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Most cubic semiconductors have threefold degenerate p-bonding valence bands and
nondegenerate s-antibonding conduction bands. This allows strong interband tran-
sitions from the valence to the conduction bands. On the other hand, intervalence
band transitions within p-bonding orbitals in conventional p-type semiconductors
are forbidden at k=0 and therefore weak, but observable. In gapless semiconductors,
however, the s-antibonding band moves down between the split-off hole band and
the valence band maximum due to the Darwin shift. This band arrangement makes
them three-dimensional topological insulators. It also allows strong interband transi-
tions from the s-antibonding valence band to the p-bonding bands, which have been
observed in a-tin with Fourier-transform infrared spectroscopic ellipsometry [R. A.
Carrasco et al., Appl. Phys. Lett. 113, 232104 (2018)]. This manuscript presents a
theoretical description of such transitions applicable to many gapless semiconductors.
This model is based on k - p theory, degenerate carrier statistics, the excitonic Som-
merfeld enhancement, and screening of the transitions by many-body effects. The
impact of nonparabolic bands is approximated within Kane’s 8x8 k- p-model by

adjustments of the effective masses. This achieves agreement with experiments.
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I. INTRODUCTION

Due to relativistic effects, the energy of the s-antibonding I'y (or I'; in the double group
notation) band in diamond-type semiconductors decreases relative to the top of the I',; (or
['y) valence band maximum with increasing atomic number. This is known as the Darwin
shift.? (It can also be found in zinc blende semiconductors like HgTe, but the charac-
ter notations of their space group 77 differ from the diamond group O].) The difference
Ey=E;-—FEg+ between these two energy levels becomes negative for a-tin, where the I';
band is situated between the I'y valence band maximum and the T’ split-off hole band. For
symmetry reasons, the band gap of a-tin is therefore exactly zero, making it a semimetal.
The lower I'§ band forms the heavy hole valence band, while the upper I'y band (with the
same symmetry as the light hole band in Ge) forms the conduction band.?? See Fig. 1 for

a schematic of the band structure.

Such inverted or gapless semiconductors have been studied for many years.** Other ex-

t1%11 and mercury chalcogenides, such as

amples include Ge;_,Sn, alloys with high tin conten
HgTe and HgSe and some of their alloys with Cd, Mn, Fe, and Cr.! Interest in such materials
has recently been revived, because the parity inversion from I'Y (odd) to I'; (even) to I'y
(odd) with increasing energy makes them topological insulators.”'214 Giving this manuscript
the title Ezcitonic absorption in topological insulators would technically be correct, but also

misleading, because none of the special effects observed in topological insulators (except for

the parity inversion) are relevant for their interband optical absorption.

The parity inversion has an important consequence: Interband transitions from the I'7;
valence band to the I'y valence and conduction bands, shown by solid arrows in Fig. 1, lead
to a strong absorption peak in the mid-infrared spectral region. Such transitions have only
recently been observed in a-tin® and tin-rich Ge;_,Sn, alloys.!® They should also dominate
the mid-infrared spectra of other gapless semiconductors, but have not yet been reported
apparently. Intervalence band transitions from I'; to I't” can only be observed in p-type
gapless semiconductors or in intrinsic gapless semiconductors at finite temperature, to cre-
ate holes as final states for these transitions. Therefore, these transitions are observed in

experiments,”'? but do not appear in calculated optical spectra, see Fig. 3 in Ref. 5

Transitions from the 'Y split-off band to the I's bands or within the I's bands, shown

by dotted lines, are forbidden at the I'-point, but become allowed away from the Brillouin



zone center, because their matrix element is linear in k. This has been observed in p-type
Ge, GaAs, AISb, and other semiconductors.'® 18

A previous article by Carrasco et al.” only presented a crude analysis of interband tran-
sitions in gapless semiconductors, based on the work of Kahn for Ge.'® The present work
describes the model for such transitions in more detail, including degenerate Fermi-Dirac
carrier statistics, the excitonic Sommerfeld enhancement, and its screening due to free carri-
ers. The nonparabolicity of the band structure is considered within Kane’s 8 x8 k- p-model
by solving the resulting cubic characteristic equation®!? and adjusting the effective masses
to reproduce the - p band structure. With parabolic bands and established effective masses,
the Sommerfeld enhancement is only partially screened at 300 K and excitonic effects lead
to an increase of the absorption peak at Ey. However, the parabolic model underestimates
the strength of the absorption peak and does not reproduce the experimental line shape.

