in Figure 4.

Figure 4. Graphical representation of a protonated water cluster with
varied edge length cutoffs. The choice of edge-cutoff impacts the
weights, r , of the individual components used in eq 18. The
weights of example simplexes are shown in Table 1.
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4. BORN−OPPENHEIMER AND EXTENDED
LAGRANGIAN APPROACHES USING EQ 16

The steep computational scaling needed for accurate treatment
of molecular properties is especially an issue for AIMD and
determination of quantum nuclear effects. In a series of
publications,42,71−76 we have shown how eq 16 is to
approximate potential surfaces and AIMD trajectories. Both
extended Lagrangian- and Born−Oppenheimer-based ab initio
molecular dynamics simulations are performed with CCSD
and MP2 accuracy but at DFT cost.42,71−73 Hence, for the first
time, in refs 71 and 72, we provided Car−Parrinello dynamics,
with CCSD accuracy. In ref 74, we have also demonstrated
that weak interactions (such as in hydrogen bonds) can be
accurately studied and approximations to large-basis AIMD
trajectories, such as 6-311++G(2df,2pd), can be constructed
through computational effort commensurate with smaller basis
sets, such as 6-31+G(d).
Toward AIMD, the nuclear gradients for the energy in eq 16

may be written as

= +
=

l
m
ooo
n
ooo

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjj

y
{
zzzz

|
}
ooo
~
ooo

E
x

E
x

E

x

E

x

x

x

x x( ) ( )
( 1)

r

r

r

r

r

r

r

r

V

extrap CCSD DFT

0

,
CCSD

,

,
DFT

,

,

r

(23)

The nuclear coordinates for the molecular fragment
representing the αth r-rank many-body term, x r, , may not
be entirely a subset of the system coordinates, x̅, as it may
include link atoms if bonds are broken in the formation of the
nodal definitions in the graph, as allowed by ONIOM.52 If link

atoms are included then
Ä
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x

x
r, is a Jacobian needed to

transform the r-rank many-body gradients back to the full
system gradients.42,124 These gradients enable Born−Oppen-
heimer molecular dynamics using eq 16, as demonstrated in
refs 42, 71−74.

As the size of the system increases, the full-system gradientsÄ
Ç
ÅÅÅÅÅÅÅ
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x( )DFT

dominate the AIMD computational costs. In refs 71,

72, and 74, an r-rank many-body extended Lagrangian125,126 is
introduced where the electronic single-particle density matrix,
P, that depicts the energy E x( )DFT in eq 16, are treated as
dynamical variables. The electronic parameters, P, that lead to
E x( )DFT are propagated with the nuclear variables through an
adjustment of the relative time scales between the full-system,
low-level treatment and nuclear degrees of freedom. This is
essentially a Car−Parrinello-like method127 but is implemented
using the atom-centered Gaussian basis functions and single
particle density matrices that determine and hence follow the
atom-centered density matrix propagation (ADMP)128−131

protocol. This treatment allows the ability to calculate post-
Hartree−Fock-based extended Lagrangian (Car−Parrinello-
like) trajectories. This methodology is termed “Atom-centered
Density Matrix Propagation with post-Hartree−Fock accuracy”
and abbreviated, ADMP-pHF.71,72 The associated extended
Lagrangian that serves for post-Hartree−Fock accuracy as well
as basis-set extrapolated dynamics is given by

= [ ] + [ ]

[ ]E

V W

x P P

1
2

Tr MV
1
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( ) Tr ( )

T

2

1/4 1/4 2

extrap CCSD
(24)

Here the parameters x̅ and V represent the classical nuclear
positions and velocities, with masses, M. The velocity Verlet132

integration method is used to compute the dynamics of
{ }x V P W, ; , . In refs 42, 71−74, the effectiveness of eq 16 for
the construction of dynamics trajectories at post-Hartree−
Fock accuracy is demonstrated by studying protonated water
clusters and polypeptide fragments. The efficiency and
accuracy of these trajectories are evaluated in refs 42, 71−74
in multiple ways. First, given the Hamiltonian nature of Born−
Oppenheimer and ADMP-pHF, total energy conservation and
the drift in total energy are both evaluated in detail in refs 42,
71−74. The total energy is conserved to within fractions of
kcal/mol for all studies, and the energy drift is also found to be
similarly small. The accuracy of the vibrational density of states
obtained through these trajectories is gauged by comparison
with classical trajectories at the higher level, namely, CCSD or
MP2. (see Figure 5.) The vibrational density of states is a

Figure 5. Vibrational density of states (b,c) for the Eigen (a) protonated water clusters are presented at the CCSD level of accuracy.
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spectral (Fourier) representation of the trajectory, which
partitions the nuclear velocity contributions as a function of
frequency. The comparison of these spectral features is used to
gauge the effectiveness of the low-cost, graph-theory-based
many-body expansions used within AIMD as compared to
standard AIMD treatments. In Figure 5, we provide one
specific illustration of such a comparison with several others in
refs 42, 71−74. The arrows in Figure 5b demonstrate the
quality of the fragmentation-based AIMD and ADMP-pHF
trajectories in computing accurate vibrational modes.

