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flow/circulation X on a directed graph G into weighted source-to-sink paths whose weighted sum equals X . 
We show that, for acyclic graphs, considering the width of the graph (the minimum number of paths needed to 
cover all of its edges) yields advances in our understanding of its approximability. For the version of the prob- 
lem that uses only non-negative weights, we identify and characterise a new class of width-stable graphs, for 
which a popular heuristic is a O(log Val (X ))-approximation ( Val (X ) being the total flow of X ), and strengthen 
its worst-case approximation ratio from Ω(√ m ) to Ω(m/log m) for sparse graphs, where m is the number of 
edges in the graph. We also study a new problem on graphs with cycles, Minimum Cost Circulation Decom- 
position (MCCD), and show that it generalises MFD through a simple reduction. For the version allowing 
also negative weights, we give a (⌈ log ∥ X ∥ ⌉ + 1 )-approximation ( ∥ X ∥ being the maximum absolute value of 
X on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition 
of unitary circulations ( ∥X ∥ ≤ 1 ), using a generalised notion of width for this problem. Finally, we disprove a 
conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster 
et al. [ 2018 ], but show that its useful implication (polynomial-time assignments of weights to a given set of 
paths to decompose a flow) holds for the negative version. 
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1 INTRODUCTION 
Minimum flow decomposition ( MFD ) is the problem of finding a smallest sized decomposi- 
tion of a network flow X on directed graph G = (V , E) into weighted source-to-sink paths whose 
weighted sum equals X . We focus on the case where path weights are restricted to be integers 
(MFD Z ) or natural numbers (MFD N ). It is a textbook result [Ahujia et al. 1993 ] that if G is acyclic (a 
DAG) a decomposition using no more than m = | E | paths always exists. However, MFD is strongly 
NP-hard [Vatinlen et al. 2008 ], even on DAGs, and even when the flow values come only from 
{1 , 2 , 4 } [Hartman et al. 2012 ]. Recent work has shown that the problem is FPT in the size of the 
minimum decomposition [Kloster et al. 2018 ] and that it can be formulated as an ILP of quadratic 
size [Dias et al. 2022 ]. 

While difficult to solve, MFD is a key step in many applications. For example, MFD on DAGs is 
used to reconstruct biological sequences such as RNA transcripts [Bernard et al. 2014 ; Dias et al. 
2023 ; Gatter and Stadler 2019 ; Pertea et al. 2015 ; Tomescu et al. 2015 , 2013 ; Williams et al. 2019 ] 
and viral strains [Baaijens et al. 2020 ]. MFD can also be used to model problems in networking 
[Hartman et al. 2012 ; Mumey et al. 2015 ; Vatinlen et al. 2008 ] and transportation planning [Olsen 
et al. 2020 ], although in some of these applications there may be cycles in the input. Despite 
the ubiquity of the MFD problem, the gap in our knowledge about the approximability of MFD 
is large. It is known [Hartman et al. 2012 ] that MFD (even on DAGs) is APX-hard (i.e., there 
is some ϵ > 0 such that it is NP-hard to approximate within a (1 + ϵ) factor), so in particular, 
MFD does not admit a PTAS, unless P = NP. Furthermore, the best known approximation ratio is 
λlog ∥X ∥ log ∥ X ∥ [Mumey et al. 2015 ], where λ is the length of the longest source-to-sink path and 
∥ X ∥ is the largest flow value in the network. In this work, we attempt to fill in some of the gaps 
between these results. 

A natural lower bound for the size of an MFD of a DAG is the size of a minimum path cover 
of the set of edges with non-zero flow (i.e., the minimum number of paths such that every such 
edge appears in at least one path)—this size is called the width of the network. This trivially holds 
because every flow decomposition is also such a path cover. These two notions are analogies of 
the more standard notions of path cover and width of the node set . The node-variants are classical 
concepts, with algorithmic results dating back to Dilworth [ 1950 ] and Fulkerson [ 1956 ]. Despite 
this, the width has not been given any attention in the MFD problem, and in particular it has 
never been used in approximation algorithms to our knowledge. In this article, we show that the 
width can play a key role both in the analysis of popular heuristics, and in obtaining the first 
approximation algorithm for a natural generalisation of MFD. 

We start by considering the connections between the width and a popular heuristic algorithm 
for MFD N which we call greedy-weight 1 [Vatinlen et al. 2008 ], which builds a flow decomposition 
by successively choosing the path that can carry the largest flow. Greedy-weight is commonly 
used in applications (see e.g., Baaijens et al. [ 2020 ], Pertea et al. [ 2015 ], and Tomescu et al. 
[ 2013 ] among many), and it seems to be mentioned in nearly every publication addressing flow 
decomposition. First, on sparse graphs we improve (i.e., increase) the worst-case lower bound for 
1 Previous work has consistently referred to this algorithm as greedy-width . To avoid confusion with the width of the graph, 
we introduce the name greedy-weight in this work. 
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the greedy-weight approximation factor from Ω(√ 

m ) [Hartman et al. 2012 ], showing for the first 
time that greedy-weight can be exponentially worse than the optimum: 

Theorem 1. The approximation ratio for greedy-weight on MFD N is Ω(m/log m) for sparse graphs, 
in the worst case. 

For this we use a class of sparse graphs where the optimum flow decomposition has size O(log m)
whereas the greedy-weight algorithm returns a solution of size Ω(m), only a constant factor away 
from the trivial decomposition. The key to this new bound is to design an input where the width 
increases exponentially when a path is greedily removed. We also show that the same bound also 
holds for other greedy heuristics choosing instead the longest or shortest paths. Second, we iden- 
tify a new class of graphs, defined by the property that their width does not increase as source-to- 
sink paths are removed (see Definition 11 of width-stable graphs). We show a relation of width- 
stable graphs to funnels: precisely, a graph is not width-stable iff it contains a funnel subgraph 
and a certain central path. This is precisely the structure of the class of sparse graphs improving 
the approximation ratio of greedy-weight in Theorem 1 . We also show that width-stability enables 
greedy-weight to remove paths of large enough flow (Lemma 13 ), leading to the following result, 
with Val (X ) being equal to the total flow of the graph: 

Theorem 2. Let G = (V , E) be a width-stable graph and X : E → N a flow. Greedy-weight is a 
O(log Val (X ))-approximation for MFD N on (G, X ). 

A notable example of width-stable graphs is the class of series-parallel graphs ; see [Eppstein 
1992 ; Valdes et al. 1982 ] for fast recognition algorithms and pointers to other NP-hard problems 
that are easier on this class of graphs. Series-parallel graphs are also of great interest for network 
flow problems (see, e.g., Bertsimas et al. [ 2013 ] and Jain and Chandrasekharan [ 1993 ]). Theorems 
1 and 2 show that greedy-weight’s approximation ratio is highly linked to the width stability of 
the graph. 

In Section 4 , we continue with a generalised version of MFD, Minimum Cost Circulation De- 
composition ( MCCD ) , on directed graphs with cycles and no sinks or sources, and a cost function 
on the edges. Instead of decomposing a flow into weighted paths, we decompose a circulation into 
weighted circulations and minimise the total cost of the circulations, and instead of the width, a nat- 
ural lower bound for this problem is the minimum cost of a circulation cover ( mccc ). Decom- 
posing into circulations rather than paths is a natural generalisation, as paths can be considered as 
value 1 flows themselves. Additionally, we also consider a relaxation in which the flow/circulation 
decomposition might use negative integer weights on flows/circulations, rather than strictly posi- 
tive weights as has traditionally been considered [Hartman et al. 2012 ; Kloster et al. 2018 ; Vatinlen 
et al. 2008 ]. An important observation that we leverage for this variant (unlike the positive-only 
version) is that the width / mccc stays constant as flow is chosen and removed. Using this, we give 
a (⌈ log ∥ X ∥ ⌉ + 1 )-approximation algorithm for this variant. 