This discrepancy can be fixed by adjusting the effective masses to better match the 8 x8 k- D

band structure.

II. BAND STRUCTURE OF «o-TIN

The top three valence bands and the lowest conduction band of a-tin have the following

dispersion shown by dashed lines in Fig. 1:

Boe)= oy )
Bea= it )
Brob)= By~ 3)
Breoh) =~ —5 ot (1)

where F, is the energy of band n, k the wave vector, mg the free electron mass in vacuum, and
h the reduced Planck’s constant. The effective masses are mg+.=0.024 (p-bonding electron),
mg+,=0.26 (p-bonding heavy hole), ms-,=0.058 (s-antibonding hole), and my+,=0.04 (split-
off hole), as given in Table I. These effective masses were determined using magnetoreflection
experiments.2’ They are also consistent with & - p-theory.2! The inverted band gap Ey=—E
equals about 0.41 eV, taken as a positive value.?!%20:22 The spin-orbit splitting Ay=0.8 eV

is very large.?’ The four conduction band minima at the L-point are expected to be only
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FIG. 1. Band structure of a-tin near the I'-point from Kane’s 8x8 k - p-model (solid) and with
parabolic bands (dashed). The symmetry notations in the Op double group and the equivalent
bands for Ge (in parentheses) are also given. Solid and dotted arrows show allowed and forbidden
interband transitions, respectively. The horizontal solid line shows the location of the Fermi level

at 300 K.

about 6 meV above I' at room temperature, nearly degenerate with the I's bands. This
difference increases to about 100 meV at low temperatures.?® See Fig. S1 in Ref. 9 for a
sketch of the full band structure. The energy reference level is chosen to be where the I'y

valence and conduction bands touch at the I'-point.

III. INTERBAND OPTICAL TRANSITIONS
A. Transitions into the ' conduction band

Direct interband optical transitions with photon energy hAw are allowed from the I';”
valence band to the I'y® conduction band, shown by the red arrow in Fig. 1. These bands

have the usual curvature, where the initial state band curves downward and the final state

4



TABLE 1. Effective density-of-states masses m,, and reduced (optical) masses pu, for a-tin, all
taken to be positive in units of the free electron mass mgy. The mass at the L-point is for a single
Lér—valley. From Ref. 9 and calculated as described in the text. The exciton binding energies R,
and radii a,, are also listed. The band gap Ey, the momentum matrix element parameter Ep, and
the spin-orbit splitting Ay were taken from Ref. 26. The first line lists values for parabolic bands,

the second one shows adjustments made to match the k- P band structure from Fig. 1.

Mgte Mgty My—y Mty ML fe  fy Re (meV) ae (A) R, (meV) a, (A) Ey (eV) Ep (eV) Ag (eV)

(p) 0.024 0.26 0.058 0.04 0.19 0.017 0.075 0.4 750 1.8 170 0.41 23.8 0.8
(np) 0.031 0.1 0.053 0.024 0.163 0.6 540 3.8 78

band curves upward. The optical (reduced) mass can therefore be calculated in the usual

way?!

M7—yMg+c
.= ———— = 0.017. 5
s M-y + Mgt ( )

Note that we use the subscript ¢ to denote the optical mass for transitions from the I';

valence band into the I'4® conduction band. These transitions contribute to the dielectric

function of a-tin with?4?2?
A, _ _ ' _ |
e ) = m<— PV Eo =V By — hw — il - \/E0+ﬁw+zf]> [fr-o (hw) = feee (hw)].
(hw + i)

(6)

The amplitude prefactor A, is given by

e /mo
A= —Y_"_FEpu’? = 4.918 VeV Epu’?, 7
37T\/§60h PHc P, ( )

where e is the electronic charge and ¢ the permittivity of vacuum. The k- P matrix element
P is usually expressed through Ep=2P?%/my, which equals about 24 eV for a-tin.?° T" is the
broadening parameter for this transition.

