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Figure 1: Overview of the street camera-based navigation system. The system provides real-time auditory feedback to help BLV 
users avoid obstacles, know exactly when to cross the street, and understand the overall layout of the environment. Blind and 
low-vision (BLV) pedestrians interact with the system via a companion smartphone app that ofers two navigation modes: 
(a) guidance mode and (b) exploration mode. The system leverages street cameras to enable these two navigation modes, by 
frst processing the (c) COSMOS testbed’s street camera video feed using computer vision to identify user’s position, nearby 
obstacles, and pedestrian signals; and then transforming it onto a (d) bird’s eye view map for efectively conveying instructions. 
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anticipating environment layouts, avoiding obstacles while follow-
ing directions, and crossing noisy street intersections. To address 
these challenges, we are currently developing a street camera-based 
navigation system that provides real-time auditory feedback to help 
BLV users avoid obstacles, know exactly when to cross the street, 
and understand the overall layout of the environment. We close by 
discussing our evaluation plan. 
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1 INTRODUCTION 
Outdoor navigation in unfamiliar environments is challenging for 
blind and low-vision (BLV) people. GPS-based assistive technolo-
gies, such as BlindSquare [25] and Microsoft Soundscape [15], are 
commonly used by BLV people to receive guidance instructions 
to a chosen point of interest (POI). While GPS-based systems pro-
vide information about route to the destination, they fail to assist 
with other aspects of outdoor navigation that require real-time and 
precise knowledge of the user’s location and surroundings. For in-
stance, BLV people face difculties in avoiding obstacles (e.g., other 
pedestrians, vehicles) [29, 31], maintaining a straight path [28], and 
crossing street intersections [2, 13, 24]. Thus, there is a need to 
investigate alternate technologies that can support the precise and 
real-time aspects of BLV pedestrians’ outdoor navigation. 

One particularly promising alternative is to leverage already-
instrumented street cameras in outdoor environments, that are 
increasingly being installed in cities for public safety, surveillance, 
and trafc management-related applications [3, 5, 10, 19, 23]. While 
accessibility is not street cameras’ primary purpose, they have the 
potential to be repurposed as navigation assistance systems. 

In this work, we investigate street cameras’ potential for support-
ing aspects of outdoor navigation that require precise and real-time 
knowledge of BLV pedestrians’ location and surroundings. To this 
end, we take preliminary steps to answer the following research 
questions: 
RQ1. What aspects of outdoor navigation do BLV people fnd 

challenging when using GPS-based assistive technology? 
RQ2. How should street camera-based systems be designed to 

address these challenging aspects of outdoor navigation? 
RQ3. To what extent do street camera-based navigation systems 

address these outdoor navigation challenges? 

To answer RQ1, we performed formative interviews with six 
BLV participants and found that anticipating environment layouts, 
avoiding obstacles while following directions, and crossing street 
intersections in noisy environments are challenging aspects of 
outdoor navigation that GPS-based systems fail to address. 

To answer RQ2, we are currently prototyping a street camera-
based navigation system that addresses the challenges revealed in 
RQ1. To interact with the street camera system, BLV pedestrians 
use a companion smartphone application and Bluetooth earpiece. 
When navigating outdoors, BLV users simply wave one hand over 
their head and the street camera system embedded within the en-
vironment recognizes their precise location on the street using 
computer vision. Once localized, pedestrians can choose to receive 
turn-by-turn instructions to a nearby POI or explore the layout 
of the environment. As users navigate through the environment, 
they receive real-time auditory feedback via the Bluetooth earpiece 
that helps prevent veering of the path, avoid obstacles, and know 
exactly when to cross the street; as shown in Figure 1. We deployed 
our system in the NSF PAWR COSMOS wireless edge-cloud testbed 
in New York City (NYC) [34, 42]. In particular, we used one of 
COSMOS’ street-level cameras deployed on the second foor of 
Columbia’s Mudd building and one of COSMOS’ edge servers as 
the computational server. 

We close by discussing our plan for evaluating the street camera-
based navigation system to answer RQ3. 

