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ABSTRACT: The accurate and efficient study of the interactions
of organic matter with the surface of water is critical to a wide range
of applications. For example, environmental studies have found that
acidic polyfluorinated alkyl substances, especially perfluorooctanoic
acid (PFOA), have spread throughout the environment and
bioaccumulate into human populations residing near contaminated
watersheds, leading to many systemic maladies. Thus, the study of
the interactions of PFOA with water surfaces became important for
the mitigation of their activity as pollutants and threats to public
health. However, theoretical study of the interactions of such
organic adsorbates on the surface of water, and their bulk concerted
properties, often necessitates the use of ab initio methods to
properly incorporate the long-range electronic properties that
govern these extended systems. Notable theoretical treatments of “on-water” reactions thus far have employed hybrid DFT and
semilocal DFT, but the interactions involved are weak interactions that may be best described using post-Hartree−Fock theory.
Here, we aim to demonstrate the utility of a graph-theoretic approach to molecular fragmentation that accurately captures the critical
“weak” interactions while maintaining an efficient ab initio treatment of the long-range periodic interactions that underpin the
physics of extended systems. We apply this graph-theoretical treatment to study PFOA on the surface of water as a model system for
the study of weak interactions seen in the wide range of surface interactions and reactions. The approach divides a system into a set
of vertices, that are then connected through edges, faces, and higher order graph theoretic objects known as simplexes, to represent a
collection of locally interacting subsystems. These subsystems are then used to construct ab initio molecular dynamics simulations
and for computing multidimensional potential energy surfaces. To further improve the computational efficiency of our graph
theoretic fragmentation method, we use a recently developed transfer learning protocol to construct the full system potential energy
from a family of neural networks each designed to accurately model the behavior of individual simplexes. We use a unique
multidimensional clustering algorithm, based on the k-means clustering methodology, to define our training space for each separate
simplex. These models are used to extrapolate the energies for molecular dynamics trajectories at PFOA water interfaces, at less than
one-tenth the cost as compared to a regular molecular fragmentation-based dynamics calculation with excellent agreement with
couple cluster level of full system potential energies.

1. INTRODUCTION
Theoretical study of the interactions of organic adsorbates on
the surface of water, including (a) local electronic effects
arising from weak molecular interactions and (b) associated
long-range electrostatic effects, is a critical challenge for ab
initio theory and materials modeling. Notable theoretical
treatments of “on-water” electronic interactions that are
thought to accelerate organic reactions1−13 thus far have
primarily employed hybrid density functional theory
(DFT)13,14 and semilocal DFT.15−17 However, the interactions
involved here are weak interactions that are best described
using post-Hartree−Fock methods. Despite substantial recent
progress in DFT functional development,18−20 multiple

challenges remain18,21−29 in the treatment of weak interactions.
Critically most periodic calculations are restricted to pure
(semilocal) DFT due to the severe cost of including Hartree−
Fock exchange29−35 and post-Hartree−Fock methods.36,37

These restrictions become especially critical when considering
the calculation of ab initio molecular dynamics trajecto-

Received: August 30, 2023
Revised: November 6, 2023
Accepted: November 10, 2023
Published: November 29, 2023

Articlepubs.acs.org/JCTC

© 2023 American Chemical Society
8541

https://doi.org/10.1021/acs.jctc.3c00955
J. Chem. Theory Comput. 2023, 19, 8541−8556

D
ow

nl
oa

de
d 

vi
a 

IN
D

IA
N

A
 U

N
IV

 B
LO

O
M

IN
G

TO
N

 o
n 

M
ar

ch
 2

7,
 2

02
4 

at
 1

4:
43

:5
9 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+C.+Ricard"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiao+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Srinivasan+S.+Iyengar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.3c00955&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00955?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00955?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00955?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00955?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/19/23?ref=pdf
https://pubs.acs.org/toc/jctcce/19/23?ref=pdf
https://pubs.acs.org/toc/jctcce/19/23?ref=pdf
https://pubs.acs.org/toc/jctcce/19/23?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf


ries22,35,38 and quantum nuclear studies39 where gradients are
also needed for a large number of individual structures. Pure
(semilocal) density functionals also suffer from the so-called
self-interaction of electrons23−26,40 which is reduced in
nonlocal functionals and is not a concern in post-Hartree−
Fock methods. The accurate study of weak interactions by
DFT methods41,42 is partially achieved by the use of empirical
dispersion corrections that depend on the nuclear−nuclear
interaction terms43,44 or by using nonlocal van der Waals
(vdW) functionals.45,46 Recent developments have allowed
lower order scaling hybrid DFT calculations in the condensed
phase.47−49 Furthermore, large basis sets (triple-ζ with
polarization and diffused basis functions) are additionally
necessary to treat such interactions, and these are generally
difficult to use within an AIMD and condensed phase
formalism.
In this publication, we present an approach50 that will

accurately capture both the critical “weak” interactions while
maintaining an efficient ab initio treatment of the long-range,
periodic interactions which underpin the physics of extended
systems. This approach treats the full target periodic system
with an affordable reference level of theory, which is then
perturbatively corrected to incorporate higher quality treat-
ment of short-range interactions using a graph-theoretic
description of many-body approximation (MBE). For these
condensed phase systems, the long-range extended interactions
are captured within a periodic calculation using a semilocal
DFT treatment. Then corrections are added which capture the
shorter range many-body51−59 expansions including post-
Hartree−Fock correlation. These many-body corrections are
constructed using a graphical representation50,60−71 of the
system which allows for easy tailoring of the correction in
regard to the range and order of the expansion. This approach
provides both the overall energy and gradients necessary for
the computation and analysis of AIMD trajectories60−64,68

