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Most cubic semiconductors have threefold degenerate p-bonding valence bands and

nondegenerate s-antibonding conduction bands. This allows strong interband tran-

sitions from the valence to the conduction bands. On the other hand, intervalence

band transitions within p-bonding orbitals in conventional p-type semiconductors

are forbidden at k=0 and therefore weak, but observable. In gapless semiconductors,

however, the s-antibonding band moves down between the split-off hole band and

the valence band maximum due to the Darwin shift. This band arrangement makes

them three-dimensional topological insulators. It also allows strong interband transi-

tions from the s-antibonding valence band to the p-bonding bands, which have been

observed in α-tin with Fourier-transform infrared spectroscopic ellipsometry [R. A.

Carrasco et al., Appl. Phys. Lett. 113, 232104 (2018)]. This manuscript presents a

theoretical description of such transitions applicable to many gapless semiconductors.

This model is based on k⃗ · p⃗ theory, degenerate carrier statistics, the excitonic Som-

merfeld enhancement, and screening of the transitions by many-body effects. The

impact of nonparabolic bands is approximated within Kane’s 8×8 k⃗ · p⃗-model by

adjustments of the effective masses. This achieves agreement with experiments.

a)zollner@nmsu.edu; http://femto.nmsu.edu
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I. INTRODUCTION

Due to relativistic effects, the energy of the s-antibonding Γ′
2 (or Γ−

7 in the double group

notation) band in diamond-type semiconductors decreases relative to the top of the Γ′
25 (or

Γ+
8 ) valence band maximum with increasing atomic number. This is known as the Darwin

shift.1,2 (It can also be found in zinc blende semiconductors like HgTe, but the charac-

ter notations of their space group T 2
d differ from the diamond group O7

h.) The difference

E0=E7−−E8+ between these two energy levels becomes negative for α-tin, where the Γ−
7

band is situated between the Γ+
8 valence band maximum and the Γ+

7 split-off hole band. For

symmetry reasons, the band gap of α-tin is therefore exactly zero, making it a semimetal.

The lower Γ+
8 band forms the heavy hole valence band, while the upper Γ+

8 band (with the

same symmetry as the light hole band in Ge) forms the conduction band.3–9 See Fig. 1 for

a schematic of the band structure.

Such inverted or gapless semiconductors have been studied for many years.1,2 Other ex-

amples include Ge1−xSnx alloys with high tin content10,11 and mercury chalcogenides, such as

HgTe and HgSe and some of their alloys with Cd, Mn, Fe, and Cr.1 Interest in such materials

has recently been revived, because the parity inversion from Γ+
7 (odd) to Γ−

7 (even) to Γ+
8

(odd) with increasing energy makes them topological insulators.7,12–14 Giving this manuscript

the title Excitonic absorption in topological insulators would technically be correct, but also

misleading, because none of the special effects observed in topological insulators (except for

the parity inversion) are relevant for their interband optical absorption.

The parity inversion has an important consequence: Interband transitions from the Γ−
7

valence band to the Γ+
8 valence and conduction bands, shown by solid arrows in Fig. 1, lead

to a strong absorption peak in the mid-infrared spectral region. Such transitions have only

recently been observed in α-tin9 and tin-rich Ge1−xSnx alloys.10 They should also dominate

the mid-infrared spectra of other gapless semiconductors, but have not yet been reported

apparently. Intervalence band transitions from Γ−
7 to Γ+v

8 can only be observed in p-type

gapless semiconductors or in intrinsic gapless semiconductors at finite temperature, to cre-

ate holes as final states for these transitions. Therefore, these transitions are observed in

experiments,9,10 but do not appear in calculated optical spectra, see Fig. 3 in Ref. 5

Transitions from the Γ+
7 split-off band to the Γ+

8 bands or within the Γ+
8 bands, shown

by dotted lines, are forbidden at the Γ-point, but become allowed away from the Brillouin
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zone center, because their matrix element is linear in k. This has been observed in p-type

Ge, GaAs, AlSb, and other semiconductors.15–18

A previous article by Carrasco et al.9 only presented a crude analysis of interband tran-

sitions in gapless semiconductors, based on the work of Kahn for Ge.16 The present work

describes the model for such transitions in more detail, including degenerate Fermi-Dirac

carrier statistics, the excitonic Sommerfeld enhancement, and its screening due to free carri-

ers. The nonparabolicity of the band structure is considered within Kane’s 8×8 k⃗ · p⃗-model

by solving the resulting cubic characteristic equation1,19 and adjusting the effective masses

to reproduce the k⃗ · p⃗ band structure. With parabolic bands and established effective masses,

the Sommerfeld enhancement is only partially screened at 300 K and excitonic effects lead

to an increase of the absorption peak at Ē0. However, the parabolic model underestimates

the strength of the absorption peak and does not reproduce the experimental line shape.