2 RELATED WORK 
Existing approaches for outdoor navigation primarily rely on GPS-
based navigation systems for providing turn-by-turn instructions 
and information about nearby POIs [15, 17, 25]. The GPS signal, 
however, ofers poor precision with localization errors as big as tens 
of meters [1, 26, 43]. The accuracy is lower in densely populated 
cities [40], which is even more concerning given that a dispropor-
tionately high percentage of BLV people live in cities [14]. Despite 
GPS-based systems’ undeniable impact on helping BLV people in 
outdoor navigation, their low precision and inability to provide 
real-time support for avoiding obstacles and veering of the path 
limits their usability as a standalone navigation solution. Our work 
attempts to investigate street cameras’ potential as an alternative 
solution for providing precise and real-time navigation assistance 
along with turn-by-turn guidance. Prior work has explored the use 
of surveillance cameras in indoor environments for robot naviga-
tion [4, 27, 30, 36]. Our work focuses on leveraging street cameras 
in outdoor environments as an assistive navigation tool for people 
with visual impairments. 

Another common approach for outdoor navigation is to develop 
personalized, purpose-built, assistive devices that support with ei-
ther crossing streets [13, 21, 37], recording routes [43], or avoiding 
obstacles [7, 8, 18, 22, 33, 41]. While these solutions address some 
of the precise and real-time aspects of BLV people’s outdoor naviga-
tion, support for turn-by-turn navigation is missing. Furthermore, 
these systems place the burden of purchasing costly devices onto 
the BLV users. Our work, by contrast, explores the possibility of 
using street cameras that already exist in an environment to provide 
comprehensive outdoor navigation assistance. We investigate re-
purposing existing hardware in outdoor environments to support 
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Table 1: Self-reported demographics of our participants. Gender information was collected as a free response; our participants 
identifed themselves as female (F) or male (M). Participants rated their assistive technology (AT) familiarity on a scale of 1–5. 

PID Gender Age Race Occupation Vision ability Onset Mobility aid AT familiarity (1–5) 
P1 F 29 White Claims expert Totally blind Birth White cane 3: Moderately familiar 
P2 F 61 White Retired Light perception only Age 6 Guide dog 1: Not at all familiar 
P3 F 66 White Retired Totally blind Age 58 Guide dog 2: Slightly familiar 
P4 M 48 Black Unemployed Light perception only Age 32 White cane 3: Moderately familiar 
P5 M 27 White/Asian Unemployed Totally blind Birth White cane 3: Moderately familiar 
P6 M 38 White AT instructor Totally blind Birth White cane 5: Extremely familiar 

accessibility applications, thus imbuing accessibility within the city 
infrastructure directly at no additional cost to the BLV user. 

3 FORMATIVE INTERVIEWS 
We conducted semi-structured interviews with six BLV participants 
to answer RQ1: What aspects of outdoor navigation do BLV people 
fnd challenging when using GPS-based assistive technology? 

3.1 Methods 
We recruited six BLV participants (three males and three females; 
aged 29–66) by posting on social media platforms and snowball 
sampling [11]. Table 1 summarises the participants’ information. All 
interviews were conducted over Zoom and lasted about 90 minutes. 
Participants were compensated $25 for this IRB approved study. 

To understand the specifc aspects of outdoor navigation that 
BLV people fnd challenging, we used a recent critical incident 
technique (CIT) [9], in which we asked participants to recall and 
describe a recent time when they navigated outdoor environments 
using GPS-based assistive technology (AT). For example, we frst 
asked participants to name the AT they commonly use and then 
asked them to elaborate on their recent experience of using it: “So, 
you mentioned using BlindSquare a lot. When was the last time you 
used it?” Then, we initiated a discussion by establishing the scenario 
for them: “Now, let’s walk through your visit from the ofce to this 
restaurant. Suppose, I spotted you at your ofce. What would I observe? 
Let’s start with you getting out of your ofce building.” We asked 
follow-up questions to gain insights into what made the aspects of 
outdoor navigation challenging and what additional information 
could help address them. 

3.2 Findings: Challenging Aspects of Outdoor 
Navigation 

We found three major themes for aspects of outdoor navigation 
that participants found challenging when using GPS-based AT. 

3.2.1 Anticipating environment layout. GPS-based systems, like 
BlindSquare [25], ofer navigation instructions that follow a direct 
path to the destination, often referred to as “as the crow fies,” 
rather than providing detailed instructions through a poly-line path 
that guide BLV people as per the environment layout. Since “not 
everything is organized in the ideal grid-like way” (P1), participants 
reported facing difculties in following these instructions, failing to 

confdently act upon the instructions without any knowledge of the 
shape and layout of the environment. P3 recalls: “I didn’t know if 
crosswalks were straight or curved or if they were angled. [It was hard] 
to fgure out which way you needed to be to be in the crosswalk.” Many 
participants cited problems such as making the wrong turns into 
unexpected “alleyways” (P1, P2, P4) that landed them in dangerous 
situations with “cars coming through” (P2). Unfamiliar layouts also 
caused participants to veer of the sidewalks and end up in streets. 