(and potential energy surfaces65,67) obtained from multiple
independent electronic structure calculations. Furthermore,
our graph theoretical fragmentation procedure is integrated
here with an efficient neural network scheme to further
enhance the efficiency for the study of condensed phase
correlation problems. This machine-learning interface further
accelerates the needed fragment calculations within the graph-
theoretic fragmentation formalism. Machine learning meth-
ods72−74 have been used by many investigators to accelerate
the computation of potential surfaces in small molecular
systems.75−88 Here, we combined neural networks with a
geometric scheme known as k-means clustering89,90 to also
optimize the amount of training data needed to compute
energies for the post-Hartree−Fock treatment of larger
clusters.
Our Python-based driver68 optimizes the parallel91,92 nature

of our method and allows the use of a range of electronic
structure packages in the evaluation of system energy and
gradients. We apply the above graph-theory-based machine
learning protocols to study a fluorocarbon surfactant,
perfluorooctanoic acid (PFOA), on the surface of water as a
model system for the study of weak interactions seen in a wide
range of surface interactions and reactions. PFOA is a member
of a large class of industrial chemicals termed perfluorinated
and polyfluorinated alkyl substances (PFASs). PFASs have
been utilized for water-proofing and oil-proofing of textile,
leather, and paper products93 and serve as nonflammable and
noncorrosive mediums for sensitive materials.93 These

chemicals have been shown to pose significant health and
environmental threats,94−99 especially due to their tendency
toward bioaccumulation and “biomagnification”.100 PFAS
molecules bioaccumulate into both wildlife and human
populations101−104 residing near contaminated watersheds,105

leading to systemic maladies95,106 such as thyroid107 and
kidney diseases,108 a range of cancers,109−111 and infertil-
ity.112,113 In the early 2000s, environmental studies found that
acidic PFASs, especially PFOA, had spread throughout the
environment101 and almost all humans have trace amounts in
their bodies.101,102,114,115 For this reason PFOA and perfluor-
ooctanesulfonic acid,116 which were notably used in fire-
fighting foams for fuel fires, were added to a list of regulated
chemicals in drinking water in March 2021117 based upon
recommendation of the AAAS.118 The cleanup of these
contaminations can prove quite costly, but there has been
some recent promising developments in methodologies to
degrade perfluoroalkyl carboxylic acids, including PFOA.119,120

Thus, the study of the interactions of PFOA, and other PFASs,
with water surfaces becomes important and may help develop
methods for the mitigation of their activity as pollutants and
threats to public health.
This article is organized as follows: in Section 2, we briefly

present our graph-theoretic approach50,60−68 along with its
machine learning enhancements toward application to
condensed phase calculations.50 The graph theoretic method
is demonstrated in Section 3 by computing PFOA interactions
on the surface of condensed phase water, where the molecular
conformations are selected from an AIMD trajectory
computed by using the graph theoretical approach. In these
calculations, we extrapolate from PBE to CCSD to achieve
CCSD quality structural energies. That is, all calculations
computationally scale as PBE, but are tailored to provide
CCSD accuracy. As higher order terms can still prove costly,
we discuss the use of transfer machine learning to further
accelerate these calculations. Conclusions are given in Section
4.

2. LOW-COST, ACCURATE TREATMENT OF
CONDENSED PHASE ELECTRONIC STRUCTURE
THROUGH GRAPH-THEORETIC DECOMPOSITION
OF MOLECULAR STRUCTURE

Conventional electronic structure methods incur steep
algebraic scaling costs with the system size and basis set
quality. These scaling costs become prohibitive when post-
Hartree−Fock methods are considered, limiting the use of high
quality correlation methods to small- and medium-sized
clusters. In addition, their use is cost prohibitive for condensed
phase systems even when considering moderate sized unit
cells.36,37 Due to these inherent scaling costs, molecular
fragmentation methods55−58,121−147 have been developed with
the aim of limiting the computational costs by restricting the
expensive calculations to smaller components of the overall
systems. A number of these methods incorporate the full
many-body or long-range terms through a composite148−151

approach where a low cost reference calculation of the full
system is corrected by the many-body or fragment terms.139,152

In addition to their standard application to gas-phase
calculations, these corrections have also been demonstrated
in condensed phase systems143,153−159 where the full
periodicity is treated with a cheaper HF or semilocal DFT
and the local interactions incorporate higher quality physics.
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Due to the advent of higher quality hardware and computa-
tional algorithms, recent applications of these methods employ
Hartree−Fock or semilocal periodic DFT methods to treat
long-range interactions in bulk crystals or periodic surfaces,
while introducing perturbative corrections to capture shorter
range correlation effects, using either hybrid DFT or post-
Hartree−Fock methods, to capture short-range interac-
tions.143,153−157