This discrepancy can be fixed by adjusting the effective masses to better match the 8×8 k⃗ · p⃗

band structure.

II. BAND STRUCTURE OF α-TIN

The top three valence bands and the lowest conduction band of α-tin have the following

dispersion shown by dashed lines in Fig. 1:

E8+c (k) = +
ℏ2k2

2m0m8+c

, (1)

E8+v (k) = − ℏ2k2

2m0m8+v

, (2)

E7−v (k) = −Ē0 − ℏ2k2

2m0m7−v

, (3)

E7+v (k) = −∆0 − ℏ2k2

2m0m7+v

, (4)

where En is the energy of band n, k the wave vector,m0 the free electron mass in vacuum, and

ℏ the reduced Planck’s constant. The effective masses are m8+c=0.024 (p-bonding electron),

m8+v=0.26 (p-bonding heavy hole), m7−v=0.058 (s-antibonding hole), and m7+v=0.04 (split-

off hole), as given in Table I. These effective masses were determined using magnetoreflection

experiments.20 They are also consistent with k⃗ · p⃗-theory.21 The inverted band gap Ē0=−E0

equals about 0.41 eV, taken as a positive value.9,10,20,22 The spin-orbit splitting ∆0=0.8 eV

is very large.20 The four conduction band minima at the L-point are expected to be only
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FIG. 1. Band structure of α-tin near the Γ-point from Kane’s 8×8 k⃗ · p⃗-model (solid) and with

parabolic bands (dashed). The symmetry notations in the Oh double group and the equivalent

bands for Ge (in parentheses) are also given. Solid and dotted arrows show allowed and forbidden

interband transitions, respectively. The horizontal solid line shows the location of the Fermi level

at 300 K.

about 6 meV above Γ at room temperature, nearly degenerate with the Γ+
8 bands. This

difference increases to about 100 meV at low temperatures.23 See Fig. S1 in Ref. 9 for a

sketch of the full band structure. The energy reference level is chosen to be where the Γ+
8

valence and conduction bands touch at the Γ-point.

III. INTERBAND OPTICAL TRANSITIONS

A. Transitions into the Γ+c
8 conduction band

Direct interband optical transitions with photon energy ℏω are allowed from the Γ−v
7

valence band to the Γ+c
8 conduction band, shown by the red arrow in Fig. 1. These bands

have the usual curvature, where the initial state band curves downward and the final state
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TABLE I. Effective density-of-states masses mn and reduced (optical) masses µn for α-tin, all

taken to be positive in units of the free electron mass m0. The mass at the L-point is for a single

L+
6 -valley. From Ref. 9 and calculated as described in the text. The exciton binding energies Rn

and radii an are also listed. The band gap Ē0, the momentum matrix element parameter EP , and

the spin-orbit splitting ∆0 were taken from Ref. 26. The first line lists values for parabolic bands,

the second one shows adjustments made to match the k⃗ · p⃗ band structure from Fig. 1.

m8+c m8+v m7−v m7+v mL µc µv Rc (meV) ac (Å) Rv (meV) av (Å) Ē0 (eV) EP (eV) ∆0 (eV)

(p) 0.024 0.26 0.058 0.04 0.19 0.017 0.075 0.4 750 1.8 170 0.41 23.8 0.8

(np) 0.031 0.1 0.053 0.024 0.163 0.6 540 3.8 78

band curves upward. The optical (reduced) mass can therefore be calculated in the usual

way21

µc =
m7−vm8+c

m7−v +m8+c

= 0.017. (5)

Note that we use the subscript c to denote the optical mass for transitions from the Γ−
7

valence band into the Γ+c
8 conduction band. These transitions contribute to the dielectric

function of α-tin with24,25

ϵ2,c (ℏω) = Im

〈
Ac

(ℏω + iΓ)2

[
2
√
Ē0 −

√
Ē0 − ℏω − iΓ−

√
Ē0 + ℏω + iΓ

]〉
[f7−v (ℏω)− f8+c (ℏω)] .

