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We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of
anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs),
of MBE-grown MnBi2Te4 thin films with electron doping. The nonzero hysteresis loops in the anomalous
Hall effect and magnetic circular dichroism for even-SLs MnBi2Te4 films originate from two different
antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The
complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a
transition between two AFM states followed by a second transition to the ferromagnetic state. Our model
also clarifies the relationship and distinction between axion parameter and magnetoelectric coefficient, and
shows an even-odd oscillation behavior of magnetoelectric coefficients in MnBi2Te4 films.
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Introduction.—The recent discovery of MnBi2Te4
(MBT) [1–8] provides an excellent platform to explore
the interplay between topological physics and magne-
tism [9,10]. Exotic magnetic topological phases, including
the quantum anomalous Hall (QAH) state [11,12], axion
insulator (AI) [11–13], and Möbius insulator [14], have
been theoretically predicted. For bulk materials, the A-type
antiferromagnetism, namely, ferromagnetic coupling in one
septuple layer (SL) and antiferromagnetic (AFM) coupling
between two adjacent SLs, has been unambiguously
established through magnetic susceptibility [3,4] and neu-
tron diffraction experiments [2]. Topological Dirac surface
states have also been observed in angular-resolved photon
emission spectroscopy [3,15–18], although the existence of
a magnetic gap is still under debate [4,15,19,20]. These
experiments confirmed the coexistence of magnetic order
and topological band structure in bulk MBT.
The situation of MBT thin films, however, is subtle.

Theoretically, an even-odd effect was predicted for insulat-
ing MBT films [11–13]. The QAH state can exist for odd
SLs while the AI state [11,12,21–37] appears for even SLs.
Later experiments combining reflective magnetic circular
dichroism (RMCD) and anomalous Hall (AH) measure-
ments, however, challenged this scenario [38–43]. The
corresponding hysteresis loops are not synchronized.
Specifically, RMCD signals exhibit a clear hysteresis loop
for odd SLs whereas the AH hysteresis loop is almost
invisible. For even SLs, a small zero-field RMCD signal was
reported, whereas a clear AH hysteresis loop was found.
These experimental findings indicate the complexity of real
materials where the chemical and magnetic environments
that depend on individual sample qualities are important.

Recently, another type of even-odd effect was found in
metallic MBT films grown by molecular beam epitaxy
(MBE) [44]. Although the metallic samples with both even
and odd SLs show AH hysteresis loops, the loop shapes are
clearly distinct. The AH hysteresis loops can be decom-
posed into two AH components. One behaves the same for
even and odd SLs, coming from minor Mn-doped Bi2Te3.
The other is from the dominant MBT phase, and (i) the
signs of zero-field AH resistance are opposite for even and
odd SLs; (ii) for even SLs, AH sign reverses twice around
spin-flop transition between AFM and canted AFM states
in Fig. 1(a), reproducing the measurements in Ref. [44],
while no such behavior occurs for odd SLs (Supplemental
Material, Sec. I [45]). Similar transport data was also
shown in even-SL MBT fabricated by mechanical exfolia-
tion [38,40,53,54]. Given different disorder levels for the
samples prepared with different methods, we here explore
intrinsic mechanism for this even-odd effect.
In this work, we provide a theoretical understanding of

