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Cities across the globe are driving systemic change in social and ecological
systems by accelerating the rates of interactions and intensifying the links
between human activities and Earth’s ecosystems, thereby expanding the
scale and influence of human activities on fundamental processes that sustain
life. Increasing evidence shows that cities not only alter biodiversity, they
change the genetic makeup of many populations, including animals, plants,
fungi and microorganisms. Urban-driven rapid evolution in species traits
might have significant effects on socially relevant ecosystem functions
such as nutrient cycling, pollination, water and air purification and food
production. Despite increasing evidence that cities are causing rapid evol-
utionary change, current urban sustainability strategies often overlook these
dynamics. The dominant perspectives that guide these strategies are essen-
tially static, focusing on preserving biodiversity in its present state or
restoring it to pre-urban conditions. This paper provides a systemic overview
of the socio-eco-evolutionary transition associated with global urbanization.
Using examples of observed changes in species traits that play a significant
role in maintaining ecosystem function and resilience, I propose that these
evolutionary changes significantly impact urban sustainability. Incorporating
an eco-evolutionary perspective into urban sustainability science and
planning is crucial for effectively reimagining the cities of the Anthropocene.

This article is part of the theme issue ‘Evolution and sustainability:
gathering the strands for an Anthropocene synthesis’.
1. Introduction
Global urbanization is a prominent feature of the Anthropocene, driving a criti-
cal transition in the dynamics of human–Earth systems and challenging us to
rethink the city in the context of planetary change. While humans have been
altering ecosystem processes for millennia, the emergence and rapid develop-
ment of cities across the globe represents a major shift in human–nature
relationships, leading to the relatively recent discontinuity in both the intensity
and scale of planetary human-driven ecological transformation [1,2].

Urbanization is driving systemic change in social and ecological systems and
altering Earth’s ecosystems by causing a newwave of space–time compression [3],
accelerating the rates of interactions among people and places, and multiplying
the numbers and strengths of connections between human activities and Earth
ecosystems [4]. The effects of the multiple changes set in place by the urban tran-
sition are reflected in the rapid increase in resource extraction, greenhouse gas
emissions and land conversion, disrupting the climate system and rapidly redu-
cing biodiversity, thereby changing the interactions between ecological and
evolutionary processes that maintain life [5,6].

Increasing evidence shows that cities are changing the genetic and cultural
makeupofmanypopulations, includinganimals, plants, fungi andmicroorganisms,
whichmight have significant effects on socially relevant ecosystem functions such as
nutrient cycling, pollination, water and air purification and food production both
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Figure 1. A conceptual framework linking socio-ecological and eco-evolutionary dynamics of coupled human–natural systems. Key natural and anthropogenic drivers
of change (e.g. climate, demographics, economics and policy) influence eco-evolutionary dynamics and its feedback through interactions among ecological,
technological, governmental and social system components of the urban ecosystem. Highlighted are the emerging mechanisms of how global urbanization
drives eco-evolutionary dynamics and feedback affecting ecosystem function and sustainability outcomes by altering habitat heterogeneity, landscape connectivity,
biogeochemistry, biotic and abiotic interactions, translocations and invasions, domestication and selective breeding and human–wildlife contact.
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locally and globally [7,8]. Urban-driven evolutionary changes in
species traits affect ecosystem dynamics by altering population
dynamics, shaping species interactions and altering community
assembly in diverse metacommunities [9]. Eco-evolutionary
feedback—the reciprocal interaction between ecology and evol-
ution—can affect ecosystem stability and resilience, and hence
influence sustainability over the long term [10,11]. Rapid evol-
ution determines how organisms and ecosystems respond to
human-caused pressures such as habitat loss, the introduction
of new species, climate change, as well as to conservation efforts.

The study of biodiversity in urban landscapes has made
significantprogress, shedding lighton themultifaceted interplay
between urbanization and ecological [12–15] and evolutionary
change [16–18]. Remarkable progress has been made in under-
standing the complex interactions governing these systems
[19,–21] and their variability across scale [22]. These new insights
are shaping nuanced conservation strategies that embrace
the complexity inherent in urban biodiversity [23]. In a notable
step, the 15th Conference of Parties to the United Nations
Convention on Biological Diversity, a new platform identifies
the maintenance of genetic diversity within populations as a
key factor for safeguarding their adaptive potential [24]. How-
ever, despite increasing evidence of urban evolutionary change
and calls for deliberatemanagement of anthropogenic evolution
to address global challenges [25–30], current approaches to
urban sustainability often overlook these dynamics.

In this review, I argue that integrating evolutionary principles
into the planning and design of cities is critical for achieving
urban sustainability. First, I provide an overview of the socio-
eco-evolutionary transition that has arisen as a result of global
urbanization. I propose that urbanization catalyses a systemic
transformation in the interactions among social and ecological
systems shaped by technological and institutional factors [4].
This shift gives rise to the emergence of distinctive ecological
properties of urbanizing regions, which speed up evolutionary
change in species that contribute to vital ecosystem functions
and tighten eco-evolutionary coupling, altering the resilience that
enables local and global sustainability over the long term.
Drawing on Holling’s [31] concept of resilience and
Gunderson’s [32] and Sgrò et al.’s [25] definitions of evolution-
ary resilience and building upon the distinction made by
Elmqvist et al. [33] between resilience and sustainability,
I define urban resilience as the inherent property of a social-
ecological system that enables it to maintain its essential
functions in the face of dynamic changes. Sustainability is
a normative concept that requires meeting the present’s
needs while preserving Earth’s life-support systems. Using
evidence of observed changes in traits that play a significant
role in maintaining ecosystem functioning and resilience,
I identify emerging mechanisms linking urbanization to
eco-evolutionary dynamics and the potential feedback to
sustainability outcomes (figure 1) [9,34,35].

