L)

Check for
updates

Width Helps and Hinders Splitting Flows

MANUEL CACERES, MASSIMO CAIRO, and ANDREAS GRIGORJEW, Department of
Computer Science, University of Helsinki, Helsinki, Finland

SHAHBAZ KHAN, Department of Computer Science and Engineering, Indian Institute of Technology
Roorkee, Roorkee, India

BRENDAN MUMEY, School of Computing, Montana State University, Bozeman, United States
ROMEO RIZZI, Department of Computer Science, University of Verona, Verona, Italy
ALEXANDRU I. TOMESCU, Department of Computer Science, University of Helsinki, Helsinki,
Finland

LUCIA WILLIAMS, Department of Computer Science, University of Montana, Missoula, United States

Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network
flow/circulation X on a directed graph G into weighted source-to-sink paths whose weighted sum equals X.
We show that, for acyclic graphs, considering the width of the graph (the minimum number of paths needed to
cover all of its edges) yields advances in our understanding of its approximability. For the version of the prob-
lem that uses only non-negative weights, we identify and characterise a new class of width-stable graphs, for
which a popular heuristic is a O(log Val(X))-approximation (Val(X) being the total flow of X), and strengthen
its worst-case approximation ratio from Q(+/m) to Q(m/log m) for sparse graphs, where m is the number of
edges in the graph. We also study a new problem on graphs with cycles, Minimum Cost Circulation Decom-
position (MCCD), and show that it generalises MFD through a simple reduction. For the version allowing
also negative weights, we give a ([log || X||] + 1)-approximation (|| X|| being the maximum absolute value of
X on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition
of unitary circulations (|| X|| < 1), using a generalised notion of width for this problem. Finally, we disprove a
conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster
et al. [2018], but show that its useful implication (polynomial-time assignments of weights to a given set of
paths to decompose a flow) holds for the negative version.

CCS Concepts: « Theory of computation — Approximation algorithms analysis; Network flows;

Additional Key Words and Phrases: Flow decomposition, graph width

A preliminery version of this paper appeared in the 30th Annual European Symposium on Algorithms, ESA 2022, September
5-9, 2022, Berlin/Potsdam, Germany.

This work was partially funded by the European Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No. 851093, SAFEBIO), partially by the Academy of Finland (grants
No. 322595, 328877, 352821, 346968), and partially by the National Science Foundation (NSF) (grants No. 1661530,1759522).
Authors’ addresses: M. Caceres, M. Cairo, A. Grigorjew, and A. I. Tomescu, Department of Computer Science, Univer-
sity of Helsinki, Helsinki 00014, Finland; e-mails: manuel.caceresreyes@helsinki.fi, cairomassimo@gmail.com, andreas.
grigorjew@helsinki fi, alexandru.tomescu@helsinki fi; S. Khan, Department of Computer Science and Engineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India; e-mail: shahbaz.khan@cs.iitr.ac.in; B. Mumey, School of Com-
puting, Montana State University, Bozeman 59717, USA; e-mail: brendan. mumey@montana.edu; R. Rizzi, Department of
Computer Science, University of Verona, Verona 37129, Italy; e-mail: romeo.rizzi@univr.it; L. Williams, Department of
Computer Science, University of Montana, Missoula 59812, USA; e-mail: lgw2@uw.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1549-6325/2024/03-ART13
https://doi.org/10.1145/3641820

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

https://orcid.org/0000-0003-0235-6951
https://orcid.org/0000-0001-7247-756X
https://orcid.org/0000-0003-0989-2415
https://orcid.org/0000-0001-9352-0088
https://orcid.org/0000-0001-7151-2124
https://orcid.org/0000-0002-2387-0952
https://orcid.org/0000-0002-5747-8350
https://orcid.org/0000-0003-3785-0247
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641820
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641820&domain=pdf&date_stamp=2024-03-13

13:2 M. Céceres et al.

ACM Reference Format:

Manuel Caceres, Massimo Cairo, Andreas Grigorjew, Shahbaz Khan, Brendan Mumey, Romeo Rizzi, Alexan-
dru I. Tomescu, and Lucia Williams. 2024. Width Helps and Hinders Splitting Flows. ACM Trans. Algor. 20, 2,
Article 13 (March 2024), 20 pages. https://doi.org/10.1145/3641820

1 INTRODUCTION

Minimum flow decomposition (MFD) is the problem of finding a smallest sized decomposi-
tion of a network flow X on directed graph G = (V, E) into weighted source-to-sink paths whose
weighted sum equals X. We focus on the case where path weights are restricted to be integers
(MFDgy) or natural numbers (MFDry). It is a textbook result [Ahujia et al. 1993] that if G is acyclic (a
DAG) a decomposition using no more than m = |E| paths always exists. However, MFD is strongly
NP-hard [Vatinlen et al. 2008], even on DAGs, and even when the flow values come only from
{1,2,4} [Hartman et al. 2012]. Recent work has shown that the problem is FPT in the size of the
minimum decomposition [Kloster et al. 2018] and that it can be formulated as an ILP of quadratic
size [Dias et al. 2022].

While difficult to solve, MFD is a key step in many applications. For example, MFD on DAGs is
used to reconstruct biological sequences such as RNA transcripts [Bernard et al. 2014; Dias et al.
2023; Gatter and Stadler 2019; Pertea et al. 2015; Tomescu et al. 2015, 2013; Williams et al. 2019]
and viral strains [Baaijens et al. 2020]. MFD can also be used to model problems in networking
[Hartman et al. 2012; Mumey et al. 2015; Vatinlen et al. 2008] and transportation planning [Olsen
et al. 2020], although in some of these applications there may be cycles in the input. Despite
the ubiquity of the MFD problem, the gap in our knowledge about the approximability of MFD
is large. It is known [Hartman et al. 2012] that MFD (even on DAGs) is APX-hard (i.e., there
is some € > 0 such that it is NP-hard to approximate within a (1 + €) factor), so in particular,
MFD does not admit a PTAS, unless P=NP. Furthermore, the best known approximation ratio is
g IXN [og || X|| [Mumey et al. 2015], where A is the length of the longest source-to-sink path and
||X]|| is the largest flow value in the network. In this work, we attempt to fill in some of the gaps
between these results.

A natural lower bound for the size of an MFD of a DAG is the size of a minimum path cover
of the set of edges with non-zero flow (i.e., the minimum number of paths such that every such
edge appears in at least one path)—this size is called the width of the network. This trivially holds
because every flow decomposition is also such a path cover. These two notions are analogies of
the more standard notions of path cover and width of the node set. The node-variants are classical
concepts, with algorithmic results dating back to Dilworth [1950] and Fulkerson [1956]. Despite
this, the width has not been given any attention in the MFD problem, and in particular it has
never been used in approximation algorithms to our knowledge. In this article, we show that the
width can play a key role both in the analysis of popular heuristics, and in obtaining the first
approximation algorithm for a natural generalisation of MFD.

We start by considering the connections between the width and a popular heuristic algorithm
for MFDy which we call greedy-weight! [Vatinlen et al. 2008], which builds a flow decomposition
by successively choosing the path that can carry the largest flow. Greedy-weight is commonly
used in applications (see e.g., Baaijens et al. [2020], Pertea et al. [2015], and Tomescu et al.
[2013] among many), and it seems to be mentioned in nearly every publication addressing flow
decomposition. First, on sparse graphs we improve (i.e., increase) the worst-case lower bound for

IPrevious work has consistently referred to this algorithm as greedy-width. To avoid confusion with the width of the graph,
we introduce the name greedy-weight in this work.

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

https://doi.org/10.1145/3641820

Width Helps and Hinders Splitting Flows 13:3

the greedy-weight approximation factor from Q(+/m) [Hartman et al. 2012], showing for the first
time that greedy-weight can be exponentially worse than the optimum:

THEOREM 1. The approximation ratio for greedy-weight on MFDy is Q(m/log m) for sparse graphs,
in the worst case.

For this we use a class of sparse graphs where the optimum flow decomposition has size O(log m)
whereas the greedy-weight algorithm returns a solution of size Q(m), only a constant factor away
from the trivial decomposition. The key to this new bound is to design an input where the width
increases exponentially when a path is greedily removed. We also show that the same bound also
holds for other greedy heuristics choosing instead the longest or shortest paths. Second, we iden-
tify a new class of graphs, defined by the property that their width does not increase as source-to-
sink paths are removed (see Definition 11 of width-stable graphs). We show a relation of width-
stable graphs to funnels: precisely, a graph is not width-stable iff it contains a funnel subgraph
and a certain central path. This is precisely the structure of the class of sparse graphs improving
the approximation ratio of greedy-weight in Theorem 1. We also show that width-stability enables
greedy-weight to remove paths of large enough flow (Lemma 13), leading to the following result,
with Val(X) being equal to the total flow of the graph:

THEOREM 2. Let G = (V,E) be a width-stable graph and X : E — N a flow. Greedy-weight is a
O(log Val(X))-approximation for MFDy on (G, X).