Following these advances, in ref 50, we have demonstrated
hybrid DFT (Rung-4 functionals) quality condensed-phase
simulations for surfaces with organic adsorbate molecules and
bulk systems where long-range, periodic interactions were
treated with gradient-corrected DFT (Rung-2 functionals)
calculations augmented by short-range perturbative MBE
corrections obtained by graph theory. This was achieved by
utilizing the graph-theoretic approach introduced in, refs
50,60−68,71. In this paper, we aim to expand its use to capture
post-Hartree−Fock correlation effects between surfaces and
adsorbates, while maintaining the scaling costs of semilocal
DFT methods. This aim is supported by our method’s previous
success in capturing post-Hartree−Fock correlation in both
extended Lagrangian61−63 as well as Born−Oppen-
heimer60−63,68 (BOMD)-based ab initio molecular dynamics
with DFT-computational expense. In this work, we combine
these features to obtain post-Hartree−Fock quality adsorbate−
surface interactions.
Our method is a composite approach that considers a

reference calculation of the long-range or periodic physics of
the system. This calculation is then corrected by short-range
perturbative terms arising from a graphical representation. The
reference calculation, Eref, treats the full system using a lower
scaling electronic structure method. When the full system is an
isolated cluster, the reference calculation uses an atom
centered basis, and when considering an extended system (as
in this publication), the reference calculation is periodic DFT
in a plane-wave basis. The lower level of theory and basis used
on the full system is referred to as “level, 0”, which in this paper
will be the semilocal DFT functional, PBE, with either a Pople
style atom centered basis (for a molecular cluster) or a plane-
wave basis with the Kresse-Joubert style projected augmented
wave treatment160,161 (for a periodic system). The energy, and
forces,66 from Eref is perturbatively corrected by an ONIOM-

like162−164 perturbative correction term generated by a graph
theoretic representation of the MBE.51−59,152,165−167 This is
done by partitioning the molecular system into a set of nodes
that may consist of fragments with stable chemical properties
such as a single water molecule, a methyl group, or, in the case
of PFOA, fluorinated hydro-carbon fragments. Short range
interactions between these nodes are constructed by including
edges on the basis of a Cartesian distance criterion. The set of
these nodes V( )0

x and edges V( )1
x form a graph,

{ }V V;x
x x
0 1 , which represents the critical interactions for

a given instantaneous structure, x , where two body interactions
are captured. An example of how the graphical representation
is defined for a single PFOA molecule inside a unit-cell on the
surface of water is illustrated in Figure 1. Embedded inside of
these graphical representations are triangles (rank 2 objects
that capture three-body interactions), tetrahedrons (rank 3
objects that capture four-body interactions), and other higher
order objects which capture higher order interaction energies.
Each set of these higher order interactions forms a power set of
nodes

{ | = }rV 0 ...r
x (1)

within the graph. Thus, this core approximation produces the
energy expression

= + [ ]
=

E E Ex x x( ) ( ) ( )
r

r r
V

sys
graph theoretic Ref

0
, ,

r

(2)

where

=E E Ex x x( ) ( ) ( )r r r, ,
level,1

,
level,0

(3)

Each term inside the summation in the second term on the
right side in eq 2 is a correction term between level, 1 and
level, 0 theory (as in ONIOM) for the α-th rank-r fragment in
the system. Each node (r = 0), edge (r = 1), face (r = 2), and
so forth, contributes to this total correction based on their
multiplicity

=
=

+ p( 1)r
m r

m r r m
,

,

(4)

Figure 1. Graphical representation considered in eq 2 is illustrated for PFOA on a periodic slab of water. The periodicity is captured by reference
energy, Eref, calculated by using a planewave basis. Additional correlations via post-Hartree−Fock corrections are introduced by the E x( )r, terms
in eq 2 using the graphical network depiction in (b). These PFOA and water systems are partitioned into nodes of either a single water or a carbon
with its associated functional groups.
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arising from their connectivity within the graphical representa-
tion. The factors, (a) pαr,m are the number of times the αth
rank-r term (in set Vr) appears in all rank-m terms (in set Vm),
for m ≥ r, and (b) consequently, r, , is the overcounting
correction for the number of times the αth (r + 1)-body term
appears in all objects of rank greater than or equal to r within a
specific graphical representation. As these correction terms are
inherently additive and independent, the problem of
computing these energies becomes trivially parallel in
practice.91,92 Additionally, the independent nature of these
energy terms allows for the simultaneous use of multiple
electronic structure packages, such as Gaussian,168 ORCA,169

Psi4,170 and Quantum Espresso.171 For further information,
see refs 50, 66, and 68. The entire algorithm is summarized in
Figure 2.
2.1. Computing Smooth Potentials with Graph-