The second square root term in Eq. (6) is nearly imaginary (for small broadening and
hw>E,) and thus represents the square root-like increase of the absorption with photon
energy. The first and third square-root terms describe the corresponding contributions to
the real part of the dielectric function for fuw> E.

The last factor in Eq. (6) takes the occupation of the initial and final states for this

transition into account. The initial states are all filled, since Ey>>kpT and therefore we can



set fr-, (hw)=1. However, since the band gap of a-tin is zero, some of the final states in the
['s¢ conduction band will be occupied through thermal activation (at non-zero temperature).
This reduces the strength of the absorption somewhat. This is known as Pauli blocking or
band filling. If the last factor is unity, then the real part of € can be obtained analytically
by taking the real part of the expression within angular brackets. Otherwise, ¢; needs to
be obtained through a numerical Kramers-Kronig transformation, because the Fermi-Dirac
factors also depend on photon energy.

The occupation number fg+,. (fw) of the final state is found as follows: The photon energy
equals the difference between the final and initial band energies (at the same wave vector k
for a direct transition). From Egs. (1), (3), and (5),

h2k?
2mo e

hw = Ey — E; = Egv (k) — Bry (k) = Eo + (8)

This implies

n2k? He (1 — By). ()

2m0m8+c me+c

Eg+. (k)

The Fermi occupation factor in the conduction band for the I'; valence band to the T'g®

conduction band transition is therefore

M-y n
o (hw) = — (hw — Ey) |, 10
fove0) = f | 22— (o - ) (10
where f (E) is the Fermi-Dirac distribution function
1
f(E) = (11)

exp (%ﬁ) +1
with the chemical potential u (see more below), Boltzmann constant kg, and temperature

T.

B. Transitions into the I'y" valence band

Similarly, transitions from the I'; valence band to the I'y" valence band, shown by the
blue arrow in Fig. 1, are also allowed, but we need to consider that both bands curve

downward. The difference between the final and initial state energies is

271.2 2k.2
hw:Ef—EiZ——hk +E0+—h -

2Mmomag+, 2momq—,




The corresponding optical mass for this I';¥ to I'g¥ transition is therefore

f1y = TSt g 75, (13)

Mg+y — M-y
Transitions can only happen if the photon energy /w is larger than the gap Ey, because the
curvature (effective mass) of the I's” valence band is smaller (larger) than that of the T';"

valence band. The contribution to the dielectric function for this I';" to T's” transition is

then given by?%%

A, = = : = :
€2 (hw) = m<—2 [2\/Eo— VEy — hw — il — \/E0+hw+zF]> [fr—v (hw) = fto (Aw)],
(hw + i)
(14)
with the amplitude factor similar to Eq. (7)
2
VI B2 = 4.918 VeV Eppd/?. (15)

A= 37r\/§60h
We again set fr—, (lw)=1, since the I';¥ valence band is fully occupied. For intrinsic a-tin
(without donors and acceptors) and at zero temperature, the I's” valence band is also fully
occupied and therefore the transitions given by Eq. (14) cannot happen, because the last
factor in Eq. (14) vanishes. However, at finite temperatures or in p-type a-tin, the presence
of holes in the I'y"¥ valence band will allow optical interband transitions that can contribute
to the dielectric function.
For such transitions, the final state energy is obtained with a similar argument as in Eq.
(8) as

M7—y

By, (k) = — (hw - EO) (16)

mg+y — M-y
and the final state occupation factor is therefore

Mr—y

faro (hw) = [ | = (7w — Eo) | - (17)

Note the minus signs in comparison to Eq. (10). We are already familiar with the argument
of the Fermi-Dirac function from Eq. (2) in Ref. 9, except that Maxwell-Boltzmann statistics
was used in the previous paper. It is now our goal to repeat this calculation with degenerate
Fermi-Dirac statistics. Therefore, we need to calculate the chemical potential for intrinsic
a-tin.