AH hysteresis loops in MBT films based on a two-surface-
state model and a four-band thin film model. Our theory
suggests that the transition between two nearly degenerate
AFM states [Fig. 1(b)] can provide a consistent under-
standing of both the opposite signs between even and odd
SLs and the complex AH hysteresis loop of even SLs in
Fig. 1(a). Furthermore, we interpret our results with orbital
magnetization [55–58] and extract the magnetoelectric
coefficient, which approaches the bulk value determined
by the axion parameter as the layer thickness increases for
even SLs and stays zero for odd SLs. We clarify the
relationship and distinction between axion parameter and
magnetoelectric coefficient.
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Anomalous Hall hysteresis loop.—For even SL MBT,
there are two degenerate AFM configurations, labeled as
AFM1 and AFM2 [Fig. 1(b)], related by either inversion Î
or time reversal symmetry T̂. This degeneracy is lifted in the
presence of both magnetic and electric fields from asym-
metric substrates or electric gates [42,53]. To describe AFM
configurations, we consider a two-surface-state model with
the Hamiltonian H ¼ HM þHe þHe−M, where HM
describes the magnetization part, He is for the electron
part, and He−M gives the coupling between electrons and
magnetization [40,59,60]. The explicit forms of HM, He,
He−M are given in the Supplemental Material Sec. II.A [45].
Magnetic simulations in Refs. [13] and [40] suggest that the
ground state ofHM is the out-of-plane AFM configurations,
namely, AFM1 and AFM2 in Fig. 1(b) that are degenerate
under HM, at low magnetic fields B. The FM state is
energetically favored at larger B.
The ground state energy for AFM1 and AFM2 can be

distinguished by including electron energy of He þHe−M,
which involves the Landau level (LL) spectrum under B
(Supplemental Material Sec. II.A [45]). For Dirac surface
states, besides the normal LLs, there are additional zeroth
LLs (zLLs), depicted in Fig. 1(c). All the higher LLs are
equivalent for AFM1 and AFM2, and the energy difference
solely comes from zLLs with the eigenenergies ε01;λ ¼
λgMs þ λV0=2 for AFM1 and ε02;λ ¼ λgMs − λV0=2 for
AFM2 under positive B, where λ ¼ þ (λ ¼ −) corresponds
to zLL on the conduction band bottom (valence band top),

V0 is the asymmetric potential between two surfaces
induced by electric fields, g is the exchange coupling
coefficient, andMs is the saturation magnetization. When g
is positive, the zLL for the top surface state corresponds to
the energy at the conduction band bottom (valence band
top) for AFM1 (AFM2) while that for the bottom surface
state is at the valence band top (conduction band bottom),
in Fig. 1(c). At V0 ¼ 0, the occupied zLL has the same
energy for two AFM configurations ε01;− ¼ ε02;− ¼ −gMs.
However, this degeneracy will be broken by an electric
field, which shifts the zLL energies ε01;− and ε02;− oppositely.
For V0 > 0, the zLL energy of AFM1 decreases
(ε01;− ¼ −gMs − V0=2) while that of AFM2 increases
(ε02;− ¼ −gMs þ V0=2) [Fig. 1(d)], and the energy differ-
ence is Δε ¼ ε01;− − ε02;− ¼ −V0 < 0. Therefore, AFM1 is
energetically favored for V0 > 0, corresponding to parallel
alignment of electric and magnetic fields B · E > 0 (we
choose V0 ¼ eEL with E representing electric field and L
the film thickness). For V0 < 0 (B · E < 0), AFM2 has
a lower ground state energy (Δε ¼ −V0 > 0). Therefore,
the energy difference between two AFM states microscopi-
cally arises from the energy shift of zLLs under electric
fields.
After identifying the lower-energy AFM configurations

under magnetic and electric fields, we next study the sign of
AH conductance. To be consistent with negative AH sign
for odd SLs in Ref. [44], exchange coupling g should be
positive, so that the valence bands of both surface states in
odd SLs contribute negative AH sign (Supplemental
Material Sec. III [45]). For even SLs, the AH signs are
reversed for the surface whose magnetization is flipped
compared to that of odd SLs; for Fermi energy inside
magnetic gap, the valence bands of top and bottom surfaces
give exact opposite contributions, leading to zero overall
AH conductance, as shown in Fig. 1(c), where blue and red
colors stand for positive and negative AH signs, respec-
tively. For the system with B > 0 and E > 0 (V0 > 0)
at electron doping, the favored AFM configuration is
AFM1 with a positive AH conductance at electron doping
[Fig. 1(d)]. When E < 0 (V0 < 0), the favored AFM
configuration is AFM2, also exhibiting positive AH con-
ductance at electron doping [Fig. 1(e)]. With similar
analysis for B < 0, we conclude that the odd and even
SL films will always have opposite AH signs at electron
doping, independent of the alignment between E and B.
These results explain the observations of the even-odd AH
effect in the samples with electron doping.
To buttress our arguments, we also investigate a thin film

model which includes both surface and bulk states, and
perform numerical calculations for the zLL energies and the
AH conductivity for 2-SL MBT in Fig. 2 (Supplemental
Material Sec. II.B [45]). For B · E > 0, Δε ¼ εAFM1 −
εAFM2 < 0 so that AFM1 is energetically favored, while
for B · E < 0, AFM2 is preferred [Fig. 2(b)]. We then