(6)

The amplitude prefactor Ac is given by

Ac =
e2
√
m0

3π
√
2ϵ0ℏ

EPµ
3/2
c = 4.918

√
eV EPµ

3/2
c , (7)

where e is the electronic charge and ϵ0 the permittivity of vacuum. The k⃗ · p⃗ matrix element

P is usually expressed through EP=2P 2/m0, which equals about 24 eV for α-tin.26 Γ is the

broadening parameter for this transition.

The second square root term in Eq. (6) is nearly imaginary (for small broadening and

ℏω>Ē0) and thus represents the square root-like increase of the absorption with photon

energy. The first and third square-root terms describe the corresponding contributions to

the real part of the dielectric function for ℏω>Ē0.

The last factor in Eq. (6) takes the occupation of the initial and final states for this

transition into account. The initial states are all filled, since Ē0≫kBT and therefore we can
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set f7−v (ℏω)=1. However, since the band gap of α-tin is zero, some of the final states in the

Γ+c
8 conduction band will be occupied through thermal activation (at non-zero temperature).

This reduces the strength of the absorption somewhat. This is known as Pauli blocking or

band filling. If the last factor is unity, then the real part of ϵ can be obtained analytically

by taking the real part of the expression within angular brackets. Otherwise, ϵ1 needs to

be obtained through a numerical Kramers-Kronig transformation, because the Fermi-Dirac

factors also depend on photon energy.

The occupation number f8+c (ℏω) of the final state is found as follows: The photon energy

equals the difference between the final and initial band energies (at the same wave vector k

for a direct transition). From Eqs. (1), (3), and (5),

ℏω = Ef − Ei = E8+c (k)− E7−v (k) = Ē0 +
ℏ2k2

2m0µc

. (8)

This implies

E8+c (k) =
ℏ2k2

2m0m8+c

=
µc

m8+c

(
ℏω − Ē0

)
. (9)

The Fermi occupation factor in the conduction band for the Γ−
7 valence band to the Γ+c

8

conduction band transition is therefore

f8+c (ℏω) = f

[
m7−v

m7−v +m8+c

(
ℏω − Ē0

)]
, (10)

where f (E) is the Fermi-Dirac distribution function

f (E) =
1

exp
(

E−µ
kBT

)
+ 1

(11)

with the chemical potential µ (see more below), Boltzmann constant kB, and temperature

T .

B. Transitions into the Γ+v
8 valence band

Similarly, transitions from the Γ−
7 valence band to the Γ+v

8 valence band, shown by the

blue arrow in Fig. 1, are also allowed, but we need to consider that both bands curve

downward. The difference between the final and initial state energies is

ℏω = Ef − Ei = − ℏ2k2

2m0m8+v

+ Ē0 +
ℏ2k2

2m0m7−v

=

= Ē0 +
ℏ2k2

2m0

(
1

m7−v

− 1

m8+v

)
. (12)
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The corresponding optical mass for this Γ−v
7 to Γ+v

8 transition is therefore

µv =
m7−vm8+v

m8+v −m7−v

= 0.075. (13)

Transitions can only happen if the photon energy ℏω is larger than the gap Ē0, because the

curvature (effective mass) of the Γ+v
8 valence band is smaller (larger) than that of the Γ−v

7

valence band. The contribution to the dielectric function for this Γ−v
7 to Γ+v

8 transition is

then given by24,25

ϵ2,v (ℏω) = Im

〈
Av

(ℏω + iΓ)2

[
2
√
Ē0 −

√
Ē0 − ℏω − iΓ−

√
Ē0 + ℏω + iΓ

]〉
[f7−v (ℏω)− f8+v (ℏω)] ,

(14)

with the amplitude factor similar to Eq. (7)

Av =
e2
√
m0

3π
√
2ϵ0ℏ

EPµ
3/2
v = 4.918

√
eV EPµ

3/2
v . (15)

We again set f7−v (ℏω)=1, since the Γ−v
7 valence band is fully occupied. For intrinsic α-tin

(without donors and acceptors) and at zero temperature, the Γ+v
8 valence band is also fully

occupied and therefore the transitions given by Eq. (14) cannot happen, because the last

factor in Eq. (14) vanishes. However, at finite temperatures or in p-type α-tin, the presence

of holes in the Γ+v
8 valence band will allow optical interband transitions that can contribute

to the dielectric function.

For such transitions, the final state energy is obtained with a similar argument as in Eq.