Finally, we should note that expressions (6) and (14) are for band-to-band transitions.

Excitonic effects have been ignored. We need to reconsider the importance of excitonic
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effects and screening, once the electron and hole concentrations have been calculated from

the chemical potential.

C. Other intervalence band transitions

Transitions from the I'7" split-off valence band to the I'y¥ valence band or to the I'y®
conduction band, shown by the long dotted arrows in Fig. 1, are forbidden at k=0, because
the matrix element for these transitions is linear in k. They can occur, however, for non-zero
wave vectors k, similar to the intervalence band transitions in p-type Ge, GaAs, GaSh, AISb,
etc. These transitions may cause a change of the slope of €; in a-tin at an energy equal to
the spin-orbit splitting Ay. See Kahn.'¢

Transitions from the I's¥ valence band to the I'y© conduction band, shown by the short
dotted arrow in Fig. 1, are also forbidden at k=0, because the matrix element is linear in
k. They have been observed in other semiconductors,'® '8 but they occur at energies much

lower than £ in a-tin and therefore cannot impact the lineshape of the peak at Fj.

IV. FERMI-DIRAC INTEGRALS

To calculate the chemical potential and the electron and hole densities for intrinsic a-tin

as a function of temperature, we will need the Fermi-Dirac integrals®”

n

__ L r y
e e A e el "

where I (n) is the I-function. Specifically for n =1 and n = 2 we have

Y S S
R = = [ =iy and (19)

4 o0 Yy
3Vm /0 exp (y —x) + T (20)

Note the prefactors before the integrals, which are not always found in the older literature.

F3/2 (!B) =

Following Ulrich et al.,?” Fermi-Dirac integrals can be calculated from standard special

functions called polylogarithms

Lim(x):% /Ooo " (21)

['(m xlexp(t) — 1
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which are defined for all x and any integral or non-integral order m>0. Using polylogarithms
with negative arguments expressed as an exponential, the Fermi-Dirac integrals can be

calculated as
F, () = —Lipy1 [—exp ()] (22)

for n>—1. Polylogarithms are called in MATLAB?® with the Symbolic Math Toolbox as
Li=polylog(n,x), where n is the order and x the argument of the polylogarithm function.

For large negative arguments r<—1, one can use the approximation?%3°

F, (z) ~exp(x), (23)

which is valid for any order n. This approximation corresponds to the non-degenerate
(classical) limit, where the Fermi-Dirac distribution is replaced with the Maxwell-Boltzmann

distribution. There are also approximations for the completely degenerate case x>>1, where

the Fermi-Dirac integral can be replaced by a power of the argument, for example?%:3
4 .
[ (z) ~ ——a2. (24)

: NG

For =0, the Fermi-Dirac integral is related to Riemann’s zeta-function? and the Dirichlet
eta-function. Unfortunately, no suitable expansion exists for z~0 (see Ref. 29), which is
needed for our purposes (see below), where kgT' is much greater than the magnitude of the

chemical potential and the energies of holes and electrons in the I'y bands.

V. CALCULATION OF THE CHEMICAL POTENTIAL AND INTRINSIC
CARRER CONCENTRATION

The hole density for intrinsic (undoped) a-tin as a function of temperature is3!

0

p(T) = /dEgv<E> 11— f(E)] =

0

ZO/MWM@

—00

1
exp [(u — E) [ksT] +1'

where3!

3/2
go (B) = M0ms) T o (26)

h37?
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is the density of states of holes in the I's ¥ band for negative energies £. With the substitution
v = —FE/kgT, the hole density becomes®2

1 [ 2momg+ kT 3/2 14
p(T) = 1 (T) Fi _kB_T =
- e (-2 )

This expression assumes that the I's” hole bands are parabolic and spherical. Non-
parabolicity could be added with the F3/; Fermi integrals, but is probably not important
for the I'g" hole bands. To take into account the warping of the heavy hole bands, a density
of states mass mg+, must be inserted for the holes.