Building on this foundation, I explore howeco-evolutionary
dynamics within cities are shaped by interactions among
various selective agents within unique urban spatial arrange-
ments, the result of interplay among human activities,
infrastructure development and regional ecological variations.
Distinctive eco-evolutionary signatures observable across vari-
able patterns of urbanization and across scales suggest that
the design of cities plays a critical role in preserving the evol-
utionary processes that underlie urban resilience. Focusing on
green and blue urban infrastructure (GBI), I provide evidence
of the interactions between GBI and the evolution of species
traits thatmaintain ecosystem function and resilience. Incorpor-
ating evolutionary perspectives into urban planning can
enhance species’ adaptive potential, thereby strengthening
urban ecosystems and promoting their sustainability. I propose
principles for embedding evolution into the design of
sustainable urban development strategies.
2. The urban socio-eco-evolutionary transition
Cities are unquestionably the most emblematic signature of
the Anthropocene. It is widely known that with more than
4.5 billion people, more than 56% of the world population,
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urban areas today generate more than 80% of theworld’s econ-
omyand account forover 70%of global energy use and energy-
related greenhouse gas emissions [36,37]. Global urbanization
is rapidly expanding in terms of population size and land areas
[38,39].What is less known is how the variable spatio-temporal
relationship between population and built-up land relates to
the social and physical drivers of urbanization across diverse
regions and scales. This dynamic plays a critical role in shaping
the interactions between urbanization and environmental
change [40].

Over the past century, a significant shift has occurred in the
dominant configuration of urban regions, evolving from centra-
lized settlements to polycentric structures, ultimately leading to
networked megaregions [36,41]. This transformation is the out-
come of changes in function from industrial to service- and
knowledge-based economies, combined with advancements
in infrastructure and technology, fostering enhanced regional
and global connectivity and interdependence [42].

The emergent urban megaregions represent networks
of metropoles, characterized by a multi-nodal mosaic of
developed and undeveloped land that breaks down the
traditional boundaries between cities, regions and suburbs
giving rise to a new local and global landscape [43]. Urban
megaregions, such as the Boston–Washington corridor in the
United States (US), the Paris–Amsterdam–Brussels–Munich
region in Europe, the Pearl River Delta in China and the
Tokyo–Yokohama region in Japan, are densely populated
and contribute significantly to their national economies. For
instance, North American megaregions, primarily located in
the US, house 70% of the US population, generate 75% of the
US economy and emit carbon at rates comparable to those of
entire nations [36,41].

These changes in regional urban structures have a major
impact on the effects of urbanization on socio-ecological
dynamics and eco-evolutionary change, influencing both
local and global sustainability through processes such as
land conversion, habitat alteration, changes in biotic inter-
actions, increased frequency and intensity of disturbances
and the emergence of new ones [42]. Urban megaregions,
characterized by high population densities, resource con-
centration and central roles in trade and logistics, can either
exacerbate or mitigate the environmental footprint of global
production and consumption systems. These regions accelerate
eco-evolutionary changes by increasing resource demand,
modifying land management and facilitating the translocation
of non-native species, extending their impacts beyond their
physical boundaries.

At the same time, the high population density and human
activity associated with these urban agglomerations bring the
environmental impacts of this growth into sharp focus, often
prompting efforts to address these issues. In examining innova-
tive governance in Tianjin, London and Bangkok, Doran et al.
[44] show that access to the resource diversity of megare-
gions—including economic, knowledge and social capital—
can encourage beneficial cross-sector collaborations to reduce
megaregions’ reliance on imported resources. However,
owing to their polycentric development, inherent governance
challenges could trigger large-scale collective action problems
with the potential to undermine these benefits.

I propose that the rapid development of urban regions,
their distinctive spatial structure (resulting from the
interactions of human agency, constructed infrastructure
and the physical environment), and the simultaneous
occurrence of numerous disturbances set the eco-evolution-
ary dynamics of urban ecosystems apart from natural and
other anthropogenic systems.

(a) Emergence
Urban landscapes are structurally complex and exhibit
unique heterogeneity and connectivity, emerging from com-
plex social-technological and ecological interactions, which
create unique species community assembly and selection
gradients (e.g. temperature, fragmentation and pollution) that
alter metacommunities and eco-evolutionary dynamics [21]
(figure 2). Landscape heterogeneity in cities is unique because
of a combination of natural and engineered elements and the
socio-cultural characteristics and behaviours of individuals
and institutions [46]. Although urban heterogeneity can
potentially promote diverse species with unique niches, the
composition of the urban species pool is ultimately dictated
by environmental filters associated with urban land use
[47,48], which may lead to biotic homogenization [49,50].

Variable social and ecological heterogeneity in urban land-
scapes is the result of diverse historical development patterns, a
combination of natural and engineered landscape elements,
and the socio-economic characteristics and behaviours of indi-
vidual people, communities and institutions. Development
decisions, management choices and individual preferences
can alter landforms, biophysical and ecological networks and
the heterogeneity of nutrients, materials and water cycling.
The interplay between neighbourhood socio-economic stratifi-
cation, governance structure and planning practises often
shapes ecological variation across urban landscapes and cre-
ates unequal distributions of ecological resources and access
to ecosystem services among socio-economically diverse
communities and neighbourhoods [51].

Urbanization also fundamentally rewires connectivity,
differently affecting social and ecological communities and
their interactions. By reshaping social and ecological networks,
cities alter the social, ecological and evolutionaryprocesses that
maintain their resilience and adaptive capacity. Urbanization
isolates previously connected habitat patches, subpopulations
and species, while simultaneously connecting those that
were previously isolated from each other [18,52,53]. By intensi-
fying social interactions within and across cities, urbanization
expands eco-evolutionary changes [7,8] and creates new
inequalities [4], while simultaneously stimulating social
innovation [54]. Understanding how patterns of urban devel-
opment affect eco-evolutionary dynamics will provide critical
insights for designing and planning urban systems and infra-
structure schemes that align with ecological and evolutionary
processes that support sustainability.

(b) Speed
Studies show that evolution is faster in the city than in sur-
rounding areas owing to both strong selection pressures and
novel ones [7,8]. Through a meta-analysis of experimental
and observational studies reportingmore than 1600 phenotypic
changes in species across multiple regions, my colleagues and I
[7] discriminated an urban signature of phenotypic change
beyond established natural baselines and other anthropogenic
signals. We show a clear urban signal: rates of phenotypic
change are greater in urbanizing systems than in natural
and non-urban anthropogenic systems. The interactions ofmul-
tiple selection pressures (habitat modification, introductions,
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fragmentation, pollution, novel disturbances, etc.) can also
lead to stronger eco-evolutionary feedback. The urban signal
of phenotypic change observed across the globe (e.g. greater
phenotypic change in urbanizing systems comparedwith natu-
ral and non-urban anthropogenic systems) may be the result of
multiple influences that the urban environment imposes on
organisms, which can increase the total strength of selection
on a trait, the number of traits under selection or both.