We denote the problem versions for non-negative path weights and integer path weights by 
MCCD N and MCCD Z as well as MFD N and MFD Z , respectively, throughout the article. While 
MCCD Z and MFD Z are natural versions of the problem, they have not been previously considered 
in the MFD literature to our knowledge. However, MFD Z can also have natural applications, 
since by applying MFD Z on the difference between two flows, one can minimally explain the 
differences between them, for example, to explain the differences in RNA expression between two 
tissue samples with the fewest number of up/down regulated transcripts, which is often the goal 
of RNA sequencing experiments [Teng et al. 2016 ]. Our approximation follows a power-of-two 
approach, where the weights of the flows/circulations chosen are (positive or negative) powers of 
two. More specifically, observe that if all circulation values are even, then one can divide them by 
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2 and obtain a circulation X with smaller ∥ X ∥ whose decomposition can be transformed back into 
a decomposition of X . In order to obtain such an even circulation, we prove a basic property that 
can be of independent interest: given any integer circulation X , there exists a unitary circulation 
(its values are 0, +1 , or −1 ) Y , such that X + Y is even on every edge (Lemma 21 ). In addition, 
given a unitary circulation Y , we show that Y can be decomposed into circulations of total cost no 
more than mccc (Lemma 23 ). We obtain the (⌈ log ∥ X ∥ ⌉ + 1 )-approximation ratio (Theorem 3 ) by 
iteratively removing the unitary circulation, dividing all circulation values by 2, and preprocessing 
the graph so that the mccc is a lower bound on the size of the MCCD Z . Summarised, we show: 

Theorem 3. MCCD Z can be approximated with a factor of log ⌈∥ X ∥ ⌉ + 1 in runtime 
O(n log m(m + n log n) +m log ∥ X ∥ ). 

By Corollary 26 , we additionally obtain the result for MFD Z . Notably, the runtime of the algo- 
rithm does not depend on the cost function. 

Finally, in Section 5 , we consider a closely related problem, called k-Flow Weight Assign- 
ment [Kloster et al. 2018 ]. In addition to the flow X , in this problem we are also given a set of k
paths, and we need to decide if there is an assignment of weights to the paths such that they form 
a decomposition of X . If the weights belong to N , this was shown to be NP-complete in Kloster 
et al. [ 2018 ]. In this work, we first observe that in the same way that allowing negative integer 
weights simplifies the approximability of MFD, allowing weights to belong to Z fully changes 
the complexity of the k-Flow Weight Assignment Problem, making it polynomial. This is due to 
the fact that the linear system defined by the given paths loses its only inequality of restricting the 
weights to positive integers. It thus transforms an ILP to a system of linear diophantine equations, 
which can be solved in polynomial time (see e.g. Schrijver [ 1986 ]). Second, we consider a conjec- 
ture from Kloster et al. [ 2018 ] stating that if the weights belong to N , and k is the size of a MFD N 
for X , then the problem admits a unique solution (i.e., a unique assignment of weights to the given 
paths). If true, this would speed up the FPT algorithm of Kloster et al. [ 2018 ] for MFD N , because 
a step solving an ILP could be executed by solving a standard linear program returning a rational 
solution and checking if the (supposedly unique) solution to this system is integer. Moreover, the 
same conjecture (with the same implication) was also a motivation behind the greedy algorithm 
of Shao and Kingsford [ 2017 ] for MFD N . In this article, we disprove the conjecture of Kloster et al. 
[ 2018 ], further corroborating the gap between MFD N and MFD Z . 
2 PRELIMINARIES 
In Sections 3 and 5 , we are given a directed acyclic graph G = (V , E). Without loss of generality, 
we assume a unique source s and a unique sink t with no in-edges and no out-edges, respectively; 
otherwise, the graph can be converted to such a graph by adding a pseudo source and sink and 
connecting them to all sources and sinks, respectively. We denote by deg +(v) and deg −(v) the 
out- and indegree of a vertex v , respectively. While MFD are also studied for graphs with cycles 
(see, e.g., Hartman et al. [ 2012 ] and Vatinlen et al. [ 2008 ]), the task is still to decompose into simple 
paths, and so our inapproximability result on DAGs in Section 3 also applies for graphs with cycles. 
In Section 4 , we consider directed graphs G = (V , E, c) with no sources or sinks, where c : E → 
R ≥0 is a cost function. Such graphs cannot be acyclic. We use n and m to denote the number of 
nodes and edges of G, respectively. For both kinds of graphs, we call functions X : E → Y pseudo- 
flows , 2 where Y ∈ { N, Z } is some set of allowed flow values. We treat pseudo-flows as vectors 
over E and use the notation X + Y and aX to denote the (element-wise) sum of pseudo-flows and 
2 Commonly in the literature, (pseudo-)flows are additionally required to be skew-symmetric and to be upper-bounded by 
some capacity function on the edges. 
ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024. 
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Fig. 1. The reduction of 3-Partition to MFD from Vatinlen et al. [ 2008 ]. The 3-Partition instance consists of 
a set A = { a 1 , . . . , a 3 q } , where every a i has a positive integer size s(a i ), and a positive integer B, such that 
B/4 < s(a i ) < B/2 holds for every a i ∈ A. The question is whether A can be partitioned into q disjoint subsets, 
each of 3 elements and of size B. The MFD series-parallel (see Definition 15 ) reduction consists of a subgraph 
obtained by the parallel composition of 3 q edges with flow values s (a 1 ), . . . , s (a 3 q ), and a subgraph obtained 
by the parallel composition of q edges, each with flow value B. These two graphs are composed with the 
series composition . Intuitively, because B/4 < s(a i ) < B/2 holds for every a i , the MFD consists of exactly 3 q
paths of weights s (a 1 ), . . . , s (a 3 q ), and each edge on the right-hand subgraph is traversed by exactly three 
paths whose weights sum to B, giving thus the partition of A. Moreover, since the first 3 q edges need to be 
decomposed, the previous decomposition is minimum even if negative weights are allowed, making MFD Z 
NP-hard. 
multiplication by a scalar, respectively. The numbers 0 and 1 also denote (depending on context) 
pseudo-flows that are 0 (resp. 1) on every edge. We write X ≤ Y (and similarly < ) to mean X (u, v) ≤
Y (u, v) for every (u, v) ∈ E. 

Given a DAG G, a flow is a pseudo-flow satisfying conservation of flow (incoming flow equal 
to outgoing flow) on internal nodes V \ { s, t} . A pseudo-flow satisfying the conservation of flow 
on all nodes is called a circulation . We sometimes refer to the value X (e) for a flow/circulation 
X as the flow of the edge e . It is known that the sum of two flows/circulations X + Y , the multi- 
plication of a flow/circulation with by a scalar aX , and the empty pseudo-flow 0 are themselves 
flows/circulations. For a flow X , let Val (X ) denote the total flow out of s (or equivalently into t by 
flow conservation). Note that Val (X ) can be negative. Given an s- t path P , denote by P[u ..v] the 
subpath of P going from u ∈ V to v ∈ V and let P also denote the flow defined by setting one to 
every edge in P and 0 to every other edge. With these definitions, we are ready to formally define 
MFD. 

Definition 4. Given a flow X , a flow decomposition of (G, X ) of size k is a family of s- t paths 
P = (P 1 , . . . , P k ) with weights (w 1 , . . . , w k ) ∈ Y k such that X = w 1 P 1 + · · · +w k P k . 