A notable example of width-stable graphs is the class of series-parallel graphs; see [Eppstein
1992; Valdes et al. 1982] for fast recognition algorithms and pointers to other NP-hard problems
that are easier on this class of graphs. Series-parallel graphs are also of great interest for network
flow problems (see, e.g., Bertsimas et al. [2013] and Jain and Chandrasekharan [1993]). Theorems
1 and 2 show that greedy-weight’s approximation ratio is highly linked to the width stability of
the graph.

In Section 4, we continue with a generalised version of MFD, Minimum Cost Circulation De-
composition(MCCD), on directed graphs with cycles and no sinks or sources, and a cost function
on the edges. Instead of decomposing a flow into weighted paths, we decompose a circulation into
weighted circulations and minimise the total cost of the circulations, and instead of the width, a nat-
ural lower bound for this problem is the minimum cost of a circulation cover (mccc). Decom-
posing into circulations rather than paths is a natural generalisation, as paths can be considered as
value 1 flows themselves. Additionally, we also consider a relaxation in which the flow/circulation
decomposition might use negative integer weights on flows/circulations, rather than strictly posi-
tive weights as has traditionally been considered [Hartman et al. 2012; Kloster et al. 2018; Vatinlen
et al. 2008]. An important observation that we leverage for this variant (unlike the positive-only
version) is that the width/mccc stays constant as flow is chosen and removed. Using this, we give
a ([log [|IX||T + 1)-approximation algorithm for this variant.

We denote the problem versions for non-negative path weights and integer path weights by
MCCDy and MCCDyz as well as MFDy and MFDy, respectively, throughout the article. While
MCCDg and MFDy are natural versions of the problem, they have not been previously considered
in the MFD literature to our knowledge. However, MFD7z can also have natural applications,
since by applying MFDz on the difference between two flows, one can minimally explain the
differences between them, for example, to explain the differences in RNA expression between two
tissue samples with the fewest number of up/down regulated transcripts, which is often the goal
of RNA sequencing experiments [Teng et al. 2016]. Our approximation follows a power-of-two
approach, where the weights of the flows/circulations chosen are (positive or negative) powers of
two. More specifically, observe that if all circulation values are even, then one can divide them by

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

13:4 M. Céceres et al.

2 and obtain a circulation X with smaller ||X|| whose decomposition can be transformed back into
a decomposition of X. In order to obtain such an even circulation, we prove a basic property that
can be of independent interest: given any integer circulation X, there exists a unitary circulation
(its values are 0, +1, or —1) Y, such that X + Y is even on every edge (Lemma 21). In addition,
given a unitary circulation Y, we show that Y can be decomposed into circulations of total cost no
more than mccc (Lemma 23). We obtain the ([log || X||] + 1)-approximation ratio (Theorem 3) by
iteratively removing the unitary circulation, dividing all circulation values by 2, and preprocessing
the graph so that the mccc is a lower bound on the size of the MCCDy. Summarised, we show:

THEOREM 3. MCCDyz can be approximated with a factor of log[||X||1+ 1 in runtime
O(nlog m(m + nlogn) + mlog || X||).

By Corollary 26, we additionally obtain the result for MFDyz. Notably, the runtime of the algo-
rithm does not depend on the cost function.

Finally, in Section 5, we consider a closely related problem, called k-Flow Weight Assign-
ment [Kloster et al. 2018]. In addition to the flow X, in this problem we are also given a set of k
paths, and we need to decide if there is an assignment of weights to the paths such that they form
a decomposition of X. If the weights belong to N, this was shown to be NP-complete in Kloster
et al. [2018]. In this work, we first observe that in the same way that allowing negative integer
weights simplifies the approximability of MFD, allowing weights to belong to Z fully changes
the complexity of the k-Flow Weight Assignment Problem, making it polynomial. This is due to
the fact that the linear system defined by the given paths loses its only inequality of restricting the
weights to positive integers. It thus transforms an ILP to a system of linear diophantine equations,
which can be solved in polynomial time (see e.g. Schrijver [1986]). Second, we consider a conjec-
ture from Kloster et al. [2018] stating that if the weights belong to N, and k is the size of a MFDy
for X, then the problem admits a unique solution (i.e., a unique assignment of weights to the given
paths). If true, this would speed up the FPT algorithm of Kloster et al. [2018] for MFDy, because
a step solving an ILP could be executed by solving a standard linear program returning a rational
solution and checking if the (supposedly unique) solution to this system is integer. Moreover, the
same conjecture (with the same implication) was also a motivation behind the greedy algorithm
of Shao and Kingsford [2017] for MFDy. In this article, we disprove the conjecture of Kloster et al.
[2018], further corroborating the gap between MFDy and MFDy.

2 PRELIMINARIES

In Sections 3 and 5, we are given a directed acyclic graph G = (V, E). Without loss of generality,
we assume a unique source s and a unique sink ¢ with no in-edges and no out-edges, respectively;
otherwise, the graph can be converted to such a graph by adding a pseudo source and sink and
connecting them to all sources and sinks, respectively. We denote by deg*(v) and deg™(v) the
out- and indegree of a vertex v, respectively. While MFD are also studied for graphs with cycles
(see, e.g., Hartman et al. [2012] and Vatinlen et al. [2008]), the task is still to decompose into simple
paths, and so our inapproximability result on DAGs in Section 3 also applies for graphs with cycles.
In Section 4, we consider directed graphs G = (V, E, ¢) with no sources or sinks, where ¢ : E —
R is a cost function. Such graphs cannot be acyclic. We use n and m to denote the number of
nodes and edges of G, respectively. For both kinds of graphs, we call functions X : E — Y pseudo-
flows,2 where Y € {N,Z} is some set of allowed flow values. We treat pseudo-flows as vectors
over E and use the notation X + Y and aX to denote the (element-wise) sum of pseudo-flows and

2Commonly in the literature, (pseudo-)flows are additionally required to be skew-symmetric and to be upper-bounded by
some capacity function on the edges.

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

Width Helps and Hinders Splitting Flows 13:5

s(ay) B

s (a3q) B

Fig. 1. The reduction of 3-Partition to MFD from Vatinlen et al. [2008]. The 3-Partition instance consists of
aset A={aj,...,asq}, where every a; has a positive integer size s(a;), and a positive integer B, such that
B/4 < s(a;j) < B/2 holds for every a; € A. The question is whether A can be partitioned into q disjoint subsets,
each of 3 elements and of size B. The MFD series-parallel (see Definition 15) reduction consists of a subgraph
obtained by the parallel composition of 3q edges with flow values s(a1), . . ., s(asq), and a subgraph obtained
by the parallel composition of g edges, each with flow value B. These two graphs are composed with the
series composition. Intuitively, because B/4 < s(a;) < B/2 holds for every a;, the MFD consists of exactly 3¢
paths of weights s(a1), . ..,s(asq), and each edge on the right-hand subgraph is traversed by exactly three
paths whose weights sum to B, giving thus the partition of A. Moreover, since the first 3q edges need to be
decomposed, the previous decomposition is minimum even if negative weights are allowed, making MFDy
NP-hard.

multiplication by a scalar, respectively. The numbers 0 and 1 also denote (depending on context)
pseudo-flows that are 0 (resp. 1) on every edge. We write X < Y (and similarly <) to mean X(u, v) <
Y(u, v) for every (u,v) € E.

Given a DAG G, a flow is a pseudo-flow satisfying conservation of flow (incoming flow equal
to outgoing flow) on internal nodes V' \ {s,t}. A pseudo-flow satisfying the conservation of flow
on all nodes is called a circulation. We sometimes refer to the value X(e) for a flow/circulation
X as the flow of the edge e. It is known that the sum of two flows/circulations X + Y, the multi-
plication of a flow/circulation with by a scalar aX, and the empty pseudo-flow 0 are themselves
flows/circulations. For a flow X, let Val(X) denote the total flow out of s (or equivalently into ¢ by
flow conservation). Note that Val(X) can be negative. Given an s-t path P, denote by P[u..v] the
subpath of P going from u € V to v € V and let P also denote the flow defined by setting one to
every edge in P and 0 to every other edge. With these definitions, we are ready to formally define
MEFD.