Several factors might account for the speed at which evol-
ution occurs in urban environments. Organisms’ size and
metabolic rates are potential determinants of evolutionary
speed. The role of urban heat islands in accelerating the evol-
ution of ectotherms in cities remains an intriguing area of
investigation [55]. A rapid pace of change can create a
moving evolutionary target, which can accelerate the pace
of adaptation. The density of interactions of both human
and non-human organisms between different species or
between organisms and their environments, can create new
niches and therefore new opportunities for evolutionary
innovation. Cities’ high environmental variability, both
spatially (e.g. differences between a park and a parking lot)
and temporally (e.g. changes in noise or light pollution
throughout the day), can lead to stronger selective pressures,
potentially catalysing faster evolution. Some studies suggest
that urban areas might be hotspots of evolutionary change,
where new traits and new species arise at a faster rate than
in other environments [7,8]. This could be owing to a combi-
nation of the factors mentioned above as well as the unique
challenges and opportunities presented by urban life.

(c) Coupling
Urbanization amplifies the feedback between ecology and
evolution by simultaneously altering both processes and their
interconnections, with ecological and evolutionary variables
reinforcing each other [56]. Cities influence the evolution of
numerous species, altering their interactions and changing
demographic rates (such as reproduction, survival or disper-
sal). This can either amplify eco-evolutionary feedback
through directional selection on common traits or dampen
selection strength by easing survival and reproduction
conditions, or making certain traits less advantageous [57].

The interplay between altered gene flow and variation in
selection pressures can alter trait matching in ecological net-
works, including predator–prey (e.g. beak size matching seed
shape), parasite–host, competitive and mutualistic interactions
(e.g. flower shapematchingbee’s proboscis),with potential con-
sequences for ecosystem function [58,59]. Urbanization reduces
top-down control in food webs by increasing the effect of
bottom-up mechanisms (i.e. energy and nutrient supply)
through the greater availability of anthropogenic resources
(e.g. food resources) [60,61]. The shift from top-down to
bottom-up processesmay feed backonpopulation and commu-
nity demographics, relaxing and/or reinforcing selection
pressures, and potentially strengthening eco-evolutionary feed-
back through increasing directional selection at various trophic
levels. Investigating urban-driven shifts in network structure
can illuminate the effects of urbanization on evolutionary
potential, ecosystem function and resilience [62].

(d) Resilience
Resilience in urban ecosystems is governed by complex
interactions among multiple social and ecological processes
that maintain long-term ecosystem function. Cities are
coupled socio-technological and ecological systems, the
product of co-evolving human and natural systems
mediated through technology [63]. Achieving sustainability
requires understanding the interplay between a city’s
socio-technological and ecological dynamics that affect
ecosystem function and resilience at the local and global
scales [64]. Furthermore, the cross-boundary independence
of urban infrastructure—such as food systems, energy, trans-
portation and sanitation—through regional and global
networks underscores the far-reaching effects of actions
within a socio-ecological system [65].

Urbanization affects ecological and evolutionary proces-
ses across scales, with city size and structure contributing
significantly to this variability [9,22]. At smaller scales,
it tends to simplify ecosystems [66], while interactions
between human and ecological systems at larger scales
add complexity, creating novel conditions shaped by
cultural, socio-economic and political contexts [67]. Under-
standing this variability is crucial for designing sustainable
strategies, as sustainability drivers—social, ecological
and technological—depend on scale. Scaling theories aim
to unravel the universal principles governing city function
[68–70], revealing diverse patterns—linear, superlinear
and sublinear—in various social and physical attributes, as
they relate to population size [69]. However, underlying
mechanisms linking city scale to biodiversity may account
for marked variations in socio-ecological outcomes across
cities that differ in size. Uchida et al.’s [22] investigation
into the scaling relationships of urban biodiversity illumi-
nates how the interplay among environmental factors,
human influences and socio-economic and eco-evolutionary
drivers can produce both linear and nonlinear relationships
across scales.

Urban resilience is profoundly shaped by historical
contingencies and long-term socio-ecological interactions.
Today’s rapidly evolving urban environments bear the endur-
ing imprints of past land-use decisions. For instance, the
historical displacements of Indigenous people in the US
owing to urban expansion and the legacyof last century’s segre-
gationist land-use policies continue to influence current
socio-ecological and eco-evolutionary dynamics [71].Moreover,
past infrastructure transformations, such as early twentieth
century hydroelectric dams, have left indelible imprints on the
urban landscape and its ecological processes [72].

An important dimension of resilience is the ability
of ecosystems to reorganize and renew [31,73]. The
convergence of significant societal, technological and
environmental transitions with global urbanization offers
a unique opportunity for systemic change, potentially
catalysing the transition to a sustainable socio-ecological
system by accounting for its complexity and ability to
evolve. Recent initiatives that integrate sustainable systems
and GBI with social equity considerations represent a new
understanding of the interdependence between social and
ecological resilience, which could lead to more effective
sustainability transitions. To fully realize this potential, an
eco-evolutionary perspective must be incorporated into the
design of equitable and effective sustainability strategies.
Evolutionary resilience acknowledges the crucial role of
genetic diversity and evolutionary processes in shaping
community ecology and the capacity of ecosystems to
adapt to changing conditions [32].
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3. Mechanisms linking urban eco-evolutionary
dynamics to sustainability

Urbanization plays a critical role in shaping eco-evolutionary
dynamics and feedback mechanisms that affect ecosystem
function and sustainability outcomes (figure 1). Over the
past decade, extensive research on urban-driven contempor-
ary evolution has documented a range of phenotypic
changes—some confirmed to be evolutionary—in species
traits across diverse taxa worldwide, contributing to ecosys-
tem resilience and long-term sustainability [7,8,34]. Cities
have emerged as a major focus of study in evolutionary
biology, as scholars recognize the opportunities cities offer
to explore evolution in real time in globally replicated
experiments to address unanswered questions about the
repeatability and predictability of evolution [74]. Despite
their heterogeneity, cities provide a unique opportunity to
ask whether populations and taxa exposed to similar selec-
tion pressures tend to undergo similar evolutionary changes
and how the co-occurrence of multiple selection pressures
may alter (limit or strengthen) adaptation to individual stres-
sors or lead to synergistic interactions that may amplify or
dampen eco-evolutionary feedback [11]. At the same time,
the great worldwide variability of city structure and city
size offers a unique opportunity to disentangle the properties
of cities that affect evolutionary outcomes.