5. ML METHODS TO COMPUTE ΔEΑ,R IN EQ 18
ML approaches133 have recently become popular in quantum
chemistry, with a particular increase in interest following
Google DeepMind’s,134,135 efforts toward protein structure
prediction. Indeed, DeepMind aims to construct an extremely
complex neural network arising from experimental data to
optimize and predict the molecular structure in very large
systems. As a result of such an exciting development, a variety
of ML techniques such as neural networks (NN)136 and
Gaussian process regression137 have been used for computing
accurate potential energy surfaces.138−144 The key idea here is
that as long as a reasonable training set can be assembled, a
potentially nonlinear extrapolation scheme can be constructed,
presumably using NN, that can provide reasonable accuracy.
One of the key issues that affect the training process in
potential energy surface calculations is the fact that the size of a
suitable training data set may increase drastically with system
size.136,145−147 In refs 81 and 84, we create a family of neural
networks that each yield an estimate for eq 18 given by
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That is, ML estimates, ΔEα,r
ML, replace ΔEα,r in eq 16. As

shown in Figure 7 and in refs 81 and 84, training models can
be constructed to reproduce AIMD data with roughly 10% of
the effort needed as compared to that for the full fragmentation
calculations. The idea is depicted in Figure 6. As can be seen in
Figure 7, the density of the NN grows significantly as system
size grows, and hence, in essence, eq 26 allows one to decouple
parts of the NN for the full system, based on graph-theory-
based molecular fragmentation to arrive at the needed family of
networks. Furthermore, the individual networks being far
smaller in size are easier to train and additionally, if chosen in a
careful way can have a more universal application, beyond the
full system used to obtain the training set.
To quantify exactly the change in complexity, we first note

that these NNs essentially perform the following operations
sequentially

= ·+ + +x f W x( )a a a a a1 1 , 1 (27)

where fa+1 represents the activation function for the (a + 1)-th
layer, and {Wa,a+1} are the weight matrices (including bias)
connecting the a-th and (a + 1)-th layers. The operation
Wa,a+1·xa is essentially a matrix-vector operation. As part of the
training process, it is necessary to find the terms in {Wa,a+1},
for all a, which then defines the model. Thus, in some sense,

Figure 6. Comparison between (a) direct full-system learning and (b)
ML process following graph-theoretic fragmentation. Every purple
circle in the input layer of NNs represents 3 features, and every
orange circle in the hidden layer represents 6 neurons. These numbers
are chosen as a cofactor across all fragments to simplify the figure.
Purely based on visual inspection and the number of neurons
depicted, it is clear that the complexity of model generation in (a) is
far more complex and almost intractable as compared to that in (b).

Figure 7. Correlation between ML approximations and graph-
theoretic molecular fragmentation energy, that is, eq 26 and the
full-system high-level energy for a range of solvated Zundel
geometries obtained from AIMD calculations.
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the training process helps compute the unknown terms in
{Wa,a+1} and the complexity of any NN may be quantified in
terms of the number of unknown weights that need to be
obtained, that is

× + × +N N M N N( 1) ( )i h h h
2

h (28)

where Ni is the number of nodes in the input layer, and Ni is
the number of elements in the distance matrix for a given
molecule. Thus, Ni ≡ NAtoms × (NAtoms + 1)/2 − NAtoms. Here,
the quantity NAtoms is the number of atoms in the system. The
quantity Nh is the number of nodes in each hidden layer, and
Mh is the number of hidden layers. This expression, of course,
assumes that the network is completely connected between
adjacent layers. This complexity will reduce if, for example, a
convolution network148 is chosen, but the advantages noted
below apply in general to the formalism noted here. In ref 81,
we choose Nh = 4Ni and hence the complexity of the network
and the number of parameters in it grow as
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Thus, as seen through the illustration in Figure 6a for the
protonated 21-water cluster, when the full system is used to
compute a ML model, the number of terms in the input layer is
already large (64 atoms and hence Ni = 64 × 63/2 = 2016 and
is represented by 2016/3 = 672 circles in the figure where 3 is
a common factor to simplify plotting for all fragments and the
full system). Table 2 complements the discussion here.
Correspondingly, the number of terms in the hidden layer is
Nh = 4 × 2016 = 8064. Consequently, the number of weights
in the single NN, with four hidden layers as in Figure 6a, is
2016 × 8064 + 3 × 80642 + 8064 = 2 × 108 terms. See Table 2.
The resultant optimization problem is hard because one needs
to find a single solution to this 200 million-dimensional
nonlinear problem.
By contrast, eq 26 produces a family of independent NNs, as

seen in Figure 6b, and the number of terms in these NNs can
be seen to be significantly smaller purely by visual inspection of
Figure 6b. When 3-body terms =( 2) are included, the
number of weights in the NN corresponding to each graph
node (top row network of Figure 6b), with 3−4 atoms per
node (3 atoms for water and 4 for H3O+, and hence Ni = 3 for
water and Ni = 6 for H3O+), is roughly 4 × 62 + 16 × 3 × 62 +
4 × 6 which is 1896 for H3O+. Table 2 provides a more
complete discussion. For each independent edge (6−7 atoms),
the number of weights in one NN is 4 × 212 + 16 × 3 × 212 +
4 × 21 which is of the order of 23,000 for H5O2