Definition 4. Given a flow X, a flow decomposition of (G, X) of size k is a family of s-t paths
P = (Py,...,Pr) with weights (wy,...,wg) € Y* such that X = wiP; + - -+ + wi Py

Definition 5. For a flow X, let mfdy (G, X) be the smallest size of a flow decomposition of (G, X)
with weights in Y.

We omit Y if it is clear from the context. We call the problem of producing a flow decomposition
of (G, X) of minimum size the MFD problem.

In Section 3, we study MFDy (0 € N), and in Section 4, we study MFDz and its generalisation
MCCDyz. Note that the reduction showing MFDy to be strongly NP-hard from Vatinlen et al.
[2008] also holds for MFD7z (see Figure 1). However, a flow with non-negative values may admit a
decomposition using fewer paths if negative weights are allowed, as shown in Figure 2. We explore
further differences between MFDy and MFDy in Sections 4 and 5.

Let || X|| = max(,,.)ee [X(u, v)| denote the maximum norm on flows or circulations. In particular,
notice that if Y C Z, then || X|| < 1 means that X(u,v) € {0, +1} for every (u,v) € E. Let X =, Y
iff X and Y have the same parity everywhere, that is, for every (u,v) € E, we have that X(u, v) is
odd iff Y(u, v) is odd.

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

13:6 M. Céceres et al.

(a) If negative weights are allowed, the four paths decompose (b) With positive weights only, five paths are needed, since

the flow with weights 4, 5,8, and —3 (dark blue). the edge (01, v2) must be decomposed by a weight 1 path,
leaving 4 edges that must be covered separately. The paths
shown are one such decomposition.

Fig. 2. A positive flow admitting a decomposition into four paths only if negative weights are allowed.

Definition 6. Given S C E, we define widths(G) as the minimum number of s-t paths in a DAG
G needed to cover all edges of S. If S = E we just write width(G).

The width is the main combinatorial tool that we use for our approximation results, and we will
show in Section 3, that it is highly linked to the approximation performance of greedy-weight. Just
like its more common node variant, width(G) can be computed in O(mn) time. As described by,
for example, Ahujia et al. [1993] and Céceres et al. [2022], this is done by reduction to a min-flow
instance with demand one on every edge; the minimum flow of this instance is width(G), and the
flow can be found by reduction to a max-flow instance. Moreover, the problem can be relaxed to
only require the coverage of S C E and solved in the same running time by setting the demands
only on the edges of S.

LEMMA 7 (AHUJIA ET AL. [1993] AND ORLIN [2013]). Let G = (V, E) be a DAG, and S C E. A flow
C : E — N can be computed in O(mn) time, such that C(e) > 1 foralle € S and |C| = widths(G).

The flow C with total flow widthg(G) suffices and we do not need to calculate a path cover
achieving that minimum. However, we note that it can be directly computed given the flow C.
We can think of this path cover as a flow decomposition of C into widths(G) weight-one paths,
which can be found by greedily removing such paths from C until it is completely decomposed.
Since each path has no more than n — 1 edges and since widths(G) < m, the overall runtime of
finding the path cover is O(mn). Similarly, every path cover P4, ..., Py of G defines a flow C on G:
C =Py + -+ + Py, and we say that C is the induced flow of the path cover (Pi)f.

Definition 8. In a directed graph G = (V, E) we call a subset C C E an antichain of G if all edges
in C are pairwise parallel, that is there exists for no pair of edges in C a path in G leading from one
edge to the other.

It can be shown with straight forward arguments that width(G) = |C| for a maximum (sized)
antichain C of G.

3 WIDTH MATTERS FOR GREEDY APPROACHES

Since the difference of two flows is still a flow, it is very natural to consider successively removing
the simplest type of flow — that is to say, paths — as an algorithmic strategy for MFDy. Indeed,
the particular greedy path removal strategy of finding a heaviest path (greedy-weight) is commonly
used as a heuristic in applications (e.g., Baaijens et al. [2020], Hartman et al. [2012], Pertea et al.
[2015], and Tomescu et al. [2013]) and it seems to be mentioned in nearly every article addressing
flow decomposition. More formally, a path P is said to carry flow p if X(u,v) > p for all edges
(u,v) of P (in particular, a v-v path carries infinite flow). A heaviest path is an s-t path carrying
the largest flow. Such a path can be easily found in linear time in the size of the DAG by dynamic
programming (see, e.g., Vatinlen et al. [2008]).

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

Width Helps and Hinders Splitting Flows

13:7

(a) The base case (Gy,X1,B) (¢ =
Backbone edges (bold) carry B flow.

1).

(b) Building (G, X¢,) from two copies
of (Gy—1,X¢-1,B) (¢ > 1). The 5 edges en-
tering (resp. leaving) (Ge—1, X,-1,B) are
defined to enter (resp. leave) the source
(resp. sink) node of (G,-1,X,-1,8). The
central edge has flow B and is part of
the backbone (bold edges).

(c) Decomposing the base case
(G1,X1.B) (£ = 1), for B =21 All non-
backbone edges can be decomposed
with 2¢ + 1 = 3 paths. The orange path
has weight 1 and dark and light blue
paths have weight 2. A fourth path
(of weight 3) along the backbone is

required to fully decompose the flow.

Fig. 3. Construction for (Gg,X¢). Setting B = 201 yields MFDy instances where greedy-weight uses
@(%) times more paths than optimal to decompose the flow.

3.1 Width Hinders Greedy on MFDy

We define a family of MFDy instances (Gg, Xy, p), depending on two parameters £ € N \ {0}
and B € N. The family is defined recursively on ¢. The base case (Gy,Xj,p) for £ =1 is shown
in Figure 3(a). For ¢ > 1, we build (G, X, g) from two disjoint copies of (G¢-1, X¢-1,8), by adding
five extra edges and flow values as shown in Figure 3(b). We call the edge connecting the two
copies of Ge—1 a central edge. Edges whose flow value depends on B are called backbone edges,
and they form a s-t path. By choosing B = 2/*!, we show that the flow X ¢.2¢+1 can be decomposed
using a number of paths linear in ¢, thanks to the heavy backbone edges, whereas the greedy-
weight algorithm fully saturates the central edges with its first path and is left with a remaining
flow requiring 2*! paths to be decomposed.

LEMMA 9. For the graph Gy with flow X, 5e+1, greedy-weight uses 1 + 21 paths to decompose
X[,Z[)-%-l.

Proor. We first show that the heaviest path in X, ,¢+1 follows every backbone edge from s to ¢.
Certainly this path carries 2*! flow, and no more, since every backbone edge has flow at least 2(*!
and every central edge has flow exactly 2/*1. To see that there is no heavier path, observe that all
the non-backbone edges have flow value strictly less than 2/*! by construction. After removing
that path with weight 2/, all the central edges are completely decomposed. The remaining graph
and flow, without central edges, has 2(*! weight-1 edges that are pairwise non-reachable using
only non-zero flow edges (four edges for each of the 2/~! copies of G;), each of which must be
covered by a different path of weight 1 (and these paths fully decompose the flow). O

LEMMA 10. For the graph G, flow Xy ye41 can be decomposed using 20 + 2 paths.

Proor. Using induction, we first prove that we can use 2{ + 1 paths to decompose all of the
flow of X, »c+1 on the non-backbone edges of Gy, and that these paths have total weight 202 — 3,
When ¢ = 1 (see Figure 3(c)), we can decompose both the flow-1 edges with a single path of weight
1, which goes through the central edge. Moreover, we can decompose the flow-2 edges with two
paths of weight 2, without using the central edge. These paths have 5 = 2!*2 — 3 total flow. We
now assume that the claims hold for ¢ = k and prove it for £ = k + 1. Consider the graph Gy;. By
assumption, the non-backbone edges in every copy of G are fully decomposed by 2k + 1 paths,
and the total flow of those paths is 25*? — 3. Note that these paths are s-t paths in Gy, but they must

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

13:8 M. Céceres et al.