Cities provide a novel context for evolutionary studies
that presents both new opportunities and new challenges [62].
The dominant presence of humans and their societies intro-
duces multiple layers of complexity into ecological and
evolutionary processes [9]. A crucial question is whether the
framework and assumptions that govern eco-evolutionary
dynamics in natural systems can be applied to coupled urban
human–natural systems. Integrating social, technological and
governance drivers of evolution and eco-evolutionary feedback
presents new insights into the studyof evolution but demands a
thorough understanding of the complex and unique urban
context in which evolution occurs [9,34,35]. Rather than reiter-
ating existing research findings (numerous reviews of human
impacts on evolution in urban contexts have been published
[7,8,34,35,75]), I focus on how systemic properties (multiple
agents, variability, interactions, space–time compression and
scale) resulting from the coupling of human and natural
systems and the interactions among social, institutional,
technological and ecological factors modify the drivers of
eco-evolutionary change that affect urban sustainability.

(a) Multiple agents of selection
Urbanization alters the dynamics of the Earth’s ecosystems
by reshaping the ecological and evolutionary processes that
sustain genetic diversity. The effects of the urban transition
on eco-evolutionary dynamics result from mutation, genetic
drift, gene flow and natural selection, all of which can
alter allele frequencies within and across populations. How-
ever, the complex nature of urban environments makes it
challenging to disentangle the specific mechanisms driving
urban evolution, leading to studies that report inconsistent
outcomes [16,17].

While most evolutionary studies have focused primarily
on urban adaptive evolution, neutral evolutionary processes
can also influence eco-evolutionary feedback. Mutations are
a fundamental source of genetic variation and have been
found to occur in response to urban pollution [76–78],
though it remains uncertain whether the urban environment
itself elevates mutation rates. Urban adaptation typically
arises from pre-existing allelic diversity or standing genetic
variation within populations [79]. Urbanization leads to
population declines that exacerbate the effects of genetic
drift, reducing genetic diversity within populations and
increasing differentiation among populations [80]. However,
urbanization can also boost regional genetic diversity by
creating novel habitats and establishing new ecological
networks that facilitate population expansion and enhance
connectivity, thereby decreasing genetic drift [81]. The
effect of urbanization on dispersal and gene flow remains
unclear, with studies showing contrasting findings [81].
Urban landscapes can introduce artificial barriers that isolate
populations but also create new corridors that may bring pre-
viously isolated populations and species together, leading to
varying effects on dispersal and gene flow [16].

Emerging hypotheses of the mechanisms linking urbaniz-
ation to eco-evolutionary change are based on evidence that
patterns of urban development and infrastructure affect natu-
ral habitats, biogeochemistry and biotic interactions along
multiple axes in subtle ways [9]. Cities act as agents of selec-
tion through several mechanisms. Land use, buildings and
roads fragment habitats, reducing gene flow and diversity
[16]. Air pollution selects for organisms that can handle
high stress [82]. Water and soil contaminants favour tolerant
species [83,84]. Urban heat islands can lead to the evolution
of higher heat tolerance [55,84]. Artificial light and
noise can alter circadian rhythms and life-history traits [85].
Transportation can disperse genes among populations.
Urban green infrastructure provides habitats and corridors
for gene flow [16]. Landscaping and non-native species
affect biotic interactions and cause evolutionary changes in
native species [86]. Altered water and season length affect
the life-history traits of organisms [87]. Urban eco-evolution-
ary studies have focused on single disturbances; however, it is
unclear whether organisms adapt to specific pressures (e.g.
heat) or multiple pressures (e.g. heat and pollution). It is
also unknown whether multiple selection pressures and
their spatial interactions hinder or enhance adaptation to
individual stressors [34].
(b) Pattern variability across scales
Urban environments exhibit variable heterogeneity and con-
nectivity influenced by historical contingencies that affect
evolutionary processes across scales. Urban landscapes are
mosaics of multiple stressors that act on diverse organisms
through different processes, leading to nonlinear responses
in populations and communities. These mechanisms and
their effects are not uniform or scale invariant across land-
scapes and urban regions. The multidimensional nature of
urban disturbances and co-occurrence of multiple stressors
can cause synergistic effects, leading to a large number of
possible scenarios [20,88].

Development patterns create distinct landscape signa-
tures and temporal shifts in ecosystem processes that affect
species composition, community assembly and evolutionary
potential. The spatial configuration of urban development
in cities affects eco-evolutionary interactions by changing
social and ecological heterogeneity and connectivity; the
impact depending on scale [9]. At smaller scales (microscale),
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urbanization may reduce ecological heterogeneity [15], sim-
plifying ecosystem complexity by eliminating processes,
landforms, species and sources of fine-scale ecology that
maintain resilience [66]. At the landscape mesoscale, urbaniz-
ation generates varied biophysical conditions, processes and
temporal dynamics influenced by human preferences, oppor-
tunities and behaviours. Land use decisions, management
choices and individual preferences can shape landforms,
physical networks, nutrient distribution, material cycling,
water cycling and species interactions [89]. The variability
of environmental pollution (e.g. night lights, atmospheric
emissions and noise) is also time-dependent owing to the
variability and timing of human activities.