FIG. 1. (a) Experimental measurement of AH resistance ρyx as a
function of magnetic field μ0H in a 2 SLMBT film. The spin-flop
field is around 2.3 T, indicated by the black arrow. See Ref. [44]
and Supplemental Material Sec. I [45] for more details. The
favored AFM states denoted here are for the case with V0 > 0.
When V0 < 0, AFM1 and AFM2 are switched. (b) Magnetization
configurations of even SL MBT films. (c) Illustration of the two-
surface-state model for g > 0 and B > 0, where “t” and “b” stand
for top and bottom surfaces, respectively. Each band is labeled
with blue or red color, which represents positive or negative AH
sign. The zeroth Landau levels are shown in red and the other
Landau levels are shown in green. (d)–(e) Illustration of two
surface states with an electric field (d) E > 0 and (e) E < 0.
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compare the Hall conductivity in 2-SL and 3-SL MBT at
both electron and hole doping with carrier density n ¼
�2 × 10−12 cm−2 for positive B in Fig. 2(c). A nonzero V0

can induce a positive (negative) AH response in 2-SL MBT
at electron doping (hole doping). For 3-SL MBT, the AH
sign does not change with doping or electric fields. In
summary, the 2-SL and 3-SLMBT show opposite AH signs
at electron doping, while they have the same AH sign at
hole doping, consistent with the analysis of the two-
surface-state model. This prediction is in agreement with
the experiment in Ref. [53], and the resulting AH sign is
also consistent with the previously proposed even-odd
effect in the insulating regime [11–13] (Supplemental
Material Sec. III [45]).
We further investigate the hysteresis loop for even SL

MBT. Figure 2(d) shows the Hall conductivity σxy for
both the AFM and FM states at electron density n ¼
2 × 10−12 cm−2 for V0 > 0 and sketch the expected

favored states at different B by red line. The spin-flop
transition field Bc for 2-MBT film is around 2.3 T in
experiment [44]. For jBj > Bc, the FM states have the
lower magnetization energy and thus are energetically
favored. For jBj < Bc, the AFM states have lower energy,
and AFM1 is favored at 0 < B < Bc, while AFM2 is
preferred at −Bc < B < 0 for V0 > 0. When the magnetic
field is swept from positive to negative, the favored state for
2-SL films goes through FM1 → AFM1 → AFM2 → FM2
and, correspondingly, the sign of Hall conductivity σxy
varies as − → þ → − → þ [the red lines in Fig. 2(d)].
Since the AFM1-AFM2 phase transition is of first order, a
hysteresis loop can form at small B before spin-flop
transition [the black dashed lines in Fig. 2(d)], correspond-
ing to the observed AH hysteresis loop in Fig. 1(a). Thus,
the double sign changes of the hysteresis loop can be
naturally understood as a two-step phase transition: the
first-step transition between two AFM states followed by
the second-step transition between the AFM and FM states.
For even SL MBT films thicker than 2 SL, multistep spin-
flop phase transitions might occur due to multiple FM
configurations [41] (Supplemental Material Sec. IV [45]).
The dependence of AFM ground state energy on electric

fields implies the possibility of electrical control of AH
conductance near AFM transition. If we sweep electric
fields from positive to negative [the blue curve in Fig. 2(e)],
the favored configuration changes from AFM1 to AFM2
according to Fig. 2(b), and, correspondingly, Hall conduc-
tivity first changes from positive to negative momentarily
then back to positive due to hysteresis. This electric control
of AH conductance potentially provides a microscopic
picture to understand recent experiments [53].
Orbital magnetization and magnetoelectric effect.—