Fig. 4. (G2, X p=ge+1) with a 2¢+ 2 = 6 flow decomposition. Orange (weight 1) and dark and light blue
(weight 2) decompose the non-backbone edges in the two copies of G1. Green and pink (weight 4) decompose
the non-backbone edges added in Gy. Dark red (weight 3) is the additional path needed to fully decompose
the flow.

be extended to be s-t paths in G,. Because there is a central edge with weight 2(k¥D+1 = 2k+2

2K+2 _ 3 from one copy of Gy to the other, it is possible to route the 2k + 1 paths from the first Gy
to the second using the central edge. Additionally, the backbone edges from s to the first copy of
Gy and from the second copy of G to t have flow 2K*1 4+ 25%2 50 they can be used to complete
the routing of the paths from s to ¢. Then we can use two additional paths of weight 25*! each
to decompose the flow of the two new non-backbone edges; one using the backbone path of the
upper Gy (extended by the upper edges of Gy.1), and analogously, the other through the backbone
path of the lower Gy, which is possible since the paths obtained inductively only decompose 25+
of the backbone flow of G, whereas now 252 backbone flow must be decomposed. As such, we
use 2k + 1 + 2 = 2(k + 1) + 1 paths with total flow 25*2 — 3 4 2(2k+1) = 2(k+1D+2 _ 3 a5 required. By
the previous, given any graph G,, we can decompose all non-backbone edges using 2¢ + 1 paths.
Note that removing these weighted paths from X ,¢-1 yields a flow on G¢ (of value 3). Because the
remaining edges (all backbone) form a path from s to ¢, and the remaining edge values form a flow
on Gy, all remaining edges must have the same flow value, and can be covered by one path. Thus,
2¢ + 2 paths are sufficient to decompose X ,¢+1. See Figure 4 for an example when ¢ = 2. O

THEOREM 1. The approximation ratio for greedy-weight on MFDY is Q(m/log m) for sparse graphs,
in the worst case.

PrOOF. By Lemmas 9 and 10, greedy-weight uses ©(2¢) paths to decompose the flow X pte1
described above, whereas it is possible to decompose the flow with only ©({) paths. It can be
easily verified by induction that the number of edges of G, is 7 - 2¢ — 5. So the ratio between
greedy-weight and the optimal for this instance is Q(-2-).]

logm

While greedy-weight is most commonly used in applications, the approach was first presented
as part of a general framework [Vatinlen et al. 2008]: pick any optimality criteria for s-t paths
that is saturating (i.e., fully decomposes at least one edge), and successively remove optimal paths.
Since each path is saturating, the algorithm must decompose the flow in m or fewer paths. Another
optimality criterion sometimes used in DNA assembly (e.g., in vg-flow [Baaijens et al. 2020]) is the
longest path (with its maximum possible flow so that it is saturating). To adapt our construction

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

Width Helps and Hinders Splitting Flows 13:9

Fig. 5. By subdividing the backbone edges, choosing longest paths (orange) and shortest paths (blue) both
give the same approximation ratio as choosing heaviest paths in the original flow X, 541.

of (G¢, X 5e+1) so that this approach yields the same approximation ratio, consider (G, X} ,.,),
constructed as in (G, Xy ye+1) except that we split every backbone edge (u,v) into two e’dges,
(u, w) and (w, v). See Figure 5 for an example. Then the path along the backbone edges will be the
longest from s to t and the previous asymptotic analysis still holds, since we no more than doubled
the number of edges (and the number of edges of the new construction is still ©(2¢)). Yet another
optimality criterion, studied in Hartman et al. [2012] for its application to network routing, is the

shortest path (again with its maximum possible flow). (G;, X7 , .,) will also force this approach to

take an exponential number of paths, since first the algorithm will decompose all
edges with 2¢*1 different paths.

201 weight-1

3.2 Greedy Approximation for Width-Stable Graphs

As exploited in Section 3.1, one sticking point for greedy path removal algorithms is the fact that
the width of a graph can increase after an edge is fully decomposed. We now identify a new class
of graphs, in which the graph does not increase its width during the execution of the algorithm.
We show that greedy-weight decomposes “enough” flow at each step in these graphs, giving a
O(log Val(X))-approximation for MFDy.

If X > 0is aflow on a DAG G, we write G|x (G restricted to X) to mean the spanning subgraph of
G made up of the edges e € E such that X(e) # 0. Conversely, if S is a subgraph of G, we write X|s
(X restricted to S) to mean the pseudo-flow X only on the edges of S. In the case of MFDy, once an
edge is fully decomposed, it cannot be used in future paths, possibly increasing the width of the
graph that can be used to decompose the rest of the flow and sometimes triggering an increase of
the size of a minimum flow decomposition as well. We call a graph width-stable if it does not have
this issue.

Definition 11 (Width-stable Graph). We say that a graph G is width-stableif, for any non-negative
flows X < Y on G, it holds that width(G|x) < width(Gly).

Many useful MFDy instances satisfy Definition 11. For example, the first proof of MFD’s NP-
hardness [Vatinlen et al. 2008] was a reduction to a very simple graph of this form, as shown in
Figure 1; this means that MFDyy restricted to width-stable graphs is also NP-hard.

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

13:10 M. Céceres et al.

Fig. 6. MFDy instance with width(G) = 3, Val(X) = 7, Val(X)/width(G) = 7/3 > 2, but no path can carry
more flow than 2. By Lemma 13, this is equivalent to G not being width-stable, there exists an s-t path
saturating the central edge from v to u of weight 1, making the graph a funnel and increasing width(G) to 4.

Definition 12 (Garlet Millani et al. [2020]). We call an s-t DAG G funnel if every s-t path has a
private edge that is not contained in any other s-¢ path.

Funnels are simple graphs in the sense that they admit a unique flow decomposition [Khan
et al. 2022]. We use funnels in Lemma 13 to characterize graphs that are not width-stable. Fun-
nels generalise in/out-forests: along any s-t path nodes v first satisfy deg”(v) < 1 < deg*(v) and
then deg™(v) > 1 > deg*(v). We call a node v forking (resp. merging) if deg™(v) > 1 (resp. if it is
deg™(v) > 1). For a funnel subgraph F of G we call a path in G from a merging node in F to a
forking node in F a central path of the funnel. The graphs (G, X,) in Section 3.1 are precisely
funnels with central paths.

The next property that we need is that there is always, during the execution of the greedy-weight
algorithm, a path carrying “enough” flow from s to ¢.

LEMMA 13. Let G be an s-t DAG. The following statements are equivalent:

(1) G is width-stable,

(2) G has paths of large weight: for any flowX > 0 on G, there exists an s-t path in G|x carrying
Val(X)/ width(G|x) flow,

(3) G has no funnel subgraph with a central path.

See Figure 6 for an example.

Proor. (1) = (2): Let G = (V, E) be an s-t DAG with flow X > 0 for which there is no s-¢ path in
G|x carrying b = Val(X)/width(G|x) flow. We will show that G is not width-stable. For simplicity,
we assume G = Glx, the result follows immediately for any supergraph of G. Let S be the set of
vertices reachable from s by a path carrying b flow. By assumption, t ¢ S, so (S,V \ S) isans, t-cut
and X(u, v) < b for any edge (u,v) withu € S,v € V' \ S. Define T to be the set of vertices that can
reach t via a path involving vertices only from V' \ S:

T :=V\{veV]allv -t paths cross S}.

Since SC V\T, (V\T,T) is an s, t-cut. Note that if (u,v) is an edge withu e V\ T and v € T,
then also u € Sand v € V' \ S and thus X(u, v) < b. The set C defined by
C={(w,v)€eE|lueV\T,0eT}=EN(SxT)

is an s, t-cut set (a set of edges that every s-t path has to cross) and we have X(e) < b for every
e € C. This implies |C| > width(G).

We construct a new flow Y > 0 on G for which C is an antichain in Gly. Initially, Y := X. Define
the following paths:

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

Width Helps and Hinders Splitting Flows 13:11

—ps(u) for all u € S: an s-u path with all nodes in S,
—ps(v) for all v € T: a v-t path with all nodes in T.

We keep the invariant that the paths exist and do not change in G|y throughout the construc-
tion of Y. Let b(v, u) denote a path from v € T to u € S, all of whose internal nodes are from
V '\ (S UT), and note that such a path exists iff C is not an antichain. Assume it carries flow p > 0
(i-e., p is the minimum flow value along b(v, u)), we then perform the following operation on Y:

Y(e) = {Y(e) —p ifeeb(v,u)
Y(e) +p ife € ps(u) U pi(v).

Note that after the operation Y remains a flow and that none of the three paths have pairwise
intersecting edges. The process does not violate the invariant and repeating eventually it destroys
all paths from T to S, making C an antichain in Gly. This shows that G is not width-stable: Y <
X + Y and width(G|y) > width(G|x+y) = width(G).