At the macro scale, such as the metropolitan or regional
scale, consistent patterns of urban development and habitat
fragmentation can be observed, influenced by cultural and
historical legacies as well as climate [90]. Structural inequal-
ities across the urban landscape drive ecological outcomes,
often generating socio-economically distinct gradients of
land cover and exposure to pollutants [71]. Social and eco-
logical heterogeneity in urban environments interact across
time and space as drivers and outcomes of biophysical and
social processes, affecting future systems state and functions
[91]. Changes in spatial and temporal heterogeneity, along
with a reduction in habitat quality, may generate asymmetri-
cal selective pressures favouring certain species and traits,
potentially leading to ecological homogenization [50].
(c) Socio-ecological interactions
The urban transition fundamentally reshapes the interplay
between social and ecological systems setting the stage for
novel socio-eco-evolutionary dynamics [9,35]. Complex inter-
actions resulting from changes in habitat and species
composition, coupled with emerging spatial and temporal
patterns of resource availability, might produce new trophic
dynamics (i.e. shifts in control from top-down to bottom-
up) [60], altering the ecological networks of interacting
species and their evolutionary potential [9]. Urban ecological
networks may become less diverse and less complex. How-
ever, because specialists are lost more quickly than
generalists, species richness may decline faster than the
number of interactions [58,92]. Thus, the structure of urban
networks is more nested (specialists can only interact with
subset generalists) [61], which can lead to speciation or
make species more vulnerable to extinction if their inter-
actions are disrupted because they become dependent on a
particular species for their survival.

Although changes in the physical template and biotic
interactions driven by urbanization have constituted the pri-
mary focus in the study of urban evolution, the urban
transition also affects eco-evolutionary changes through its
profound effect on social interactions and human–natural
relationships. The transition from a rural to an urban society
has generated a drastic shift in the magnitude and patterns of
resource use and extraction, altered the practice of farming
and food production, and dramatically expanded transloca-
tions and introductions of non-native species [93]. Cities are
leading the transformation of food systems and supply
chains to meet rising demand by intensifying domestication
and selective breeding of crops and livestock, narrowing
diversity and increasing homogeneity and interdependence
among countries in their food supplies. Cultivations,
domestication and selective breeding associated with the
global urban transition have a major impact on genetic diver-
sity and evolutionary dynamics [94]. Furthermore, the urban
transition exacerbates social disparities that both drive and
are amplified by divergent eco-evolutionary outcomes
within and across urban landscapes [71,95].

(d) Space-time compression
Perhaps one of the most significant qualities that distinguishes
cities from other contexts is the cultural shift and social
transformation associated with increasing interactions among
people [54], between people and other species [96] and
among distant places [65], fostering a new wave of space–
time compression [3]. Cities have served as hubs of innovation
and technological advancement throughout history, owing to
the expanded social interactions resulting from living in close
proximity [97]. These vast technological networks that support
urban regions amplify telecoupling—the interactions between
distant coupled socio-economic and environmental systems—
and intensify the impact of human activities on distant
places [65].

Urbanization has significantly expanded the human-
mediated movement of species, both intentionally and unin-
tentionally, owing to the rapid increase in travel and
commerce associated with urban areas. The success of trans-
located species may be affected by the urban environment
through a range of mechanisms, including predator or com-
petitor elimination, abiotic modifications or alterations to
host–parasite interactions driven by changes in the compo-
sition of host communities [93,98,99]. Disrupting the
relationship between host density and parasite abundance
may enable introduced populations to survive at densities
that would otherwise be affected by parasites [93].

The space–time compression driven by urbanization in
human society is mirrored by similar phenomena occurring
among wildlife and between humans and wildlife. Gilbert
et al. [100] shows that human disturbance leads to spatio-
temporal compression of species co-occurrences, which prob-
ably strengthen species interactions, with cascading effects
across populations, communities and ecosystems. Cities have
also dramatically increased opportunities for human–wildlife
interactions, with negative consequences (e.g. conflicts, dis-
eases, property damage and physical attacks) [101] and
positive consequences (e.g. biodiversity, pest control and cul-
tural value) [102]. Managing these interactions has important
consequences for evolutionary change.

(e) The planetary scale
The mechanisms of urban evolutionary change are most
apparent at the local and regional scale, where cities and
metropolitan areas transform habitat complexity and alter
biotic interactions and community dynamics, all of which
influence both adaptive and non-adaptive evolution. The
local scale is also the scale at which most studies have been
conducted and are rapidly growing. However, both the
mechanisms by which urbanization affects eco-evolutionary
dynamics and their impacts extend far beyond the local
scale. Emissions of pollutants from anthropogenic activities
associated with urbanization, such as fossil fuel use and
large-scale application of pesticides, have not only altered
the local ecosystem and created a distinct urban biogeochem-
istry in the urban landscape [60], they have also contributed
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to the rapid increase in the disruption of global bio-
geochemical cycles [103]. Urbanization is associated with
high concentrations of chemicals and heavy metals and
the emergence of new pollutants, such as microplastics
and pharmaceuticals, that disrupt metabolic pathways and
functions, driving changes in species tolerance traits. The
release of synthetic chemicals in urban environments also
drives antimicrobial and pesticide resistance, with global
implications [104].
/journal/rstb
Phil.Trans.R.Soc.B

379:20220264
4. The eco-evolutionary dynamics of urban
sustainability

Understanding how urbanization is changing evolutionary
dynamics and how it will impact sustainability on a contem-
porary time scale demands a shift in focus from studying
drivers in isolation to studying systemic properties that
emerge from the underlying socio-ecological interactions.
Understanding how urban eco-evolutionary dynamics affect
sustainability also requires shifting our perspective from
viewing urbanization as a context to understanding it as a
dynamic process that alters the interactions between humans
and the natural world across multiple temporal and spatial
scales. Niche construction theory points out that organisms
influence their own evolution and that of other organisms,
both as a result of natural selection and as agents of the
conditions of that selection. Therefore, organisms are both
the subjects and the drivers of evolution. By transforming
the environment, organisms can determine the conditions
for their reproductive success. Species and their environ-
ments are intertwined in a continual feedback loop, leading
to ecological and evolutionary change [105]. The emergent
properties of these complex socio-eco-evolutionary systems
are affected by long-term human and natural dynamics,
and shape divergent ecological and human outcomes under
alternative future scenarios.