3.2.2 Avoiding obstacles while following instructions. Participants 
reported using their existing mobility aids along with GPS-based 
systems for getting directions. While doing so, participants found it 
challenging to keep their concentration on identifying obstacles and 
often bumped into things that they would have otherwise identifed 
via their white cane. P2 shared an instance where “there were trafc 
cones [and] I tripped over those” while following directions. Both 
dynamic obstacles (e.g., other pedestrians, cars) and temporarily 
placed stationary obstacles (e.g., triangle sandwich board sign –P3) 
were hard to navigate around. P4 echoed this sentiment: “You know 
how many times I’ve walked into the sides of cars even though I have 
the right of way. Drivers have gotten angry, accusing me of scratching 
their vehicles. It can spoil your day [and make] you feel insecure.” 

3.2.3 Crossing street intersections safely. In line with prior research 
[13], our participants expressed that crossing streets was still a 
major challenge for them. Most participants mentioned relying on 
audio cues to identify the fow of trafc, but found it to be often 
insufcient in practice: “yeah, it can be tricky, because [there may 
be] really loud construction nearby that can defnitely throw me of 
because I’m trying to listen to the trafc” (P1). Furthermore, not 
knowing the duration of the signals and the length of the crosswalk 
afected their confdence as they feared getting in trouble: “I don’t 
want to be caught in the middle [of the street]” (P4). 

4 STREET CAMERA-BASED NAVIGATION 
SYSTEM 

In this section, we introduce a navigation system that we are cur-
rently developing to answer RQ2: How should street camera-based 
systems be designed to address the challenging aspects of outdoor 
navigation? The system consists of three components: (i) street 
camera, (ii) computational server, and (iii) smartphone app. These 
components interact with each other to facilitate two navigation 
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modes that together address BLV people’s challenges to outdoor 
navigation, which we discovered in our formative interviews. 

4.1 System Components 
The system consists of three main components: (i) street camera, 
(ii) computational server, and (iii) smartphone application. 

Street camera. The system uses a street-level view camera which 
is part of the NSF PAWR COSMOS wireless edge-cloud testbed in 
NYC [34, 42]. The camera is mounted at the second foor of the 
Columbia Mudd building, viewing a four-way street intersection 
at 120th St. and Amsterdam Ave., NYC, as shown in Figure 1c. 
Anonymized video samples (without special gestures) from this 
camera can be found online [6]. The video feed from the camera is 
directly streamed onto one of COSMOS’ computational servers for 
processing. 

Computational server. The computational server processes the 
video feed using GStreamer-based pipelines [38] equipped with the 
YOLOv8 model [39] as an object detector and the Nvidia DCF-based 
tracker to track pedestrians and vehicles and identify pedestrian 
signals. Using the camera view and a corresponding image from 
Apple Maps’ street view of the same intersection, the system fnds 
visual correspondences to generate a bird’s-eye view representation 
of the environment (Figure 1d). Additionally, it stores the map 
information that includes labeled regions (e.g., streets, crosswalks, 
sidewalks, pedestrian lights) and the location of relevant POIs (e.g., 
pharmacy, café) within the bird’s-eye view representation. Similar 
to prior work in indoor navigation [1, 12, 35], the map information 
is prepared manually by an administrator and loaded onto the server 
beforehand. 

Smartphone application. Figure 1a–b shows the iOS app that 
acts as an interface between the user and the computational server, 
enabling them to access the map information and to receive real-
time audio feedback via a Bluetooth earpiece. To alleviate concerns 
around revealing private identifable information from the video 
feeds (e.g., pedestrian’s faces and vehicle’s license plate), the server 
only sends processed information such as navigation instructions, 
positions and generic labels of obstacles (e.g., “vehicle” at 2 o’clock) 
to the smartphone app instead of the video itself. 

4.2 User Interaction 
BLV pedestrians use the smartphone app to establish a connec-
tion with the server via a localization mechanism. Once localized, 
users are ofered two navigation modes: (i) guidance mode, and (ii) 
exploration mode. 