Theory Based Molecular Fragmentation. When molecular
potential surfaces are computed, as needed in AIMD,
molecular fragmentation methods are known to yield
discontinuities in energy and forces. For example, the
fragmentation approach is dynamical and, in general, changes
during AIMD. This would also be critical in constructing
potential energy surfaces for quantum nuclear dynamical
effects. There are two approaches that we have developed that
overcome these discontinuities. In refs 65 and 67, we introduce
a multitopology based fragmentation procedure, where,
essentially, the overall energy (and gradients) are linear
combinations of fragmentation energies. In general, one may
obtain a family of graphs, numbered using the index β, such
that

{ }V V;x
x x

; 0
;

1
;

(5)

and

{ | = }rV 0 ...r
x;

(6)

each providing a different representation of energy and
gradients. The overall is a weighted sum of these individual
graph energies, leading to

= +

= +

{ }
=

=

E E E

E E

x x x x

x x x

( ) ( ) ( ) ( 1) ( )

,

( ) ( ) ( 1) ( )

r

r
r r

r

r
r r
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y
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(7)

where the square-bracketed term [···] in the first equation
above is the same as eq 2, but now, the terms E x( )r, ,

1,0 and

r, , have { }x; dependence. In refs 65 and 67, a variational
algorithm is introduced to compute { }x( ) . Here, the energy
of the system is a probabilistic sum over multiple
fragmentation topologies (or graphs) since in some sense
each of the graphs forces a certain locality in the electronic
structure and hence may be loosely considered as “valence
bond”172−174 constructs or “diabatic states”.175−183 The
variational algorithm in refs 65 and 67 allows us to compute
smooth potentials, but in ref 68, a numerical weighting scheme
is introduced to obtain smooth energies and gradients.

2.2. Machine Learning Based Improvements to eq 2.
While eq 2 has been shown to greatly reduce the computa-
tional cost in providing highly accurate post-Hartree−Fock
energies and gradients, to the cost of DFT, there is a
secondary, but nontrivial, computational challenge that appears
as a result of using eq 2. Specifically, in ref 68, it is shown that
for systems involving water, it may be necessary to include
r = 3 (four-body) terms to accurately obtain energies and
gradients. As per eq 3, energies are still necessary for these
potentially larger sized clusters at the target level, level, 1, of
theory. While computing the target energies for the full system

Figure 2. Summary of algorithm.
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is clearly prohibitive, it may turn out that the larger fragments
obtained from eq 2 are also challenging to compute.
In Figure 3, we illustrate this challenge by displaying the

distribution of compute times for a range of rank-0 (node,

shown in maroon colored histograms), rank-1 (edge, displayed
in blue colored histograms), and rank-2 (face, shown in green
colored histograms) fragments from a single PFOA molecule
on the surface of water (as shown in Figure 1). In this figure,
the maroon histograms (rank-0 simplexes) are strongly peaked
at the left (near zero), the blue histograms (rank-1 simplexes)
are spread in regions less than 10 min, and the green
histograms (rank-2 simplexes) show a range of CPU times,
depending on the types of fragments and some of these could
be extremely expensive to compute. Clearly, the rank-2 terms
may be extremely challenging to compute and in fact,
completely determine the overall cost of the calculation. Of
course, it is critical to keep in mind that the full periodic
system is impossible to process at the level of CCSD, which is
the choice of level, 1 in Figure 3. In this section, we utilize the
ideas from ref 70, to further enhance the efficiency of the

periodic post-Hartree−Fock calculations as obtained from eq
2.
Specifically, for larger clusters, we wish to replace the

energies in eq 2 with machine learning estimates, that is, in eq
2, for >r ML

E Ex x( ) ( )r r, ,
ML

(8)

and thus

= + [ ]

+ [ ]

=

= +

E E E

E

x x x

x

( ) ( ) ( )

( )

r
r r

r
r r

V

V

sys,ML
graph theoretic Ref

0
, ,

1
, ,

ML

r

r

ML

ML (9)

where the larger rank terms in eq 2 have been replaced with
ML estimates. Thus, instead of directly training on the full
system potential energies, we prepare a mutually independent
family of neural networks for different types of fragments to
obtain ML-models for E x( )r,

ML . The process is illustrated in
Figure 4. This approach has the advantage that as system size
grows, the feature space needed to extrapolate the energy does
not grow, since the features are based on fragment sizes. For
example, as seen in Figure 4a, when the full system is used to
compute a machine learning model, the number of nodes in
the hidden layers is extremely large (1704 × 6 for the case of
the PFOA-water periodic system treated here, where the
number of terms in the input layer is 852 × 3). Consequently,
the number of terms in the single neural network that is
created has 852 × 3 × 1704 × 6 + 3 × (1704 × 6)2 + 1704 × 6
= 300 million terms! The resultant optimization problem is
hard because one needs to find a single solution to this 300
million-dimensional nonlinear problem.
By contrast, eq 3 produces a family of independent neural

networks, and the number of terms in these neural networks
can be seen from a visual inspection of Figure 4b to be orders
of magnitude smaller than that in Figure 4a. When 3-body
terms =( 2) are included, the number of terms in the neural
network corresponding to each node (bottom row network of
Figure 4b) is [1 × 3 × 2 × 6 + 3 × (2 × 6)2 + 12] which is
roughly 500. For each independent edge the number of terms
in one neural network is [5 × 3 × 10 × 6 + 3 × (10 × 6)2 + 10
× 6] which is on the order of 10,000, thus, between nodes and
edges, there is a substantial reduction in complexity of the

Figure 3. Distribution of run time costs to calculate ΔEα,r by fragment
rank. Fragment computational costs grow significantly with rank; thus,
as higher order corrections are added to eq 1, the efficiency of the
overall approach despite parallelization may reduce drastically. It
must, however, be kept in mind that full system CCSD is impossible
for this system.