The electron density is also written as a density-of-states integral as in Eq. (25), but this
is more difficult to express, because of the near degeneracy of the 'y and L{ conduction
band minima. We use a multi-carrier model similar to what was written for Ge,?® where

electrons can also be present in several conduction band minima at I" and L.

n(T) = 4N, (T) Fyjs (M—_Ed> .

kgT
+ Ngeo (T) Fijo (/@LT) (28)
1 2m mLk:BT 3/2
N, (T) = 1 (OWT) ; (29)

1/2 KT\
“MoMetckB- ) . (30)

Nyt (T) = 4 ( wh?
The density of states factors N, (T) and P, (T') have been defined in the usual way.313? The
prefactor 4 of the first term in Eq. (28) is the number of non-equivalent L-valleys. m;=0.19
is therefore the density of states mass for a single L-valley, see Table I. One could take the
non-parabolicity of the I'y © valley into account with an Fs/, Fermi function,??> but we did
not implement that. Instead, we incorporate the nonparabolicity of the I'; valence band and
the I'y conduction band with a slight modification of the effective masses, to better match
the 8x8 k - p band structure shown in Fig. 1. Ej,q=6 meV is the energy of the L-valleys
above the reference level.?3

We can evaluate the prefactor3?

1 (2m0k3

3/2
4 h2 ) = 4.8294 x 10" cm 3K 3/2 (31)
T
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by expressing one factor i in Joules to cancel the kilogram units, the other one in electron

volts to cancel the Boltmann constant expressed in eV /K.

In an intrinsic semiconductor, the charge neutrality requires the number of electrons
to be equal the number of holes. We can therefore set Eq. (27) equal to Eq. (28). For
each temperature 7T, this yields an equality that can be solved for the chemical potential
to yield p(T) using the MATLAB?® fzero() function. Table IT shows the Fermi level
for intrinsic a-tin and the occupations of the various bands at several temperatures for a
constant value of the indirect gap Fi,q=6 meV. This could be modified by introducing a

temperature dependence.??

At room temperature, kg7 is much larger than the separation Ej,q between I'- and L-
minima in the conduction band. Electrons are therefore mostly found in the L-minima
because of their large density of states. The hole density of states is smaller than the
L-electron density of states and therefore the Fermi level is negative. The overall intrinsic
electron and hole density at room temperature is about 3.7x10*® cm™3. At low temperatures,
electrons are located in the I'y © valley, which has a very small density of states, smaller than
that of the 'y * hole band. The Fermi energy is therefore positive. The carrier concentration

is only 3x 10 cm™3 at 10 K, three orders of magnitude smaller than at room temperature.

The I'7" valence band and its shape do not enter into the calculation of the chemical po-
tential, because it is always fully occupied. The nonparabolicity of the I's conduction band,
while significant, should not matter either, because the electron density (28) is dominated by
the L-valleys at room temperature. The impact of the L-valley nonparabolicity is probably
also small, based on Hall effect data for a-tin** and calculations for Ge.?3 The I'g” heavy hole
band is quite parabolic in similar semiconductors, but warped.?* A density-of-states mass
(averaged over all directions in g—space) must be used for this band. All things considered,
our carrier concentration and chemical potential at room temperature are probably about
as accurate as the my and mg+, effective masses, despite the application of parabolic bands.
Our calculated value of p=3.67x10*® cm~3 at 300 K agrees well with electrical Hall effect

measurements.23
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TABLE II. Chemical potential p at different temperatures T for intrinsic a-tin, calculated by
equating Egs. (27) and (28). The hole and electron concentrations in the I' and L-valleys are also
given. The Hulthén parameters g for transitions to the I'y ¥ and I'y © bands obtained from Eq. (37)

are also given. This calculation was performed for parabolic (p) and nonparabolic (np) bands.