+. Thus,
between nodes and edges, there is a substantial reduction in
the complexity of the NNs as compared to the full system,
making the training process easier. For three-body interactions
that are included in each independent face NN, the number of
parameters is 4 × 452 + 16 × 3 × 452 + 4 × 45 which is around
105 for H7O3

+. The highest complexity here clearly arises from
the face NNs, but this is nearly 3 orders of magnitude lower in
complexity with respect to the NN for the full system. See
Table 2, but this can also be seen visually from the density of
NN nodes in Figure 6a as compared to that in Figure 6b.

However, when the system size grows, the complexity of a ML
protocol constructed for the full system, represented by the
second row in Table 2, continues to grow according to eq 27.
By contrast, when eq 26 is used, the complexity grows as

= × + × × + ×
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where NAtoms is the number of atoms in the maximum rank
simplex. It is expected that for large systems N NAtoms Atoms,
the total number of atoms in the full system. The algorithm has
been demonstrated for surface−adsorbate interactions in ref
84, for protonated water clusters in ref 81, and in Figure 7,
where the horizontal axis refers to results from eq 26, whereas
the vertical axes refer to the energy value at CCSD. Clearly, the
agreement is very high between the fragment-based ΔML
model and the more expensive higher-level electronic structure
treatment.

6. CONCLUSIONS
We have discussed a graph-theory-based molecular fragmenta-
tion procedure and embedding procedure with strong
connections to many-body theory, the molecules-in-molecules
procedure, and many other fragmentation approaches. The
many-body approximation is adaptively computed using rank-r
graph-theoretic simplexes composed from a power set of
“coarse-grained” local partitions (nodes) in a chemical system;
the higher rank simplexes capture increasingly nonlocal

Table 2. Reduced Complexity of NNsa

Figure 6a Figure 6b

(H2O)21H+ (H2O)nH+b (H2O)n
c

nodesd 6 3
Ni
e 2016 edgesf 21 15

facesg 45 36
nodesd 24 12

Nh
h 8064 edgesf 84 60

facesg 180 144
Mh

i 4 4 4
ηj 2 × 108 ≤1.3 × 105k ≤8 × 104k

aThe key idea is that, as the system size grows, the complexity of
constructing a NN model grows prohibitively and beyond that
mentioned under the column labeled “Figure 6a”. See eq 27.
However, for systems where 3- and 4-body interactions are sufficient
(most chemical systems), the scaling will remain tractable based on
the description under the colum labelled “Figure 6b”. The table here
complements Figure 6, where the number of nodes in the figure has
been uniformly scaled down for clarity. bProtonated fragments.
cNeutral fragments. dNodes: single water or hydronium. eNumber of
input nodes in eq 28. These numbers are scaled by 1/3 for pictorial
clarity in Figure 6. fEdges: water-dimer or Zundel cation. gFaces:
water-trimer or Eigen cation. hNumber of nodes in each hidden layer
in eq 28. These numbers are scaled by 1/6 in Figure 6 to maintain
pictorial clarity. iNumber of hidden layers in eq 28. jNetwork
complexity given by the total number of unknown variables needed to
create NN models. See eq 28 and the associated discussion. kThe
number of parameters here is due to faces. The number is less for
nodes and edges. See text.
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interactions between the “coarse-grained” units. The graph-
theoretic many-body expression introduced here perturbatively
improves on a full-system calculation conducted at an
affordable lower level of theory and basis as in ONIOM.
This method allows access to higher-quality (post-Hartree−

Fock) electronic structure methodologies at a lower computa-
tional cost. The approach has been used to (a) efficiently
compute post-Hartree−Fock Born−Oppenheimer42,72−74 and
extended Lagrangian71−74 AIMD trajectories, (b) obtain
multidimensional potential energy surfaces for the treatment
of nuclear quantum effects where the surfaces are obtained at
post-Hartree−Fock accuracy,75,78 (c) provide efficient ML
protocols,81,84 (d) derive efficient methods for tensor network-
based quantum nuclear dynamics strategies,82 and (e) obtain
efficient, reduced quantum circuit depth algorithms for
quantum computing.80,83,85 The cost reduction, robustness,
and accuracy demonstrations render great promise to the
methods discussed here.
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