Figure 4. Comparison between (a) direct full system learning and (b) the machine learning process following graph-theoretic fragmentation. Here,
we assume each graphic node contains 3 atoms. Every purple circle in the input layer of neural networks represents 3 features, and every orange
circle in the hidden layer represents 6 neurons.
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neural networks as compared to the full system, making the
training process easier. For three-body interactions that are
included in each independent face neural network, the number
of parameters is [12 × 3 × 24 × 6 + 3 × (24 × 6)2 + 24 × 6]
which is 67,536. The highest complexity here clearly arises
from the face neural networks, but this is nearly 3 orders of
magnitude lower in complexity with respect to the neural
network for the full system. This can also graphically be seen
from the density of neural network nodes in Figure 4a as
compared to that in Figure 4b.
To achieve this, we start by constructing a data bank for all

types of fragment geometries and energies that need to be
replaced by machine learning predictions. Different types of
fragments are separated for independent neural network
models to learn their individual energy patterns. In order to
capture the most representative geometries and reduce the cost
of training, we apply a sampling method, Mini-batch-k-
means,90 based on some descriptors of the fragment geo-
metries. Mini-batch-k-means is an efficient clustering algorithm
that essentially tessellates a high dimensional space into a given
number of components. These components are represented by
some data inside, in our case, some typical fragment
geometries. These geometries and their corresponding energies
are then used in neural networks to find their energy patterns.
Once all models are properly trained, they can efficiently
produce accurate predictions as E x( )r,

ML in eq 10 to
accelerate the process of computing full system potential
energies. More details about the descriptor of the geometries
and Mini-batch-k-means can be found in Appendix A.
It is critical to note that for the applications considered in

this paper, we benefit from efficient periodic DFT
implementations171 that allow us to transfer the most critical
computational bottlenecks to the larger fragment post-
Hartree−Fock calculations. However, it is foreseeable that
for extremely large unit cells, one may also need to use an ML
approximation to the periodic DFT energy thus resulting in an
effective graph-theory attenuated ML energy expression
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where both the periodic DFT as well as larger system post-
Hartree−Fock energies are computer from ML.

3. INCLUDING DISPERSION CORRECTIONS WITHIN
PERIODIC DFT THROUGH GRAPH-THEORETIC
FRAGMENTATION AUGMENTED BY MACHINE
LEARNING METHODS

We consider water surface interactions with PFOA where
nonbonded vdW’s type interactions, and fluxional hydrogen
bonds between the adsorbate and water, play a prominent role.
To study the adsorption of fluorocarbons on the surface of
water, the ideal choice of electronic structure would capture
these weak interactions while remaining computationally
tractable for AIMD and potential energy surface calculations.
Although DFT methods have proven to be useful for a wide
range of systems, they have well documented shortcomings,
including sizable self-interaction errors and difficulty properly
capturing higher order dispersion interactions.23−26,42,184 For

example, previous studies on dynamics of water185,186 indicate
that the bulk properties recovered vary significantly by the
choice of DFT functional. Other studies on the interactions of
fluorocarbons with water and other small molecules187−189

indicates that there may be a need to consider post-Hartree−
Fock quality treatment of intermolecular interactions involving
such polarizable systems.
As the goal here is to, eventually, consider extended systems,

we choose to employ periodic condensed phase meth-
ods21,30,190−193 to capture the bulk physics of the system.
Unfortunately, the inherent costs of this class of problems are
significantly increased with the inclusion of nonlocal
exchange29−35 and correlation,194−199 thereby limiting the
accuracy of E x( )Ref in eqs 2 and 10 to standard treatments of
periodic electronic structure within semilocal DFT methods
such as PBE200 and BLYP.201 This limitation becomes even
more pronounced when considering ab initio molecular
dynamics simulations.22,35 In order to model the absorption
of fluorocarbons, such as PFOA, on the surface of water,
nonbonded interactions between water and fluorocarbons
would need to be properly captured.