(a) Eco-evolutionary feedback and urban resilience
The evolution of species traits plays a pivotal role in shaping
urban resilience [32]. As organisms adapt to urban environ-
ments, their evolving traits can alter ecosystems, thereby
influencing the capacity of cities to withstand environmental
change. While many species will continue to become extinct
by human action, others are evolving strategies to coexist
successfully within human-dominated environments. For
instance, great tits (Parus major), a common European bird,
adjust to city life through changes in genes that control
their behaviour and brain development, preserving avian bio-
diversity and the ecosystem function they provide [106].
Similarly, urban trees, which develop resistance to air pol-
lution and heat stress, underscore how the capacity of
plants to adapt to urban stressors helps cities maintain their
ecosystem function and resilience [107,108]. These trees
form the backbone of urban green spaces that offer essential
services, from air purification to heat mitigation and rec-
reational spots. By altering photosynthetic, tree growth and
plant defence traits, urban-driven evolutionary pressures
may affect the capacity of trees to perform these functions
[109]. Furthermore, evolutionary changes in many organisms
involved in the carbon cycle may lead to increased
atmospheric CO2 concentrations [110].
Importantly, the evolutionary dynamics of pests and
disease vectors can pose challenges to urban resilience. The
emergence of resistance in these organisms prompts the
need for adaptive strategies for pest management and
public health, thereby testing a city’s resilience. Species evol-
ving traits that increase tolerance to climate change-related
stressors, such as heat, drought and flooding, contribute
to urban resilience by supporting the functionality of GBI.
For instance, the evolution of drought-tolerant grasses in
urban landscapes can enhance water security in cities with
water scarcity.

Evolution also governs species interactions and overall
ecosystem functionality. The evolution of urban pollinators
to synchronize with climate change-induced shifts in flower-
ing times is crucial for maintaining plant biodiversity
and ecosystem resilience. Evolutionary trade-offs, in which
short-term beneficial traits could potentially compromise
long-term ecosystem stability, emphasize the need for proac-
tive urban management that can balance these dynamics to
ensure steady provision of ecosystem services. Coastal GBI
strategies often rely on the natural defence capabilities of
salt marshes, which buffer wave action, slow down water
and trap sediment, thereby reducing erosion and the risk
of flooding. Seagrass (Spartina spp.) may adapt to urban
pressures, such as pollution or altered salinity, but these
adaptations could inadvertently result in morphological
changes, such as reduced growth or stature, potentially com-
promising the wave buffering and sediment trapping
capacities of the salt marsh [111].

Cities are increasingly adopting GBI and other nature-
based solutions (NBS) for cost-effective environmental
management, using ecosystem services to provide multifa-
ceted benefits and foster sustainability. However, the
effectiveness of these interventions can be undermined if the
intricate interplay of social, ecological and technological
facets of urban systems [112] and their eco-evolutionary
dynamics [9] are overlooked, leading to unforeseen conse-
quences, such as species evolving resistance, unintended
evolutionary trade-offs destabilizing ecosystems or disrup-
tions in species interactions essential to ecosystem functions
that such solutions aim to preserve. Building on Sgrò et al.
[25] I propose that harnessing our growing knowledge of
urban-driven evolutionary changes and their effects on eco-
systems we can foster sustainability through six primary
strategies: preserving genetic diversity, promoting evolution-
ary potential, aiding species with evolutionary limitations,
protecting evolutionary refugia, enhancing gene flow and
bolstering adaptability to future environmental shifts.

Understanding the mechanisms linking eco-evolutionary
changes to urban sustainability and determining when
evolution may promote or inhibit organismal adaptation
is crucial for predicting what trait changes are likely to
occur in urbanizing environments and guiding strategies
to buffer their eco-evolutionary feedback [113–115]. The
limited predictability of future eco-evolutionary feedbacks
underscores the need to conserve adaptive potential.
Recognizing early warning indicators is crucial for averting
potential adverse consequences and identifying mitigation
strategies for safeguarding urban ecosystem health. The
uncertainty surrounding species’ adaptability highlights
the importance of conserving evolutionary potential, which
is the ability of a population to evolve in response to
environmental change.



integrated socio-eco-evolutionary dynamic framework

urban dynamics ecological dynamics eco-evolutionary dynamics

social patterns
and processes

socio-ecological
heterogeneity

body size of
buff-tailed bumblebee
(B. terrestris)

heat and toxic tolerance of
water flea 
(Daphnia magna; D. pulex)

morphological traits of
chinese pine
(Pinus tabuliformis Carr.)
root traits of
chairmaker's bulrush
(Schoenoplectus americanus)

nutrient
cycling

population
dynamics

primary
productivity

hydrological
processes

species
interactions
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altered
biogeochemistry
biotic
interactions

open space
urban gardens
green roof
street trees
urban pond
and streams
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and biodiversity
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Figure 3. Framework linking green and blue infrastructure to eco-evolutionary dynamics. The ecological properties of urban ecosystems—including socio-ecological
heterogeneity, habitat complexity, terrestrial and aquatic connectivity, modified biogeochemistry and biotic interactions—emerge from the interplay among social
patterns, constructed and technological systems and governance structures. These interactions influence the dynamics of ecology and evolution, as well as ecosystem
functioning, which reciprocally impact human wellbeing via the mediation of green and blue infrastructure.
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(b) The eco-evolutionary dynamic of green and blue
infrastructure