(2) = (3): Assume that G has a funnel subgraph F with a central path P. Let C be a maximum
antichain of F, and note that every maximum antichain of a funnel consists of private edges only.
We define flows Zgtable, Zunstable, and Z:

— Zstable is defined to be the flow induced® by the minimum path cover of F* (i.e., G|z,,,,. = F).

— Zunstable i defined to be the flow induced by the following path cover of the graph consisting
of F and P: One s-t path goes along P, covering two edges in C,> and the other paths cover
F avoiding P, this is possible with additional |C| — 2 paths.

—FinaHY> Z = Zstable t Zunstable-

We have Val(Z) = Val(Zgaple) + Val(Zunstable) = |C| + (|C] — 1) = 2|C| =1 and width(G|z) <
|C|] - 1, and thus
Val(Z) 2|ICl -1
- = > 2,
width(G|z) |IC]l -1
but all s-t paths in G carry no more flow than 2, because C is an s, t-cut set of G and all Z flow
values on C are 2.

(3) = (1): Assume that G = (V,E) is not width-stable, let Y > X > 0 be flows on G with
width(Glx) > width(Gly) and let C’ be a maximum antichain of G|x. Let F be a funnel subgraph
of G|x containing C’ as maximum antichain, and let C be the rightmost maximum antichain of F
(that is, the head of every edge in C is t or is merging). Since C is not an antichain of G|y, there
must be a path P in G|y connecting two edges in C, and it starts at a merging node. It must also
enter a forking node, because otherwise adding the path would not decrease the width. This shows
that a prefix path of P is a central path of F. O

LEmMMA 14. Let G = (V,E) be a width-stable graph, width(G) > 2. Greedy-weight uses at most

llog Val(X)/log %J + 1 paths to decompose any flow X : E — N.

Proor. Let b = width(G). Since G is width-stable, greedy-weight removes a path of weight at
least Val(X’)/b at every step by Lemma 13, where X’ is the remaining flow of the correspond-
ing step. As such, after ¢ steps Val(X’) < VaI(X)(%)C. If Val(X)(%)c < 1, then Val(X”") = 0,
since Val(X) and the weights of the removed paths belong to N. Solving for ¢ we obtain ¢ >

3Recall that the induced flow X of a path cover (P)f is defined as X = P; + - - - + P, where we identify each path P; with
a 0/1-flow with value 1 on the path edges (i.e., precisely the characteristic function of P;).

4Since funnels admit a ungiue flow decomposition, they also admit a unique minimum s-¢ path cover.

SIndeed, this path covers exactly two edges in C: one edge needs to be covered to reach P and another edge must be covered
to reach ¢, and since G is a DAG, we cannot use the same edge twice.

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

13:12 M. Céceres et al.

log Val(X)/log %. Therefore, greedy-weight takes (uses) at most ¢ = |[log Val(X)/log %J +1
steps (paths). O

THEOREM 2. Let G = (V,E) be a width-stable graph and X : E — N a flow. Greedy-weight is a
O(log Val(X))-approximation for MFDy on (G, X).

Proor. Assume X > 0 (otherwise, replace G by G|x). Thus, b = width(G) < mfdy(G, X), since

any flow-decomposition of X induces a path cover of E. If b < 1 greedy-weight finds an op-
logVal(X)\ _
blog %) -
O(log Val(X))-approximation for MFDy (b log bL_1 = 0(1) for b > 2). O

timal solution. Otherwise b > 2, and Lemma 14 implies that greedy-weight is a O(

Finally, we show that series-parallel graphs are width-stable, and thus greedy-weight is a
O(log Val(X))-approximation on them.

Definition 15 (Series-parallel Graph [Eppstein 1992]). A graph is a two-terminal series-parallel
(series-parallel for short) graph with terminal nodes s and ¢ if:

e it consists of a single edge directed from s to ¢, and no other nodes, or

e it can be obtained from two (smaller) two-terminal series-parallel graphs G; and G,, with
terminal nodes s, t1, and s, t2, respectively, by either
- identifying s = s; = s; and t = t; = t; (parallel composition of G; and G), or
- identifying s = sy, t; = sy, and t = t, (series composition of G; and G).

CoROLLARY 16. Greedy-weight is a O(log Val(X))-approximation for MFDy on series-parallel
graphs.

Proor. Using Theorem 2, it remains to prove that any series-parallel graph G = (V, E) with any
flow X : E — N is width-stable. We prove it using structural induction. The base case is when G
is single edge from s to ¢, and they are trivially width-stable.

Suppose now that G is obtained by the composition of series-parallel graphs Gy, G,, and let
X <Y by any non-negative flows on G. Let X; = X|g,,Y; = Y|g, and let x; denote width(G;|x,), y;
denote width(G;ly,), fori =1,2.x; <y; fori =1,2.

If the composition operation is parallel composition, then width(G) = width(G;) + width(G,)
(since edges of G; cannot reach edges of G,, and vice versa) and width(G|x) = x; + x3,
width(Gly) = y1 + y2 (since G|x and G|y are also series-parallel), and G is width-stable by the
inductive hypothesis that x; < y;, fori = 1, 2.

If the composition operation is series composition, width-stability follows analogously to the
parallel composition by replacing sum with maximum.]

However, note that there are width-stable graphs that are not series-parallel.

4 WIDTH HELPS SOLVE MCCDz

In this section, we give an approximation algorithm for mfdz (G, X). We will obtain this for a
more general problem variant, which can be defined as follows. We are given directed a graph G =
(V, E, ¢) with no sink or source nodes, with (cost) a function ¢ : E — R 5. The cost of a circulation
X is defined as ¢(X) = Y, c(e)X(e). Note that ¢(-) is a linear function: ¢(X + Y) = ¢(X) + é(Y) for
any two circulations X, Y on G.

Definition 17. Given (G, X) of a graph G = (V, E,¢) and a circulation X : E — Y, a circulation
decomposition of size k of (G, X) is a family of circulations Y; : E — N with weights (wy, ..., wy) €
Y such that X = wyY; + - - - + wi Y. We call the problem of finding a circulation decomposition

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

Width Helps and Hinders Splitting Flows 13:13

c=1

Fig. 7. Reduction in Lemma 18 of a graph with total flow 4 from MFDy to MCCDvy. The bold edge is the
addition to the DAG and is the only edge with cost 1 while all other edges have cost 0.

of minimum cost ¢(Y; + - - - + Yy) the Minimum Cost Circulation Decomposition or MCCDy and we
write mccdy (G, X) for the minimum cost.

Decomposing into non-negative weighted circulations rather than paths is a natural generali-
sation, as paths can also be seen as flows with value 1 along the path. The following reduction
(Figure 7) shows that MFDy can be regarded as a special case of MCCDy.

LEMMA 18. MCCDy is NP-hard.

Proor. Givenans-t DAGG = (V,E)andflow X : E — Y, we define a graph G’ = (V, E’, ¢) with
E'=EU{(t,s)}andc: E' — {0,1},c(u,v) =1 & (u,v) = (t,s), that s, cost 1 only for the edge
(t,s). Let X’ : E — Y, X’(e) = X(e) for e € E and X’(t,s) = Val(X) be a circulation on G’. The
cost of a MCCD (Y], wy),..., (Y, w;) of (G',X") is equal to ¢(Y]) + -+ c(Y]) = Y{(t,s) + -+
Y/(t,s). Note that an s-t path P : E — {0, 1} yields a circulation Yp : E” — {0, 1} of cost 1, which
implies mfdy (G, X) > mccdy (G, X’). Define flows Y; : E — Y with Yi(e) = Y/(e) fori=1,...,k.
Decomposing each flow Y; trivially into Val(Y;) = Y/(¢,s) paths and assigning them weights w;
yields a Flow Decomposition of (G, X), showing mccdy(G’, X’) > mfdy (G, X), and thus this Flow
Decomposition is minimum. ml

Definition 19. Given S C E and a graph G, we call a circulation C of minimum cost satisfying
C(e) > 1 for all e € S Minimum Cost Circulation Cover of S, and we write mcccs(G) = ¢(C). If
S = E, we use mccc(G) instead.