(8) as

E8+v (k) = − m7−v

m8+v −m7−v

(
ℏω − Ē0

)
(16)

and the final state occupation factor is therefore

f8+v (ℏω) = f

[
− m7−v

m8+v −m7−v

(
ℏω − Ē0

)]
. (17)

Note the minus signs in comparison to Eq. (10). We are already familiar with the argument

of the Fermi-Dirac function from Eq. (2) in Ref. 9, except that Maxwell-Boltzmann statistics

was used in the previous paper. It is now our goal to repeat this calculation with degenerate

Fermi-Dirac statistics. Therefore, we need to calculate the chemical potential for intrinsic

α-tin.

Finally, we should note that expressions (6) and (14) are for band-to-band transitions.

Excitonic effects have been ignored. We need to reconsider the importance of excitonic
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effects and screening, once the electron and hole concentrations have been calculated from

the chemical potential.

C. Other intervalence band transitions

Transitions from the Γ+v
7 split-off valence band to the Γ+v

8 valence band or to the Γ+c
8

conduction band, shown by the long dotted arrows in Fig. 1, are forbidden at k=0, because

the matrix element for these transitions is linear in k. They can occur, however, for non-zero

wave vectors k, similar to the intervalence band transitions in p-type Ge, GaAs, GaSb, AlSb,

etc. These transitions may cause a change of the slope of ϵ2 in α-tin at an energy equal to

the spin-orbit splitting ∆0. See Kahn.16

Transitions from the Γ+v
8 valence band to the Γ+c

8 conduction band, shown by the short

dotted arrow in Fig. 1, are also forbidden at k=0, because the matrix element is linear in

k. They have been observed in other semiconductors,15–18 but they occur at energies much

lower than Ē0 in α-tin and therefore cannot impact the lineshape of the peak at Ē0.

IV. FERMI-DIRAC INTEGRALS

To calculate the chemical potential and the electron and hole densities for intrinsic α-tin

as a function of temperature, we will need the Fermi-Dirac integrals27

Fn (x) =
1

Γ (n+ 1)

∫ ∞

0

yn

exp (y − x) + 1
dy, (18)

where Γ (n) is the Γ-function. Specifically for n = 1
2
and n = 3

2
we have

F1/2 (x) =
2√
π

∫ ∞

0

√
y

exp (y − x) + 1
dy and (19)

F3/2 (x) =
4

3
√
π

∫ ∞

0

y
√
y

exp (y − x) + 1
dy. (20)

Note the prefactors before the integrals, which are not always found in the older literature.

Following Ulrich et al.,27 Fermi-Dirac integrals can be calculated from standard special

functions called polylogarithms

Lim (x) =
1

Γ (m)

∫ ∞

0

tm−1

x−1 exp (t)− 1
dt, (21)

8
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which are defined for all x and any integral or non-integral order m>0. Using polylogarithms

with negative arguments expressed as an exponential, the Fermi-Dirac integrals can be

calculated as

Fn (x) = −Lin+1 [− exp (x)] (22)

for n>−1. Polylogarithms are called in MATLAB28 with the Symbolic Math Toolbox as

Li=polylog(n,x), where n is the order and x the argument of the polylogarithm function.

For large negative arguments x≪−1, one can use the approximation29,30

Fn (x) ≈ exp (x) , (23)

which is valid for any order n. This approximation corresponds to the non-degenerate

(classical) limit, where the Fermi-Dirac distribution is replaced with the Maxwell-Boltzmann

distribution. There are also approximations for the completely degenerate case x≫1, where

the Fermi-Dirac integral can be replaced by a power of the argument, for example29,30

F 1
2
(x) ≈ 4

3
√
π
x

3
2 . (24)

For x=0, the Fermi-Dirac integral is related to Riemann’s zeta-function29 and the Dirichlet

eta-function. Unfortunately, no suitable expansion exists for x≈0 (see Ref. 29), which is

needed for our purposes (see below), where kBT is much greater than the magnitude of the

chemical potential and the energies of holes and electrons in the Γ+
8 bands.

V. CALCULATION OF THE CHEMICAL POTENTIAL AND INTRINSIC

CARRER CONCENTRATION

The hole density for intrinsic (undoped) α-tin as a function of temperature is31

p (T ) =

0∫
−∞

dE gv (E) [1− f (E)] =

=

0∫
−∞

dE gv (E)
1

exp [(µ− E) /kBT ] + 1
, (25)

where31

gv (E) =
(m0m8+v)

3/2

ℏ3π2

√
−2E (26)

9
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is the density of states of holes in the Γ+v
8 band for negative energies E. With the substitution

x = −E/kBT , the hole density becomes31,32

p (T ) =
1

4

(
2m0m8+vkBT

πℏ2

)3/2

F1/2

(
− µ

kBT

)
=

= P8+v (T )F1/2

(
− µ

kBT

)
. (27)

This expression assumes that the Γ+v
8 hole bands are parabolic and spherical. Non-

parabolicity could be added with the F3/2 Fermi integrals, but is probably not important

for the Γ+v
8 hole bands. To take into account the warping of the heavy hole bands, a density

of states mass m8+v must be inserted for the holes.