T (K) p(meV) p (10" cm™2) np (10" ecm™2) ny (10" em™2) g, (T3") ge (T3°)

4 (p) 0.8 0.0004 0.0004 0 2.21 0.50
10 (p) 2 0.003 0.002 0.001 1.48 0.34
100 (p) -2 0.61 0.01 0.60 0.31 0.07
300 (p) —125 3.67 0.05 3.62 0.22 0.05
300 (np) —12.6 3.68 0.07 3.61 0.47 0.05

VI. MOTT TRANSITION AND SCREENING OF EXCITONIC EFFECTS

To determine if excitonic effects play a role in the optical interband transitions near F

for intrinsic a-tin, we start by calculating the electron density at the Mott transition. The

exciton binding energy in a-tin formed by I'>” holes with I'y" or ['§¢ electrons is®

Ho,c
Rv,c = 3
€

o

Ry, (32)

where Rp=13.6 eV is the binding energy of the hydrogen atom and e,,=24 is the static
dielectric constant® (which is the same as the high-frequency dielectric constand for diamond-
like semiconductors, because there are no infrared-active phonons). The optical masses .,

are given in Table I. The corresponding excitonic Bohr radii are given by

EOO
Ay,c = ag, (33>
T

where ay=0.529 A is the Bohr radius of the hydrogen atom. The exciton parameters are
also given in Table I.

For the moment, we choose a Mott criterion (with a more precise criterion given later)

1.,/ 3
re = —
ay \ 4mnyy

~1, (34)
where a, is the excitonic radius given by Eq. (33). This implies a Mott density

(35)



which comes out to 4.9x10' ecm™ for I'g” excitons and 5.7x10" ¢cm™ for T's® excitons.
The intrinsic charge density of a-tin at room temperature is much higher (3.67x10'® cm™3,
see Table IT) and therefore the excitonic enhancement of the I'; to I'y” and 'y ® transitions
is at least partially screened.

To quantify this statement, we calculate the Debye-Hiickel screening wave vector3®

2
kp = 4| —25 P V0.021 Kem (36)

€0€sck g1 - €ocd’

12 12 [epeckpT
g = 2 = 2 2 * (37)
ma,kp  ma, pe

One would typically add a factor of 2 in the numerator of Eq. (36) to account for screening

and the Hulthén parameter3”

of the excitonic interaction by free electrons and holes,® but at room temperature most
electrons in a-tin are at the L-valley and they probably do not contribute to the screening
of direct excitons at the I'-point. At room temperature with the carrier concentration given
in Table II, we find a Debye screening wave vector of 0.0327 A~ (or a Debye screening length
Ap = 1/kp of 31 A, much smaller than the excitonic radii, see Table I). The screening factor
g therefore equals 0.22 for transitions to the I'y” valence band and 0.05 for transitions to
the T's© conduction band at 300 K. g=1 is typically associated with the Mott criterion and
therefore we expect the excitonic Sommerfeld enhancements to be screened somewhat in
a-tin at room temperature, compare Fig. 5 in Ref. 25.

Tanguy calculated the direct gap absorption of screened excitons®”

(39)

&2 (hw) = Im <% {7 (€ +im)] +5[¢(~nw —iT)| — 25 [€(0)] }> [ (o) = J. (73B)
32 = —2($) -2 -2 -2 -1,
£(2) =

2
Eo—z Ep—=z 4,
Vr TR Ty

where A, is the transition amplitude defined in Eqs. (7,15) and R, the exciton binding
energy. v (z) is the digamma or psi function, i.e., the logarithmic derivative of the I'-
function, which can be evaluated for complex arguments using the fdigamma.m package in

MATLAB.?® Despite the small Hulthén parameters g, the Sommerfeld enhancement does

13
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not disappear completely for the intervalence band transitions and therefore the simpler

band-to-band expressions (6) and (14) should not be used.?