3.1. AIMD Trajectories Using eq 2: Generating the
Test Set for Gauging Accuracy and Efficiency. To gauge
the effectiveness of DFT, with and without empirical
dispersion corrections, ab initio molecular dynamics trajecto-
ries were computed for PFOA on the surface of water in the
condensed phase. Figure 1 shows an example unit cell with
PFOA interacting with the surface of water. These trajectories
were computed in the fashion discussed in ref 50 using eq 2 to
extrapolate from PBE to CCSD, where the gradients of energy
are written as

= + [ ]
=

E

E E

x
x

x
x

x
x
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If bonds are broken during the formation of nodes in a
graph, link atoms are used and hence x r, may not entirely be a

subset of x . Thus, the term x

x
r, in eq 11 is a Jacobian term

which transforms the rank-r fragment gradient back to the full
system gradient. The periodic full system calculation is
performed with Quantum Espresso202 with a kinetic energy
cutoff of 50 Ry and Kresse-Joubert style pseudopotential.161

The resultant energy and forces are then augmented by short-
range corrections arising from the graph theoretic representa-
tion given in eq 2. The fragments obtained from such a
graphical decomposition were processed using Gaussian
electronic structure suite168 with the 6-31+G(d) basis. Thus,
extending the standard notations used to represent composite
treatments139,152 our periodic AIMD calculation may be
characterized as, CCSD/6-31+G(d):PBE/6-31+G(d):PBE/
50Ryd. The graphical representation used a value of 2,
which includes nodes, edges, and triangles with a distance
cutoff of 4.0 Å for organic nodes and 3.0 Å for water nodes.
These calculations are equilibrated to about 350 K within a
microcanonical ensemble. Structures were sampled from the
AIMD trajectory, as shown in Figure 5. These structures are
sampled every 20 fs as representatives of the overall
configurations encountered during the trajectory. In each of
these configurations, we extracted the PFOA and the 4 directly
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interacting water molecules, as can be seen highlighted in
Figure 5a. This provides a computationally tenable system to
probe the quality of the different electronic structure methods
and to gauge the practical effectiveness of eq 2 to capture
many-body correlation effects at a much reduced computa-
tional time.
3.2. Accuracy of eq 2: the Need for Three-Body

Interaction Terms. The chosen set of structures has a range
of approximately 20 kcal/mol, as shown in Figure 5b. From
each of these periodic structures, a cluster is carved out as
noted above, which includes one PFOA molecule and four
nearest neighbor water molecules. This is done to benchmark
our graph theoretic expressions with full system CCSD results,
and clearly the periodic system is much too large and
impossible to compute at the CCSD level of theory. These
structures of PFOA with 4 adjacent waters are then treated at
the CCSD level to provide a background for benchmark to
accurately account for long-range dispersion interactions. The
conformational energies of these structures are calculated using
aug-cc-pVDZ basis, as large basis sets are known to be required

to compute weak interactions accurately. The conformational
energies were evaluated for a number of methods and basis sets
and compared against CCSD/aug-cc-pVDZ. We discuss only
the improvements one can make to the PBE functional by
using eq 2. What is implied here is that E x( )Ref in eq 2 and the
perturbative (second) term can be viewed as providing
improvements to the PBE level. Our results are summarized
here in Figures 6−8.
As can be seen from Figure 6, the choice of basis sets

appears to have a significant effect on agreement with the
target energies as a choice of methods. It is clear that the
semilocal functional PBE is insufficient to recover the
necessary physical interactions for such weak interactions.
Hybrid DFT approaches, such as PBE0 and B3LYP, in Figure
6 performed significantly better than the semilocal approaches.
Yet considering that the fundamental goal here is the treatment
of adsorbates on a surface, better performance of the nonlocal
PBE0 or B3LYP does not satisfy the underlying purpose of this
study, due to cost of hybrid functionals for periodic systems.
Previous studies have also suggested that Halogen noncovalent
interactions are challenging and the interactions there are only
captured properly by high quality wave function theo-
ries.187−189,203,204 In order to overcome this obstacle, we
present our graph-theoretic approach to embed dispersion into
these calculations without the necessity of treating the whole
system with the higher order scaling inherent to post-Hartree−
Fock approaches.194−199,205 This graph-theoretic method relies
upon a graphical representation of the system which has two
principle parameters: edge cutoff and maximum rank, (see
eq 2). Figure 7a demonstrates the quality of this approach
while varying both the edge cutoff, which governs the distance
of the locality of the correlation correction, and the maximum
rank, which controls the order of this correction. It is clear that
corrections utilizing edges ( = 1) offer remarkable improve-
ment over the standard DFT calculations, but the three-body
terms are necessary to obtain sub kcal/mol accuracy. (Also see
Figure 7b.) The choice of an edge cutoff at 5.0 Å appears to
capture the range of correlation-based weak interactions
lacking in the underlying PBE functional with or without the
empirical dispersion correction.
Next, using the graphical representation of = 2 and edge

cutoff 5.0 Å, as informed by Figure 7, eq 2 is used to compare
the structural ordering obtained using the larger basis, aug-cc-

Figure 5. Geometries of PFOA and the four closest water molecules
were sampled at 20 fs increments from the ·PFOA (H O)2 24 AIMD
trajectory. The four closest waters in the initial structure are illustrated
in (a), and these water molecules directly interact with the PFOA
adsorbate. Furthermore, choosing a subsystem with four water
molecules with the adsorbate provides a cluster size that is
computationally feasible to handle with moderate basis CCSD, as
needed in our computational benchmarks. The energy distribution of
each of the 49 structures sampled from AIMD is illustrated in (b) at
CCSD/aug-pVDZ.