Definition 5. For a flow X , let mfd Y (G, X ) be the smallest size of a flow decomposition of (G, X )
with weights in Y . 

We omit Y if it is clear from the context. We call the problem of producing a flow decomposition 
of (G, X ) of minimum size the MFD problem . 

In Section 3 , we study MFD N ( 0 ∈ N), and in Section 4 , we study MFD Z and its generalisation 
MCCD Z . Note that the reduction showing MFD N to be strongly NP-hard from Vatinlen et al. 
[ 2008 ] also holds for MFD Z (see Figure 1 ). However, a flow with non-negative values may admit a 
decomposition using fewer paths if negative weights are allowed, as shown in Figure 2 . We explore 
further differences between MFD N and MFD Z in Sections 4 and 5 . 

Let ∥X ∥ = max (u,v)∈E |X (u, v)| denote the maximum norm on flows or circulations. In particular, 
notice that if Y ⊆ Z , then ∥X ∥ ≤ 1 means that X (u , v) ∈ { 0 , ±1 } for every (u, v) ∈ E. Let X ≡2 Y 
iff X and Y have the same parity ever y where, that is, for every (u, v) ∈ E, we have that X (u, v) is 
odd iff Y (u, v) is odd. 

ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024. 
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Fig. 2. A positive flow admitting a decomposition into four paths only if negative weights are allowed. 
Definition 6. Given S ⊆ E, we define width S (G) as the minimum number of s- t paths in a DAG 

G needed to cover all edges of S . If S = E we just write width (G). 
The width is the main combinatorial tool that we use for our approximation results, and we will 

show in Section 3 , that it is highly linked to the approximation performance of greedy-weight. Just 
like its more common node variant, width (G) can be computed in O(mn) time. As described by, 
for example, Ahujia et al. [ 1993 ] and Cáceres et al. [ 2022 ], this is done by reduction to a min-flow 
instance with demand one on every edge; the minimum flow of this instance is width (G), and the 
flow can be found by reduction to a max-flow instance. Moreover, the problem can be relaxed to 
only require the coverage of S ⊆ E and solved in the same running time by setting the demands 
only on the edges of S . 

Lemma 7 (Ahujia et al. [ 1993 ] and Orlin [ 2013 ]). Let G = (V , E) be a DAG, and S ⊆ E. A flow 
C : E → N can be computed in O(mn) time, such that C(e) ≥ 1 for all e ∈ S and |C | = width S (G). 

The flow C with total flow width S (G) suffices and we do not need to calculate a path cover 
achieving that minimum. However, we note that it can be directly computed given the flow C . 
We can think of this path cover as a flow decomposition of C into width S (G) weight-one paths, 
which can be found by greedily removing such paths from C until it is completely decomposed. 
Since each path has no more than n − 1 edges and since width S (G) ≤ m, the overall runtime of 
finding the path cover is O(mn). Similarly, every path cover P 1 , . . . , P ℓ of G defines a flow C on G: 
C = P 1 + · · · + P ℓ , and we say that C is the induced flow of the path cover (P i )ℓ 1 . 

Definition 8. In a directed graph G = (V , E) we call a subset C ⊆ E an antichain of G if all edges 
in C are pairwise parallel, that is there exists for no pair of edges in C a path in G leading from one 
edge to the other. 

It can be shown with straight forward arguments that width (G) = | C | for a maximum (sized) 
antichain C of G. 
3 WIDTH MATTERS FOR GREEDY APPROACHES 
Since the difference of two flows is still a flow, it is very natural to consider successively removing 
the simplest type of flow — that is to say, paths — as an algorithmic strategy for MFD N . Indeed, 
the particular greedy path removal strategy of finding a heaviest path ( greedy-weight ) is commonly 
used as a heuristic in applications (e.g., Baaijens et al. [ 2020 ], Hartman et al. [ 2012 ], Pertea et al. 
[ 2015 ], and Tomescu et al. [ 2013 ]) and it seems to be mentioned in nearly every article addressing 
flow decomposition. More formally, a path P is said to carry flow p if X (u , v) ≥ p for all edges 
(u, v) of P (in particular, a v - v path carries infinite flow). A heaviest path is an s- t path carrying 
the largest flow. Such a path can be easily found in linear time in the size of the DAG by dynamic 
programming (see, e.g., Vatinlen et al. [ 2008 ]). 
ACM Trans. Algor., Vol. 20, No. 2, Article 13. Publication date: March 2024. 
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Fig. 3. Construction for (G ℓ , X ℓ,B ). Setting B = 2 ℓ+1 yields MFD N instances where greedy-weight uses 
Θ( m 

log m ) times more paths than optimal to decompose the flow. 
3.1 Width Hinders Greedy on MFD N 
We define a family of MFD N instances (G ℓ , X ℓ,B ), depending on two parameters ℓ ∈ N \ { 0 } 
and B ∈ N . The family is defined recursively on ℓ. The base case (G 1 , X 1 ,B ) for ℓ = 1 is shown 
in Figure 3 (a). For ℓ > 1 , we build (G ℓ , X ℓ,B ) from two disjoint copies of (G ℓ−1 , X ℓ−1 ,B ), by adding 
five extra edges and flow values as shown in Figure 3 (b). We call the edge connecting the two 
copies of G ℓ−1 a central edge . Edges whose flow value depends on B are called backbone edges, 
and they form a s- t path. By choosing B = 2 ℓ+1 , we show that the flow X ℓ,2 ℓ+1 can be decomposed 
using a number of paths linear in ℓ, thanks to the heavy backbone edges, whereas the greedy- 
weight algorithm fully saturates the central edges with its first path and is left with a remaining 
flow requiring 2 ℓ+1 paths to be decomposed. 

Lemma 9. For the graph G ℓ with flow X ℓ,2 ℓ+1 , greedy-weight uses 1 + 2 ℓ+1 paths to decompose 
X ℓ,2 ℓ+1 . 

Proof. We first show that the heaviest path in X ℓ,2 ℓ+1 follows every backbone edge from s to t . 
Certainly this path carries 2 ℓ+1 flow, and no more, since every backbone edge has flow at least 2 ℓ+1 
and every central edge has flow exactly 2 ℓ+1 . To see that there is no heavier path, observe that all 
the non-backbone edges have flow value strictly less than 2 ℓ+1 by construction. After removing 
that path with weight 2 ℓ+1 , all the central edges are completely decomposed. The remaining graph 
and flow, without central edges, has 2 ℓ+1 weight-1 edges that are pairwise non-reachable using 
only non-zero flow edges (four edges for each of the 2 ℓ−1 copies of G 1 ), each of which must be 
covered by a different path of weight 1 (and these paths fully decompose the flow). !