Note that since every circulation decomposition of a graph G covers the edges of non-zero cir-
culation, mcccs(G) < meedy (G, X) with S = {e € E | X(e) # 0}. This generalises the width lower
bound of MFDy to MCCDy. Given an s-t DAG G, width(G) = mccc(G’) for the graph G’ obtained
by the reduction in Lemma 18. We will need a Minimum Cost Circulation Cover for our approxi-
mation approach:

LEMMA 20 (GABOW AND TARJAN [1989], THEOREM 3.6). Let G = (V,E, c) be a graph, and S C E.
A Minimum Cost Circulation Cover of S can be computed in O(nlog m(m + nlogn)) time.

The idea behind our approximation algorithm for MCCDy is that a circulation X : E — Z on
a graph G can always be decomposed into circulations of total cost ([log ||X||] + 1) - mccc(G). We
show this using two key facts: first, that X can be decomposed into ([log || X||T + 1) circulations
with a particular structure, and, second, that each of these circulations can be further decomposed
into circulations of total cost of at most mccc(G). A key step in proving both these facts is a sub-
routine which, given an input circulation X, finds another circulation Y with values from {0, +1}

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

13:14 M. Céceres et al.

only (a unitary circulation) that matches the parity of X on all edges. Intuitively, given an input
circulation X, such a unitary circulation Y can be added to X to “fix” its odd edges to be even, with
only a small change to X.

LEMMA 21. For any circulation X : E — Z on G = (V, E, c), there exists a circulation Y : E — Z
such that X =, Y and ||Y|| < 1.

Proor. Consider the undirected graph Gogq = (V, Eoqdq), where Eoqq = {{u,v} | (u,v) €
E and X(u, v) is odd}.

Notice that every node of Goqq has even degree due to the conservation of flow. Thus, G,4q can
be written as the edge-disjoint union of cycles. Assign an arbitrary orientation to each cycle and
let E?, , be the set of edges oriented in this way. Define

+1 if (u,v) € E
Y(u,v) ={ -1 if(v,u) € El
0 if{u,v} ¢ Eoda

Notice that Y is a circulation decomposed as a sum of circulations, each along one of the edge-
disjoint cycles. Moreover, X =, Y and ||Y]| < 1 by construction. O

Repeatedly applying Lemma 21 and dividing the resulting even circulation by 2, we obtain the
the first key ingredient of the approach.
Mog X111 9i |y

COROLLARY 22. Any (non-zero) circulation X : E — 7 can be written as X = 3}, | i

where Y; : E — Z is a circulation with ||Y;|| < 1 for all i.

Proor. If ||X]|| < 1 the result follows. Otherwise apply Lemma 21 to obtain Yy such that X =, Y
and ||Yy|| < 1. Since X =; Y, we can define X’ = (X — Y;)/2, and thus X = 2X’ + Y;. Recursively
repeat this procedure on X’ until || X’|| < 1, obtaining Y, ..., Yy = X', so that X = Zf:o 2L ;.
Finally, note that at each repetition, || X|| decreases to at most [||X]|/2], thus k < [log || X]|].)

The following result is the second key ingredient of our approach. It guarantees that any unitary
circulation can be decomposed into two circulations of total cost of at most mccc(G) (see Figure 8
for an example). This is by no means obvious since, among other problems, a unitary circulation
may contain positive and negative values which merge and cancel each other out (as in Figure 8(b)).

LEMMA 23. For any circulation X : E — Z, || X|| < 1, there exist circulations A,B : E — 7 such
that:

(1) A,B>0
(2) X=A-B
(3) ¢(A) + é(B) < mccc(G)

Proor. Take C such that C > 1 and ¢(C) = mccc(G), according to Lemma 20. Take D such that
D =3 X 4+ Cand ||D|| < 1, according to Lemma 21. Also, assume ¢(D) > 0 without loss of generality
(otherwise, take —D, which satisfies the same properties).

Since D =, X + C, we have C — D + X =, 0. We now consider the circulations A := (C—-D +
X)/2 and B := (C — D — X)/2, which have the following properties:

(1) Notice that C— D + X > C — 2 since ||D||, ||X]|| £ 1. So,C = D + X > —1, since C > 1. But
C-D+X=,0s0C—-D=X >0, therefore A, B > 0.
_ C-D+X _ C-D-X _
(2) A—B=CD&X _ CDX _ x

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

Width Helps and Hinders Splitting Flows 13:15

-1
C_DI\A
-1
(a) Edge costs (b) Unitary circulation X on a graph (c) Circulation C covering all edges of
G and a decomposition into two non- G, of cost ¢(C) = mccc(G) = 42
negative circulations A and B, of weight (Lemma 20).

1 in orange (see (e)), and of weight —1
in blue (see (f)), respectively.

1

« «

(d) Unitary circulation D of cost 11 (e) Circulation A = (C - D + X)/2 of (f) Circulation B = (C - D — X)/2 of
matching the parity of X + C, i.e, D =, cost 14. cost 17.
X + C (Lemma 21).

Fig. 8. Example of Lemma 23 applied to a unitary circulation X on a graph G (for clarity, 0 circulation values
are not shown). Non-negative circulations A and B can be constructed so that ¢(A) + ¢(B) < mccc(G) holds.
We obtain a decomposition of X by X = A — B.

(3) &(A) +&(B) = &(A+ B) = (2K 1 €=D=X)) = §(C - D) = §(C) — &D) < &C) since &(D)

> 0, and ¢(C) = mccc(G). O

Finally, expressing any circulation as a sum of at most [log || X||] + 1 unitary circulations (Corol-
lary 22), and decomposing each unitary circulation into two circulations with cost of at most
mccc(G) (Lemma 23), we can decompose the circulation into circulations of total cost no more
than ([log ||X]|T + 1) - mccc(G) whose weights are positive and negative powers of two.

THEOREM 24. Given a graph G = (V,E, ¢) and a circulation X : E — Z withk = [log ||X|[], there
exist circulations A;, B; fori = 0,. ..,k and weights {wy, ..., wr} C {2' | i € N}, with¢(Ap + - - +
Ar +Bo+ -+ Bg) < (k+1) - mece(G) such that X = wo(Ag — By) + - - - + wi(Ax — Bg).

Proor. Combine Corollary 22 and Lemma 23, getting

Xzzklzi-Yi=Zk:2i'(Ai—Bi)
=0 =0

where ¢(A; + B;) < mccc(G). O

The proof of Theorem 24 suggests a straightforward algorithm for MCCDgy, which we detail in
Algorithm 2 and describe at a high level here. First, iteratively decompose X, yielding log[|| X||] + 1
unitary circulations. Then use Lemma 23 to decompose each into two circulations of cost at most
mccc(G). However, mccc(G) is not necessarily a lower bound on MCCDy, if the circulation is 0 on
some edges, and thus this approach does not directly derive an approximation. To overcome this is-
sue, we instead find a circulation decomposition of a spanning subgraph G’ of G for which mccc(G”)
lower bounds mccdz(G, X). Namely, we first find a minimum cost circulation cover in G of the
subset S of edges with non-zero flow in O(nlogm(m + nlogn)) time (according to Lemma 20),

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

13:16 M. Céceres et al.

ALGORITHM 1: Un1TARY(G,X): Produces a Unitary Circulation Y from an Input Circulation X
Such that X =, Y, as in Lemma 21

: Epqq < odd edges of G, undirected
: C « a decomposition of G, 34 = (V,E,44) into cycles, oriented arbitrarily
: E+dd « directed edges of C
[
: for (u,v) € E do
if (u,v) € E:dd then
Y(u,v) « +1
else if (v,u) € E! | then
Y(u,v) « -1
else
Y(u,v) <0
11: endif
12: end for
13: return Y

R AR B AN A S ol

_
<

ALGORITHM 2: Finds The Circulation Decomposition of Theorem 24

: Compute a minimum cost circulation cover of {(u,v) € E | X(u,v) # 0} {Lemma 20}
: Remove from G any edge not covered by this circulation cover to obtain G’
P «— [], W « [] {length-zero vectors}

: C « circulation of cost mccc(G’), C > 1 {Lemma 20}

D « Un1tARY(G/, C); if Val(D) < 0 set D = —D{Algorithm 1}

i—0

: while || X]| > 1 do

Y; « UnitarY(G’, X){Algorithm 1}

X — (X - Yi)/2

ie—i+1

: end while

: Yi — X

: forje {0,...,i} st. Y; #0do

A—C-D+Y;,B—C-D-Y;

Concatenate A and B to P

Concatenate 2/ and —2/ to ‘W

: end for

return (P, W)

A R A T o

e e e e
AN A A S T

and then remove from G any edge not covered by the circulation, obtaining G’. By construction,
the cost of this circulation cover is a lower bound of mccdz(G, X). Moreover, the cost of this cir-
culation cover is exactly mccc(G’), since every circulation cover of G’ is also a circulation cover of
SinG.