Figure 6. Structures discussed in Figure 5 were treated with a number of different electronic structure methods using three different basis sets, as
shown with differing colored bars. The mean absolute error for this array of functionals and basis sets were computed in comparison to the target
theory: CCSD/aug-cc-pVDZ. Large errors were observed for the semilocal functionals. No significant improvement was observed with the addition
of empirical dispersion corrections to DFT functionals. These extrapolations demonstrate high accuracy with their full CCSD equivalents.
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pVDZ, in Figure 8b. These results are compared to that of
PBE, the baseline treatment, Figure 8a, from which we correct

in Figure 8b. The overall errors to the graphical correlation
correction are in the kilo-joule per mol (≈0.25 kcal/mol)
range, while the PBE results have an MAE of over 6 kcal/mol
error. These significantly improved energies give great promise
to the ability to model weak interactions in the condensed
phase accurately using the graph theoretical description.

3.3. Neural networks to Improve the Computational
Efficiency of eq 2 through eq 10. The calculations above
significantly reduce the computational complexity. The CPU
time for a PFOA water system reduces from around 3 days
(CCSD/aug-ccpVDZ) to 40 min(CCSD/PBE/aug-ccpVDZ).
The necessity to include three body interactions involving
fluorocarbon nodes implies that this approach is still limited by
CCSD calculations on a sizable number of heavy atoms. Thus,
we next explored the incorporation of transfer learning to
further alleviate this new computational bottleneck.
Toward this, we first compute two condensed phase AIMD

trajectories for a system containing one PFOA molecule on the
surface of 24 and 48 water molecules. These simulations are
used to produce sets of three body simplexes to be used as data
sets for a transfer learning protocol discussed above and also in

Figure 7. Geometries of PFOA with four water molecules from Figure 5 were calculated at CCSD/6-31+G(d) and their energies were extrapolated
with a range of graphical representations. The quality of the extrapolations is compared against the energies from CCSD. From Figure (a) is clear
that three body interactions ( = 2 ) are needed in the graphical representation to properly describe the water−fluorocarbon interactions and the
fluorine−fluorine interactions in the fluorocarbon chain, and an edge cutoff of 5 Å is sufficient to capture the prerequisite interactions. In Figure
(b), the PBE and CCSD results from Figure 6 are compared with the respective results for CCSD/PBE using the graphical representation using R =
2 and an edge cutoff of 5.0 Å. This graphical approach reproduces the CCSD results and massively improves upon the reference PBE results.

Figure 8. Figures (a,b) demonstrate the correlation of relative energies for semilocal DFT and the graph theoretic method using eq 2 against large
basis CCSD quality energies. The graphical representation used a cutoff of 5 Å and = 2. The graph-theoretic approach greatly improved the
incorporation of dispersion and other weak interactions not captured within the PBE. The overall MAE for this set of structures is also noted.

Table 1. Neural Network Model Accuracy Using 5% Data as
Training Set

triangle total geometries training set MAE (kcal/mol)

H2O·CF2H2·CO2H2 1921 96 0.121
H2O·CF2H2·CF2H2 2585 129 0.180
(HCF2)(CF2)(CO2H) 5843 292 0.051
(HCF2)(CF2)(CF2H) 23364 1168 0.028
(HCF2)(CF2)(CF3) 5841 292 0.037

Table 2. Neural Network Model Accuracy Using 10% Data
as Training Set

triangle total geometries training set MAE (kcal/mol)

H2O·CF2H2·CO2H2 1921 192 0.047
H2O·CF2H2·CF2H2 2585 258 0.029
(HCF2)(CF2)(CO2H) 5843 584 0.023
(HCF2)(CF2)(CF2H) 23364 2336 0.005
(HCF2)(CF2)(CF3) 5841 584 0.010
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ref 70. Details regarding the method of selection of training
data are described in Appendix A and follow the protocol
established in ref 70. The neural networks set up involves two
neural networks for each type of fragment (see eq 10) with the
number of neurons defined, as in ref 70, as 4 times the number
of input features (see Appendix A) in every hidden layer with 4
hidden layers to fit each type of rank 2 simplexes. Both neural
networks use the same input vectors but the second network
learns from the errors produced by the first.70,206 The
individual neural network’s accuracy is expressed in Tables 1
and 2 by using 5 and 10% of total data as training sets,
respectively. These training sets are obtained from the Mini-

batch-k-means clustering algorithm discussed in Appendix A
and in more detail in ref 89 and 207. After the training is
completed, we evaluate the accuracy of all data points and
replace the corresponding simplex energy term ΔEα,r in eq 2 by
the neural network predicted energy ΔEα,rML (see eq 10) to
compute the graph-theoretic full system potential energy.
These models are then used to predict fragment energies from
the AIMD trajectories of PFOA with 4 water molecules to
compute the graph-theoretic potential energy at the edge
cutoff of 4 Å. The results are displayed in Figure 9, where we
observe an excellent transfer learning ability from smaller
clusters to the large system with a full system MAE of 0.17
kcal/mol for the structural library in the previous section.