Next we will discuss an alternative view point of AFM
transition based on orbital magnetization created by the
magnetoelectric effect in MBT films. In magnetic materi-
als, spin moment is usually much larger than orbital
moment. The odd-SL MBT has an uncompensated net
spin magnetization, and thus orbital magnetization is
negligible. For even SLs, however, spin magnetization
cancels out in AFM configurations, and orbital magneti-
zation can play a role. The orbital magnetization in even
SL MBT can lead to the magnetoelectric effect, e.g.,
an electric field can create a magnetization, given by
M ¼ αE, with magnetoelectric coefficient α. The mag-
netoelectric effect has been previously studied in 2D
magnetic materials [61,62].
Orbital magnetization usually contains two parts, a trivial

and a topological part, mtotal¼mtrivialþmtopo [63–66].
Figures 3(a)–3(d) show orbital magnetic moments as a
function of V0 for 2-5 SLs in a thin film model at μ ¼ 0
(Supplemental Material Sec. VII [45]). For odd SLs
[Figs. 3(b) and 3(d)], the orbital moment remains constant,
while for even SLs [Figs. 3(a) and 3(c)], the orbital moment
is zero at V0 ¼ 0 and linearly increases with V0 for AFM1.

FIG. 2. (a) Illustration of thin film model for 2 SL MBT films.
Each SL has a thickness of d. (b) The energy density difference
between AFM1 and AFM2 Δε ¼ ε1 − ε2 as a function of
asymmetric potential V0 and magnetic field B at electron density
n ¼ 2 × 1012 cm−2. (c) Numerically calculated Hall conductance
σxy as a function of V0 for favored 2 SL and 3 SL samples at
electron and hole doping under positive B with carrier density
n ¼ �2 × 1012 cm−2. (d) Hall conductance σxy as a function of B
at electron density n ¼ 2 × 1012 cm−2 for positiveV0. The red line
is the expected favored state at different B. The dashed black lines
illustrate the hysteresis loop. (e) Electric control of Hall conduc-
tivity for 2 SL. The yellow circles and green triangles stand for the
Hall conductivity for AFM1 and AFM2, respectively. The solid
lines of sweeping V0 are sketched by hand only for illustration.
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This linear behavior implies the magnetoelectric effect in
even SL MBT. The signs of magnetic moments reverse for
AFM2. With magnetic fields, the electric-field-induced
orbitalmagnetization can lead to the energy differenceΔε ¼
εAFM1 − εAFM2 ¼ Morb;1 · B −Morb;2 · B between two AFM
states, whereMorb;1 and Morb;2 are orbital magnetization of
AFM1 and AFM2, respectively. A positive electric field,
namely,V0 > 0, can induce a negative (positive) total orbital
magnetization Morb;1 ¼ −M0ẑ (Morb;2 ¼ M0ẑ) for the
AFM1 (AFM2) configuration, where M0 is a positive
number and ẑ is the unit vector along the z axis, so Δε ¼
−2M0B < 0 at positive B, which means AFM1 is favored,
and Δε ¼ 2M0B > 0 at −B, for which AFM2 is favored.
The above analysis is quantitatively consistent with the
perspective of zLLs (Supplemental Material Sec. VII [45]).
For an electric field strength E ≈ 0.1 V=nm, orbital

moments in even SLMBT is estimated as 10−1ðe=hÞ · eV ∼
0.4 μB=nm2 with ðe=hÞ ≃ 4.18 μB=ðnm2 · eVÞ and Bohr
magneton μB ¼ ðeℏ=2meÞ. With the magnetic moment
∼5μB of Mn ions and the in-plane lattice constant a ≃
0.43 nm of MBT [2], spin magnetization is around
27 μB=nm2, and hence orbital magnetization is approxi-
mately 2 orders smaller than spin magnetization, which thus
can only play a role in compensated AFM configuration.
We can further extract the magnetoelectric coefficient α