Lemma 10. For the graph G ℓ , flow X ℓ,2 ℓ+1 can be decomposed using 2 ℓ + 2 paths. 
Proof. Using induction, we first prove that we can use 2 ℓ + 1 paths to decompose all of the 

flow of X ℓ,2 ℓ+1 on the non-backbone edges of G ℓ , and that these paths have total weight 2 ℓ+2 − 3 . 
When ℓ = 1 (see Figure 3 (c)), we can decompose both the flow-1 edges with a single path of weight 
1, which goes through the central edge. Moreover, we can decompose the flow-2 edges with two 
paths of weight 2, without using the central edge. These paths have 5 = 2 1 +2 − 3 total flow. We 
now assume that the claims hold for ℓ = k and prove it for ℓ = k + 1 . Consider the graph G k+1 . By 
assumption, the non-backbone edges in every copy of G k are fully decomposed by 2 k + 1 paths, 
and the total flow of those paths is 2 k+2 − 3 . Note that these paths are s- t paths in G k , but they must 
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Fig. 4. (G 2 , X 2 ,B= 2 ℓ+1 ) with a 2 ℓ + 2 = 6 flow decomposition. Orange (weight 1) and dark and light blue 
(weight 2) decompose the non-backbone edges in the two copies of G 1 . Green and pink (weight 4) decompose 
the non-backbone edges added in G 2 . Dark red (weight 3) is the additional path needed to fully decompose 
the flow. 
be extended to be s- t paths in G k+1 . Because there is a central edge with weight 2 (k+1 )+1 = 2 k+2 > 
2 k+2 − 3 from one copy of G k to the other, it is possible to route the 2 k + 1 paths from the first G k 
to the second using the central edge. Additionally, the backbone edges from s to the first copy of 
G k and from the second copy of G k to t have flow 2 k+1 + 2 k+2 , so they can be used to complete 
the routing of the paths from s to t . Then we can use two additional paths of weight 2 k+1 each 
to decompose the flow of the two new non-backbone edges; one using the backbone path of the 
upper G k (extended by the upper edges of G k+1 ), and analogously, the other through the backbone 
path of the lower G k , which is possible since the paths obtained inductively only decompose 2 k+1 
of the backbone flow of G k whereas now 2 k+2 backbone flow must be decomposed. As such, we 
use 2 k + 1 + 2 = 2 (k + 1 ) + 1 paths with total flow 2 k+2 − 3 + 2 (2 k+1 ) = 2 (k+1 )+2 − 3 , as required. By 
the previous, given any graph G ℓ , we can decompose all non-backbone edges using 2 ℓ + 1 paths. 
Note that removing these weighted paths from X ℓ,2 ℓ+1 yields a flow on G ℓ (of value 3). Because the 
remaining edges (all backbone) form a path from s to t , and the remaining edge values form a flow 
on G ℓ , all remaining edges must have the same flow value, and can be covered by one path. Thus, 
2 ℓ + 2 paths are sufficient to decompose X ℓ,2 ℓ+1 . See Figure 4 for an example when ℓ = 2 . !

Theorem 1. The approximation ratio for greedy-weight on MFD N is Ω(m/log m) for sparse graphs, 
in the worst case. 

Proof. By Lemmas 9 and 10 , greedy-weight uses Θ(2 ℓ ) paths to decompose the flow X ℓ,2 ℓ+1 
described above, whereas it is possible to decompose the flow with only Θ(ℓ) paths. It can be 
easily verified by induction that the number of edges of G ℓ is 7 · 2 ℓ − 5 . So the ratio between 
greedy-weight and the optimal for this instance is Ω( m 

log m ). !

While greedy-weight is most commonly used in applications, the approach was first presented 
as part of a general framework [Vatinlen et al. 2008 ]: pick any optimality criteria for s- t paths 
that is saturating (i.e., fully decomposes at least one edge), and successively remove optimal paths. 
Since each path is saturating, the algorithm must decompose the flow in m or fewer paths. Another 
optimality criterion sometimes used in DNA assembly (e.g., in vg-flow [Baaijens et al. 2020 ]) is the 
longest path (with its maximum possible flow so that it is saturating). To adapt our construction 
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Fig. 5. By subdividing the backbone edges, choosing longest paths (orange) and shortest paths (blue) both 
give the same approximation ratio as choosing heaviest paths in the original flow X ℓ,2 ℓ+1 . 
of (G ℓ , X ℓ,2 ℓ+1 ) so that this approach yields the same approximation ratio, consider (G ∗ℓ , X ∗

ℓ,2 ℓ+1 ), 
constructed as in (G ℓ , X ℓ,2 ℓ+1 ) except that we split every backbone edge (u, v) into two edges, 
(u, w ) and (w , v). See Figure 5 for an example. Then the path along the backbone edges will be the 
longest from s to t and the previous asymptotic analysis still holds, since we no more than doubled 
the number of edges (and the number of edges of the new construction is still Θ(2 ℓ )). Yet another 
optimality criterion, studied in Hartman et al. [ 2012 ] for its application to network routing, is the 
shortest path (again with its maximum possible flow). (G ∗ℓ , X ∗

ℓ,2 ℓ+1 ) will also force this approach to 
take an exponential number of paths, since first the algorithm will decompose all 2 ℓ+1 weight-1 
edges with 2 ℓ+1 different paths. 
3.2 Greedy Approximation for Width-Stable Graphs 
As exploited in Section 3.1 , one sticking point for greedy path removal algorithms is the fact that 
the width of a graph can increase after an edge is fully decomposed. We now identify a new class 
of graphs, in which the graph does not increase its width during the execution of the algorithm. 
We show that greedy-weight decomposes “enough” flow at each step in these graphs, giving a 
O(log Val (X ))-approximation for MFD N . 

If X ≥ 0 is a flow on a DAG G, we write G | X ( G restricted to X ) to mean the spanning subgraph of 
G made up of the edges e ∈ E such that X (e) ! 0 . Conversely, if S is a subgraph of G, we write X | S 
( X restricted to S) to mean the pseudo-flow X only on the edges of S . In the case of MFD N , once an 
edge is fully decomposed, it cannot be used in future paths, possibly increasing the width of the 
graph that can be used to decompose the rest of the flow and sometimes triggering an increase of 
the size of a minimum flow decomposition as well. We call a graph width-stable if it does not have 
this issue. 

Definition 11 (Width-stable Graph). We say that a graph G is width-stable if, for any non-negative 
flows X ≤ Y on G, it holds that width (G | X ) ≤ width (G | Y ). 

Many useful MFD N instances satisfy Definition 11 . For example, the first proof of MFD’s NP- 
hardness [Vatinlen et al. 2008 ] was a reduction to a very simple graph of this form, as shown in 
Figure 1 ; this means that MFD N restricted to width-stable graphs is also NP-hard. 
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Fig. 6. MFD N instance with width (G) = 3 , Val (X ) = 7 , Val (X )/width (G) = 7 /3 > 2 , but no path can carry 
more flow than 2. By Lemma 13 , this is equivalent to G not being width-stable, there exists an s- t path 
saturating the central edge from v to u of weight 1, making the graph a funnel and increasing width (G) to 4. 

Definition 12 (Garlet Millani et al. [ 2020 ]). We call an s- t DAG G funnel if every s- t path has a 
private edge that is not contained in any other s- t path. 

Funnels are simple graphs in the sense that they admit a unique flow decomposition [Khan 
et al. 2022 ]. We use funnels in Lemma 13 to characterize graphs that are not width-stable. Fun- 
nels generalise in/out-forests: along any s- t path nodes v first satisfy deg −(v) ≤ 1 ≤ deg +(v) and 
then deg −(v) ≥ 1 ≥ deg +(v). We call a node v forking (resp. merging ) if deg +(v) > 1 (resp. if it is 
deg −(v) > 1 ). For a funnel subgraph F of G we call a path in G from a merging node in F to a 
forking node in F a central path of the funnel. The graphs (G ℓ , X ℓ,B ) in Section 3.1 are precisely 
funnels with central paths. 

The next property that we need is that there is always, during the execution of the greedy-weight 
algorithm, a path carrying “enough” flow from s to t . 

Lemma 13. Let G be an s- t DAG. The following statements are equivalent: 
(1) G is width-stable, 
(2) G has paths of large weight : for any flow X ≥ 0 on G, there exists an s- t path in G | X carrying 

Val (X )/width (G | X ) flow, 
(3) G has no funnel subgraph with a central path. 