Green and blue infrastructure—such as parks, rivers and green
roofs—are designed tomitigate the impacts of urbanization and
stormwater flows, reduce heat, settle out sediment and aquatic
contaminants, absorb atmospheric pollutants and improve
the well-being of human residents. This infrastructure can sim-
ultaneously provide novel habitats for wildlife and reconfigure
species coexistence by altering network structures and habitat
composition. Understanding co-evolution in these ecological
networks provides us with a key for predicting eco-evolution-
ary change and its potential effects on environmental and
human outcomes, including biodiversity, water quality, social
equity and economic cost. To adapt to and assist in mitigating
climate change, green stormwater infrastructure has become a
widely deployed approach in cities worldwide. Berlin was
one of the earliest adopters of this approach, beginning more
than 100 years ago [116]. In the US, Seattle and Boston have
emerged at the forefront of developing innovative strategies
for stormwater management [117], albeit with wide differences
in historical deployment given the ages of the cities (Seattle was
settled ca 1851; Boston ca 1630). In Seattle, the green stormwater
infrastructure (built by Seattle Public Utilities and King County
Wastewater Treatment Department) has managed 410 million
gallons of stormwater in 2020 [118]. With innovative designs
and solutions, green stormwater infrastructure presents an
excellent opportunity to study evolution in hybrid human-
constructed ecosystems. In particular, open-water ponds and
infiltration basins play an important role in providing ecosystem
functions, including regulating the microclimate, settling out
sediments, providing new habitats, depositing excess runoff
and pollutants, and altering the ecology, biogeochemistry and
evolutionary dynamics of urban freshwater systems.
Mayors of a number of major cities across the globe, from
Los Angeles to Singapore, have committed to planting a
million trees in their city to mitigate climate change and
increase resilience (sometimes referred to as the Million Tree
Initiative). This has proven to be a remarkably effective and
simple message for raising public awareness and motivat-
ing mayors to take action. Urban trees provide several
environmental benefits. They absorb pollution [119], mitigate
stormwater [120], cool the atmosphere [121], reduce the need
for energy [122] and provide habitats for a variety of species
[123]. There is also increasing evidence that trees may reduce
stress and promote well-being [124,125].

However, we do not know how this infrastructure affects
and is affected by the intrinsic properties of adaptive evol-
ution of organisms. Examples of mechanisms that link GBI
and eco-evolutionary dynamics are the effects of climate
change, heat islands, pests and herbivory, which drive evol-
utionary changes in photosynthetic, tree growth and plant
defence traits that affect the ability of trees to capture
carbon or mitigate air pollution [82,110]. Other examples
include the effects of urban heat islands on zooplankton
(which might determine urban water pollution) [84], the
adaptation of wetland vegetation (which may affect nutrient
cycling and flood mitigation) [126] and the adaptation of
marine algae and invertebrates to pollutants (which may
affect marine ecosystem function and food webs) [110,127].
Because evolutionary changes in species traits may have sub-
stantial consequences on ecosystem functions, it is crucial to
understand and incorporate evolutionary processes into the
design and implementation of GBI (figure 3).

Figure 4 provides a few examples of urban-driven changes
in organisms that affect their ability to perform important eco-
system functions. By comparing bumblebees from nine rural
sites and nine cities in Germany, Theodorou et al. [128] shows
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chairmaker's bulrush
Schoenoplectus americanus

red-rust bryozoan
Watersipors subtorquata

Chinese pine
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Berlin, Germany
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Figure 4. Examples of urban-driven evolutionary changes in traits that affect the ability of organisms to perform important ecosystem functions include: (i) the
effect of urbanization on bumblebee body size, which affects pollination [128]; (ii) the genetic differentiation in physiology and structured pace-of-life syndromes in
the water flea Daphnia magna, which affects water quality [84]; (iii) the effect of rapid evolution in root traits of a dominant marsh sedge on carbon accumulation
and soil surface accretion, which affects marsh resilience to sea-level rise [126]; (iv) the copper-tolerance of red-rust bryozoans and its impact on local ecosystems
[129]; and (v) the effects of urban land-use on leaf nutrient and morphological traits of Chinese pines, which influences their ability to mitigate atmospheric
pollution and carbon emissions [82].
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that urbanization has an indirect positive effect on bumblebee
pollination services by leading to an increase in body size.
Brans et al. [84] analysed 13 populations of Daphnia magna
across urbanization gradients in Flanders, Belgium, showing
that urbanization drives genetic differentiation in physiology
and structures the evolution of pace-of-life syndromes in the
water flea. Pairing a common garden experiment of genotypes
of the dominant sedge Schoenoplectus americanus with an eco-
system model, Vahsen et al. [126] show that rapid evolution
in root traits of a dominant marsh sedge alters the predictions
of carbon accumulation and soil surface accretion, a key deter-
minant of marsh resilience to sea-level rise. McKenzie et al.
[129] also show that copper-tolerant red-rust bryozoan can
become a nuisance to local ecosystems. The observed adap-
tation of Daphnia to urban heat islands, toxic cyanobacteria
and pesticides might determine the net effect of urban water
pollution strategies [84]. Su et al. [82] examined trait changes
of the Chinese pine (Pinus tabuliformis Carr.), a species that is
native to China. Chinese pines along roadsides had leaves
with smaller length, width and area, as well as lower stomatal
density, than those growing in parks and neighbourhoods. It
has been intentionally planted for the last hundred years in
Beijing across an urban–rural gradient, land use types and
plant developmental stages. Su et al. [82] found that the leaf
functional traits of Chinese pine, which may affect the ability
of trees to capture carbon or mitigate air pollution, have chan-
ged, although the genetic basis of these trait changes has not
been determined.
5. Towards urban eco-evolutionary sustainability
Understanding how urbanization affects ecological resilience
and stability requires expanding the concept of ecosystem
complexity. In a rapidly evolving planet, stability is not
defined as the capacity to maintain ecosystem conditions in
a pre-urban or current state, or to maintain the rate of ecosys-
tem processes despite environmental fluctuations. Instead, it
is defined as the capacity of the system to adapt and evolve to
include and support novel functions. In living systems, stab-
ility requires both robustness and flexibility [130].
For example, in a genetic network robustness is the capacity
of a phenotype to overcome environmental perturbations.
Flexibility denotes the variability in gene expression patterns
throughout development and the capacity to adapt to
environmental variations. From an evolutionary perspective
robustness is essential for an organism to maintain the
stability of phenotypic traits that are required for fitness,
while flexibility allows for phenotypic innovation, enabling
the organism to adapt to new environmental challenges.
Torres-Sosa et al. [130] show that it is the interplay between
conservation and innovation that drives the evolution of
complex networks towards criticality, a state of dynamic sys-
tems that exhibit key properties for their evolvability. These
include quick information processing, a unified response to
disturbances and the capacity to assimilate a broad spectrum
of external changes without altering their core functions.