Pedestrian Localization. To determine the user’s position on 
the bird’s-eye view map, the system must diferentiate them from 
other pedestrians on the street. We achieved this by introducing an 
action recognition module that can identify users from the second 
foor camera feed. The smartphone app asks the user to initialize 
the system with their current position by simply waving one hand 
above their head for a few seconds, which is detected by the action 
recognition module. We chose this action based on discussions with 
several BLV individuals and most agreed that this single-handed ac-
tion was both convenient and socially acceptable to them. Internally, 

the action recognition module is implemented as a CLIP model [32] 
that computes visual similarity of each detected pedestrian from the 
second foor camera with the following language prompts: “person 
walking” and “person waving hand.” We experimentally fne-tuned 
the confdence thresholds. 

Navigation modes. To address the challenging aspects of outdoor 
navigation that we identifed from our formative study, we designed 
the street camera-based navigation system to support the following 
two modes of navigation: 

(i) Guidance Mode. Figure 1a shows this mode, where BLV users 
can choose a destination from the list of nearby POIs and receive 
real-time audio feedback in the form of turn-by-turn instructions. 
Similar to prior work in indoor navigation [1], we represent the 
birds-eye view map as a graph representation consisting of POIs 
and street corners as nodes that act as way-points. The knowledge 
of the user’s precise position enables the system to provide audio 
cues that help prevent veering of the path between way-points 
(Section 3.2.1). 

To address BLV users’ challenges to avoid obstacles while fol-
lowing instructions (Section 3.2.2), the street camera-based system 
notifes users of obstacles —both moving and fxed— by specify-
ing their relative spatial location and category (e.g., by announcing 
“pedestrian at 2’o clock, 5 feet away”). Our current implementation of-
fers support for dynamic obstacles such as pedestrians and vehicles, 
along with fxed ones such as poles, trashcans, and parked vehicles. 
Internally, we implement this by tracking all these elements within 
the space and predicting positional overlaps in bird’s-eye view. For 
dynamic obstacles, specifcally vehicles, we plan on adapting our 
prediction module to also account for their speed. 

To address BLV people’s challenges in crossing street intersec-
tions safely (Section 3.2.3), the system dynamically updates the 
internal graph representation to temporarily remove crosswalks 
that have pedestrian signals reading “wait” and reinstates it when 
they read: “walk.‘’ Once the system reinstates the crosswalk, it pro-
vides users precise information about the time remaining to cross 
and the distance to the other end of the crosswalk. The system 
gathers this information by frst automatically detecting the signal 
state (i.e., walk vs. wait) and then computing the time it takes to 
change over a complete cycle. 

(ii) Exploration Mode. Figure 1b shows this mode, where BLV 
users can choose to navigate the environment without any specifc 
destination in mind. Similar to guidance mode, this mode also pro-
vides users real-time feedback to prevent veering (Section 3.2.1), 
avoid obstacles (Section 3.2.2), and cross street intersections safely 
(Section 3.2.3). Additionally, this mode is designed to address BLV 
users’ challenge to anticipate environment layouts (Section 3.2.1). 
The user can scrub their fnger on the smartphone to learn (via 
haptic feedback) the bird’s-eye view map’s shape and layout, which 
has been found to provide BLV people spatial understanding of the 
environment [16]. Prior work on image accessibility also shows that 
direct manipulation via touchscreen-based interfaces helps BLV 
users efectively explore images [20]. Our current implementation 
allows users to move their fnger across the map on the smart-
phone app, reading out the corresponding region labels (e.g., street, 
crosswalk, sidewalk). We plan on extending this touchscreen-based 
exploration tool to also convey users’ current position and POIs. 
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5 EVALUATION PLAN 
We will conduct user studies with BLV pedestrians to evaluate the 
street camera-based navigation system (i.e., to answer RQ3). In this 
study, we will compare participants’ experience of navigating street 
intersections using the proposed system and a commonly used GPS-
based app, specifcally BlindSquare [25]. Participants will be asked 
to complete navigation tasks (e.g., fnding a nearby pharmacy) 
with both systems. We will compare participants’ performance 
and behaviors in both conditions by collecting system usage logs 
and conducting semi-structured interviews to understand their 
overall impressions. We aim to understand the extent to which 
street cameras can support precise and real-time outdoor navigation 
for blind pedestrians. 
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