See Figure 6 for an example. 
Proof. ( 1 ) ⇒ ( 2 ): Let G = (V , E) be an s- t DAG with flow X ≥ 0 for which there is no s- t path in 

G | X carrying b = Val (X )/width (G | X ) flow. We will show that G is not width-stable. For simplicity, 
we assume G = G | X , the result follows immediately for any supergraph of G. Let S be the set of 
vertices reachable from s by a path carrying b flow. By assumption, t " S , so (S, V \ S) is an s, t-cut 
and X (u, v) < b for any edge (u, v) with u ∈ S, v ∈ V \ S . Define T to be the set of vertices that can 
reach t via a path involving vertices only from V \ S : 

T # V \ {v ∈ V | all v − t paths cross S } . 
Since S ⊆ V \ T , (V \ T , T ) is an s, t-cut. Note that if (u, v) is an edge with u ∈ V \ T and v ∈ T , 
then also u ∈ S and v ∈ V \ S and thus X (u, v) < b. The set C defined by 

C # { (u , v) ∈ E | u ∈ V \ T , v ∈ T } = E ∩ (S ×T )
is an s, t-cut set (a set of edges that every s- t path has to cross) and we have X (e) < b for every 
e ∈ C . This implies |C | > width (G). 

We construct a new flow Y ≥ 0 on G for which C is an antichain in G | Y . Initially, Y # X . Define 
the following paths: 
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—p s (u) for all u ∈ S : an s- u path with all nodes in S , 
—p t (v) for all v ∈ T : a v- t path with all nodes in T . 

We keep the invariant that the paths exist and do not change in G | Y throughout the construc- 
tion of Y . Let b(v, u) denote a path from v ∈ T to u ∈ S , all of whose internal nodes are from 
V \ (S ∪ T ), and note that such a path exists iffC is not an antichain. Assume it carries flow µ > 0 
(i.e., µ is the minimum flow value along b(v, u)), we then perform the following operation on Y : 

Y (e) = {Y (e) − µ if e ∈ b(v, u)
Y (e) + µ if e ∈ p s (u) ∪ p t (v). 

Note that after the operation Y remains a flow and that none of the three paths have pairwise 
intersecting edges. The process does not violate the invariant and repeating eventually it destroys 
all paths from T to S , making C an antichain in G | Y . This shows that G is not width-stable: Y ≤
X + Y and width (G | Y ) > width (G | X+Y ) = width (G). 

( 2 ) ⇒ ( 3 ): Assume that G has a funnel subgraph F with a central path P . Let C be a maximum 
antichain of F , and note that every maximum antichain of a funnel consists of private edges only. 
We define flows Z stable , Z unstable, and Z : 

—Z stable is defined to be the flow induced 3 by the minimum path cover of F 4 (i.e., G | Z stable = F ). 
—Z unstable is defined to be the flow induced by the following path cover of the graph consisting 

of F and P : One s- t path goes along P , covering two edges in C , 5 and the other paths cover 
F avoiding P , this is possible with additional |C | − 2 paths. 

—Finally, Z # Z stable + Z unstable . 
We have Val (Z ) = Val (Z stable ) + Val (Z unstable ) = | C | + (| C | − 1 ) = 2 |C | − 1 and width (G | Z ) ≤

|C | − 1 , and thus 
Val (Z )

width (G | Z ) ≥ 2 |C | − 1 
|C | − 1 > 2 , 

but all s- t paths in G carry no more flow than 2, because C is an s, t-cut set of G and all Z flow 
values on C are 2. 

( 3 ) ⇒ ( 1 ): Assume that G = (V , E) is not width-stable, let Y ≥ X ≥ 0 be flows on G with 
width (G | X ) > width (G | Y ) and let C ′ be a maximum antichain of G | X . Let F be a funnel subgraph 
of G | X containing C ′ as maximum antichain, and let C be the rightmost maximum antichain of F 
(that is, the head of every edge in C is t or is merging). Since C is not an antichain of G | Y , there 
must be a path P in G | Y connecting two edges in C , and it starts at a merging node. It must also 
enter a forking node, because otherwise adding the path would not decrease the width. This shows 
that a prefix path of P is a central path of F . !

Lemma 14. Let G = (V , E) be a width-stable graph, width (G) ≥ 2 . Greedy-weight uses at most 
⌊ log Val (X )/log width (G)

width (G)−1 ⌋ + 1 paths to decompose any flow X : E → N . 
Proof. Let b = width (G). Since G is width-stable, greedy-weight removes a path of weight at 

least Val (X ′ )/b at every step by Lemma 13 , where X ′ is the remaining flow of the correspond- 
ing step. As such, after c steps Val (X ′ ) ≤ Val (X )(b−1 

b )c . If Val (X )(b−1 
b )c < 1 , then Val (X ′ ) = 0 , 

since Val (X ) and the weights of the removed paths belong to N . Solving for c we obtain c > 
3 Recall that the induced flow X of a path cover (P )ℓ 1 is defined as X = P 1 + · · · + P ℓ , where we identify each path P i with 
a 0 /1 -flow with value 1 on the path edges (i.e., precisely the characteristic function of P i ). 
4 Since funnels admit a unqiue flow decomposition, they also admit a unique minimum s- t path cover. 
5 Indeed, this path covers exactly two edges in C : one edge needs to be covered to reach P and another edge must be covered 
to reach t , and since G is a DAG, we cannot use the same edge twice. 
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log Val (X )/log b 

b−1 . Therefore, greedy-weight takes (uses) at most c = ⌊ log Val (X )/log b 
b−1 ⌋ + 1 

steps (paths). !

Theorem 2. Let G = (V , E) be a width-stable graph and X : E → N a flow. Greedy-weight is a 
O(log Val (X ))-approximation for MFD N on (G, X ). 

Proof. Assume X > 0 (otherwise, replace G by G | X ). Thus, b = width (G ) ≤ mfd N (G , X ), since 
any flow-decomposition of X induces a path cover of E. If b ≤ 1 greedy-weight finds an op- 
timal solution. Otherwise b ≥ 2 , and Lemma 14 implies that greedy-weight is a O( log Val (X )

b log b 
b−1 ) = 

O(log Val (X ))-approximation for MFD N ( b log b 
b−1 = O(1 ) for b ≥ 2 ). !

Finally, we show that series-parallel graphs are width-stable, and thus greedy-weight is a 
O(log Val (X ))-approximation on them. 

Definition 15 (Series-parallel Graph [Eppstein 1992 ]). A graph is a two-terminal series-parallel 
( series-parallel for short) graph with terminal nodes s and t if: 

• it consists of a single edge directed from s to t , and no other nodes, or 
• it can be obtained from two (smaller) two-terminal series-parallel graphs G 1 and G 2 , with 

terminal nodes s 1 , t 1 , and s 2 , t 2 , respectively, by either 
– identifying s = s 1 = s 2 and t = t 1 = t 2 ( parallel composition of G 1 and G 2 ), or 
– identifying s = s 1 , t 1 = s 2 , and t = t 2 ( series composition of G 1 and G 2 ). 

Corollary 16. Greedy-weight is a O(log Val (X ))-approximation for MFD N on series-parallel 
graphs. 

Proof. Using Theorem 2 , it remains to prove that any series-parallel graph G = (V , E) with any 
flow X : E → N is width-stable. We prove it using structural induction. The base case is when G 
is single edge from s to t , and they are trivially width-stable. 

Suppose now that G is obtained by the composition of series-parallel graphs G 1 , G 2 , and let 
X ≤ Y by any non-negative flows on G. Let X i = X | G i , Y i = Y | G i and let x i denote width (G i | X i ), y i 
denote width (G i | Y i ), for i = 1 , 2 . x i ≤ y i for i = 1 , 2 . 

If the composition operation is parallel composition, then width (G) = width (G 1 ) + width (G 2 )
(since edges of G 1 cannot reach edges of G 2 , and vice versa) and width (G | X ) = x 1 + x 2 , 
width (G | Y ) = y 1 + y 2 (since G | X and G | Y are also series-parallel), and G is width-stable by the 
inductive hypothesis that x i ≤ y i , for i = 1 , 2 . 