from orbital magnetization [67–69]. In Fig. 3(e), the trivial
part of α goes to zero and the topological part approaches
quantized value e2=2h as the layer number increases for
even SLs at μ ¼ 0 [37,59]. The odd SLs always exhibit
zero α with a constant orbital magnetization. Thus, α
oscillates between zero and nonzero for odd and even SLs
of MBT films [Fig. 3(e)]. The behaviors of α for a nonzero

chemical potential μ are discussed in Supplemental
Material Sec. VII [45].
We should distinguish magnetoelectric coefficient α

from the axion parameter θ, a three-dimensional (3D) bulk
quantity that characterizes the axion term θe2E · B=2πh
in electromagnetic response of topological insulators
[13,35,67–71]. θ can be directly connected to magnetoelec-
tric coefficient α (an experimental observable) as α ¼
θe2=2πh when all the surface states of 3D TIs are gapped.
For theMBT films, this corresponds to even SLs in the large
thickness limit, and the magnetoelectric coefficient α value
approaches e2=2h [Fig. 3(e)] as θ ¼ π in bulk MBT. For the
thick odd-SL MBT, the magnetoelectric coefficient
α is zero, different from the bulk axion parameter θ ¼ π.
Because of θ ¼ π, such phase was previously referred to
as AIs with higher-order topology [14,23,24,34,72–74]. In
Supplemental Material Sec. VII [45], we show while the
total orbital magnetization depends on bulk magnetic
configurations, the magnetoelectric coefficient α only
depends on the surface magnetization, insensitive to bulk
magnetization.
Orbital magnetization in even SL MBT can have an

impact in magnetic circular dichroism (MCD) [43]. Early
RMCD experiments in even SLs show a nonzero hysteresis
loop around small magnetic fields [40,41]. Our studies of
orbital magnetization provide an intrinsic mechanism for
these observations. A decent RMCD signal may also come
from the p-d transition of magnetic ions, or the difference
in the reflections between two surface states [75]. MCD
signals of orbital magnetization in even SLs can also be
controlled by sweeping electric fields. Following the blue
curve in Fig. 3(f), AFM1 is the favored configuration with
negative orbital magnetization at positive V0, and mag-
netization vanishes at V0 ¼ 0. As V0 turns to negative, the
system remains in the AFM1 with positive orbital mag-
netization as the AFM1-AFM2 transition is of first order,
giving rise to a hysteresis loop, similar to the AH hysteresis
loop discussed in Fig. 2(e). Therefore, orbital magnetiza-
tion is expected to vary from negative to positive then back
to negative as the electric potential V0 sweeps from positive
to negative.
Conclusion.—In summary, we apply a two-surface-state

model and a thin-film model to MBT films, and demon-
strate that the presence of electric and magnetic fields can
select a favored AFM configuration in even SLs through
the effect of zLLs, leading to a nonzero AH response and
orbital magnetization. For real samples, disorders and
magnetic domains are inevitable (Supplemental Material
Sec. VI [45]). For example, antiferromagnetic domain walls
have been imaged in MBT via cryogenic magnetic force
microscopy [76]. Thus, the AFM transition should corre-
spond to enlargement and shrinkage of two opposite AFM
domains. Furthermore, bulk states, in addition to surface
states, may also play a role due to chemical potential
inhomogeneity, potentially leading to more complicated

FIG. 3. Calculated orbital magnetic moment m as a function of
V0 for (a) 2SL, (b) 3SL, (c) 4SL, and (d) 5SL in the thin film
model for chemical potential μ ¼ 0. The blue, red, and yellow
lines are for trivial, topological, and total magnetic moment,
respectively. (e) The trivial and topological part of α and total α as
a function of SL number. (f) Illustration of the electric control of
orbital magnetic moment in even SL MBT.
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behaviors [54]. More experimental studies are necessary to
validate our prediction of the AH effect in even and odd SL
MBT at electron and hole dopings, as well as the possible
electric control of orbital magnetization in even SL MBT.
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