To prove the correctness of Algorithm 2, we first define a a subroutine implementing Lemma 21.

LeEMMA 25. Algorithm 1 returns a unitary circulation from an input circulationY such thatX =, Y,
as in Lemma 21, in O(m) time.

Proor. The correctness of the algorithm is given by Lemma 21. Finally, the first 3 subroutines
as well as the entire for-1loop takes O(m) time. O

THEOREM 3. MCCDgz can be approximated with a factor of log[||X||1+ 1 in runtime
O(nlog m(m + nlogn) + mlog || X||).

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

Width Helps and Hinders Splitting Flows 13:17

AOBO A()BO AOBO AOBO AOBIBZ AOBIB3 AOBZB3

A3B; A3B;3 A3B, A3B, ByAAy ByAA; ByAy Ay

Fig. 9. Paths A; and B; (i € {0, 1, 2,3}), each edge being labeled with the paths it appears in. Assign to each
path A; weight a;, and to each path B; weight b;, such that ap = by = 3, and a; = 6% + 1and b; = 621+ + 5
for i = 1,2, 3. Define the flow X on Gas X = Z?:O ajA; + Z?:O biB;. Note that these weights are a solution
of k-FWAN on input (G, X) with given paths A;, B; (i € {0, 1, 2,3}).

Proor. By Theorem 24 and our previous discussion, Algorithm 2 returns a circulation decom-
position for X with no more cost than ([log || X||1 + 1) - mcce(G”) < ([log [|X]|T + 1) - mcedz(G, X).
We analyse the runtime line by line. Lines 1 and 4 take O(n log m(m + nlogn)) time by Lemma 20.
The call to Algorithm 1 on line 5 takes O(m) time by Lemma 25, and checking the cost of D and
flipping signs (if necessary) also takes O(m) time. By Corollary 22, the while loop on line 7 executes
at most log[]|X]|1 + 1 times, meaning that the entire execution takes O(mlog || X||) time since line 8
takes O(m) time by Lemma 25. Since there are at most log[||X||] + 1 Y;’s, the for loop on line 13
executes at most log[||X||] + 1 times. Each execution of the for-loop finds two circulations of total
cost of at most mccc(G’) in O(m) time, so the whole also loop takes O(mlog || X||) time. Thus, the
overall runtime is O(nlog m(m + nlogn) + mlog || X]]). O

With the reduction given in Lemma 18, we obtain an approximation algorithm of the same ratio
for MFDz. However, we can improve the runtime of Lemma 20:

COROLLARY 26. Algorithm 2 is also a log[||X||1 + 1-approximation for MFDz with runtime
O(m(n + width(G) log[|IX]1)).

Proor. This is directly achieved by using Theorem 3 with Lemma 18 and by calculating the
width(G) according to Lemma 7. Note that the flows A and B need to be trivially decomposed into
at most width(G) paths, causing the additional factor in the runtime.]

A theorem analogous to Theorem 24 for MCCDyy is desirable, but cannot be achieved directly
with the previous methods, as Lemma 21 makes use of negative weights. However, the approach
can be adapted for MCCDyy if the input flows are width-stable (Definition 11), and if it is possible
to “fix” the odd flows to be even with only mccc(G) unitary flows, which we leave as an open
question.

5 SOLVING THE k-FLOW WEIGHT ASSIGNMENT PROBLEM

In this section, we consider a restriction of MFD from Kloster et al. [2018] (see Figure 9 for an
example).

Definition 27 (k-Flow Weight Assignment). Given aflow X : E — Y on a graph G = (V,E) and a
set of s-t paths {Py,. .., Pi}, the problem of finding an assignment of weights to the paths, such
that they form a flow decomposition of (G, X), is called k-Flow Weight Assignment (k-FWA). We
write k-FWAy if we require the path weights to belong to Y.

Given k s-t paths, k-FWA can be solved by a linear system defined by Lw = X, where X; €
Y is equal to the flow X(e;) of the edge e; (we identify flows X : E — Y with vectors X € Y™)
and L is the m X k 0/1 matrix with L; ; = 1 if and only if path P; crosses edge e;. The resulting

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

13:18 M. Céceres et al.

solution w € Y* is the weight assignment to each path. For a flow graph (G, X), we denote by
Ly =Ly(Py,...,Pr)={we Yk | X = Z}‘Zl Prwy } the linear system corresponding to the paths
Py, ..., Py

We shortly discuss how to solve k-FWAg. The linear system defined by the paths is a system of
linear Diophantine equations. It is well known that integer solutions to such systems can be found
in polynomial time; see, for example, [Schrijver 1986, Chapter 5].

Solving k-FWAp turns out to be more difficult, its the linear system contains the inequality
w > 0. In fact, it was shown [Kloster et al. 2018] that k-FWAy is NP-hard. The program Tobog-
gan [Kloster et al. 2018] implements a linear FPT algorithm for MFDy and one step of the al-
gorithm is to solve k-FWA using an ILP [Kloster et al. 2018]. The authors state the following
conjecture.

CoONJECTURE 28 (KLOSTER ET AL. [2018]). If(Py,..., Py) are the paths of a minimum flow decom-
position of (G, X), then the linear system Lyy(P1, . .., Px) has full rank k.

In case of a fractional decomposition (in which the weights of the paths are allowed to be rational
non-negative numbers), it is indeed true that the induced linear system is of full rank k [Vatinlen
et al. 2008]. As mentioned in the introduction, if the conjecture turned out to be true for natural
numbers, Toboggan could avoid resorting to solving an ILP, since just solving the standard linear
system at hand would return its unique solution. As observed by the authors, this would decrease
the asymptotic worst case upper bound of Toboggan.

We show that this conjecture is false using a counterexample. Consider the input for k-FWA
from Figure 9 and the solution therein. We now give another solution for k-FWAN on this input,
namely the following path weights: ap = 5,09 = 1, and a; = 6% +2,b; = 6%+ +4, for i =1,2,3.
One can easily verify that this is another solution to k-FWAN on the input in Figure 9, thus proving
that the rank of the corresponding linear system is strictly less than 8.

To disprove Conjecture 28, it remains to show that any flow decomposition contains at least
8 paths. Due to the technicality of this proof (and its exhaustive case-by-case analysis), we only ex-
plain the intuition behind the construction in Figure 9 and behind the correctness proof. However,
as an additional check we also ran both Toboggan [Kloster et al. 2018] and a recently developed
ILP solver for MFDy [Dias et al. 2022] on this instance, both returning mfdy (G, X) = 8.

The intuition is as follows. The graph can be divided into two parts: the graph induced by the first
5 vertices in topological order (left part) and the one induced by the last 4 (right part). We say that
a path is fixed if every minimum flow decomposition of the graph contains this path. The paths
A; and B; have exponentially growing weight for growing i and get shuffled around with different
permutations of the paired labels A;B; on the left part. Due to the exponential growth, ensuring
the correct parity on all edges of the right part, we can fix the paths A; and B; for i = 1, 2, 3. This
allows us to interpret flow decompositions of less than 8 paths as decompositions with 8 paths,
where either A or By carries weight 0. Consider a flow decomposition where, we assign two paths
of weights A; and A, on the edges labeled A¢By. For any § > 0, (4; — 8) + (A2 +) = a¢ + by and
equivalently for all other edges on the left part. If we decrease A; by some § > 0, the weights of
By, By, and Bs each increase by §/2. And thus, § must be even. Due to the parity of ay and by, they
can never reach 0.

6 CONCLUSIONS

In this article we have shown for the first time that width, a natural lower bound for MFD, is also
useful when investigating its approximability. On the one hand, using width is a key insight in
understanding where greedy path removal heuristics fail. On the other hand, graphs where width
is well-behaved (e.g., series-parallel graphs) have a guaranteed approximation factor. Moreover,

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

Width Helps and Hinders Splitting Flows 13:19

we generalised MFD to the problem to minimising the cost of a circluation decompisition, and
showed that the integer version can be approximated even better by combining parity arguments
of unitary circulations and a decomposition of such circulations of cost equal to the minimum cost
to cover the graph. Finally, we have corroborated the complexity gap between the positive integer
and the full integer case by disproving a conjecture from Kloster et al. [2018] (also motivating the
heuristic in Shao and Kingsford [2017]), which would have had sped up their FPT algorithm for
MFDy.