The electron density is also written as a density-of-states integral as in Eq. (25), but this

is more difficult to express, because of the near degeneracy of the Γ+c
8 and L+

6 conduction

band minima. We use a multi-carrier model similar to what was written for Ge,25 where

electrons can also be present in several conduction band minima at Γ and L.

n (T ) = 4NL (T )F1/2

(
µ− Eind

kBT

)
+

+ N8+c (T )F1/2

(
µ

kBT

)
, (28)

NL (T ) =
1

4

(
2m0mLkBT

πℏ2

)3/2

, (29)

N8+c (T ) =
1

4

(
2m0m8+ckBT

πℏ2

)3/2

. (30)

The density of states factors Nc (T ) and Pv (T ) have been defined in the usual way.31,32 The

prefactor 4 of the first term in Eq. (28) is the number of non-equivalent L-valleys. mL=0.19

is therefore the density of states mass for a single L-valley, see Table I. One could take the

non-parabolicity of the Γ+c
8 valley into account with an F3/2 Fermi function,23,25 but we did

not implement that. Instead, we incorporate the nonparabolicity of the Γ−
7 valence band and

the Γ+
8 conduction band with a slight modification of the effective masses, to better match

the 8×8 k⃗ · p⃗ band structure shown in Fig. 1. Eind=6 meV is the energy of the L-valleys

above the reference level.23

We can evaluate the prefactor32

1

4

(
2m0kB
πℏ2

)3/2

= 4.8294× 1015 cm−3K−3/2 (31)
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by expressing one factor ℏ in Joules to cancel the kilogram units, the other one in electron

volts to cancel the Boltmann constant expressed in eV/K.

In an intrinsic semiconductor, the charge neutrality requires the number of electrons

to be equal the number of holes. We can therefore set Eq. (27) equal to Eq. (28). For

each temperature T , this yields an equality that can be solved for the chemical potential

to yield µ (T ) using the MATLAB28 fzero() function. Table II shows the Fermi level

for intrinsic α-tin and the occupations of the various bands at several temperatures for a

constant value of the indirect gap Eind=6 meV. This could be modified by introducing a

temperature dependence.23

At room temperature, kBT is much larger than the separation Eind between Γ- and L-

minima in the conduction band. Electrons are therefore mostly found in the L-minima

because of their large density of states. The hole density of states is smaller than the

L-electron density of states and therefore the Fermi level is negative. The overall intrinsic

electron and hole density at room temperature is about 3.7×1018 cm−3. At low temperatures,

electrons are located in the Γ+c
8 valley, which has a very small density of states, smaller than

that of the Γ+v
8 hole band. The Fermi energy is therefore positive. The carrier concentration

is only 3×1015 cm−3 at 10 K, three orders of magnitude smaller than at room temperature.

The Γ−v
7 valence band and its shape do not enter into the calculation of the chemical po-

tential, because it is always fully occupied. The nonparabolicity of the Γ+c
8 conduction band,

while significant, should not matter either, because the electron density (28) is dominated by

the L-valleys at room temperature. The impact of the L-valley nonparabolicity is probably

also small, based on Hall effect data for α-tin23 and calculations for Ge.33 The Γ+v
8 heavy hole

band is quite parabolic in similar semiconductors, but warped.34 A density-of-states mass

(averaged over all directions in k⃗-space) must be used for this band. All things considered,

our carrier concentration and chemical potential at room temperature are probably about

as accurate as the mL and m8+v effective masses, despite the application of parabolic bands.

Our calculated value of p=3.67×1018 cm−3 at 300 K agrees well with electrical Hall effect

measurements.23
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TABLE II. Chemical potential µ at different temperatures T for intrinsic α-tin, calculated by

equating Eqs. (27) and (28). The hole and electron concentrations in the Γ and L-valleys are also

given. The Hulthén parameters g for transitions to the Γ+v
8 and Γ+c

8 bands obtained from Eq. (37)

are also given. This calculation was performed for parabolic (p) and nonparabolic (np) bands.