If the composition operation is series composition, width-stability follows analogously to the 
parallel composition by replacing sum with maximum. !

However, note that there are width-stable graphs that are not series-parallel. 
4 WIDTH HELPS SOLVE MCCD Z 
In this section, we give an approximation algorithm for mfd Z (G, X ). We will obtain this for a 
more general problem variant, which can be defined as follows. We are given directed a graph G = 
(V , E, c) with no sink or source nodes, with (cost) a function c : E → R ≥0 . The cost of a circulation 
X is defined as ˜ c (X ) = ∑e ∈E c(e )X (e ). Note that ˜ c (·) is a linear function: ˜ c (X + Y ) = ˜ c (X ) + ˜ c (Y ) for 
any two circulations X , Y on G. 

Definition 17. Given (G, X ) of a graph G = (V , E, c) and a circulation X : E → Y , a circulation 
decomposition of size k of (G, X ) is a family of circulations Y i : E → N with weights (w 1 , . . . , w k ) ∈ 
Y k such that X = w 1 Y 1 + · · · +w k Y k . We call the problem of finding a circulation decomposition 
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Fig. 7. Reduction in Lemma 18 of a graph with total flow 4 from MFD Y to MCCD Y . The bold edge is the 
addition to the DAG and is the only edge with cost 1 while all other edges have cost 0. 
of minimum cost ˜ c (Y 1 + · · · + Y k ) the Minimum Cost Circulation Decomposition or MCCD Y and we 
write mccd Y (G, X ) for the minimum cost. 

Decomposing into non-negative weighted circulations rather than paths is a natural generali- 
sation, as paths can also be seen as flows with value 1 along the path. The following reduction 
(Figure 7 ) shows that MFD Y can be regarded as a special case of MCCD Y . 

Lemma 18. MCCD Y is NP-hard. 
Proof. Given an s- t DAG G = (V , E) and flow X : E → Y , we define a graph G ′ = (V , E ′ , c) with 

E ′ = E ∪ {(t , s)} and c : E ′ → { 0 , 1 } , c (u , v) = 1 ⇐⇒ (u, v) = (t , s), that is, cost 1 only for the edge 
(t , s). Let X ′ : E ′ → Y , X ′ (e) = X (e) for e ∈ E and X ′ (t , s) = Val (X ) be a circulation on G ′ . The 
cost of a MCCD (Y ′ 1 , w ′ 1 ), . . . , (Y ′ k , w ′ k ) of (G ′ , X ′ ) is equal to ˜ c (Y ′ 1 ) + · · · + ˜ c (Y ′ k ) = Y ′ 1 (t , s) + · · · +
Y ′ k (t , s). Note that an s- t path P : E → {0 , 1 } yields a circulation Y P : E ′ → {0 , 1 } of cost 1, which 
implies mfd Y (G , X ) ≥ mccd Y (G ′ , X ′ ). Define flows Y i : E → Y with Y i (e) = Y ′ i (e) for i = 1 , . . . , k . 
Decomposing each flow Y i trivially into Val (Y i ) = Y ′ i (t , s) paths and assigning them weights w ′ i 
yields a Flow Decomposition of (G , X ), showing mccd Y (G ′ , X ′ ) ≥ mfd Y (G , X ), and thus this Flow 
Decomposition is minimum. !

Definition 19. Given S ⊆ E and a graph G, we call a circulation C of minimum cost satisfying 
C (e ) ≥ 1 for all e ∈ S Minimum Cost Circulation Cover of S , and we write mccc S (G) = ˜ c (C). If 
S = E, we use mccc (G) instead. 

Note that since every circulation decomposition of a graph G covers the edges of non-zero cir- 
culation, mccc S (G ) ≤ mccd Y (G , X ) with S = {e ∈ E | X (e) ! 0 }. This generalises the width lower 
bound of MFD Y to MCCD Y . Given an s- t DAG G , width (G ) = mccc (G ′ ) for the graph G ′ obtained 
by the reduction in Lemma 18 . We will need a Minimum Cost Circulation Cover for our approxi- 
mation approach: 

Lemma 20 (Gabow and Tarjan [ 1989 ], Theorem 3.6). Let G = (V , E, c) be a graph, and S ⊆ E. 
A Minimum Cost Circulation Cover of S can be computed in O(n log m(m + n log n)) time. 

The idea behind our approximation algorithm for MCCD Z is that a circulation X : E → Z on 
a graph G can always be decomposed into circulations of total cost (⌈ log ∥ X ∥ ⌉ + 1 ) · mccc (G). We 
show this using two key facts: first, that X can be decomposed into (⌈ log ∥ X ∥ ⌉ + 1 ) circulations 
with a particular structure, and, second, that each of these circulations can be further decomposed 
into circulations of total cost of at most mccc (G). A key step in proving both these facts is a sub- 
routine which, given an input circulation X , finds another circulation Y with values from { 0 , ±1 } 
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only (a unitary circulation) that matches the parity of X on all edges. Intuitively, given an input 
circulation X , such a unitary circulation Y can be added to X to “fix” its odd edges to be even, with 
only a small change to X . 

Lemma 21. For any circulation X : E → Z on G = (V , E, c), there exists a circulation Y : E → Z 
such that X ≡2 Y and ∥Y ∥ ≤ 1 . 

Proof. Consider the undirected graph G odd = (V , E odd ), where E odd = { { u , v} | (u , v) ∈ 
E and X (u , v) is odd } . 

Notice that every node of G odd has even degree due to the conservation of flow. Thus, G odd can 
be written as the edge-disjoint union of cycles. Assign an arbitrary orientation to each cycle and 
let E +odd be the set of edges oriented in this way. Define 

Y (u, v) = ⎧ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎩ 
+1 if (u, v) ∈ E +odd 
−1 if (v, u) ∈ E +odd 
0 if {u, v} " E odd 

Notice that Y is a circulation decomposed as a sum of circulations, each along one of the edge- 
disjoint cycles. Moreover, X ≡2 Y and ∥Y ∥ ≤ 1 by construction. !

Repeatedly applying Lemma 21 and dividing the resulting even circulation by 2, we obtain the 
the first key ingredient of the approach. 

Corollary 22. Any (non-zero) circulation X : E → Z can be written as X = ∑ ⌈ log ∥ X ∥ ⌉ 
i= 0 2 i · Y i , 

where Y i : E → Z is a circulation with ∥Y i ∥ ≤ 1 for all i . 
Proof. If ∥X ∥ ≤ 1 the result follows. Otherwise apply Lemma 21 to obtain Y 0 such that X ≡2 Y 

and ∥Y 0 ∥ ≤ 1 . Since X ≡2 Y 0 , we can define X ′ = (X − Y 0 )/2 , and thus X = 2 X ′ + Y 0 . Recursively 
repeat this procedure on X ′ until ∥X ′ ∥ ≤ 1 , obtaining Y 0 , . . . , Y k = X ′ , so that X = ∑k 

i= 0 2 i · Y i . 
Finally, note that at each repetition, ∥X ∥ decreases to at most ⌈∥ X ∥ /2 ⌉, thus k ≤ ⌈ log ∥ X ∥ ⌉. !

The following result is the second key ingredient of our approach. It guarantees that any unitary 
circulation can be decomposed into two circulations of total cost of at most mccc (G) (see Figure 8 
for an example). This is by no means obvious since, among other problems, a unitary circulation 
may contain positive and negative values which merge and cancel each other out (as in Figure 8 (b)). 