In this context, robustness can be seen as: ‘the effectiveness
of a system’s ability to switch amongmultiple strategic options’
[131, p. 5] that are available, to respond to perturbations. Evol-
ution, by altering diversity, may enhance or reduce the
robustness of ecological networks in urban environments.
Urbanization can alter the balance between adaptive evolution
and species sorting, shaping patterns of species persistence and
biodiversity [9,34,35]. For instance, urbanization may impede
colonization by reducing connectivity between fragmented
habitats, which could allow resident species to adapt to novel
conditions and monopolize resources, potentially hindering
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the success of new colonizers [132]. However, if urbanization
enhances connectivity, species sorting may play a greater role
in promoting the spatial insurance effect, whereby species
track their optimal environments by shifting their ranges
[133]. These outcomes may be influenced by genetic drift,
particularly in small populationswith limited genetic variation.

The impact of urbanization on colonization rates, genetic
drift and gene flow varies across different species and cities,
and can either amplify or mitigate these processes depending
on the characteristics of the urban environment and the
species involved. This can affect the relative importance of
species sorting and evolutionary dynamics [132,133]. The
ecological effects of species loss owing to urbanization on
the robustness of an ecological network depend on the
trophic functions of the removed species [134]. They also
depend on which organisms can adapt, disperse or go
extinct, and which can evolve the necessary strategies and
physical characteristics to coexist with humanity [9].

Rapid evolution requires us to rethink urban biodiversity
conservation and resilience from an eco-evolutionary per-
spective [113]. This perspective radically changes the way
we think and plan cities. Understanding how city environ-
ments select for species traits will provide new insights for
designers and planners to simultaneously mitigate the
impact of urbanization and climate change by expanding
cities’ adaptive capacity while including diverse communities
of people and organisms. An evolutionary perspective
will help us see how historical system dynamics have
shaped the system capacity for adaptation and the evolution-
ary potential of organisms. Evolution will affect how
organisms respond to urbanization and climate change and
will alter the ecosystem functions that urban sustainability
depends on.

This perspective shifts the focus of planning towards
human–natural interactions, adaptive feedback mechanisms
and flexible institutional settings [63] to realize new
cooperation between humans and the biosphere [135].
Approaching cities from an eco-evolutionary perspective
allows us to broaden the dimensional space encompassing
human–nature relationships, thereby unveiling potential path-
ways towards a new coexistence [136]. Instead of predefining
‘solutions’ that communities must implement, planning and
designwill rely on principles of resilience, innovation and evol-
vability in complex systems [73,134,137]. Evidence emerging
from the study of complex systems indicates that systems
with greater heterogeneity and modularity tend to have greater
adaptive capacity than those characterized by highly con-
nected, homogeneous elements [138]. Other properties of
complex systems that enhance adaptive potential and foster
evolutionary innovation include cross-scale interaction, early
warning and self-organization [63,73].

Incorporating these principles into urban design and
planning enhances the evolutionary resilience of populations
and landscapes, thereby safeguarding critical ecosystem func-
tions. This approach advances urban sustainability by
achieving key evolutionary objectives mentioned earlier:
maintaining genetic diversity, facilitating evolutionary poten-
tial, aiding species with evolutionary constraints, identifying
and protecting evolutionary refugia, enhancing gene flow
and strengthening adaptability to future environmental
shifts (table 1; [25,27–29,136]).

The heterogeneity of urban landscapes provides diverse
microhabitats, thereby enhancing the evolutionary potential
of multiple species and genotypes [139]. Designing cities
with this biodiversity in mind enables different genotypes
to evolve traits adaptive to fluctuating environments [140].
For instance, diverse plant species in urban gardens can cat-
alyse the evolution of growth and defence traits better suited
to urban environments [82]. Such heterogeneity also supports
species with limited evolutionary adaptability, like the
white-footed mouse in New York’s urban parks [80]. These
diverse habitats can also serve as evolutionary refugia, pro-
viding sanctuaries for unique species [141]. In cities, this
may include vacant lots and gardens that can support species
pre-adapted to the stresses of urban life, such as low-nutrient
soils or droughts [142].

Urban design can further support eco-evolutionary
feedback by implementing a modular approach, which acknowl-
edges the significance of differential selection pressures and the
emergence of local adaptations [143,144]. Modular landscape
design enhances population stability and robustness by buffer-
ing against perturbations and providing semi-independent
compartments that can sustain different species and ecological
interactions [138,145,146]. This approach also allows for
the conservation of ‘evolutionary refugia’ and facilitation of
gene flow between modules, ultimately maintaining genetic
diversity within the population [147,148].

A cross-scale design perspective is integral to urban plan-
ning. By considering functional redundancy across scales
and fostering opportunities for genetic exchange between
populations, urban environments can maintain and enhance
genetic diversity [73,149,150]. Monitoring changes in these
diverse and interconnected environments is also important.
Early warning systems can detect the emergence of new
adaptive traits or disruptions in gene flow, and prepare for
changing environmental pressures [138,151,152]. Moreover,
the facilitation of self-organization within these environments
enables natural and social systems to adapt internally to
external changes, supporting the emergence of novel traits
and facilitating the evolution of threatened taxa [73,153,154].

Implementing eco-evolutionary resilience principles trans-
forms cities and their infrastructure into assets to maintain and
enhance evolutionary potential, thereby enabling species to
adapt to present and future rapid environmental changes.
6. Conclusion
In this paper I argue that integrating evolutionary principles
into the planning and design of cities is critical for achieving
urban sustainability. Evolutionary change plays a crucial role
in ecosystem dynamics, influencing both ecosystem function
and human well-being on a contemporary time-scale. By
understanding the mechanisms through which urbanization
affects eco-evolutionary dynamics and their feedback on eco-
system function and resilience, we can develop evidence-
based strategies to promote sustainable urban development.

Knowing when and how populations can evolve will
enable the protection of ecosystem function. Understanding
how cities affect evolution allows us to anticipate potential eco-
system shifts. However, this task is not trivial. Predicting how
urban-driven environmental change affects eco-evolutionary
outcomes requires understanding how the emergent properties
of urban landscapes alter the complex networks of ecological
interactions that govern communities and ecosystem function
and sustain human wellbeing.
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Integrating evolutionary dynamics in urban planning and
design redefines target conditions and strategies. I argue that
urban sustainability must aim to maintain eco-evolutionary
potential, and I propose that the cities of the Anthropocene
call for expanding the time and spatial scales of urban plan-
ning and governance to include the scales of the geological
and biological processes on which our planet operates.
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