T (K) µ (meV) p (1018 cm−3) nΓ (1018 cm−3) nL (1018 cm−3) gv
(
Γ+v
8

)
gc

(
Γ+c
8

)
4 (p) 0.8 0.0004 0.0004 0 2.21 0.50

10 (p) 2 0.003 0.002 0.001 1.48 0.34

100 (p) −2 0.61 0.01 0.60 0.31 0.07

300 (p) −12.5 3.67 0.05 3.62 0.22 0.05

300 (np) −12.6 3.68 0.07 3.61 0.47 0.05

VI. MOTT TRANSITION AND SCREENING OF EXCITONIC EFFECTS

To determine if excitonic effects play a role in the optical interband transitions near Ē0

for intrinsic α-tin, we start by calculating the electron density at the Mott transition. The

exciton binding energy in α-tin formed by Γ−v
7 holes with Γ+v

8 or Γ+c
8 electrons is35

Rv,c =
µv,c

ϵ2∞
RH , (32)

where RH=13.6 eV is the binding energy of the hydrogen atom and ϵ∞=24 is the static

dielectric constant9 (which is the same as the high-frequency dielectric constand for diamond-

like semiconductors, because there are no infrared-active phonons). The optical masses µc,v

are given in Table I. The corresponding excitonic Bohr radii are given by

av,c =
ϵ∞
µv,c

aH , (33)

where aH=0.529 Å is the Bohr radius of the hydrogen atom. The exciton parameters are

also given in Table I.

For the moment, we choose a Mott criterion (with a more precise criterion given later)

rs =
1

an

3

√
3

4πnM

∼ 1, (34)

where an is the excitonic radius given by Eq. (33). This implies a Mott density

nM =
3

4π
a−3
x , (35)
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which comes out to 4.9×1016 cm−3 for Γ+v
8 excitons and 5.7×1014 cm−3 for Γ+c

8 excitons.

The intrinsic charge density of α-tin at room temperature is much higher (3.67×1018 cm−3,

see Table II) and therefore the excitonic enhancement of the Γ−
7 to Γ+v

8 and Γ+c
8 transitions

is at least partially screened.

To quantify this statement, we calculate the Debye-Hückel screening wave vector36

kD =

√
pe2

ϵ0ϵ∞kBT
=

√
p

ϵ∞T
×
√
0.021 Kcm (36)

and the Hulthén parameter37

g =
12

π2axkD
=

12

π2ax

√
ϵ0ϵ∞kBT

pe2
. (37)

One would typically add a factor of 2 in the numerator of Eq. (36) to account for screening

of the excitonic interaction by free electrons and holes,38 but at room temperature most

electrons in α-tin are at the L-valley and they probably do not contribute to the screening

of direct excitons at the Γ-point. At room temperature with the carrier concentration given

in Table II, we find a Debye screening wave vector of 0.0327 Å−1 (or a Debye screening length

λD = 1/kD of 31 Å, much smaller than the excitonic radii, see Table I). The screening factor

g therefore equals 0.22 for transitions to the Γ+v
8 valence band and 0.05 for transitions to

the Γ+c
8 conduction band at 300 K. g=1 is typically associated with the Mott criterion and

therefore we expect the excitonic Sommerfeld enhancements to be screened somewhat in

α-tin at room temperature, compare Fig. 5 in Ref. 25.

Tanguy calculated the direct gap absorption of screened excitons39

ϵ2 (ℏω) = Im

〈
An

√
Rn

(ℏω + iΓ)2

{
g̃
[
ξ̃ (ℏω + iΓ)

]
+ g̃

[
ξ̃ (−ℏω − iΓ)

]
− 2g̃

[
ξ̃ (0)

]}〉
[fh (ℏω)− fe (ℏω)] ,(38)

g̃ (z) = −2ψ
(g
z

)
− z

g
− 2ψ (1− z)− 1

z
, (39)

ξ̃ (z) =
2√

Ē0−z
R

+
√

Ē0−z
R

+ 4
g

, (40)

where An is the transition amplitude defined in Eqs. (7,15) and Rn the exciton binding

energy. ψ (z) is the digamma or psi function, i.e., the logarithmic derivative of the Γ-

function, which can be evaluated for complex arguments using the fdigamma.m package in