Lemma 23. For any circulation X : E → Z , ∥X ∥ ≤ 1 , there exist circulations A, B : E → Z such 
that: 

(1) A, B ≥ 0 
(2) X = A − B
(3) ˜ c (A) + ˜ c (B) ≤ mccc (G)

Proof. Take C such that C ≥ 1 and ˜ c (C) = mccc (G), according to Lemma 20 . Take D such that 
D ≡2 X +C and ∥D∥ ≤ 1 , according to Lemma 21 . Also, assume ˜ c (D) ≥ 0 without loss of generality 
(otherwise, take −D, which satisfies the same properties). 

Since D ≡2 X +C , we have C − D ± X ≡2 0 . We now consider the circulations A # (C − D +
X )/2 and B # (C − D − X )/2 , which have the following properties: 

(1) Notice that C − D ± X ≥ C − 2 since ∥ D∥ , ∥ X ∥ ≤ 1 . So, C − D ± X ≥ −1 , since C ≥ 1 . But 
C − D ± X ≡2 0 so C − D ± X ≥ 0 , therefore A, B ≥ 0 . 

(2) A − B = C−D+X 
2 − C−D−X 

2 = X . 
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Fig. 8. Example of Lemma 23 applied to a unitary circulation X on a graph G (for clarity, 0 circulation values 
are not shown). Non-negative circulations A and B can be constructed so that ˜ c (A) + ˜ c (B) ≤ mccc (G) holds. 
We obtain a decomposition of X by X = A − B. 

(3) ˜ c (A) + ˜ c (B) = ˜ c (A + B) = ˜ c (C−D+X 
2 + C−D−X 

2 ) = ˜ c (C − D) = ˜ c (C) − ˜ c (D) ≤ ˜ c (C) since ˜ c (D)
≥ 0 , and ˜ c (C) = mccc (G). !

Finally, expressing any circulation as a sum of at most ⌈ log ∥ X ∥ ⌉ + 1 unitary circulations (Corol- 
lary 22 ), and decomposing each unitary circulation into two circulations with cost of at most 
mccc (G) (Lemma 23 ), we can decompose the circulation into circulations of total cost no more 
than (⌈ log ∥ X ∥ ⌉ + 1 ) · mccc (G) whose weights are positive and negative powers of two. 

Theorem 24. Given a graph G = (V , E, c) and a circulation X : E → Z with k # ⌈ log ∥ X ∥ ⌉, there 
exist circulations A i , B i for i = 0 , . . . , k and weights { w 0 , . . . , w k } ⊆ { 2 i | i ∈ N} , with ˜ c (A 0 + · · · +
A k + B 0 + · · · + B k ) ≤ (k + 1 ) · mccc (G) such that X = w 0 (A 0 − B 0 ) + · · · +w k (A k − B k ). 

Proof. Combine Corollary 22 and Lemma 23 , getting 
X = k ∑

i= 0 2 i · Y i = k ∑
i= 0 2 i · (A i − B i )

where ˜ c (A i + B i ) ≤ mccc (G). !

The proof of Theorem 24 suggests a straightforward algorithm for MCCD Z , which we detail in 
Algorithm 2 and describe at a high level here. First, iteratively decompose X , yielding log ⌈∥ X ∥ ⌉ + 1 
unitary circulations. Then use Lemma 23 to decompose each into two circulations of cost at most 
mccc (G). However, mccc (G) is not necessarily a lower bound on MCCD Z if the circulation is 0 on 
some edges, and thus this approach does not directly derive an approximation. To overcome this is- 
sue, we instead find a circulation decomposition of a spanning subgraph G ′ of G for which mccc (G ′ )
lower bounds mccd Z (G, X ). Namely, we first find a minimum cost circulation cover in G of the 
subset S of edges with non-zero flow in O(n log m(m + n log n)) time (according to Lemma 20 ), 
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ALGORITHM 1 : Unitary (G,X): Produces a Unitary Circulation Y from an Input Circulation X 
Such that X ≡2 Y , as in Lemma 21 

1: E odd ← odd edges of G, undirected 
2: C ← a decomposition of G odd = (V , E odd ) into cycles, oriented arbitrarily 
3: E +odd ← directed edges of C 
4: for (u, v) ∈ E do 
5: if (u, v) ∈ E +odd then 
6: Y (u, v)← +1 
7: else if (v, u) ∈ E +odd then 
8: Y (u, v)← −1 
9: else 

10: Y (u, v)← 0 
11: end if 
12: end for 
13: return Y 
ALGORITHM 2 : Finds The Circulation Decomposition of Theorem 24 

1: Compute a minimum cost circulation cover of { (u , v) ∈ E | X (u, v) ! 0 } {Lemma 20 } 
2: Remove from G any edge not covered by this circulation cover to obtain G ′ 
3: P ← [], W ← [] {length-zero vectors} 
4: C ← circulation of cost mccc (G ′ ), C ≥ 1 {Lemma 20 } 
5: D ← Unitary (G ′ , C); if Val (D) < 0 set D = −D{Algorithm 1 } 
6: i ← 0 
7: while ∥X ∥ > 1 do 
8: Y i ← Unitary (G ′ , X ){Algorithm 1 } 
9: X ← (X − Y i )/2 

10: i ← i + 1 
11: end while 
12: Y i ← X
13: for j ∈ {0 , . . . , i} s.t. Y j ! 0 do 
14: A ← C − D + Y j , B ← C − D − Y j 
15: Concatenate A and B to P
16: Concatenate 2 j and −2 j to W 
17: end for 
18: return (P, W )
and then remove from G any edge not covered by the circulation, obtaining G ′ . By construction, 
the cost of this circulation cover is a lower bound of mccd Z (G, X ). Moreover, the cost of this cir- 
culation cover is exactly mccc (G ′ ), since every circulation cover of G ′ is also a circulation cover of 
S in G. 

To prove the correctness of Algorithm 2 , we first define a a subroutine implementing Lemma 21 . 
Lemma 25. Algorithm 1 returns a unitary circulation from an input circulation Y such that X ≡2 Y , 

as in Lemma 21 , in O(m) time. 
Proof. The correctness of the algorithm is given by Lemma 21 . Finally, the first 3 subroutines 

as well as the entire for-loop takes O(m) time. !

Theorem 3. MCCD Z can be approximated with a factor of log ⌈∥ X ∥ ⌉ + 1 in runtime 
O(n log m(m + n log n) +m log ∥ X ∥ ). 
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Fig. 9. Paths A i and B i ( i ∈ {0 , 1 , 2 , 3 }), each edge being labeled with the paths it appears in. Assign to each 
path A i weight a i , and to each path B i weight b i , such that a 0 = b 0 = 3 , and a i = 6 2 i + 1 and b i = 6 2 i+1 + 5 
for i = 1 , 2 , 3 . Define the flow X on G as X = ∑3 

i= 0 a i A i +∑3 
i= 0 b i B i . Note that these weights are a solution 

of k-FWA N on input (G, X ) with given paths A i , B i ( i ∈ {0 , 1 , 2 , 3 }). 
Proof. By Theorem 24 and our previous discussion, Algorithm 2 returns a circulation decom- 

position for X with no more cost than (⌈ log ∥ X ∥ ⌉ + 1 ) · mccc (G ′ ) ≤ (⌈ log ∥ X ∥ ⌉ + 1 ) · mccd Z (G, X ). 
We analyse the runtime line by line. Lines 1 and 4 take O(n log m(m + n log n)) time by Lemma 20 . 
The call to Algorithm 1 on line 5 takes O(m) time by Lemma 25 , and checking the cost of D and 
flipping signs (if necessary) also takes O(m) time. By Corollary 22 , the while loop on line 7 executes 
at most log ⌈∥ X ∥ ⌉ + 1 times, meaning that the entire execution takes O(m log ∥ X ∥ ) time since line 8 
takes O(m) time by Lemma 25 . Since there are at most log ⌈∥ X ∥ ⌉ + 1 Y i ’s, the for loop on line 13 
executes at most log ⌈∥ X ∥ ⌉ + 1 times. Each execution of the for-loop finds two circulations of total 
cost of at most mccc (G ′ ) in O(m) time, so the whole also loop takes O(m log ∥ X ∥ ) time. Thus, the 
overall runtime is O(n log m(m + n log n) +m log ∥ X ∥ ). !