VII. DISCUSSION AND COMPARISON WITH EXPERIMENT

We are now able to evaluate the strength of optical transitions e (Aw) from the I';”
valence band into the I'y® conduction and T'y" valence bands using Egs. (6) and (14). We
assume an inverted gap of Fy=0.41 eV from Ref. 9 and a broadening parameter I" of 1 meV,
which is typical for direct gap transitions in direct cubic semiconductors.*® Because of the
energy-dependent occupation factors (10) and (17), the real part € (hw) needs to be cal-
culated numerically, for example in MATLAB?® using Valerio Lucarini’s add-on Tools for
Data Analysis in Optics, Acoustics, Signal Processing.*! So far, we have ignored the non-
parabolicity of the I's¢ conduction band, the Sommerfeld (excitonic) enhancement,?* and
Hulthén screening of excitons.?® The contribution to the dielectric function from interband
transitions at the I'-point are shown in Fig. 2 (a).

The resulting curves are very similar to those shown in Fig. 3 of Ref. 9. This indicates that
the use of degenerate Fermi-Dirac statistics is not important and non-degenerate (Maxwell-
Boltzmann) statistics is sufficient to describe these interband transitions. This is surprising,
since kg1 is several times larger than the chemical potential, see Table II. Therefore, the
argument of the Fermi-Dirac integral is close to zero (far from the non-degenerate limit),
where no good expansion exists.

Due to the larger reduced mass, transitions to the I'y” (heavy hole) valence band dominate
over those to the I'T¢ conduction band. The onset of absorption occurs at Ey=0.41 eV. The
maximum of e;=1.46 is at 0.47 eV, about kgT larger than Ey. At lower energies, €, is
reduced by the joint density of states, at higher energies by the occupation factor. The
heavy hole contribution decreases towards larger energies (due to the decreasing occupation
factor) more quickly than the I'y® contribution, which is governed by the w?-term in the
denominator of Eq. (6). The real part €¢; can be calculated from ey using Kramers-Kronig
transformation, but it does not include contributions from the vacuum (e=1) and from
non-resonant transitions at higher energies.’

Equation (38) allows us to study the impact of excitonic enhancement. For completely

unscreened excitons and a broadening of '=1 meV (not shown), there is a strong discrete
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excitonic peak just below Fy. The maximum of €,=2.5 is at 0.43 eV. As expected, the
maximum is larger than for interband transitions due to the Sommerfeld enhancement.
Also, the peak is shifted to lower energies, since the Sommerfeld enhancement decreases for
larger energies above the band gap.?!

It is more realistic to consider the screening of excitons with the Hulthén parameters g
given in Table II, see Fig. 2 (b). The maximum €e;=2.14 is now at 0.45 eV. As expected, for
g=0.22, the Sommerfeld enhancement is only partially screened and therefore €, is larger
and occurs at a lower energy than for the interband case shown in Fig. 2 (a).

Overall, all three scenarios (excitonic transitions with full, partial, and no screening) lead
to similar results for the dielectric function, except for the discrete exciton peak, which is
only present for unscreened excitons. Theory shows that discrete excitonic peaks only exist
for g>1, even for small broadenings.?® All curves show a rather steep rise of €, follows by
slow decrease. This is in stark contrast to the experiment, which shows a sharp peak with
a steep increase and decrease.”

We also varied the value of the indirect gap Ej,q between +50 meV in our calculations.
This changes the magnitude of the peak somewhat, but the slow decrease towards higher
photon energies remains. Since parabolic bands with established effective masses do not
explain the experimental observations, we will discuss in Sec. VIII how nonparabolicity

corrections affect these calculations.

VIII. IMPACT OF NONPARABOLICITY

As shown in Fig. 1, the dispersion obtained using the experimental effective masses listed
in Table I (dashed lines) does not match the band structure calculated using Kane’s 8 x8 k-p-
model (solid).’ To achieve a better fit to the band structure on this scale and to consider the
nonparabolicity of the bands, we adjust the effective masses to better fit the 8x8 k- p band
structure. This results in the following values: mg+,.=0.031, my-,=0.1, m+,=0.053. The
g€ conduction band mass is increased moderately by 29% and the corresponding optical
mass i by 41%. The increase of the I'; mass is much more significant: It increases by 72%
and the corresponding optical mass pu, by 117%.