MATLAB.28 Despite the small Hulthén parameters g, the Sommerfeld enhancement does
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not disappear completely for the intervalence band transitions and therefore the simpler

band-to-band expressions (6) and (14) should not be used.25

VII. DISCUSSION AND COMPARISON WITH EXPERIMENT

We are now able to evaluate the strength of optical transitions ϵ2 (ℏω) from the Γ−v
7

valence band into the Γ+c
8 conduction and Γ+v

8 valence bands using Eqs. (6) and (14). We

assume an inverted gap of Ē0=0.41 eV from Ref. 9 and a broadening parameter Γ of 1 meV,

which is typical for direct gap transitions in direct cubic semiconductors.40 Because of the

energy-dependent occupation factors (10) and (17), the real part ϵ1 (ℏω) needs to be cal-

culated numerically, for example in MATLAB28 using Valerio Lucarini’s add-on Tools for

Data Analysis in Optics, Acoustics, Signal Processing.41 So far, we have ignored the non-

parabolicity of the Γ+c
8 conduction band, the Sommerfeld (excitonic) enhancement,24 and

Hulthén screening of excitons.39 The contribution to the dielectric function from interband

transitions at the Γ-point are shown in Fig. 2 (a).

The resulting curves are very similar to those shown in Fig. 3 of Ref. 9. This indicates that

the use of degenerate Fermi-Dirac statistics is not important and non-degenerate (Maxwell-

Boltzmann) statistics is sufficient to describe these interband transitions. This is surprising,

since kBT is several times larger than the chemical potential, see Table II. Therefore, the

argument of the Fermi-Dirac integral is close to zero (far from the non-degenerate limit),

where no good expansion exists.

Due to the larger reduced mass, transitions to the Γ+v
8 (heavy hole) valence band dominate

over those to the Γ+c
8 conduction band. The onset of absorption occurs at Ē0=0.41 eV. The

maximum of ϵ2=1.46 is at 0.47 eV, about kBT larger than Ē0. At lower energies, ϵ2 is

reduced by the joint density of states, at higher energies by the occupation factor. The

heavy hole contribution decreases towards larger energies (due to the decreasing occupation

factor) more quickly than the Γ+c
8 contribution, which is governed by the ω2-term in the

denominator of Eq. (6). The real part ϵ1 can be calculated from ϵ2 using Kramers-Kronig

transformation, but it does not include contributions from the vacuum (ϵ=1) and from

non-resonant transitions at higher energies.40

Equation (38) allows us to study the impact of excitonic enhancement. For completely

unscreened excitons and a broadening of Γ=1 meV (not shown), there is a strong discrete
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excitonic peak just below Ē0. The maximum of ϵ2=2.5 is at 0.43 eV. As expected, the

maximum is larger than for interband transitions due to the Sommerfeld enhancement.

Also, the peak is shifted to lower energies, since the Sommerfeld enhancement decreases for

larger energies above the band gap.21

It is more realistic to consider the screening of excitons with the Hulthén parameters g

given in Table II, see Fig. 2 (b). The maximum ϵ2=2.14 is now at 0.45 eV. As expected, for

g=0.22, the Sommerfeld enhancement is only partially screened and therefore ϵ2 is larger

and occurs at a lower energy than for the interband case shown in Fig. 2 (a).

Overall, all three scenarios (excitonic transitions with full, partial, and no screening) lead

to similar results for the dielectric function, except for the discrete exciton peak, which is

only present for unscreened excitons. Theory shows that discrete excitonic peaks only exist

for g>1, even for small broadenings.39 All curves show a rather steep rise of ϵ2 follows by

slow decrease. This is in stark contrast to the experiment, which shows a sharp peak with

a steep increase and decrease.9

We also varied the value of the indirect gap Eind between ±50 meV in our calculations.

This changes the magnitude of the peak somewhat, but the slow decrease towards higher

photon energies remains. Since parabolic bands with established effective masses do not

explain the experimental observations, we will discuss in Sec. VIII how nonparabolicity

corrections affect these calculations.

VIII. IMPACT OF NONPARABOLICITY

As shown in Fig. 1, the dispersion obtained using the experimental effective masses listed

in Table I (dashed lines) does not match the band structure calculated using Kane’s 8×8 k⃗ ·p⃗-

model (solid).19 To achieve a better fit to the band structure on this scale and to consider the

nonparabolicity of the bands, we adjust the effective masses to better fit the 8×8 k⃗ · p⃗ band

structure. This results in the following values: m8+c=0.031, m7−v=0.1, m7+v=0.053. The

Γ+c
8 conduction band mass is increased moderately by 29% and the corresponding optical

mass µc by 41%. The increase of the Γ−
7 mass is much more significant: It increases by 72%

and the corresponding optical mass µv by 117%.