Our results open up new avenues for further research on MFD. For example, can the width help
find larger classes of graphs for which some greedy path removal (or even some sort of greedy path
cover removal) algorithms have a guaranteed approximation factor? Can we get Q(n) worst case
approximation ratio of greedy-weight for dense graphs without parallel edges? Can the power-of-
two decomposition approach be applied with other factors besides two? Can better path cover-like
lower bounds help (e.g., path covers which cannot use an edge more times than its flow value, also
computable in polynomial time)? How do our algorithms perform in practice?

REFERENCES

Ravindra K. Ahujia, Thomas L. Magnanti, and James B. Orlin. 1993. Network flows: Theory, algorithms and applications.
New Jersey: Prentice-Hall (1993).

Jasmijn A. Baaijens, Leen Stougie, and Alexander Schonhuth. 2020. Strain-aware assembly of genomes from mixed sam-
ples using flow variation graphs. In Proceedings of the International Conference on Research in Computational Molecular
Biology. Springer, 221-222.

Elsa Bernard, Laurent Jacob, Julien Mairal, and Jean-Philippe Vert. 2014. Efficient RNA isoform identification and quantifi-
cation from RNA-Seq data with network flows. Bioinformatics 30, 17 (2014), 2447-2455.

Dimitris Bertsimas, Ebrahim Nasrabadi, and Sebastian Stiller. 2013. Robust and adaptive network flows. Operations Research
61,5 (2013), 1218-1242. DOI : https://doi.org/10.1287/opre.2013.1200

Manuel Caceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I. Tomescu. 2022. Sparsifying, shrinking and
splicing for minimum path cover in parameterized linear time. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms. 359-376. DOI : https://doi.org/10.1137/1.9781611977073.18

Fernando H. C. Dias, Manuel Céaceres, Lucia Williams, Brendan Mumey, and Alexandru I. Tomescu, 2023. A safety
framework for flow decomposition problems via integer linear programming. Bioinformatics 39, 11 (2023), btad640.
https://doi.org/10.1093/bioinformatics/btad640

Fernando H. C. Dias, Lucia Williams, Brendan Mumey, and Alexandru I. Tomescu. 2022. Fast, flexible, and exact minimum
flow decompositions via ILP. In Proceedings of the Research in Computational Molecular Biology: 26th Annual International
Conference. Springer, 230-245.

Robert P. Dilworth. 1950. A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 1 (1950), 161-166.
Retrieved from http://www.jstor.org/stable/1969503

David Eppstein. 1992. Parallel recognition of series-parallel graphs. Information and Computation 98, 1 (1992), 41-55.
DOI: https://doi.org/10.1016/0890-5401(92)90041-D

Delbert R. Fulkerson. 1956. Note on dilworth’s decomposition theorem for partially ordered sets. Proceedings of the American
Mathematical Society 7, 4 (1956), 701-702.

Harold N. Gabow and Robert E. Tarjan. 1989. Faster scaling algorithms for network problems. SIAM Journal on Computing
18, 5 (1989), 1013-1036.

Marcelo Garlet Millani, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. 2020. Efficient algorithms for measuring the
funnel-likeness of DAGs. Journal of Combinatorial Optimization 39, 1 (2020), 216—245.

Thomas Gatter and Peter F. Stadler. 2019. Ryuto: Network-flow based transcriptome reconstruction. BMC Bioinformatics
20,1 (2019), 1-14.

Tzvika Hartman, Avinatan Hassidim, Haim Kaplan, Danny Raz, and Michal Segalov. 2012. How to split a flow?. In Proceed-
ings of the 2012 IEEE INFOCOM. IEEE, 828-836.

Amit Jain and Naga Chandrasekharan. 1993. An efficient parallel algorithm for min-cost flow on directed series-parallel
networks. In Proceedings of the 7th International Parallel Processing Symposium. 188-192. DOI : https://doi.org/10.1109/
IPPS.1993.262879

Shahbaz Khan, Milla Kortelainen, Manuel Caceres, Lucia Williams, and Alexandru I. Tomescu. 2022. Improving rna assem-
bly via safety and completeness in flow decompositions. Journal of Computational Biology 29, 12 (2022), 1270-1287.

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

https://doi.org/10.1287/opre.2013.1200
https://doi.org/10.1137/1.9781611977073.18
https://doi.org/10.1093/bioinformatics/btad640
http://www.jstor.org/stable/1969503
https://doi.org/10.1016/0890-5401(92)90041-D
https://doi.org/10.1109/IPPS.1993.262879
https://doi.org/10.1109/IPPS.1993.262879

13:20 M. Céceres et al.

Kyle Kloster, Philipp Kuinke, Michael P. O.’Brien, Felix Reidl, Fernando Sanchez Villaamil, Blair D. Sullivan, and Andrew
van der Poel. 2018. A practical fpt algorithm for flow decomposition and transcript assembly. In 2018 Proceedings of the
20th Workshop on Algorithm Engineering and Experiments. SIAM, 75-86.

Brendan Mumey, Samareh Shahmohammadi, Kathryn McManus, and Sean Yaw. 2015. Parity balancing path flow decom-
position and routing. In Proceedings of the 2015 IEEE Globecom Workshops. IEEE, 1-6.

Nils Olsen, Natalia Kliewer, and Lena Wolbeck. 2022. A study on flow decomposition methods for scheduling of electric
buses in public transport based on aggregated time-space network models. Central European Journal of Operations
Research 30, 3 (2022), 883-919. DOI : https://doi.org/10.1007/s10100-020-00705-6

James B. Orlin. 2013. Max flows in O(nm) time, or better. In Proceedings of the Symposium on Theory of Computing Confer-
ence, Palo Alto, CA, USA, June 1-4, 2013, Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM, 765-774.
DOI:https://doi.org/10.1145/2488608.2488705

Mihaela Pertea, Geo M. Pertea, Corina M. Antonescu, Tsung-Cheng Chang, Joshua T. Mendell, and Steven L. Salzberg. 2015.
StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33, 3 (2015),
290-295.

Alexander Schrijver. 1986. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.

Mingfu Shao and Carl Kingsford. 2017. Theory and a heuristic for the minimum path flow decomposition problem.
IEEE/ACM transactions on computational biology and bioinformatics 16, 2 (2017), 658—670.

Mingxiang Teng, Michael I. Love, Carrie A. Davis, Sarah Djebali, Alexander Dobin, Brenton R. Graveley, Sheng Li, Christo-
pher E. Mason, Sara Olson, Dmitri Pervouchine, et al. 2016. A benchmark for RNA-seq quantification pipelines. Genome
Biology 17, 1 (2016), 1-12.

Alexandru I. Tomescu, Travis Gagie, Alexandru Popa, Romeo Rizzi, Anna Kuosmanen, and Veli Mékinen. 2015. Explaining
a weighted DAG with few paths for solving genome-guided multi-assembly. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 12, 6 (2015), 1345-1354.

Alexandru I. Tomescu, Anna Kuosmanen, Romeo Rizzi, and Veli Mékinen. 2013. A novel min-cost flow method for estimat-
ing transcript expression with RNA-Seq. BMC bioinformatics 14, 5 (2013), $15:1-515:10.

Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. 1982. The recognition of series parallel digraphs. SIAM Journal on
Computing 11, 2 (1982), 298-313. DOI : https://doi.org/10.1137/0211023 arXiv:https://doi.org/10.1137/0211023

Benedicte Vatinlen, Fabrice Chauvet, Philippe Chrétienne, and Philippe Mahey. 2008. Simple bounds and greedy algorithms
for decomposing a flow into a minimal set of paths. European Journal of Operational Research 185, 3 (2008), 1390-1401.

Lucia Williams, Gillian Reynolds, and Brendan Mumey. 2019. RNA transcript assembly using inexact flows. In Proceedings
of the 2019 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 1907-1914.

Received 29 April 2023; revised 23 December 2023; accepted 14 January 2024

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024.

https://doi.org/10.1007/s10100-020-00705-6
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1137/0211023
https://doi.org/10.1137/0211023

	1 INTRODUCTION
	2 PRELIMINARIES
	3 WIDTH MATTERS FOR GREEDY APPROACHES
	3.1 Width Hinders Greedy on MFD
	3.2 Greedy Approximation for Width-Stable Graphs

	4 WIDTH HELPS SOLVE MCCD
	5 SOLVING THE -FLOW WEIGHT ASSIGNMENT PROBLEM
	6 CONCLUSIONS
	REFERENCESendgraf