Table II shows that the chemical potential and the intrinsic carrier concentration do not

change much as nonparabolicity corrections are introduced. This was already predicted in
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FIG. 2. Contributions to the imaginary part of the dielectric function due to interband transitions
from I'; to I's¢ (dashed) and to I'§" (dotted) as well as their sum (solid) in comparison to experi-
mental data from Ref. 9 (symbols), with a constant background determined at 0.2 eV subtracted.

Calculated for parabolic bands without (a) and with (b) excitonic enhancement.

Sec. V, because the chemical potential depends mostly on the heavy hole and L-electron
mass, which are assumed to be parabolic.

On the other hand, the increase of the optical masses increases the excitonic binding
energy and decreases the exciton radius, especially for transitions to the heavy hole band.
The Hulthén parameter g, for transitions to I's¥ has more than doubled. The Sommerfeld
enhancement is screened much less. This can seen in Fig. 3:

The optical absorption from transitions to the I'y® conduction band is only increased
by about 50-60%, since the optical mass is increased only moderately and the screening

parameter g. does not change at all.
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FIG. 3. As Fig. 2, but with effective masses adjusted to account for nonparabolicity without (a)

and with (b) excitonic enhancement..

On the other hand, the amplitude of band-to-band transitions to the heavy hole band
['s¥ has doubled by the introduction of nonparabolicity. The magnitude of its absorption
peak shown in Fig. 3 (a) nearly matches the experimental peak (especially if the nonresonant
background is subtracted), The peak shape, on the other hand, is still not a good matched,
if the Sommerfeld enhancement is neglected.

If screened excitonic contributions are included, as shown in Fig. 3 (b), then the calcu-
lated peak magnitude is twice as large as observed in the ellipsometry experiment. The
experimental peak shape is also reproduced much better.

It might be possible to achieve even better agreement with experiment by fine-tuning the
effective mass of the I'; valence band but we shall not pursue this here. Effective masses are

influenced in & - p theory by other "remote” bands and also by the epitaxial strain, which
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is present in our a-tin layers, which are coherently strained on InSb or CdTe substrates.’
Future work could also focus on including k-dependent optical dipole matrix elements for
the allowed and forbidden transitions!? and understanding the non-resonant background,

which might be due to free-carrier absorption or forbidden interband transitions.

IX. CONCLUSION

The contribution to the dielectric function from interband transitions near the I'-point
in a-tin was calculated using degenerate Fermi-Dirac carrier statistics in the parabolic band
approximation. The results are very similar to those shown in Fig. 3 of Ref. 9. Therefore,
the use of Eq. (2) in Ref. 9 with non-degenerate Maxwell-Boltzmann statistics was justified
and degenerate carrier statistics are not important. Also, the intrinsic carrier concentration
at room temperature is very high and therefore excitonic effects are weak, but still need to
be considered, because the Sommerfeld enhancement persists beyond the Mott transition.
The parabolic approximation does not lead to good agreement with experiments, as shown

in Fig. 2.

To test the importance of nonparabolicity, the effective masses were adjusted to better
match the "exact” bands calculated from Kane’s 8x8 k - p-model. This does not change
the chemical potential or the intrinsic carrier concentration at 300 K, because they are
determined by the heavy hole and L-electron masses, which are assumed to be parabolic. On
the other hand, the significant increase of the I'; valence band mass enhances the interband
transitions, increases the exciton binding energy, reduces the exciton radius and therefore
also the screening, which leads to better agreement with experiment than the parabolic

model.

Additional improvements to the theory could be achieved by increasing the number
of bands included in the £ - p calculation, considering the impact of k-dependent matrix
elements,'® and by variations of the effective masses due to the epitaxial strain. An im-
portant clue can also be found in the dielectric function of InSb,*? where the impact of the
E—dependenee of the optical dipole matrix element and the nonparabolicity of the I'; band

can be studied.
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