With the reduction given in Lemma 18 , we obtain an approximation algorithm of the same ratio 
for MFD Z . However, we can improve the runtime of Lemma 20 : 

Corollary 26. Algorithm 2 is also a log ⌈∥ X ∥ ⌉ + 1 -approximation for MFD Z with runtime 
O(m(n + width (G) log ⌈∥ X ∥ ⌉)). 

Proof. This is directly achieved by using Theorem 3 with Lemma 18 and by calculating the 
width (G) according to Lemma 7 . Note that the flows A and B need to be trivially decomposed into 
at most width (G) paths, causing the additional factor in the runtime. !

A theorem analogous to Theorem 24 for MCCD N is desirable, but cannot be achieved directly 
with the previous methods, as Lemma 21 makes use of negative weights. However, the approach 
can be adapted for MCCD N if the input flows are width-stable (Definition 11 ), and if it is possible 
to “fix” the odd flows to be even with only mccc (G) unitary flows, which we leave as an open 
question. 
5 SOLVING THE k-FLOW WEIGHT ASSIGNMENT PROBLEM 
In this section, we consider a restriction of MFD from Kloster et al. [ 2018 ] (see Figure 9 for an 
example). 

Definition 27 ( k-Flow Weight Assignment). Given a flow X : E → Y on a graph G = (V , E) and a 
set of s- t paths { P 1 , . . . , P k } , the problem of finding an assignment of weights to the paths, such 
that they form a flow decomposition of (G, X ), is called k-Flow Weight Assignment ( k-FWA). We 
write k-FWA Y if we require the path weights to belong to Y . 

Given k s- t paths, k-FWA can be solved by a linear system defined by Lw = X , where X j ∈ 
Y is equal to the flow X (e j ) of the edge e j (we identify flows X : E → Y with vectors X ∈ Y m ) 
and L is the m × k 0 /1 matrix with L i, j = 1 if and only if path P j crosses edge e i . The resulting 
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solution w ∈ Y k is the weight assignment to each path. For a flow graph (G, X ), we denote by 
L Y = L Y (P 1 , . . . , P k ) = {w ∈ Y k | X = ∑k 

j= 1 P k w k } the linear system corresponding to the paths 
P 1 , . . . , P k . 

We shortly discuss how to solve k-FWA Z . The linear system defined by the paths is a system of 
linear Diophantine equations. It is well known that integer solutions to such systems can be found 
in polynomial time; see, for example, [Schrijver 1986 , Chapter 5]. 

Solving k-FWA N turns out to be more difficult, its the linear system contains the inequality 
w ≥ 0 . In fact, it was shown [Kloster et al. 2018 ] that k-FWA N is NP-hard. The program Tobog- 
gan [Kloster et al. 2018 ] implements a linear FPT algorithm for MFD N and one step of the al- 
gorithm is to solve k-FWA N using an ILP [Kloster et al. 2018 ]. The authors state the following 
conjecture. 

Conjecture 28 (Kloster et al. [ 2018 ]). If (P 1 , . . . , P k ) are the paths of a minimum flow decom- 
position of (G, X ), then the linear system L N (P 1 , . . . , P k ) has full rank k . 

In case of a fractional decomposition (in which the weights of the paths are allowed to be rational 
non-negative numbers), it is indeed true that the induced linear system is of full rank k [Vatinlen 
et al. 2008 ]. As mentioned in the introduction, if the conjecture turned out to be true for natural 
numbers, Toboggan could avoid resorting to solving an ILP, since just solving the standard linear 
system at hand would return its unique solution. As observed by the authors, this would decrease 
the asymptotic worst case upper bound of Toboggan. 

We show that this conjecture is false using a counterexample. Consider the input for k-FWA N 
from Figure 9 and the solution therein. We now give another solution for k-FWA N on this input, 
namely the following path weights: a 0 = 5 , b 0 = 1 , and a i = 6 2 i + 2 , b i = 6 2 i+1 + 4 , for i = 1 , 2 , 3 . 
One can easily verify that this is another solution to k-FWA N on the input in Figure 9 , thus proving 
that the rank of the corresponding linear system is strictly less than 8. 

To disprove Conjecture 28 , it remains to show that any flow decomposition contains at least 
8 paths. Due to the technicality of this proof (and its exhaustive case-by-case analysis), we only ex- 
plain the intuition behind the construction in Figure 9 and behind the correctness proof. However, 
as an additional check we also ran both Toboggan [Kloster et al. 2018 ] and a recently developed 
ILP solver for MFD N [Dias et al. 2022 ] on this instance, both returning mfd N (G, X ) = 8 . 

The intuition is as follows. The graph can be divided into two parts: the graph induced by the first 
5 vertices in topological order (left part) and the one induced by the last 4 (right part). We say that 
a path is fixed if every minimum flow decomposition of the graph contains this path. The paths 
A i and B i have exponentially growing weight for growing i and get shuffled around with different 
permutations of the paired labels A i B j on the left part. Due to the exponential growth, ensuring 
the correct parity on all edges of the right part, we can fix the paths A i and B i for i = 1 , 2 , 3 . This 
allows us to interpret flow decompositions of less than 8 paths as decompositions with 8 paths, 
where either A 0 or B 0 carries weight 0. Consider a flow decomposition where, we assign two paths 
of weights λ1 and λ2 on the edges labeled A 0 B 0 . For any δ ≥ 0 , (λ1 − δ ) + (λ2 + δ ) = a 0 + b 0 and 
equivalently for all other edges on the left part. If we decrease λ1 by some δ > 0 , the weights of 
B 1 , B 2 , and B 3 each increase by δ/2 . And thus, δ must be even. Due to the parity of a 0 and b 0 , they 
can never reach 0. 
6 CONCLUSIONS 
In this article we have shown for the first time that width, a natural lower bound for MFD, is also 
useful when investigating its approximability. On the one hand, using width is a key insight in 
understanding where greedy path removal heuristics fail. On the other hand, graphs where width 
is well-behaved (e.g., series-parallel graphs) have a guaranteed approximation factor. Moreover, 
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we generalised MFD to the problem to minimising the cost of a circluation decompisition, and 
showed that the integer version can be approximated even better by combining parity arguments 
of unitary circulations and a decomposition of such circulations of cost equal to the minimum cost 
to cover the graph. Finally, we have corroborated the complexity gap between the positive integer 
and the full integer case by disproving a conjecture from Kloster et al. [ 2018 ] (also motivating the 
heuristic in Shao and Kingsford [ 2017 ]), which would have had sped up their FPT algorithm for 
MFD N . 

Our results open up new avenues for further research on MFD. For example, can the width help 
find larger classes of graphs for which some greedy path removal (or even some sort of greedy path 
cover removal) algorithms have a guaranteed approximation factor? Can we get Ω(n) worst case 
approximation ratio of greedy-weight for dense graphs without parallel edges? Can the power-of- 
two decomposition approach be applied with other factors besides two? Can better path cover-like 
lower bounds help (e.g., path covers which cannot use an edge more times than its flow value, also 
computable in polynomial time)? How do our algorithms perform in practice? 
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