Table II shows that the chemical potential and the intrinsic carrier concentration do not

change much as nonparabolicity corrections are introduced. This was already predicted in
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FIG. 2. Contributions to the imaginary part of the dielectric function due to interband transitions

from Γ−
7 to Γ+c

8 (dashed) and to Γ+v
8 (dotted) as well as their sum (solid) in comparison to experi-

mental data from Ref. 9 (symbols), with a constant background determined at 0.2 eV subtracted.

Calculated for parabolic bands without (a) and with (b) excitonic enhancement.

Sec. V, because the chemical potential depends mostly on the heavy hole and L-electron

mass, which are assumed to be parabolic.

On the other hand, the increase of the optical masses increases the excitonic binding

energy and decreases the exciton radius, especially for transitions to the heavy hole band.

The Hulthén parameter gv for transitions to Γ+v
8 has more than doubled. The Sommerfeld

enhancement is screened much less. This can seen in Fig. 3:

The optical absorption from transitions to the Γ+c
8 conduction band is only increased

by about 50-60%, since the optical mass is increased only moderately and the screening

parameter gc does not change at all.
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FIG. 3. As Fig. 2, but with effective masses adjusted to account for nonparabolicity without (a)

and with (b) excitonic enhancement..

On the other hand, the amplitude of band-to-band transitions to the heavy hole band

Γ+v
8 has doubled by the introduction of nonparabolicity. The magnitude of its absorption

peak shown in Fig. 3 (a) nearly matches the experimental peak (especially if the nonresonant

background is subtracted), The peak shape, on the other hand, is still not a good matched,

if the Sommerfeld enhancement is neglected.

If screened excitonic contributions are included, as shown in Fig. 3 (b), then the calcu-

lated peak magnitude is twice as large as observed in the ellipsometry experiment. The

experimental peak shape is also reproduced much better.

It might be possible to achieve even better agreement with experiment by fine-tuning the

effective mass of the Γ−
7 valence band but we shall not pursue this here. Effective masses are

influenced in k⃗ · p⃗ theory by other ”remote” bands and also by the epitaxial strain, which
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is present in our α-tin layers, which are coherently strained on InSb or CdTe substrates.10

Future work could also focus on including k-dependent optical dipole matrix elements for

the allowed and forbidden transitions19 and understanding the non-resonant background,

which might be due to free-carrier absorption or forbidden interband transitions.

IX. CONCLUSION

The contribution to the dielectric function from interband transitions near the Γ-point

in α-tin was calculated using degenerate Fermi-Dirac carrier statistics in the parabolic band

approximation. The results are very similar to those shown in Fig. 3 of Ref. 9. Therefore,

the use of Eq. (2) in Ref. 9 with non-degenerate Maxwell-Boltzmann statistics was justified

and degenerate carrier statistics are not important. Also, the intrinsic carrier concentration

at room temperature is very high and therefore excitonic effects are weak, but still need to

be considered, because the Sommerfeld enhancement persists beyond the Mott transition.

The parabolic approximation does not lead to good agreement with experiments, as shown

in Fig. 2.

To test the importance of nonparabolicity, the effective masses were adjusted to better

match the ”exact” bands calculated from Kane’s 8×8 k⃗ · p⃗-model. This does not change

the chemical potential or the intrinsic carrier concentration at 300 K, because they are

determined by the heavy hole and L-electron masses, which are assumed to be parabolic. On

the other hand, the significant increase of the Γ−
7 valence band mass enhances the interband

transitions, increases the exciton binding energy, reduces the exciton radius and therefore

also the screening, which leads to better agreement with experiment than the parabolic

model.

Additional improvements to the theory could be achieved by increasing the number

of bands included in the k⃗ · p⃗ calculation, considering the impact of k-dependent matrix

elements,19 and by variations of the effective masses due to the epitaxial strain. An im-

portant clue can also be found in the dielectric function of InSb,42 where the impact of the

k⃗-dependence of the optical dipole matrix element and the nonparabolicity of the Γ−
7 band

can be studied.
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5S. Küfner, J. Furthmüller, L. Matthes, and F. Bechstedt, Nanotechnology 24, 405702

(2013); 24, 469501 (2013) (E).

6S. Küfner, J. Furthmüller, L. Matthes, M. Fitzner, and F. Bechstedt, Phys. Rev. B 87,

235307 (2013).
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