4. CONCLUSIONS
Semilocal DFT methods are commonly used for condensed
phase electronic structure calculations, but these often struggle
to properly capture weak interactions. While empirical
dispersion corrections42,44 attempt to overcome this weakness,
there are several new DFT functionals being developed29 to
address this issue, interactions in complex heterogeneous are
challenging and corrections are often inadequate. This
challenge was addressed in this work by employing our
graph theoretic method to embed high quality correlation
effects by capturing short-range, high order weak interactions
between a fluorocarbon of environmental interest and a surface
of water. Quality treatment of these surfaces was found to
require three-body interaction terms to properly capture the
target higher order correlation-based interactions, surpassing
MP2 treatment of these interactions, and matching CCSD at
the cost of semilocal DFT. Although this approach greatly
increased the computational efficiency of obtaining high
quality correlation treatments for these interactions, these
calculations are also significantly impacted by the need for
these, computationally intensive, higher order interaction
terms inherent to the graphical fragmentation procedure. As
a result, we also demonstrate the use of a recently introduced
transfer machine learning procedure to create a family of Δ-
machine learning models for different fragments to replicate
the most expensive post-Hartree−Fock embedded cluster
calculations from this graph-theoretic approach. This transfer
learning approach shows minimal loss of accuracy in the

Figure 9. This figure demonstrates the correlation of potential energy between the graph-theoretic conformational energies and these graphical
energies where the expensive triangular terms are replaced by machine learned energies (see Tables 1 and 2 in the Appendix A). The graphical
representation used = 2 and a cutoff of 4 Å. Figures (a) used 5% of the data, while figures (b) used 10% of the data for training. The overall MAE
values for these sets of structures are shown beneath the figures.

Figure A1. A detailed exploration of Figure 3. Run time costs for each
simplex where the high cost simplexes are highlighted. These higher
cost simplexes are then targets for our machine learning methodology.
Figure (a) shows the distribution of the selected higher cost fragment
terms that capture three body contributions with the overall
distribution in the bottom panel. Figure (b) shows a stacked bar
plot where the accumulative populations are shown binned together.
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graphical study and hence appears to successfully attain the
coupled cluster accuracy for the target systems.

■ APPENDIX A

Transfer Machine Learning Protocol
Figure A1 shows the distribution of run time costs for all
simplexes for the 50 structures discussed in the paper. The five
most expensive fragments that capture three-body interactions
represent a major bottleneck and are shown in Figure A1.
These fragments are treated in Section 3.3 of the main paper
using our transfer learning methodology. Details regarding the
training of the machine learning model on these species are
discussed below.
We follow the protocol established in ref 70. The vector ri

includes all interatomic distances for the i-th geometry of a
given fragment. This is obtained from the distance matrix or
Cartesian coordinates after these are sorted based on
increasing atomic mass as done in ref 70. We then sample
geometries from this set. The sampling method used is called
mini-batch-k-means,89,207 which is a variant of the well-known
K-means clustering algorithm;89,207 this approach tessellates or
divides the data space for a given fragment in a geometric
fashion into k mutually exclusive regions called clusters. Each
cluster has a centroid rj and all the data points for a given

fragment, {ri}, are assigned to the closest centroid to create
sets, Cj for each rj. The K-means algorithm aims to find a
preset number of centroids or clusters iteratively to minimize
the cost function

| |
=

r r
j

k

C
i j

r1

2

i j (A1)

During each iteration, all centroid positions are updated
until no further change is seen for the position of centroids.
The Mini-batch-k-means algorithm performs this task in an
efficient way where only a random subset of data (known as a
batch) is used to update the centroids during each iteration.
After finding the converged centroid geometries, we use the set
of closest data points to every centroid and form the training
set that is then used to create the neural networks for each
fragment.
In Figure A2, we display the training set distributions

obtained from the above procedure as a 3-D histogram
showing the relative density as different colors on the relative
ΔEα,r vs directional distance panels. The ΔEα,r is a shifted
energy difference between CCSD and DFT level of energy for
each type of fragments. The directional distance serves as a
reduced dimensional metric to measure the range of input
vectors ri and is defined as

Figure A2. Training set distributions of 5 and 10% of data obtained from the Mini-batch-k-means algorithm, and all data points on the bottom
panels labeled as “Full”.
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where the sign[···] represents the “sign” of the term within the
parentheses. In, ⟨r⟩ is an average geometry computed from a
total number of geometries for a certain kind of fragment
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and a maximum geometry rmax is used to define the positive
direction

=r rarg maxmax
r

i 2
i (A4)

While the bottom panels in Figure A2 show the distributions
of all data obtained from the two AIMD trajectories of PFOA
with 24 and 48 water molecules inside a unit cell, the middle
panels and top panels display the distributions when 10 and
5% of the fragments obtained from this AIMD data are used
for training. Such data points are obtained from the above-
mentioned sampling procedure, respectively. From Figure A2,
we can see that the data distribution and relative density can
both be well preserved even for a training ratio of only 5%,
which helps to greatly reduce the number of computational
intensive electronic structure calculations needed for the large
fragments, and also avoid overfitting, which is a common
problem in machine learning.
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